高考数学极值点问题
高考数学中的条件极值问题详解
![高考数学中的条件极值问题详解](https://img.taocdn.com/s3/m/813217b77d1cfad6195f312b3169a4517623e54d.png)
高考数学中的条件极值问题详解随着高考的临近,每年的高考数学考试都是很多考生最为头疼的一部分。
其中,条件极值问题就是很多考生容易遇到的难题。
本文将从条件极值问题的定义、解题思路和常见例题等方面来详解这一难点。
一、条件极值问题的定义条件极值问题是指在满足一定条件下,求出目标函数的最大值或最小值。
所谓目标函数,就是表示问题中要求最大值或最小值的那个函数式。
条件则是问题给出的限制条件。
例如,假设有一个长为 L、宽为 W 的矩形,求其面积最大值,那么这个“最大值” 就是目标函数,而长和宽的限制条件则是其长度 L、宽度 W 必须满足的限定范围。
二、解题思路1. 确定目标函数在解题过程中,首先要明确目标函数是什么,根据题目描述确定目标函数,通常来说是在条件下求出某个量的最大值或最小值。
2. 确定限制条件由题目中的条件限制,列出等式或不等式,这些条件是问题的限制条件,限定了问题中变量的取值范围。
3. 消去无关变量有时候,为了方便计算,我们需要将无关变量进行消去,只留下一个或两个有关的变量。
4. 联立目标函数和条件将目标函数和限制条件进行联立,并进行化简,得到一条或多个关于有关变量之间的等式或不等式关系。
5. 求导数如果是求最值,那么需要对目标函数进行求导,然后将导函数等于零的解代入原函数中,并判断取得最大值或最小值的点是否在条件限制范围之内。
三、常见例题解析1. 一个质量为 m 的圆柱体,其长度为 L,求将它铸成一个底面积为 A 的球体,所需要的最少金属材料的量。
分析:目标函数为金属的总重量,即重量 W;限制条件可以根据推导得出表达式4πR^2 = A 和V = πR^2L。
其中,R 表示球体的半径,V 表示圆柱体的体积。
根据重量 W 以 R 为单变量函数求导数,并求出导数等于零的解 R0,将其代入 W 中求得最小值。
2. 在所有等边三角形 ABC 中,以 AK、BL、CM 为三边所成的三角形P 的面积最大。
证明此三角形是等边三角形,并求其面积。
高考数学技巧解决复杂的函数极值和最值问题
![高考数学技巧解决复杂的函数极值和最值问题](https://img.taocdn.com/s3/m/f1629c0ec950ad02de80d4d8d15abe23492f0359.png)
高考数学技巧解决复杂的函数极值和最值问题函数极值和最值问题在高考数学中占有重要地位,涉及到函数的最大值、最小值以及极大值、极小值等概念。
这些问题需要我们灵活运用数学知识和技巧来解决。
在本文中,我将介绍一些高考数学技巧,帮助大家解决复杂的函数极值和最值问题。
一、化简与转换在解决函数极值和最值问题时,我们常常会碰到复杂的函数表达式。
这时,我们可以通过化简与转换来简化问题。
具体方法如下:1. 代数化简:利用代数运算的性质,将函数表达式进行化简。
常见的代数化简技巧有因式分解、配方法、合并同类项等。
通过化简,我们可以得到更简洁的函数表达式,便于后续的处理。
2. 函数性质转化:对于一些特殊类型的函数,我们可以利用其性质进行转化。
比如,对于幂函数,可以利用对数函数的性质进行转化;对于三角函数,可以利用三角函数的周期性进行转化。
通过函数性质的转化,我们可以将原问题转化为更简单的形式,进而解决问题。
二、求导与判定求导是解决函数极值和最值问题的常用技巧。
通过求导,我们可以确定函数的增减性和极值点。
具体方法如下:1. 求导:首先,我们需要求出函数的导数。
对于一元函数,我们可以直接对函数进行求导;对于多元函数,我们需要利用偏导数的概念进行求导。
求导的结果是一个新的函数,表示了原函数的变化率。
2. 极值判定:通过求导,我们可以判定函数的增减性和极值点。
当导数为0或不存在时,表明函数可能存在极值点。
通过对导数符号的分析,我们可以确定极值点的位置和类型。
例如,导数从正变负时,函数可能存在极大值点;导数从负变正时,函数可能存在极小值点。
三、辅助图像与辅助直线辅助图像和辅助直线是解决函数极值和最值问题的有效工具。
通过绘制图像和直线,我们可以直观地理解问题,确定问题的范围和性质。
具体方法如下:1. 绘制函数图像:通过绘制函数的图像,我们可以观察函数的变化趋势和特点。
特别是对于一些特殊的函数,如三角函数、指数函数等,其图像可以揭示函数的周期性、单调性等性质。
高考数学中的函数极值问题详解
![高考数学中的函数极值问题详解](https://img.taocdn.com/s3/m/49435e94f424ccbff121dd36a32d7375a417c6dc.png)
高考数学中的函数极值问题详解函数极值是高考数学考试中必考的一个知识点,也是数学经典中的基础概念之一。
对于几乎所有的数学应用问题,都可以抽象出一个函数模型,因此函数极值的研究具有很高的实用性和理论意义。
本文将详细解析高考数学中的函数极值问题,包括一元函数和多元函数两种情况。
一、一元函数1. 什么是函数极值在一元函数的定义域内,若存在一点x0,使得它的函数值f(x0)不小于(或不大于)其它点的函数值,那么称f(x0)为函数的一个极大值(或极小值),x0称为极值点。
如下图所示,函数f(x)在x=a处达到极大值,x=b处达到极小值。
(图片来源于B站UP主@水良之家)2. 极值的判定方法(1)导数法对于一元函数f(x),其导数f'(x)能够反映函数的增减性和变化趋势,因此使用导数来判断函数的极值是一种比较常见的方法。
具体来说,求出函数的导数,并令导数为0,求解其值即可得到原函数的极值点。
若导数为0的点是可导的,则它一定是极值点。
若导数为0的点不可导,则需要用单侧极限来进行讨论。
下面是一个例题:已知函数f(x)=x³-3x在区间[-2,2]上的驻点和极值点,试求f(x)的极值。
解:首先求导,得到f'(x)=3x²-3,令其为0,则得到x=±1又由于f(x)在-2,1,2处是可导的,因此极值点分别为x=-1,x=1。
在x=-2处不是极值点,它是函数f(x)的最小值点。
(2)二阶导数法在一元函数的定义域内,若f'(x0)=0且f''(x0)>0,说明在x0处函数的单调性发生了变化,由单调减变为单调增,因此x0就是函数的一个极小值点。
反之若f'(x0)=0且f''(x0)<0,则x0为函数的一个极大值点。
在使用这种方法时需要注意,函数的二阶导数f''(x)在某些情况下可能不存在,此时不能使用该方法来判定函数的极值。
高中数学专题 微专题13 极值点偏移问题
![高中数学专题 微专题13 极值点偏移问题](https://img.taocdn.com/s3/m/22d4e646b6360b4c2e3f5727a5e9856a5612262b.png)
由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,
由
g(x)
=
2x
+
1 x
-
பைடு நூலகம்
ln
x-1
得
g′(x)
=
2
-
1 x2
-
1 x
=
2x2-x-1 x2
=
2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.
(完整版)高二数学函数的极值与最值试题
![(完整版)高二数学函数的极值与最值试题](https://img.taocdn.com/s3/m/f1b0c0f8561252d380eb6eee.png)
高二数学函数的极值与最值试题一:选择题1. 函数x ax x x f ++=23)(在),0(+∞内有两个极值点,则实数a 的取值范围是( ) A .),0(+∞ B .)3,3(- C .)0,(-∞ D .)3,(--∞【答案】D2.函数f (x )=x 2+x ﹣lnx 的极值点的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个解:由于函数f (x )=x 2+x ﹣lnx ,(x >0) 则==(x >0)令f ’(x )=0,则故函数f (x )=x 2+x ﹣lnx 的极值点的个数是1, 故答案为 B .3.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34C .38 D .316【答案】C4.函数12)(+⋅=x ex x f ,[]1,2-∈x 的最大值为( )A.14e -B.0C. 2eD. 23e 【答案】C5.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是( ) A. (-1,1) B. (0,1) C. (-1,0) D. (-2,-1)【答案】A6.右图是函数()y f x =的导函数()y f x '=的图象,xyO 1-2-3-1给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.则正确命题的序号是( )A.①②B.①④C.②③D.②④ 【答案】B7.(2008•广东)设a ∈R ,若函数y=e ax +3x ,x ∈R 有大于零的极值点,则( ) A . a >﹣3 B . a <﹣3 C . a >﹣ D .a <﹣ 解:设f (x )=e ax +3x ,则f ′(x )=3+ae ax .若函数在x ∈R 上有大于零的极值点. 即f ′(x )=3+ae ax =0有正根.当有f ′(x )=3+ae ax =0成立时,显然有a <0, 此时x=ln (﹣).由x >0,得参数a 的范围为a <﹣3. 故选B .8.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21xe x x ++„ 2111241x x x<-++(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C9.已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围为( )A. 2(,2)2 B.1(,4)2C. (1,2)D.(1,4) 【答案】B10.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.11.(2012•昌图县模拟)下列关于函数f (x )=(2x ﹣x 2)e x 的判断正确的是( ) ①f (x )>0的解集是{x|0<x <2};②f (﹣)是极小值,f ()是极大值; ③f (x )没有最小值,也没有最大值.A . ①③B . ①②③C . ②D . ①② 解:由f (x )>0⇒(2x ﹣x 2)e x >0⇒2x ﹣x 2>0⇒0<x <2,故①正确; f ′(x )=e x (2﹣x 2),由f ′(x )=0得x=±, 由f ′(x )<0得x >或x <﹣, 由f ′(x )>0得﹣<x <,∴f (x )的单调减区间为(﹣∞,﹣),(,+∞).单调增区间为(﹣,).∴f (x )的极大值为f (),极小值为f (﹣),故②正确. ∵x <﹣时,f (x )<0恒成立.∴f (x )无最小值,但有最大值f () ∴③不正确. 故选D .12.(2010•安庆模拟)如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A . B .C .D .解:由题意f ′(x )=x 2﹣a 2当a 2≥1时,在x ∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f (0)=0,最小值为f (1)=﹣a 2,故有,解得|a|≤,故可得1≤a ≤当a 2∈[0,1],由导数知函数在[0,a ]上增,在[a ,1]上减,故最大值为f (a )=又f(0)=0,矛盾,a ∈[0,1]不成立, 故选A .二:填空题13.函数322()f x x ax bx a =+++在1x =时有极值10,那么,a b 的值分别为________. 【答案】4,-11 14.已知函数f (x) 的导数f ′(x)=a(x +1)(x -a),若f (x)在x =a 处取得极大值,则a 的取值范围是 。
高考数学培优点 极值点偏移
![高考数学培优点 极值点偏移](https://img.taocdn.com/s3/m/794295ba534de518964bcf84b9d528ea81c72fa0.png)
跟踪训练 1 (2022·全国甲卷)已知函数 f(x)=exx-ln x+x-a. (1)若f(x)≥0,求a的取值范围;
由题意知函数f(x)的定义域为(0,+∞). 由 f′(x)=exxx-2 1-1x+1 =exx-1x2-x+x2=ex+xx2x-1, 可得函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
x-bx=0,得
b=lnx
x (x>0).
令 φ(x)=lnxx(x>0),则 φ′(x)=1-xl2n x,
由φ′(x)>0,得0<x<e;由φ′(x)<0,调递增,在(e,+∞)上单调递减.
所以 φ(x)max=φ(e)=1e. 又φ(1)=0,且当x→+∞时,φ(x)→0;当x→0时,φ(x)→-∞,
题型一 对称化构造函数
例1 (2023·唐山模拟)已知函数f(x)=xe2-x. (1)求f(x)的极值;
因为f(x)=xe2-x, 所以f′(x)=(1-x)e2-x, 由f′(x)>0,解得x<1;由f′(x)<0,解得x>1, 所以f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减, 又f(1)=e, 所以f(x)在x=1处取得极大值e,无极小值.
由题意知f(x)+2=ln x-ax+1=0,
于是ln ln
x1+1=ax1, x2+1=ax2,
令xx21=t,则由 x2>2x1 可得 t>2.
于是 t=xx21=llnn xx21+ +11=ln tl+n xln1+x11+1,
即 ln x1=tl-n t1-1.
从而 ln x2=ln t+ln x1=tt-ln 1t -1.
另一方面,对 x1x22>3e23 两端分别取自然对数,
极值点、拐点偏移问题 高考数学大一轮复习(新高考地区)(解析版)
![极值点、拐点偏移问题 高考数学大一轮复习(新高考地区)(解析版)](https://img.taocdn.com/s3/m/3d2983e9bb0d4a7302768e9951e79b89680268b4.png)
3.8极值点、拐点偏移问题【题型解读】【知识储备】一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点); (3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0;(4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0.三、极值点偏移问题的一般解法1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求. 若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负. 2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解. 3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bab L a b +<<.不失一般性,可设a b >.证明如下: (1)(, )ab L a b < ① 不等式①1ln ln ln2ln (1)a a b a a b x x x b b a x bab⇔-<⇔<⇔<-=其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x ab a b x x a a b b x bb---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bab L a b +≤≤成立,当且仅当a b =时,等号成立. 【题型精讲】【题型一 极值点偏移解法赏析】例1 (2022·山东济南历城二中高三月考)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.【解析】 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 方法二 (比值换元法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.xyx 1+x 22x 2x 1f x () = x ∙ex1e1O令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2,可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.【题型精练】1.(2022·天津·崇化中学期末)已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.【解析】 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:对称化构造法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a<x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1,而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值换元法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,所以g (t )在(1,+∞)上单调递减,所以当t >1时,g (t )<g (1)=0,所以f ′⎝⎛⎭⎫x 1+x 22<0.【题型二 加法型极值点偏移】例2 (2022·山东青岛高三期末)已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R .(1)若f (x )存在极值点1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2. 【解析】 (1)由已知得f ′(x )=x +1-a -ax,因为f (x )存在极值点1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)f ′(x )=x +1-a -ax=(x +1)⎝⎛⎭⎫1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意; ②当a >0时,由f ′(x )=0得x =a ,当x >a 时,f ′(x )>0,所以f (x )单调递增,当0<x <a 时,f ′(x )<0,所以f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ).又f (x )存在两个不同的零点x 1,x 2,所以f (a )<0,即12a 2+(1-a )a -a ln a <0,整理得ln a >1-12a ,作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ), 令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx ,则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2,因为在(0,2a )上,h ′(x )≥0,所以h (x )在(0,2a )上单调递增, 不妨设x 1<a <x 2,则h (x 2)>h (a )=0,即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1), 又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2. 【题型精练】1.(2022·天津市南开中学月考)已知函数31()28ln 6f x x ax x =-+. (1)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (2)若函数()f x 存在两个极值点12,x x ,求证:124x x +>. 【解析】(1)易知()f x 的定义域为(0,)+∞,由题意知28()202x f x a x '=-+≥,即244x a x ≤+在(0,)+∞上恒成立,.令24()(0)4x g x x x=+>,则32248()22x x g x x x -'=-=.当2x >时,()0g x '>,()g x 单调递增; 当02x <<时,()0g x '<,()g x 单调递减, 所以当2x =时,()g x 有最小值(2)3g =, 所以3a ≤;(2)因为28()22x f x a x '=-+,由()0f x '=知,24=4x a x+,设24()(0)4x g x x x=+>则12()()g x g x =,且()g x 在(2,)+∞上单调递增,在(0,2)上单调递减,所以可令,1202x x <<<,.令()(2)(2)h x g x g x =+--,(2,0)x ∈-.则222442(23)(+23)()(2)(2)2(2)(2)x x x h x g x g x x x -'''=++-=--+-因为(2,0)x ∈-,所以()0h x '<,所以()h x 上在(2,0)-单调递减,且(0)0h =, 所以(2,0)x ∈-时,()(2)(2)(0)0h x g x g x h =+-->=. 又1(0,2)x ∈,所以12(2,0)x -∈- 所以111(2)()(4)0h x g x g x -=-->. 所以211()()(4)g x g x g x =>-.因为12x <,142x ->,22x >且()g x 在(2,)+∞上单调递增, 所以214x x >-,124x x +>.2. (2022·安徽省江淮名校期末)已知函数21()e 2x f x x ax =--(a ∈R ).(1)若函数()f x 在R 上是增函数,求实数a 的取值范围;(2)如果函数()21()()2g x f x a x =--恰有两个不同的极值点12, x x ,证明:12ln 22x x a +<.【解析】 (1)()f x 是R 上是增函数,, ()e 0x x f x x a '∴∀∈=--≥R ,()mine x a x ∴≤-设()e x h x x =-,()e 1x h x '=-,令()0h x '>解得0x >,故()h x 在(, 0)-∞单调递减,在(0 +)∞,单调递增.min ()(0)1h x h ∴==,1a ∴≤. (2)依题意可得:221()()()e 2x g x f x a x ax ax =--=--,()e 2x g x ax a '=--.12, x x 是极值点,121122()0e 20()0e 20xxg x ax a g x ax a '⎧=--=⎧⎪⇒⎨⎨'=--=⎪⎩⎩,两式相减可得:1212e e 2x x a x x -=-. 所证不等式等价于:1212121221212e e e e ln e 2x x x x x x x x x x x x ++--<⇔<--,不妨设12x x >,两边同除以2e x 可得: 12122121x x x x x x ---<-ee(观察指数幂的特点以及分式的分母,化不同为相同,同除以2e x 使得多项呈12x x -的形式) 从而考虑换元减少变量个数.令12t x x =-()0, t ∈+∞.所证不等式只需证明:221e e e +1<0tt t t e t t -<⇔-,设()2e e 1tt p x t =-+,22()e (e (1))2t t t p x '=--+由e 1xx ≥+可得:2e (1)02t t-+≥,()0p x '∴≤,()p t ∴在()0 +∞,单调递减,()(0)0p t p <=,∴原不等式成立即12ln 22x x a +< 【题型三 乘法型极值点偏移】例3 (2022·河南高三期末)已知f (x )=x ln x -12mx 2-x ,x ∈R .(1)当m =-2时,求函数f (x )的所有零点;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:x 1x 2>e 2(e 为自然对数的底数).【解析】 (1)当m =-2时,f (x )=x ln x +x 2-x =x (ln x +x -1),x >0.设g (x )=ln x +x -1,x >0, 则g ′(x )=1x+1>0,于是g (x )在(0,+∞)上为增函数.又g (1)=0,所以g (x )有唯一的零点x =1,从而函数f (x )有唯一的零点x =1. (2)欲证x 1x 2>e 2,只需证ln x 1+ln x 2>2.由函数f (x )有两个极值点x 1,x 2,可得函数f ′(x ) 有两个零点,又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不同实根.于是有⎩⎪⎨⎪⎧ln x 1-mx 1=0, ①ln x 2-mx 2=0, ②①+②可得ln x 1+ln x 2=m (x 1+x 2),即m =ln x 1+ln x 2x 1+x 2,②-①可得ln x 2-ln x 1=m (x 2-x 1),即m =ln x 2-ln x 1x 2-x 1,从而可得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2,于是ln x 1+ln x 2=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.由0<x 1<x 2,设t =x 2x 1,则t >1.因此ln x 1+ln x 2=(1+t )ln t t -1,t >1.要证ln x 1+ln x 2>2,即证(t +1)ln t t -1>2(t >1),即证当t >1时,有ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以h (t )为(1,+∞)上的增函数.因此h (t )>ln 1-2(1-1)1+1=0.于是当t >1时,有ln t >2(t -1)t +1.所以有ln x 1+ln x 2>2成立,即x 1x 2>e 2.【题型精练】1.(2022·广东·高三期末)已知函数()ln f x x =. (1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围; (2)求证:()12e e x f x x>-; (3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >. 【解析】(1)解:由()()g x f x ≤可得ln ln tx x x -≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+, 当10e x <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)解:要证()12e e xf x x >-,即证2ln e ex x x x >-, 由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e e x x m x =-,其中0x >,则()1e xx m x -'=, 当01x <<时,()0m x '>,此时函数()m x 单调递增, 当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e xf x x >-;(3)解:由题知1111ln x ax x -=①,2221ln x ax x -=②, ①+②得()()12121212ln x x x x a x x x x +-=+③, ②-①得()22121112ln x x xa x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>. 令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++, 所以()F t 在()1,+∞上单调递增, 所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()121212121212121224ln ln ln x x x x x x x x x x x x x x +-<= 1212x x x x = 所以12122x x x x >,即12121x x x x >. 令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增. 又)12ln2ln 21122e e =+<,所以)12121ln 22x x e x x e>>)122x x e ϕϕ>,所以2122x xe >.【题型四 导数型极值点偏移】例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数g (x )=ln x -ax 2+(2-a )x (a ∈R ). (1)求g (x )的单调区间;(2)若函数f (x )=g (x )+(a +1)x 2-2x ,x 1,x 2(0<x 1<x 2)是函数f (x )的两个零点,证明:f ′⎝⎛⎭⎫x 1+x 22<0.【解析】(1)函数g (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), g ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,g ′(x )>0,则g (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则g ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则g ′(x )<0, 则g (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)因为x 1,x 2是f (x )=ln x +ax 2-ax 的两个零点,所以ln x 1+ax 21-ax 1=0,ln x 2+ax 22-ax 2=0,所以a =ln x 1-ln x 2x 1-x 2+(x 2+x 1),又f ′(x )=1x +2x -a , 所以f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2+(x 1+x 2)-a =2x 1+x 2-ln x 1-ln x 2x 1-x 2,所以要证f ′⎝⎛⎭⎫x 1+x 22<0,只须证明2x 1+x 2-ln x 1-ln x 2x 1-x 2<0, 即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,即证明()12112221ln *1x x x x x x ⎛⎫- ⎪⎝⎭>+令()120, 1x t x =∈,则()()1ln 22h t t t t =+-+,则()1ln 1h t t t =+-', ()2110h t t t=-'<'. ∴()h t '在()0, 1上递减, ()()10h t h '>=',∴()h t 在()0, 1上递增, ()()10h t h <=. 所以()*成立,即1202x x f +⎛⎫< ⎪⎝⎭'.【题型精练】1.(2022·全国高三课时练习)设函数f (x )=x 2-(a -2)x -a ln x . (1)求函数f (x )的单调区间;(2)若方程f (x )=c 有两个不相等的实数根x 1,x 2,求证:12()02x x f +'>. 【解析】 (1)(0, )x ∈+∞.22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x----+'=---==.当0a ≤时,()0f x '>,函数()f x 在(0, )+∞上单调递增,即()f x 的单调递增区间为(0, )+∞. 当0a >时,由()0f x '>得2a x >;由()0f x '<,解得02ax <<.所以函数()f x 的单调递增区间为(, )2a +∞,单调递减区间为(0, )2a.(2)1x ,2x 是方程()f x c =得两个不等实数根,由(1)可知:0a >.不妨设120x x <<.则()21112ln x a x a x c ---=,()22222ln x a x a x c ---=.两式相减得()()221112222ln 2ln 0x a x a x x a x a x ----+-+=,化为221122112222ln ln x x x x a x x x x +--=+--.()02a f '=,当(0, )2a x ∈时,()0f x '<,当(, )2ax ∈+∞时,()0f x '>. 故只要证明1222x x a+>即可,即证明22112212112222ln ln x x x x x x x x x x +--+>+--,即证明11221222ln x x x x x x -<+,设12(01)x t t x =<<,令()22ln 1t g t t t -=-+,则22214(1)()(1)(1)t g t t t t t -'=-=++. 10t >>,()0g t ∴'>.()g t ∴在(0, 1)上是增函数,又在1t =处连续且(1)g 0=,∴当(0, 1)t ∈时,()0g t <总成立.故命题得证.【题型五 拐点偏移问题】例5 (2022·辽宁省实验中学分校高三期末)已知函数f (x )=x a x a x x )1(2ln 2-+-,其导函数f ′(x )的最大值为0.(1)求实数a 的值;(2)若),(1)()(2121x x x f x f ≠-=+证明12 2.x x +>【解析】 (1)【解法一】由题意,函数()f x 的定义域为()0,+∞,其导函数()()ln 1f x x a x '=-- 记()(),h x f x '= 则()1.axh x x-'= 当0a ≤时,()10axh x x-'=≥恒成立, 所以()h x 在()0,+∞上单调递增,且()10h =.所以()1,x ∀∈+∞,有()()0h x f x '=>,故0a ≤时不成立;当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭若,则()10ax h x x -'=>;若1,x a ⎛⎫∈+∞ ⎪⎝⎭,则()10axh x x -'=<. 所以()h x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减又()10h = 若01a << 即11a>时,则()()h x f x '=在()0,1单调递减,()()()0,1,10x f x f ''∀∈>=, 故01a <<时不成立; 若1a > 即101a <<时,则()()h x f x '=在1,1a ⎛⎫ ⎪⎝⎭单调递减,()()1,1,10x f x f a ⎛⎫''∀∈>= ⎪⎝⎭, 故1a >时不成立;若1a =时,则()()h x f x '=在()0,1单调递增,在()1,+∞单调递减,所以()()()max 0,,10x f x f ''∀∈+∞==成立 ,故1a =时成立. 综上可知,1a = 【解法二】由题意,函数()f x 的定义域为()0,+∞ ,其导函数()()ln 1f x x a x '=-- 记()()h x f x '= 则()1.axh x x-'= 当0a ≤时,()10axh x x-'=≥恒成立,所以()h x 在()0,+∞上单调递增,且()10h =. 所以()1,x ∀∈+∞,有()()0h x f x '=>,故0a ≤时不成立;当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭若,则()10ax h x x -'=>;若1,x a ⎛⎫∈+∞ ⎪⎝⎭,则()10axh x x -'=<.所以()h x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减所以()max 1ln 10h x h a a a ⎛⎫==-+-= ⎪⎝⎭令()()11ln 1,1.a g a a a g a a a-'=-+-=-=则 ()()()()()010; 1 0.011.a g a a g a g a ''<<<>>+∞当时,当时,所以在,的单减,在,单增所以()()10g a g =,故.1=a(2)【解法一】(分析法解题)当1a =时,()21ln 2f x x x x =-,则()1ln f x x x '=+-.由(1)知()1ln 0f x x x '=+-≤恒成立, 所以()21ln 2f x x x x =-在()0,+∞上单调递减,且()112f =-,()()()121=21f x f x f +=-不妨设120x x << ,则1201,x x <<<欲证122x x +>,只需证212x x >-,因为()f x 在()0,+∞上单调递减, 则只需证()()212f x f x <-,又因为()()121f x f x +=-, 则只需证()()1112f x f x --<-,即()()112+ 1.f x f x ->- 令()()()()()20,1F x f x f x x =+-∈其中,且()11F =-. 所以欲证()()112+1f x f x ->-,只需证()()()1,0,1,F x F x >∈ 由()()()()()21ln 1ln 22F x f x f x x x x x '''=--=+--+--+, 整理得:()()()()ln ln 2210,1F x x x x x '=--+-∈,,()()()()22100,12x F x x x x -''=>∈-,,所以()()()ln ln 221F x x x x '=--+-在区间()0,1上单调递增,所以()0,1x ∀∈,()()()()ln ln 22110F x x x x F ''=--+-<=, 所以函数()()()2F x f x f x =+-在区间()0,1上单调递减, 所以有()()()10,1F x F x >∈,,故12 2.x x +>. 【解法二】(综合法书步骤)当1a =时,()21ln 2f x x x x =-,则()1ln f x x x '=+-.由(1)知()1ln 0f x x x '=+-≤恒成立, 所以()21ln 2f x x x x =-在()0,+∞上单调递减,且()112f =-,()()()121=21f x f x f +=-不妨设120x x << ,则1201,x x <<<令()()()()()20,1F x f x f x x =+-∈其中 ,且()11F =- 由()()()()()21ln 1ln 22F x f x f x x x x x '''=--=+--+--+, 整理得:()()()()ln ln 2210,1F x x x x x '=--+-∈,,()()()()22100,12x F x x x x -''=>∈-,,所以()()()ln ln 221F x x x x '=--+-在区间()0,1上单调递增, 所以()0,1x ∀∈,()()()()ln ln 22110F x x x x F ''=--+-<=, 所以函数()()()2F x f x f x =+-在区间()0,1上单调递减, 因为101<<x ,所以()()()()11121 1.F x f x f x F =+->=-又因为()()121f x f x +=-,所以()()122.f x f x -> ()21ln 2f x x x x =-又因为在()0,+∞上单调递减,所以12122, 2.x x x x -<+>即 【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)已知函数22111()(1)()2f x x x Inx a R a a a=-++∈. (1)当0a >时,讨论函数()f x 的单调性; (2)当12a =时,设()()6g x f x x =+,若正实数1x ,2x ,满足12()()4g x g x +=,求证:122x x +. 【解析】(1)2111()()(1)f x x a x a'=+-+,(0)x >2111()()(1)f x x a x a '=+-+,在(0,1)递减,在(1,)+∞递增,且21()(1)(1)0min f x f a'==--∴当1a =时,()0f x '恒成立,此时函数()f x 在R 上单调递增;当1a ≠时,()0f x '=的根为1a,a 01a ∴<<时,函数()f x 在(0,)a ,1(a ,)+∞上单调递增,在1(,)a a 单调递减;1a >时,函数()f x 在1(0,)a ,(,)a +∞上单调递增,在1(a,)a 单调递减;证明:(2)2()25g x lnx x x =+-,0x >.由12()()4g x g x +=,即221112222240lnx x x lnx x x +++++-=, 从而212121212()()422()x x x x x x ln x x +++-=-,⋯(8分) 令12t x x =,则由()G t t lnt =-得:1()1G t t'=-可知,()G t 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增. ()G t G ∴(1)1=,21212()()42x x x x ∴+++-, 1212(3)(2)0x x x x ∴+++-,又10x >,20x >,122x x ∴+.。
如何通过偏导数求极值解决高考数学中的问题
![如何通过偏导数求极值解决高考数学中的问题](https://img.taocdn.com/s3/m/3c493213905f804d2b160b4e767f5acfa1c78396.png)
如何通过偏导数求极值解决高考数学中的问题偏导数是高等数学中的一种基本概念,是求多元函数在某一点的方向导数的一种方法。
在高考数学中,偏导数在解决最值问题时经常被使用。
一、什么是偏导数在一元函数中,导数是衡量函数在一个点的变化率,而在多元函数中,由于存在多个自变量,因此需要引入方向导数的概念。
方向导数是沿着某个方向的导数,仅仅依赖于该方向,而与曲面的给定点的坐标无关。
在二元函数中,如果我们只考虑x方向的变化,而将y看作常数,那么就得到了该点的偏导数。
偏导数可以表示一个函数在某个点的局部斜率。
二、偏导数的运算法则计算二元函数中x方向的偏导数,可以将y看作常数,利用导数相关公式进行推导。
现在考虑一个三元函数f(x, y, z),那么在某个点(x0, y0, z0)处x 方向的偏导数可以表示为:∂f(x0,y0,z0)/∂x=(f(x0+Δx,y0,z0)-f(x0,y0,z0))/Δx对于y方向和z方向的偏导数同理。
在实际运用中,我们可以使用偏导数的运算法则来简化求解。
三、利用偏导数解决高考数学中的问题在高考数学中,偏导数常常被用来解决极值问题。
在求解二元函数的最大值或最小值时,我们需要注意以下几点:1.先求解函数的偏导数,求出所有自变量的偏导数;2.将所有自变量的偏导数都设为0,得到一个方程组;3.解出方程组得到可能的极值点。
4.根据二阶条件判别法,判断这些极值点是否为函数的极值点。
在通过偏导数求解极值问题时,我们一般会遇到以下几种情况:1.有两个或两个以上自变量取的是同一极值点。
2.只有一个自变量的偏导数为0,其他偏导数不为0。
3.多个自变量的偏导数都为0。
在每种情况下,我们都需要根据具体函数和具体情况来应用偏导数求解极值问题。
需要注意的是,在一些比较复杂的函数中,可能会遇到偏导数不存在的情况。
此时,我们需要换一种方式解决问题。
总之,偏导数是高等数学中的一种基本概念。
在高考数学中,通过偏导数求解极值问题是一个经常出现的考点。
高考数学中的函数极值及最值问题及解题方法
![高考数学中的函数极值及最值问题及解题方法](https://img.taocdn.com/s3/m/c0c7a4ebd0f34693daef5ef7ba0d4a7302766c3b.png)
高考数学中的函数极值及最值问题及解题方法在高中数学学习中,函数极值及最值问题是一个重要的考点,也是一个有难度的知识点。
在高考数学中,这个知识点被广泛地应用于各种数学题型中,涉及到的知识点和方法需要大家掌握好。
本文将就函数极值及最值问题及解题方法做一些简单的介绍和详解。
第一部分:什么是函数的最值和极值函数的最大值和最小值是这个函数在定义域内的函数值中的最大值和最小值,也就是说,最大值和最小值都是函数的取值,而不是函数本身。
函数的最大值就是这个函数在定义域内取到的最大值,而函数的最小值就是这个函数在定义域内取到的最小值。
函数的极值也是类似的,极大值指的是某个函数在一个特定的区间内取到的最大值,而极小值就是函数在这个特定的区间内取到的最小值。
第二部分:函数的最值和极值问题的解法1. 求函数的最值对于求函数的最值,一般有两种方法:一种方法是借助函数图像,根据函数图像的形态来看出函数的最值所在的位置。
另一种方法是通过求导数,然后借助导数定理来求解函数的最值。
求函数的最值需要用到极限、导数、函数的性质等多个数学知识点,需要考生们细心地掌握。
2. 求函数的极值对于求函数的极值,可以通过以下几种方法来实现:一种方法是通过求导数,然后求得导函数的零点,从而求出函数的极值点。
另一种方法是对函数求导数,然后再对导数进行求导数,直到得到导函数的函数表达式,从而得到函数的极值点。
还有一种方法是使用极限和数列的性质来求解函数的极值。
总的来说,求函数的极值需要使用到导数、函数的性质、函数图像的图形等多个数学知识点,需要考生们认真学习和练习。
第三部分:函数极值及最值问题的解题实例在高考数学中,函数极值及最值问题的解题实例非常丰富,接下来就给大家介绍一些常见的解题思路。
1. 求函数的最值比如,一道求函数最大值的题目:求函数f(x)=x2+2x+3的最小值。
解题思路:首先可以画出函数的图像,在图像上寻找最小值所在的位置。
另一方面,我们也可以通过求导数来求解函数的最值。
极值点偏移题目
![极值点偏移题目](https://img.taocdn.com/s3/m/25358f7d66ec102de2bd960590c69ec3d5bbdbe3.png)
极值点偏移题目摘要:1.极值点偏移题目的概念及意义2.极值点偏移题目的类型与解题方法3.解题步骤与技巧4.实战案例分析5.总结与建议正文:一、极值点偏移题目的概念及意义极值点偏移题目是数学分析中的一类问题,主要涉及函数的极值、最值及其偏移现象。
这类题目在各类数学竞赛、高考及研究生入学考试中都有所体现,对于培养学生的分析思维和解决问题的能力具有重要意义。
二、极值点偏移题目的类型与解题方法1.类型一:已知函数的极值点,求函数在极值点附近的性质。
解题方法:首先根据已知条件,分析函数的极值点;然后利用导数、微分等工具研究函数在极值点附近的性质。
2.类型二:已知函数的极值点偏移,求函数的性质。
解题方法:先根据已知条件,求出函数的极值点;然后分析极值点偏移的原因,进一步研究函数的性质。
3.类型三:求函数在特定区间上的最值问题。
解题方法:通过求导、分析函数的单调性、判断极值点等手段,确定函数在特定区间上的最值。
三、解题步骤与技巧1.仔细阅读题目,理解题意,提取关键信息。
2.根据题目类型,选择合适的解题方法。
3.利用已知条件,求出函数的极值点或极值点偏移。
4.分析函数在极值点附近的性质,或根据极值点偏移的原因,研究函数的性质。
5.在解题过程中,注意运用数学工具,如导数、微分等。
6.总结解题思路,提高解题效率。
四、实战案例分析例题:已知函数f(x)=x^3-6x^2+9x-1,求函数在区间[-2,2]上的极值点。
解:首先求导数f"(x)=3x^2-12x+9,令f"(x)=0,解得x=1。
然后分析f(x)在区间[-2,2]上的单调性:当x<1时,f"(x)>0,f(x)单调递增;当1<x<2时,f"(x)<0,f(x)单调递减。
所以,函数f(x)在区间[-2,2]上的极大值点为x=1。
五、总结与建议极值点偏移题目是数学分析中的重要内容,掌握解题方法和技巧对于提高学生的数学素养具有积极作用。
重难点专题08 极值点偏移的十大类型(原卷版) 备战2024年高考数学重难点突破
![重难点专题08 极值点偏移的十大类型(原卷版) 备战2024年高考数学重难点突破](https://img.taocdn.com/s3/m/a7a8fe51a31614791711cc7931b765ce05087a8b.png)
极值点偏移问题中(极值点为x0),证明x1+x2>2x0或x1+x2<2x0的方法:①构造F(x)=f(x)―f(2x―x),②确定F(x)的单调性,③结合特殊值得到f(x)―f(2x0―x2)>0或f(x2)―f(2x0―x2)<0,再利用f(x1)=f(x2),2得到f(x)与f(2x0―x2)的大小关系,1④利用f(x)的单调性即可得到x1+x2>2x0或x1+x2<2x0.处理极值点偏移问题中的类似于x1x2<a(f(x)=f(x2))的问题的基本步骤如下:1①求导确定f(x)的单调性,得到x1,x2的范围;②构造函数F(x)=f(x)―f a,求导后可得F(x)恒正或恒负;x极值点偏移问题的一般题设形式:1.若函数f(x)存在两个零点x1,x2且x1≠x2,求证:x1+x2>2x0(x为函数f(x)的极值点);2.若函数f(x)中存在x1,x2且x1≠x2满足f(x1)=f(x2),求证:x1+x2>2x0(x为函数f(x)的极值点);3.若函数f(x)存在两个零点x1,x2且x1≠x2,令x0=x1+x22,求证:f′(x)>0;4.若函数f(x)中存在x1,x2且x1≠x2满足f(x1)=f(x2),令x0=x1+x22,求证:f′(x)>0.比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t表示)表,化为单变量的函数不等式,继而将所求解问题转化为关于t的函数示两个极值点,即t=x1x2问题求解.两个正数a和b的对数平均定义:L(a,b)=a―bln a―ln b(a≠b), a(a=b).对数平均与算术平均、几何平均的大小关系:ab≤L(a,b)≤a+b2(此式记为对数平均不等式)取等条件:当且仅当a=b时,等号成立.。
2023届高考数学导数满分通关:极值点偏移问题概述
![2023届高考数学导数满分通关:极值点偏移问题概述](https://img.taocdn.com/s3/m/9d51e80959fb770bf78a6529647d27284b73371d.png)
专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,。
数学高考专题极值点偏移
![数学高考专题极值点偏移](https://img.taocdn.com/s3/m/207bc557453610661ed9f4d6.png)
极值点偏移专题(一)1、极值点偏移以函数函数为例,极值点为0,如果直线与它的图像相交,2x y =1=y 交点的横坐标为和,我们简单计算:.也就是说极值点刚好位1-10211=+-于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数有两个零点.()()()221xf x x e a x =-+- (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明:. ()f x 122x x +<(1)解析:详细解答⑴方法一:由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+①若,那么,只有唯一的零点,不合题意; 0a =()()0202x f x x e x =⇔-=⇔=()f x 2x =②若,那么,所以当时,,单调递增0a >20x x e a e +>>1x >()'0f x >()f x 当时,,单调递减,即:1x <()'0f x <()f xx(),1-∞1()1,+∞ ()'f x-+()f x ↓ 极小值 ↑故在上至多一个零点,在上至多一个零点()f x ()1,+∞(),1-∞由于,,则,()20f a =>()10f e =-<()()210f f <根据零点存在性定理,在上有且仅有一个零点. ()f x ()1,2而当时,,,1x <x e e <210x -<-<故()()()()()()()222212111x f x x e a x e x a x a x e xe =-+->-+-=-+--则的两根,, ,因为()0f x =11t =+21t =12t t <,故当或时,0a >1x t <2x t >()()2110a x e x e -+-->因此,当且时,1x <1x t <()0f x >文末获取Word文档又,根据零点存在性定理,在有且只有一个零点.()10f e =-<()f x (),1-∞此时,在上有且只有两个零点,满足题意.()f x R ③ 若,则,02ea -<<()ln 2ln 1a e -<=当时,,,()ln 2x a <-()1ln 210x a -<--<()ln 2220a x e a e a -+<+=即,单调递增;()()()'120x f x x e a =-+>()f x 当时,,,即()ln 21a x -<<10x -<()ln 2220a x e a e a -+>+=,单调递减;()()()'120x f x x e a =-+<()f x 当时,,,即,单调递增.1x >10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 即:x()(),ln 2a -∞- ()ln 2a -()()ln 2,1a -1()1,+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当时,在处取到最大值,那么1x ≤()f x ()ln 2x a =-()ln 2f a -⎡⎤⎣⎦恒成立,即无解()()ln 20f x f a -<⎡⎤⎣⎦≤()0f x =而当时,单调递增,至多一个零点,此时在上至多一个零点,1x >()f x ()f x R 不合题意.④ 若,那么2ea =-()ln 21a -=当时,,,即,单()1ln 2x a <=-10x -<()ln 2220a x e a e a -+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a >=-10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 调递增又在处有意义,故在上单调递增,此时至多一个零点,不合题()f x 1x =()f x R 意.⑤ 若,则2ea <-()ln 21a ->当时,,,即,单1x <10x -<()ln 212220a x e a e a e a -+<+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a <<-10x ->()ln 2220a x e a e a -+<+=()'0f x <()f x 调递减当时,,,即,()ln 2x a >-()1ln 210x a ->-->()ln 2220a x e a ea -+>+=()'0f x >单调递增,即:()f xx(),1-∞1()()1,ln 2a - ()ln 2a -()()ln 2,a -+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑故当时,在处取到最大值,那么()ln 2x a -≤()f x 1x =()1f e =-()0f x e -<≤恒成立,即无解()0f x =当时,单调递增,至多一个零点,此时在上至多一个零()ln 2x a >-()f x ()f x R 点,不合题意.综上所述,当且仅当时符合题意,即的取值范围为.0a >a ()0,+∞简要解析(Ⅰ)方法二:.'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.0a =()(2)xf x x e =-()f x (ii )设,则当时,;当时,.所以在0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x 上单调递减,在上单调递增.(,1)-∞(1,)+∞又,,取满足且,则 (1)f e =-(2)f a =b 0b <ln2a b <, 223()(2)(1)()022a fb b a b a b b >-+-=->故存在两个零点.()f x (iii )设,由得或.0a <'()0f x =1x =ln(2)x a =-若,则,故当时,,因此在上单调递2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞增.又当时,,所以不存在两个零点.1x ≤()0f x <()f x 若,则,故当时,;当时,2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞.因此在单调递减,在单调递增.又当时,'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤,所以不存在两个零点.综上,的取值范围为.()0f x <()f x a (0,)+∞⑵ 方法一:由已知得:,不难发现,,()()120f x f x ==11x ≠21x ≠故可整理得:()()()()121222122211xx x e x e a x x ---==--设,则,那么, ()()()221x x e g x x -=-()()12g x g x =()()()2321'1x x g x e x -+=-当时,,单调递减;当时,,单调递增. 1x <()'0g x <()g x 1x >()'0g x >()g x 设,构造代数式:0m > ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设, ()2111mm h m e m -=++0m >则,故单调递增,有.()()2222'01m m h m e m =>+()h m ()()00h m h >=因此,对于任意的,.0m >()()11g m g m +>-由可知、不可能在的同一个单调区间上,不妨设,则()()12g x g x =1x 2x ()g x 12x x <必有121x x <<令,则有110m x =->()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦而,,在上单调递增,因此:121x ->21x >()g x ()1,+∞()()121222g x g x x x ->⇔->整理得:.122x x +<(2)方法二:不妨设,由(1)知,12x x <,在上单调递减,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞()f x (),1-∞所以等价于,即. 122x x +<()()122f x f x >-()()222f x f x >-由于,而,()()22222221x f x x ea x --=-+-()()()2222221x f x x e a x =-+-所以.()()()222222222x x f x f x x e x e ---=---令,则,()()22xx g x xex e -=---()()()21x x g x x e e -'=--所以当时,,而,1x >()0g x '<()10g =故当时,.从而,故. 1x >()()10g x g <=()()2220g x f x =-<122x x +<(二)对解析的分析本问待证是两个变量的不等式,官方解析的变形是,借助于函数的特性及其122x x <-单调性,构造以为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为2x ,同理构造以为主元的函数来处理.此法与官方解析正是极值点偏移问题的处212x x <-1x 理的通法.不妨设,由(1)知,,在12x x <()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞()f x 上单调递增,所以等价于,即. ()1,+∞122x x +<()()212f x f x <-()()1120f x f x --<令,则()()()()()2221xx u x f x f x xex e x -=--=--<,()()()210x x u x x e e -'=-->所以,即, ()()10u x u <=()()()21f x f x x <-<所以; ()()()1212f x f x f x =<-所以,即.212x x <-122x x +<变式、(2010年天津理科21题)已知函数()()xf x xe x R -=∈(Ⅰ)求函数的单调区间和极值;()f x (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当()y g x =()y f x =1x =时,1x >()()f x g x > (Ⅲ)如果,且,证明.12x x ≠12()()f x f x =122x x +>解:(21)本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分 (Ⅰ)解:f ′,令f ′(x )=0,解得x =1()(1)xx x e-=-当x 变化时,f ′(x ),f (x )的变化情况如下表 X(),1-∞ 1()1,+∞f ’(x ) + 0 -f (x )极大值所以f (x )在()内是增函数,在()内是减函数。
2024届高考数学拓展:极值点偏移问题 学生版
![2024届高考数学拓展:极值点偏移问题 学生版](https://img.taocdn.com/s3/m/0af84b02b207e87101f69e3143323968001cf470.png)
2024年高考数学拓展极值点偏移问题
1(2023·南宁模拟)已知函数f(x)=e x-ax2
2,a>0.
(1)若f(x)过点(1,0),求f(x)在该点处的切线方程;
(2)若f(x)有两个极值点x1,x2,且0<x1<x2,当e<a<e2
2时,证明:x1
+x2>2.
2(2023·聊城模拟)已知函数f(x)=ln x+a
x
(a∈R),设m,n为两个不相等的正数,且f(m)=
f(n)=3.
(1)求实数a的取值范围;
(2)证明:a2<mn<ae2.
3(2023·唐山模拟)已知函数f(x)=xe2-x.
(1)求f(x)的极值;
(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.
4(2022·全国甲卷)已知函数f(x)=e x
x
-ln x+x-a.
(1)若f(x)≥0,求a的取值范围;
(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
5(2023·沧州模拟)已知函数f(x)=ln x-ax-1(a∈R).若方程f(x)+2=0有两个实根x1,
.(参考数据:ln2≈0.693,ln3≈1.099)
x2,且x2>2x1,求证:x1x22>32
e3
6(2023·淮北模拟)已知a是实数,函数f(x)=a ln x-x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个相异的零点x1,x2且x1>x2>0,求证:x1x2>e2.。
高考数学中的函数极值问题解决技巧
![高考数学中的函数极值问题解决技巧](https://img.taocdn.com/s3/m/c6697834a517866fb84ae45c3b3567ec102ddcd4.png)
高考数学中的函数极值问题解决技巧在高考数学中,函数极值问题是一个必考的重点内容,也是让考生们感到较为困难的一部分。
函数极值问题一般分为两种,一种是求最大值或最小值,另一种是证明函数存在极值。
以下将从方法和技巧两方面进行讲解。
一、方法1. 消元法对于一些复杂的函数,我们需要通过消元的方式将其转化为更为简单的形式。
如对于$f(x)=\sqrt{3x^2-x+1}$,我们可以将其化为$f(x)=\sqrt{3(x-\frac{1}{6})^2+\frac{11}{36}}$,从而可以更方便地求得极值。
2. 导数法导数法是解决函数极值问题的主要方法。
对于函数$y=f(x)$,其导数为$f'(x)$,则当$f'(x)=0$时,$f(x)$存在极值。
当$f'(x)>0$时,$f(x)$为增函数,当$f'(x)<0$时,$f(x)$为减函数。
3. 辅助线法辅助线法是求函数极值的重要方法之一。
当函数比较复杂时,我们可以通过引入一些辅助线,使函数化为更为简单的形式,从而容易求得其极值。
二、技巧1. 利用对称性对于一些具有对称性的函数,我们可以通过利用其对称性来简化计算,如对于函数$f(x)=\frac{x^3-3x}{x^2+1}$,由于其为奇函数,即满足$f(-x)=-f(x)$,故其存在对称轴$x=0$,从而极值点必在$x=0$处出现。
2. 限制范围当函数存在定义域限制时,我们可以通过限制其范围来简化计算,如对于函数$f(x)=\frac{x}{x+1}$,由于其定义域为$x>-1$,故当$x\rightarrow+\infty$时,$f(x)\rightarrow1$;当$x\rightarrow-1$时,$f(x)\rightarrow-\infty$,从而可得$f(x)$的最小值为-1/2。
3. 利用不等式当函数比较复杂时,我们可以通过利用一些常用的不等式来简化计算,如对于函数$f(x)=x^3+ax^2+bx+c$,当$x\geq0$时,$f(x)\geq0$,故其最小值必在$x=0$处。
高考数学解决极值点偏移问题的四大技巧(解析版)题型一:构造对称和(或差)
![高考数学解决极值点偏移问题的四大技巧(解析版)题型一:构造对称和(或差)](https://img.taocdn.com/s3/m/8d53b12bf68a6529647d27284b73f242336c3198.png)
题型一:构造对称和(或差)1.设函数()22ln 1f x x mx =-+.(1)当()f x 有极值时,若存在0x ,使得()01f x m >-成立,求实数m 的取值范围;(2)当1m =时,若在()f x 定义域内存在两实数12x x ,满足12x x <且()()12f x f x =,证明:122x x +>. 【答案】(1)()0,1;(2)证明见解析. 【详解】(1)()f x 定义域为()0,∞+,()()22221f x mx mx x x'=-=⋅-+, 当0m ≤时,()0f x '≥,即()f x 在()0,∞+上单调递增,不合题意,0m ∴>;令210mx -+=,解得:x =∴当x ⎛∈ ⎝时,()0f x '>;当x ⎫∈+∞⎪⎪⎭时,()0f x '<;()f x ∴在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,()max f x f ∴=;存在0x ,使得()01f x m >-成立,则()max 1m f x -<,即1m f -<,又11ln f m m m =⋅+=-,1ln m m ∴-<-, 即ln 10m m +-<,令()ln 1h m m m =+-,则()1110m h m m m+'=+=>, ()h m ∴在()0,∞+上单调递增,又()ln11011h =-=+,01m ∴<<, 即实数m 的取值范围为()0,1.(2)当1m =时,()22ln 1f x x x =-+,则()()22212222x x f x x x x x--'=-==, ∴当()0,1x ∈时,()0f x '>;当()1,x ∈+∞时,()0f x '<;()f x ∴在()0,1上单调递增,在()1,+∞上单调递减,∴由12x x <且()()12f x f x =知:1201x x <<<;令()()()2F x f x f x =--,()0,1x ∈, 则()()()()()()()22221221412022x x x F x x xxx x ----''=-⋅-=>--,()F x ∴在()0,1上单调递增,()()10F x F ∴<=,即()()2f x f x <-;()()112f x f x ∴<-,又()()12f x f x =,()()212f x f x ∴<-;()10,1x ∈,()121,2x ∴-∈,又21>x 且()f x 在()1,+∞上单调递减, 212x x ∴>-,即122x x +>.2.已知函数31()28ln 6f x x ax x =-+. (1)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (2)若函数()f x 存在两个极值点12,x x ,求证:124x x +>. 【答案】(1)3a ≤;(2)证明见解析. 【详解】解:(1)易知()f x 的定义域为(0,)+∞,由题意知28()202x f x a x '=-+≥,即244x a x ≤+在(0,)+∞上恒成立,.令24()(0)4x g x x x=+>,则32248()22x x g x x x -'=-=.当2x >时,()0g x '>,()g x 单调递增; 当02x <<时,()0g x '<,()g x 单调递减, 所以当2x =时,()g x 有最小值(2)3g =, 所以3a ≤;(2)因为28()22x f x a x '=-+,由()0f x '=知,24=4x a x+,设24()(0)4x g x x x=+>则12()()g x g x =,且()g x 在(2,)+∞上单调递增,在(0,2)上单调递减, 所以可令,1202x x <<<,.令()(2)(2)h x g x g x =+--,(2,0)x ∈-.则2244()(2)(2)2(2)(2)h x g x g x x x '''=++-=--+-因为(2,0)x ∈-,所以()0h x '<,所以()h x 上在(2,0)-单调递减,且(0)0h =, 所以(2,0)x ∈-时,()(2)(2)(0)0h x g x g x h =+-->=. 又1(0,2)x ∈,所以12(2,0)x -∈- 所以111(2)()(4)0h x g x g x -=-->. 所以211()()(4)g x g x g x =>-.因为12x <,142x ->,22x >且()g x 在(2,)+∞上单调递增,所以214x x >-,124x x +>.3.已知函数()()23x f x e x =-,其中e 为自然对数的底数.(1)求函数()f x 的单调区间和极值;(2)设方程()()0f x a a =<的两个根分别为1x ,2x ,求证:122x x +<.【答案】(1)()f x 的单调递增区间为(),3-∞-,()1,+∞;单调递减区间为()3,1-,极大值为36e ,极小值为2e -;(2)证明见解析. 【详解】(1)由题意得:()()223xf x x x e '=+-,令()0f x '=,解得:13x =-,21x =,∴当()(),31,x ∈-∞-+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<;()f x ∴的单调递增区间为(),3-∞-,()1,+∞;单调递减区间为()3,1-; ()f x ∴的极大值为()33636f e e --==;极小值为()12f e =-;(2)当x →-∞时,()0f x +→,令()0f x =,解得:x =∴当0a <时,方程()f x a =()0a <的两个根在区间(内.设函数()()()()()(2222413x x F x f x f x e x x e x x -=--=-+--<<,则()()()()()()()()221551313xx x xe x x e x F x e x x x e x e e ⎡⎤---'=---+=--⋅++=⎢⎥⎣⎦ ()()()22531x xe x e x x e -++--,x令()()()2253x h x e x e x =-++,x ()()22270xh x e e x '=++>,∴()h x 在(上为增函数,又()10h =,则当()x ∈时,()0h x <;当(x ∈时,()0h x >;∴当()x ∈时,()0F x '<,当1x =时,()0F x '=,当(x ∈时,()0F x '<,∴()F x 在(x ∈上单调递减.不妨设12x x <<,()f x 在()上单调递减,在(上单调递增,121x x << ()()110F x F >=,()()112f x f x ∴->,又()()12f x f x =,()()122f x f x ∴->, 121x ->,21>x ,由(1)知:()f x 在()1,+∞上单调递增,122x x ∴->, 122x x ∴+<.。
高考数学六大题型复习 导数系统班23、双变量问题之极值点偏移(1)
![高考数学六大题型复习 导数系统班23、双变量问题之极值点偏移(1)](https://img.taocdn.com/s3/m/042a2e25001ca300a6c30c22590102020740f234.png)
第二十三讲 双变量问题之极值点偏移知识与方法1.设函数()f x 在定义域上有极值点0x ,但由于函数在极值点0x 左右两侧的增减速率不对称,造成函数()f x 的图象不关于直线0x x =对称,那么当()()12f x f x =时,极值点0x 会偏向1x 或2x 中的某一个,也即1202x x x +>或1202x x x +<,在给定的函数背景下,证明上面的两个不等式,这类问题称为极值点偏移问题.2.极值点偏移问题常用的解题方法有三种:(1)构造对称差函数,研究其单调性,证明不等式;(2)通过变形,转化为双变量问题,用齐次换元化归成单变量不等式证明问题; (3)利用对数平均不等式证明.(由于在作答时要先证明此不等式,故一般正式作答时不使用此法)3.对数平均不等式:设0a >,0b >,且a b ≠ln ln 2a b a ba b −+<−.典型例题【例1】已知函数()ln 2f x x x =−+ (1)求函数()f x 的最大值;(2)设12x x ≠,若()()12f x f x =,证明:122x x +>. 【解析】(1)由题意,()111xf x x x−'=−=()0x >,所以()001f x x '>⇔<<,()01f x x '<⇔>,从而()f x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 11f x f ==.(2)证法1:不妨设12x x <,由(1)易得1201x x <<<,要证122x x +>,只需证212x x >−,因为1122x <−<,且()f x 在()1,+∞上单调递减,所以只需证()()212f x f x <−,结合()()12f x f x =知只需证()()112f x f x <−,即证()()1120f x f x −−<,设()()()2g x f x f x =−−,01x <<,则()()()()()221112022x x x g x f x f x x x x x −−−'''=+−=+=>−−, 所以()g x 在()0,1上单调递增,因为101x <<,所以()()()()111 210g x f x f x g =−−<=,故122x x +>.证法2:不妨设12x x <,由(1)易得1201x x <<<,因为()()12f x f x =,所以1122ln 2ln 2x x x x −+=−+,整理得:1212ln ln 1x x x x −=−,所以()12121212ln ln x x x x x x x x +−=+−,从而121121221ln 1x x xx x x x x ++=−,所以要证122x x +>,只需证1211221ln 21x x x x x x +⋅>−,令12xt x =,则01t <<, 所以要证1211221ln 21x x x x x x +⋅>−,只需证当01t <<时,1ln 21t t t +>−,即证()21ln 01t t t −−<+,令()()21ln 1t g t t t −=−+,01t <<,则()()()()()()222212111011t t t g t t t t +−−−'=−=>++,所以()g t 在()0,1上单调递增,又()10g =,所以当01t <<时,()0g t <,即()21ln 01t t t −−<+,故不等式122x x +>成立.证法3:不妨设12x x <,由(1)易得1201x x <<<,因为()()12f x f x =,所以1122ln 2ln 2x x x x −+=−+,整理得:1212ln ln 1x x x x −=−,由对数平均不等式得:1212121ln ln 2x x x xx x −+=<−,所以122x x +>.【反思】证法3中用到了对数平均不等式,考试作答时,不宜直接使用该不等式,需先证明再使用,所以综合评估下来,证法3的优势相比证法Ⅰ和证法2,并不明显,所以一般建议大家考试按证法1或证法2来作答,证法3仅作参考. 【例2】已知函数()()21ln 2x f x a x a x =+−−,其中a ∈R . (1)讨论()f x 的单调性;(2)若()f x 有两个零点1x ,2x ,证明:122x x a +>.【解析】(1)由题意,()()()1x x a f x x+−'=,0x >,当0a ≤时,()0f x '>,所以()f x 在()0,+∞上单调递增; 当0a >时,()0f x x a '>⇔>,()00f x x a '<⇔<<, 所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)证法1:不妨设12x x <,由(1)易得0a >,且10x a <<,2x a >, 要证122x x a +>,只需证212x a x >−,易知122a a x a <−<, 结合()f x 在(),a +∞上单调递增知又只需证()()212f x f a x >−, 又()()12f x f x =,故只需证()()112f x f a x >−令()()()() 20F x f x f a x x a =−−<<,则()()()()()22202x a F x f x f a x x a x −'''=+−=−<−,从而()F x 在()0,a 上单调递减,又()0F a =,所以()0F x >恒成立,从而()()()11120F x f x f a x =−−>,故()()112f x f a x >−,所以不等式122x x a +>成立. 证法2:因为1x ,2x 是()f x 的两个零点,所以()()()()211111222222ln 02ln 02x f x x a x x x f x x a x x ⎧=+−+=⎪⎪⎨⎪=+−+=⎪⎩, 两式作差得:()()()()1212121212ln ln 02x x x x x x a x x x x +−+−−−+−=,从而121212ln ln 1102x x x x a x x ⎛⎫+−+−+= ⎪−⎝⎭,故121212ln ln 112x x x x a x x ⎛⎫+−+=+ ⎪−⎝⎭,所以12121212ln ln 1x x a x x x x ++=−+−, 故要证122x x a +>,只需证122x x a +<,即证1212121212ln ln 21x x x x x x x x +++<−+−, 也即证1212121212ln ln 1222x x x x x x x x x x +++−+<+⋅−,故只需证121212ln ln 2x x x x x x −>−+,不妨设12x x <,则只需证()1212122ln ln x x x x x x −−<+,即证12112221ln 01x x x x x x ⎛⎫− ⎪⎝⎭−<+, 令12x t x =,由(1)知0a >,且10x a <<,2x a >,所以()0,1t ∈, 设()()21ln 1t g t t t −=−+()01t <<,则只需证()0g t <,因为()()()()222114011t g t t t t t −'=−=>++,所以()g t 在()0,1上单调递增, 结合()10g =知()0g t <,从而不等式122x x a +>成立.证法3:因为1x ,2x 是()f x 的两个零点,所以()()()()211111222222ln 02ln 02x f x x a x x x f x x a x x ⎧=+−+=⎪⎪⎨⎪=+−+=⎪⎩, 两式作差得:()()()()1212121212ln ln 02x x x x x x a x x x x +−+−−−+−=,从而121212ln ln 1102x x x x a x x ⎛⎫+−+−+= ⎪−⎝⎭,故121212ln ln 112x x x x a x x ⎛⎫+−+=+ ⎪−⎝⎭, 由对数平均不等式知121212ln ln 2x x x x x x −>−+,所以121212ln ln 211x x a a x x x x ⎛⎫⎛⎫−+>+ ⎪ ⎪−+⎝⎭⎝⎭,故12122112x x a x x ⎛⎫++>+ ⎪+⎝⎭,整理得:()()1212220x x x x a +++−>, 因为1220x x ++>,所以1220x x a +−>,故122x x a +>.强化训练1.已知函数()()1ln 0f x x x x=+>. (1)求()f x 的最小值;(2)若关于x 的方程()f x a =有两个不相等的实根1x ,2x ,证明:122x x +>. 【解析】(1)由题意,()22111x f x x x x−'=−+=,所以()01f x x '>⇔>,()001f x x '<⇔<<, 从而()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()()min 11f x f ==.(2)证法1:不妨设12x x <,由(1)可得1201x x <<<,要证122x x +>,只需证212x x >−,因为121x −>,21x >,且()f x 在()1,+∞上单调递增,所以要证212x x >−,只需证()()212f x f x >−,又()()12f x f x =,所以只需证()()112f x f x >−,即证()()1120f x f x −−>, 设()()()2g x f x f x =−−,01x <<,则()()()()()()()22222214112022x x x g x f x f x x x x x −−−−'''=+−=+=−<−−, 所以()g x 在()0,1上单调递减,又()()()1110g f f =−=,所以()0g x >恒成立, 因为101x <<,所以()()()11120g x f x f x =−−>,从而122x x +>成立.证法2:由题意,11221ln 1ln x ax x ax ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得:121211ln ln 0x x x x −+−=,所以211122ln 0x x x x x x −+=①,不妨设12x x <,则由(1)可得1201x x <<<,设12x t x =,则01t <<,且12x tx =, 代入式①可得2222ln 0x tx t tx −+=,所以21ln 0t t tx −+=,故21ln t x t t −=②, 要证122x x +>,只需证222tx x +>,即证221x t >+,结合式②知只需证12ln 1t t t t −>+,即证21ln 2t t t −<,设()21ln 2t h t t t −=−()01t <<,则()()()222222111022t t t h t t t t −−−'=−=>,所以()h t 在()0,1上单调递增,又()10h =,所以()0h t <,即21ln 02t t t −−<,从而21ln 2t t t−<,故122x x +>成立.证法3:由题意,11221ln 1ln x ax x ax ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得:121211ln ln 0x x x x −+−=,所以211221ln ln x x x x x x −=−,211221ln ln 2x x x x x x −+<<−12122x xx x +<<,12x x <可得121x x >,又12122x x x x +<,所以121222x x x x +>>. 2.已知函数()22ln f x x x ax =−+()a ∈R .(1)当0a =时,求()f x 的单调区间;(2)若()f x 的图象与x 轴有两个交点()1,0A x ,()2,0B x ,且120x x <<,证明:1202x x f +⎛⎫'< ⎪⎝⎭. 【解析】(1)当0a =时,()()22ln 0f x x x x =−>,所以()()221x f x x−'=,从而()001f x x '>⇔<<,()01f x x '<⇔>,故()f x 单调递的增区间为()0,1,单调递减区间为()1,+∞.(2)证法1:由题意,()22222x ax f x x a x x−++'=−+=,0x >,注意到二次函数()222m x x ax =−++开口向下,()020m =>,所以()m x 在()0,+∞上有唯一的零点0x ,且当()00,x x ∈时,()0m x >,从而()0f x '>;当()0,x x ∈+∞时,()0m x <,从而()0f x '<,故()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,由题意,()f x 有两个零点1x ,2x ,且120x x <<,所以1020x x x <<<,要证1202x x f +⎛⎫'< ⎪⎝⎭,只需证1202x x x +>,即证1202x x x +>,也即证2012x x x >−, 因为10x x <,所以0102x x x −>,结合()f x 在()0,x +∞上单调递减知又只需证()()2012f x f x x <−,又()()120f x f x ==,故只需证()()1012f x f x x <−,即证()()10120f x f x x −−<,令()()()02F x f x f x x =−−()00x x <<, 则()()()000222422F x f x f x x x a x x x'''=+−=+−+−①, 由()20000220x ax f x x −++'==得:0022a x x =−,代入式①得:()()()2000402x x F x xx x x −'=>−, 所以()F x 在()00,x 上单调递增,结合()00F x =知()0F x <,因为100x x <<,所以()()()110120F x f x f x x =−−<,故1202x x f +⎛⎫'< ⎪⎝⎭成立.证法2:由题意,()()21111222222ln 02ln 0f x x x ax f x x x ax ⎧=−+=⎪⎨=−+=⎪⎩,两式作差整理得:()()1212122ln ln x x a x x x x −=+−−①,又()22f x x a x '=−+,所以()12121242x x f x x a x x +⎛⎫'=−++ ⎪+⎝⎭, 将式①代入整理得:()121212122ln ln 42x x x x f x x x x −+⎛⎫'=−⎪+−⎝⎭, 故要证1202x x f +⎛⎫'< ⎪⎝⎭,只需证()1212122ln ln 40x x x x x x −−<+−,结合120x x <<知只需证()()1212122ln ln 0x x x x x x −−−>+,即证12112221ln 01x x x x x x ⎛⎫− ⎪⎝⎭−>+②, 令12x t x =,则()0,1t ∈,所以要证不等式②成立,只需证当01t <<时,()21ln 01t t t −−>+, 令()()21ln 1t F t t t −=−+()01t <<,则()()()22101t F t t t −'=−<+,所以()F t 在()0,1上单调递减,又()10F =,所以()0F t >,即()21ln 01t t t −−>+,故1202x x f +⎛⎫'< ⎪⎝⎭. 证法3:由题意,()()21111222222ln 02ln 0f x x x ax f x x x ax ⎧=−+=⎪⎨=−+=⎪⎩,两式作差整理得:()()1212122ln ln x x a x x x x −=+−−①,又()22f x x a x '=−+,所以()12121242x x f x x a x x +⎛⎫'=−++ ⎪+⎝⎭, 将式①代入整理得:()121212122ln ln 42x x x x f x x x x −+⎛⎫'=−⎪+−⎝⎭,由对数平均不等式,121212ln ln 2x x x x x x −>−+,所以()1212121212122ln ln 442202x x x x f x x x x x x x x −+⎛⎫'=−<−⋅= ⎪+−++⎝⎭.3.已知函数()21x f x x ae =−−()a ∈R 有两个不同的极值点1x ,2x (1)求a 的取值范围; (2)证明:124x x e e a+>. 【解析】(1)由题意,()2x f x x ae '=−,()2x f x ae ''=−,当0a ≤时,()0f x ''>,所以()f x '在R 上单调递增,从而()f x '最多一个零点,故()f x 最多只有一个极值点,不合题意; 当0a >时,()20lnf x x a ''>⇔<,()20ln f x x a''<⇔>, 所以()f x '在2,ln a ⎛⎫−∞ ⎪⎝⎭上单调递增,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()max 22ln 2ln 2f x f a a ⎛⎫''==− ⎪⎝⎭,因为()f x 有两个极值点,所以()f x '有两个零点,从而2ln 0f a ⎛⎫'> ⎪⎝⎭,故22ln 20a −>,解得:20a e <<,此时,2ln 1a >,()00f a '=−<,所以()f x '在20,ln a ⎛⎫ ⎪⎝⎭上有一个零点,记作1x ,设()()21x x x x e ϕ=>,则()()2xx x x e ϕ−'=,所以()012x x ϕ'>⇔<<,()02x x ϕ'<⇔>,从而()x ϕ在()1,2上单调递增,在()2,+∞上单调递减,故()()2421x e ϕϕ≤=<,所以()1x ϕ<恒成立,即21x x e<,故2x e x >,所以当2x a >时,()22220x f x x ae x ax ax x a ⎛⎫'=−<−=−< ⎪⎝⎭,故()f x '在2ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点,记作2x ,且()120f x x x x '>⇔<<,()10f x x x '<⇔<或2x x >,从而()f x 在()1,x −∞上单调递减,在()12,x x 上单调递增,在()2,x +∞上单调递减, 所以()f x 有两个不同的极值点1x ,2x ,故a 的取值范围是20,e ⎛⎫⎪⎝⎭.(2)证法1:由(1)可得1220ln x x a <<<,()()1211222020x x f x x ae f x x ae '⎧=−=⎪⎨'=−=⎪⎩,所以121222xx x ae x ae ⎧=⎪⎨=⎪⎩, 从而1122ln 2ln ln ln 2ln ln x a x x a x +=+⎧⎨+=+⎩,故1122ln ln 02ln ln 02a x x a x x ⎧−+=⎪⎪⎨⎪−+=⎪⎩,所以1x ,2x 是函数()()ln ln02a g x x x x =−+>的零点,因为()1101x g x x x−'>⇔−=,所以()01g x x '>⇔>,()001g x x '<⇔<<,从而()g x 在()0,1上单调递减,在()1,+∞上单调递增,故1201x x <<<,由121222x x x aex ae⎧=⎪⎨=⎪⎩可得121222x x e x a e xa ⎧=⎪⎪⎨⎪=⎪⎩,所以要证124x x e e a +>,只需证12224x x a a a+>,即证122x x +>,也即证212x x >−,因为121x −>,21x >,且()g x 在()1,+∞上单调递增,所以只需证()()212g x g x >−,又()()12g x g x =,所以只需证()()112g x g x >−,即证()()1120g x g x −−>,设()()()2x g x x h g =−−,01x <<,则()()()()()()2212112022x x x h x g x g x x x x x −−−−'''=+−=+=−<−−,所以()h x 在()0,1上单调递减,又()10h =,所以()0h x >在()0,1上恒成立, 因为101x <<,所以()10h x >,即()()1120g x g x −−>,故124x x e e a+>成立. 证法2:由(1)可得1220ln x x a <<<,()()1211222020x x f x x ae f x x ae '⎧=−=⎪⎨'=−=⎪⎩,所以121222xx x ae x ae ⎧=⎪⎨=⎪⎩①② 由①+②可得:()()12122x x x x a e e +=+,所以()12122x x x x e e a++=,故要证124x x e e a +>,只需证()1224x x a a+>,即证122x x +>, 由①-②可得:()()12122x x x x a e e −=−,所以12121212x x x x x x e e x x e e ++=−−,从而()12121212x x x x e e x x x x e e ++=−−, 故()1212121211x x x x e x x x x e −−++=−−,所以要证122x x +>,只需证()121212121x x x x e x x e −−+−>−③设12t x x =−,则0t <,且不等式③即为121t te t e +⋅>−,所以要证不等式③成立,只需证121t t e t e +⋅>−,即证22t t te t e +<−,也即证()220t t e t −++<,设()()()220t r t t e t t =−++<, 则()()11t r t t e '=−+,()0t r t te ''=<,所以()r t '在(),0−∞上单调递减,又()00r '=,所以()0r t '>,从而()r t 在(),0−∞上单调递增,因为()00r =,所以()0r t <恒成立,即()220t t e t −++<,所以124xx e e a+>成立. 证法3:由(1)可得1220ln x x a <<<,()()1211222020x x f x x ae f x x ae '⎧=−=⎪⎨'=−=⎪⎩,所以121222xx x ae x ae ⎧=⎪⎨=⎪⎩, 从而1122ln 2ln ln ln 2ln ln x a x x a x +=+⎧⎨+=+⎩,两式作差得:1212ln ln x x x x −=−,所以12121ln ln x x x x −=−,由对数平均不等式,1212121ln ln 2x x x xx x −+=<−,所以122x x +>,由121222xx x ae x ae⎧=⎪⎨=⎪⎩可得()121224x x e e x x a a +=+>11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 已知函数2
()(1)x f x x e ax =-+ 有两个零点.
(1)当a =1时,求()f x 的最小值;
(2)求a 的取值范围;
(3)设12,x x 是()f x 的两个零点,证明12+0x x <.
【(1)(,0)-∞ 减(0,)+∞ 增(2)0a > ;说明零点存在,用不等式放缩,半a 与-1的较量;极值点偏移】
2. 【★★】已知函数2
()ln 2()f x x x x ax a R =+-+∈ 有两个不同的零点12,x x .
(1)求实数a 的取值范围.
(2)求证:12+2x x >.
(3)求证:121x x ⋅>.
【(1)3a > 】
3. 已知函数2()ln f x x x ax =- ,a R ∈ .
(1)当12
a = 时,求函数()f x 的单调区间; (2)若函数()f x 有两个极值点12,x x ,且12x x < ,求1()f x 的取值范围.
4. (2016全国一:21)已知函数2)1(2)(-+-=x a e x x f x )(有两个零点. (I)求a 的取值范围;
(II)设12x x ,是的两个零点,证明:12 2.x x +<
5. 已知函数ln ()=x f x x
. (1)求函数()f x 的极值;
(2)当0x e << 时,求证:()()f e x f e x +>- ;
(3)设函数()f x 图像与直线y m = 的两交点分别为11(,())A x f x ,11(,())B x f x ,AB 中点横坐标为0x ,证明:0'()0f x < .。