酪氨酸酶

酪氨酸酶
酪氨酸酶

酪氨酸酶

概念:酪氨酸酶(EC 1.14.18.1)是一种含铜的氧化还原酶,它与生物体合成色素直接相关.(长的黑有很大的一部分原因在自己)在人体中,它与色素障碍性疾病及恶性黑色素肿瘤的发生与治疗有关

(酪氨酸酶的分布与动物的生理功能息息相关,不同动物的酪氨酸酶在体内分布的部位不同.多数昆虫在正常生理状态下,酪氨酸酶以酶原的形式存在,不同类型的酪氨酸酶存在于昆虫的特定部位,以完成特定的生理功能.美洲蜚蠊存在于血红细胞内,而麻蝇则仅存在于血浆中,并且在表皮中主要以活化形式的酪氨酸酶存在.昆虫酪氨酸酶除参与黑色素的形成外还是唯一参与角质硬化的酶.昆虫高度硬化的角质能阻断微生物和异物的入侵,并为柔软的元脊椎动物身体提供了保护.在节肢动物中,酪氨酸酶还参与其他两种重要的生理过程——防御反应和伤口愈合.

哺乳动物酪氨酸酶催化产生的黑色素被分泌进入到表皮和毛发的角质细胞中,使体表着色,从而起保护皮肤和眼睛、抵御紫外线的辐射和防止内部组织过热等作用.哺乳动物酪氨酸酶常见于黑素细胞中,黑素细胞是存在于皮肤,发囊和眼睛中并产生色素的高度特异性的细胞[1“].酪氨酸酶功能减退或缺失时,即会影响黑色素代谢,从而发生疾病如白癫疯和白化病.动物与人的常染色体隐性疾病也与酪氨酸酶的缺失或活性下降有关.)作用机制:酪氨酸酶主要参与两个反应过程:催化L.酪氨酸羟基化转变为L-多巴和氧化L-多巴形成多巴醌,多巴醌经一系列反应后,形成黑色素,与人体雀斑、褐斑等黑色素过度沉积等疾病的发生有关,并与昆虫的蜕皮(蝉蜕可以入药)和(苹果)果蔬的褐化有很大关系

(黑色素生物合成过程可大体分为两个阶段,第一阶段是由酪氨酸酶催化酪氨酸被羟化反应形成L_3,4一二羟基丙氨酸(L_多巴)(单酚酶活性),并进步将L_多巴氧化生成多巴醌(二酚酶活性)。这两步反应都是由酪氨酸酶催化的,酪氨酸酶在这里显示了独特的双重催化功能.第二阶段从多巴醌(DOPAqui—non)为原料从两个不同途径分别生成真黑素和褪黑素的过程.真黑素生成,多巴醌经多聚化反应等一系列反应生成无色多巴色素,极不稳定的无色多巴色素被另一分子多巴醌氧化为多巴色素,多巴色素经异构、脱羧生成5,6一二羟基吲哚(DHI),5,6一二羟基吲哚(DHI)由酪氨酸酶催化氧化为真黑色素的前体吲哚一5,6一醌(IndQu);褪黑素生成,多巴醌(DOPAquinon)与半胱氨酸(Cys)反应生成产生5-Cys一多巴及5-Cys一多巴醌,然后成环、脱羧变成苯肼噻嗪的衍生物,最后形成褪黑素.在第二阶段,只有少数几步反应由酪氨酸酶、异构酶或金属离子催化,大部分反应都是自发的,因此酪氨酸酶是整个黑色素生成反应的限速酶,第一阶段的两步反应是限速步骤.)

活性中心:酪氨酸酶的活性中心是由两个含铜离子位点构成.在催化过程中,双核铜离子位点以3种形态存在,分别是氧化态、还原态和脱氧态.研究表明与酪氨酸酶结合的双核铜离子活性中心与在血蓝蛋白中发现的活性中心非常相似、

白化病概念:白化病是由黑色素合成相关基因突变导致黑色素沉着减少或缺失引起的一类遗传性疾病的总称。

白化病发病机理:TYR基因与OCA1 眼皮肤白化病I型,由酪氨酸酶基因异常引起,该基因定位于1lql1—21,长度超过65 kb,包含5个外显子和4个内含子,编码由529个氨基酸残基

酪氨酸酶的抑制及激活:

羟基苯甲酸和羟基苯甲醛对酪氨酸酶均有明显得抑制作用,表l列出我们研究的几种该类物质的作用.(在这里大家可以看到最后一个不是羟基苯甲酸)熊果甙也是一种含酚基的化合物,对酪氨酸酶也有抑制作用,虽然其抑制效应明显比羟基苯甲醛和羟基苯甲酸差,但由于其副作用较小,已作为增白剂添加入美白化妆品中。

含间苯二酚结构的化合物大多是酪氨酸酶的抑制剂,它们可以与酪氨酸酶的双铜离子活性中心结合,大多数是酪氨酸酶的竞争性抑制剂.目前,4-己基间苯二酚已作为商品用于虾的保鲜

黄酮类物质对酪氨酸酶的抑制作用(螯合作用).桑色素(e)的3-和2‘ -羟基之间形成分子内氢键干扰了3-氢键和4-羰基与酶活性中心的铜形成螯合构

象。

从黑白块菌中提取出两种含硫的香味化合物,它们与酪氨酸酶的结合是属于缓慢结合型(如图4).苯基硫脲、二硫苏糖醇和巯基乙醇,也是含硫化合物,它们均是酪氨酸酶的抑制剂,所不同的是这些化合物对酪氨酸酶的抑制作用是不可逆的.硫脲与酪氨酸酶还原态形式的酶结合(图5),将导致永久性失活,其抑制作用主要是通过硫脲上的硫取代E 。活性中心两个铜离子之间的氢氧化物桥联配体,从而与酶活性中心形成很牢固的结合,使化合物具有不可逆抑制酪氨酸酶的活性.含硫化合物中,亚硫酸盐及二氧化硫也均是酪氨酸酶的强效抑制剂,曾经作为果蔬的常用保鲜剂,由于安全性问题已被禁用.

固定化酶与溶液酶相比,具有以下一此优点:

(1) 固定化酶可重复使用,酶的使用效率得到提高,使用成本降低.尤其适合使用贵重酶的情况。

(2)固定化酶极易与反应体系分离,可获得不被酶污染的、纯度较高的生成物,简化了提纯工艺,产率较高,产品质量较好。

(3) 在多数情况下,酶在固定化后稳定性得到较大提高,可较长时间地使用储藏。

(4) 固定化酶具有一定的机械强度.可以搅拌或装柱的方式作用于底物溶液,使反应过程能够管道化、连续化和自动化。

(5) 酶的催化反应过程更易控制。例如,当使用填充式反应器时,底物不与酶接触,即可使酶反应中止。

(6) 比溶液酶更适合于多酶体系的使用,不仅可利用多酶体系中的协调效应使酶催化反应速度大大提高,而且还可以控制反应按一定顺序进行。

(7) 辅酶固定化和辅酶再生技术,将使固定化酶和能量再生技术或氧化还原体系合并使用,从而扩大其应用范围。

酶固定化采用的载体大致可分为以下四种:

(1)无机载体,常用的如活性炭、多孔玻璃、氧化物等。无机载体具有较高的机械强度和较好的化学稳定性,个易发生变形,可成功用于活塞式反应器

而不发生大的压力降。

(2)有机载体,如一些天然的高分子载体和合成的高分子载体。有机载体易发生形变,具有弹性,易加工成各种形态(如膜等)。固定酶的能力较强,可成功用于连续搅拌式反应器而小被磨损。近年来,‘人们还研究出了溶解性可调节的载体材料,可对环境条件(如pH、温度等)的变化作出应答而发生相变或溶胀一收缩变化.用其制备的固定化酶具有“均相反应,异相分离”的优点。另外,还将脂质体作为载体进行酶的固定化。

(3)复合载体,这类载体结合了无机载体和有机载体的优点。一般以无机载体为“核”包埋在高分f凝胶中,进行酶的固定化。

(4)生物大分子载体,如用单克隆抗体材料进行酶的固定具有较好的效果。

酶固定化后性质的变化

(1)酶活力降低。酶经固定化后,一般而言,其活力都会有所下降。

(2)酶的最适pH变化。酶的催化活性受pH值影响较大,在大多数情况下,酶催化反应

在一定pH值条件下具有最大的反应速度,高于或低于此pH值,反应速度都会下降,通常称此pH为酶的最佳反应pH值

(3)酶经固定化后,大多数情况下其最佳反应温度会提高。这是因为酶分子被固定

化后,其热稳定性增强。随着温度的升高,酶的活力较溶液酶的活力降低的缓慢,因而可在较高的温度下获得最快的反应速度。酶的最佳反应温度对实际应用具有重要的意义。

(4)酶的稳定性增强。固定化酶的稳定性:酶的稳定性包括酶对各种试剂的稳定性(包括蛋白质变性剂、抑制剂等)、对蛋白分解酶的稳定性、对热的稳定性、储存的稳定性、重复使用稳定性等

酪氨酸酶的固定化:

采用壳聚糖(脱乙酰度为85%)作为载体,利用戊二醛载体交联法制备固定化酪氨酸酶。分两套工艺进行固定化。第一套工艺分两步:载体先经戊二醛处理,然后进行酶的固定化。第二套工艺分三步:首先进行戊二醛的处理,接着进行甲醛处理,最后进行酶的固定化。

制作工艺:选用泰和乌骨鸡,通过RT-PCR方法,使用宝生物工程(大连)有限公司和天根生化科技(北京)有限公司生产的PCR试剂盒,上海生物工程公司生产的Trizol,对酪氨酸酶进行体外扩增,找到RT-PCR方法的最佳反应条件。结果表明,通过RT-PCR方法能成功扩增出酪氨酸酶基因,并且用宝生物工程(大连)有限公司生产的试剂盒和上海生物工程公司生产的Trizol所得出的试验结果最佳,既无杂带也无引物二聚体,是一种理想的RT-PCR反应体系。

酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展

现代生物医学进展https://www.360docs.net/doc/0a6055841.html, Progress in Modern Biomedicine Vol.10NO.16AUG.2010 酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展* 刘振凯1艾 菁2耿美玉1,2△ (1中国海洋大学医药学院山东青岛266003;2中国科学院上海药物研究所上海201203) 摘要:酪氨酸激酶(protein tyrosine kinases,PTKs )在肿瘤细胞的增殖、分化、迁移、侵袭等相关信号通路中起到了关键的调控作用,已经成为肿瘤靶向性治疗的重要靶点。本文对靶向酪氨酸激酶的小分子抑制剂的筛选和评价方法进行综述,以期促进酪氨酸激酶抑制剂类抗肿瘤药物的研究。 关键词:酪氨酸激酶;抗肿瘤药物;小分子抑制剂;抑制剂筛选 中图分类号: R730.5,R915文献标识码:B 文章编号:1673-6273(2010)16-3134-04Advances in Research of Protein-tyrosine Kinases Inhibitors as Anticancer Drug* LIU Zhen-kai 1,AI Jing 2,GENG Mei-yu 1,2△ (1Marine drug and food Institute,Ocean university of China,Qingdao,266003,China;2Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China ) ABSTRACT:Protein tyrosine kinases (PTKs)have long been recognized as promosing therapeutic targets involved in a variety of human diseases and in particular several types of cancer.They play important roles in regulating intracellular signal transduction path-ways closely associated with the invasion,metastasis and angiogenesis of many tumors.An effort towards the development of new and more effective PTK inhibitors represents an attractive therapeutic strategy for cancer therapy.In this paper,we review the screening and evaluation methods of small-molecule inhibitors of PTKs with a view to promote the study of PTKs. Key words:Protein-tyrosine kinases;Antitumordrugs;Small-molecule inhibitors;Inhibitors screening Chinese Library Classification (CLC ):R730.5R915Document code:B Article ID:1673-6273(2010)16-3134-04 *基金项目:国家杰出青年科学基金资助(No 30725046) 作者简介:刘振凯(1983-),男,硕士。研究方向:分子药理学。E-mail :lzkai111@https://www.360docs.net/doc/0a6055841.html, △通讯作者:耿美玉(1963-),研究员、博士生导师。E-mail :mygeng@https://www.360docs.net/doc/0a6055841.html, (收稿日期:2010-05-07接受日期:2010-06-01) 恶性肿瘤是严重威胁人类生命和健康的疾病。目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类药物大多存在难以避免的选择性差、毒副作用强、易产生耐药等缺点[1]。近年来,随着生命科学研究的飞速发展,恶性肿瘤细胞内的信号转导、 细胞周期的调控、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明,给抗肿瘤药物的研发理念带来了巨大转变。以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶/蛋白作为药物靶点,筛选发现选择性强、高效、低毒的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向[2]。 蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,它们能催化ATP 分子上的γ-磷酸基转移到底物蛋白的酪氨酸残基上,使其发生磷酸化。酪氨酸激酶分为受体型和非受体型两种。受体酪氨酸激酶是一种单次跨膜蛋白,目前至少已有近六十种分属20个家族的受体酪氨酸激酶被识别。不同的受体酪氨酸激酶和配体结合后,受体自身发生二聚化或结构重排,并进一步使受体胞内区特异的酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路[3]。它们在信号由胞外转导至胞内的过程中发挥重要的作用。而非受体酪氨酸激酶是一种胞浆蛋白,现已经确认的有约30种,分为10大家族。蛋白酪氨酸激酶在细胞信号转导通路中占据了十分重要的地位, 调节细胞生长、分化、死亡等一系列生理生化过程。蛋白酪氨酸激酶功能失调则引发生物体内一系列疾病。大量资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常激活或过度表达将导致细胞无限增殖,周期紊乱,最终导致肿瘤的发生发展[4]。 同时,酪氨酸激酶调控异常还与肿瘤的侵袭、 转移,肿瘤新生血管生成,肿瘤化疗抗性等密切相关。事实上,以酪氨酸激酶为靶点进行抗肿瘤药物的开发已成为国际研究的前沿。 1酪氨酸激酶抑制剂的开发策略 目前酪氨酸激酶抑制剂的开发策略主要分为胞外、胞浆和核内三个层面:细胞外策略主要是针对于受体型,配体与受体的生物拮抗剂以及特异性抗体,通过拮抗配体和受体的相互作用,抑制酪氨酸激酶的激活[5];胞浆内策略主要分为抑制激酶区的激酶活性和拮抗酪氨酸激酶与其下游信号分子的相互作用两个方面[6];核内策略主要是利用miRNA 降解或者干扰酪氨酸激酶的mRNA ,抑制激酶的蛋白表达而达到抑制激酶活性的目的[7,8]。其中研究最多的是抑制激酶区激酶活性的小分子抑制剂,而本文也主要是针对这部分抑制剂的研究方法进行探讨。酪氨酸激酶的自磷酸化过程和催化下游信号分子磷酸化的过程都涉及到ATP 上磷酸基团的转移,这一反应过程是酪氨酸 3134··

生物化学氨基酸代谢试题及答案

【测试题】 一、名词解释 1.氮平衡 2.必需氨基酸 3.蛋白质互补作用 4.内肽酶 5.外肽酶 6.蛋白质腐败作用 7.转氨基作用 8.氧化脱氨基作用9.联合脱氨基作用10.多胺11.一碳单位12. PAPS 13. SAM 二、填空题 14.氮平衡有三种,分别是氮的总平衡、____、____ ,当摄入氮<排出氮时称____。 15.正常成人每日最低分解蛋白质____克,营养学会推荐成人每日蛋白质需要量为____克。 16.必需氨基酸有8种,分别是苏氨酸、亮氨酸、赖氨酸、____、____ 、____ 、_____、____。17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____和____。 18.氨基酸吸收载体有四种,吸收赖氨酸的载体应是____ ,吸收脯氨酸的载体是____。 19.假神经递质是指____和____,它们的化学结构与____相似。 20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 是氨基酸的主要分解代谢去路。21.肝脏中活性最高的转氨酶是____,心肌中活性最高的转氨酶是____。 22.L-谷氨酸脱氢酶的辅酶是____或____,ADP和GTP是此酶的变构激活剂,____ 和____是此酶的变构抑制剂。 23.生酮氨基酸有____和____。 24.氨的来源有____、____、____,其中____是氨的主要来源。 25.氨的转运有两种方式,分别是____、____,在肌肉和肝脏之间转运氨的方式是____。 26.鸟氨酸循环又称____或____。 28.γ-氨基丁酸是由____脱羧基生成,其作用是____。 27.尿素分子中碳元素来自____,氮元素来自____和____,每生成1 分子尿素消耗____个高能磷酸键。29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶是____。 30.可产生一碳单位的氨基酸有____、____、____、____。 31.肌酸激酶有三种同工酶分别是____、____、____,其中____ 主要存在于心肌中。 32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 是体内硫酸根的主要来源。 33.儿茶酚胺包括____、____、____,帕金森氏病是由于脑组织中____生成减少。 34.支链氨基酸包括____、____、____。 三、选择题 A型题 35.下列哪种氨基酸是生糖兼生酮氨基酸 A. Gly B. Ser C. Cys D. Ile E. Asp 36.下列哪种不是必需氨基酸 A. Met B. Thr C. His D. Lys E. Val 37.苯酮酸尿症是由于先天缺乏: A.酪氨酸酶 B.酪氨酸羟化酶 C.酪氨酸转氨酶 D.苯丙氨酸转氨酶 E.苯丙氨酸羟化酶 38.不参与构成蛋白质的氨基酸是: A.谷氨酸 B.谷氨酰胺 C.鸟氨酸 D.精氨酸 E.脯氨酸 39.体内氨基酸脱氨基的主要方式是: A.转氨基 B.联合脱氨基 C.氧化脱氨基 D.非氧化脱氨基 E.脱水脱氨基 40.肌肉组织中氨基酸脱氨基的主要方式是: A.转氨基 B.嘌呤核苷酸循环 C.氧化脱氨基 D.转氨基与谷氨酸氧化脱氨基联合 E.丙氨酸-葡萄糖循环 41.体内氨的主要代谢去路是: A.合成尿素 B.生成谷氨酰胺 C.合成非必需氨基酸

了解蛋白酪氨酸磷酸酶抗体(IA—2A)与谷氨酸脱羧酶抗体(GADA)在1型糖尿病(DM)中的检出率及

龙源期刊网 https://www.360docs.net/doc/0a6055841.html, 了解蛋白酪氨酸磷酸酶抗体(IA—2A)与谷氨酸脱羧酶抗体(GADA)在1型糖尿病(DM)中的检出率及其诊断价值 作者:薛勇 来源:《饮食与健康·下旬刊》2015年第10期 【摘要】目的:分析探讨蛋白酪氨酸磷酶抗体与谷氨酸脱羧酶抗体在1型糖尿病中的检出率及其诊断价值。方法:选择我院收治的1型糖尿病患者120例作为研究对象,收治时间在2013年3月至2014年3月期间,使用数字抽签法对这120例患者进行分组,分别为A组、B 组和C组,每组各40例,A组采取蛋白酪氨酸磷酸酶抗体检测,B组采取谷氨酸脱羧酶抗体检测,C组采取白酪氨酸磷酶抗体与谷氨酸脱羧酶抗体联合检测,并在检测结束后,对比三组的检出率。结果:A组的检出率为87.50%,B组的检出率为80.00%,C组的检出率为 100.00%,C组患者的检出率明显高于A、B两组,P 【关键词】白酪氨酸磷酸酶抗体;谷氨酸脱羧酶抗体;1型糖尿病 谷氨酸脱羧酶(GAD)是将谷氨酸转化成抑制性神经递质γ氨基丁酸(GABA)的限速酶,在胰岛β细胞中存在GAD,并也合成、分泌GABA。本文就蛋白酪氨酸磷酸酶抗体与谷氨酸脱羧酶抗体在1型糖尿病中的检出率及其诊断价值进行了研究分析,将我院确诊的120例1型糖尿病患者作为研究对象,并分别给予蛋白酪氨酸磷酸酶抗体检测、谷氨酸脱羧酶抗体检测及酸磷酸酶抗体检测联合谷氨酸脱羧酶抗体检测,现报告整理完毕,具体陈述如下。 1 研究资料和方法 1.1 研究资料 选择我院收治的1型糖尿病患者120例作为研究对象,收治时间在2013年3月至2014年3月期间,使用数字抽签法对这120例患者进行分组,分别为A组、B组和C组,每组各40例。

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1988年Tonks等首次在人的胎盘细胞中分离和纯化了第一个37kDa的蛋白酪氨酸磷酸酶1B(ProteinTyrosinePhosphatase-1B,PTP-1B)。 PTP1B是一种胞内PTP,位于内质网,在人体的各种组织中都有表达;其与蛋白酪氨酸激酶(ProteinTyrosineKinases,PTK)共同维持着酪氨酸蛋白磷酸化的平衡,参与细胞的信号转导,调节细胞的生长、分化、代谢、基因转录和免疫应答等。 PTP1B属于蛋白质酪氨酸磷酸酶家族,专一水解芳香族磷酸,如磷酸化酪氨酸(phosphotyrosyl,pTyr)残基上磷酸根的酶,通过对胰岛素受体或其底物上的酪氨酸残基去磷酸化作用,对胰岛素信号转导进行负调节,组织细胞中PTP-1B过表达都会降低PTK的活性,使胰岛素受体无法与胰岛素结合,进而引起胰岛素抵抗,最终导致2型糖尿病。 PTP-1BDNA的启动子上有一个转录因子Y盒结合蛋白-1的结合位点,它的过度表达可使PTP-1B的表达水平增加。使用反义寡核苷酸技术减少其表达后,

PTP-1B的表达随之降低,呈正相关趋势。 PTP-1B在体内没有自身的特异性受体,而是在细胞信号传导过程中,与PTP家族中的其他成员以及蛋白酪氨酸激酶协同作用,调控蛋白底物中酪氨酸的磷酸化水平,进而对细胞的生长、分化、代谢、基因转录和免疫应答等功能进行调节。 1PTP-1B的生理功能 目前研究发现PTP-1B主要表现出以下几个方面的生理功能: (1)与胰岛素受体(insulinreceptor,IR)、胰岛素受体底物(insulinreceptorsubstrate,IRS)等信号蛋白作用,使这些蛋白调节区的酪氨酸残基去磷酸化,进而阻断胰岛素信号级联反应的下传,在胰岛素信号中起着负调控作用。与II型糖尿病的发生具有密切的联系。 (2)在瘦素信号传导过程中,通过降低转录激活子-3(STAT-3)和Janus激酶-2(JAK-2)的磷酸化水平,在瘦素信号中起负调控作用。与肥胖的发生具有密切的联系。 (3)PTP-1B通过与生长因子等底物相互作用,参与细胞生长周期的调节,与肿瘤的发生具有一定的联系。 除此之外,研究还发现PTP-1B在催乳素信号传

生化习题第章

教学大纲 | 电子课件 | 电子教案 | 实验教学 习题与答案 | 模拟试卷 | 参考资料 | 生化电子书 第七章氨基酸代谢 【测试题】 一、名词解释 1.氮平衡 2.必需氨基酸 3.蛋白质互补作用 4.内肽酶 5.外肽酶 6.蛋白质腐败作用 7.转氨基作用 8.氧化脱氨基作用 9.联合脱氨基作用 10.多胺 11.一碳单位 12. PAPS 13. SAM 二、填空题 14.氮平衡有三种,分别是氮的总平衡、____、____ ,当摄入氮<排出氮时称____。 15.正常成人每日最低分解蛋白质____克,营养学会推荐成人每日蛋白质需要量为____克。 16.必需氨基酸有8种,分别是苏氨酸、亮氨酸、赖氨酸、____、 ____ 、 ____ 、_____、____。 17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____和____。 18.氨基酸吸收载体有四种,吸收赖氨酸的载体应是____ ,吸收脯氨酸的载体是____。 19.假神经递质是指____和____,它们的化学结构与____相似。 20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 是氨基酸的主要分解代谢去路。 21.肝脏中活性最高的转氨酶是____,心肌中活性最高的转氨酶是____。

22.L-谷氨酸脱氢酶的辅酶是____或____,ADP和GTP是此酶的变构激活剂,____ 和____是此酶的变构抑制剂。 23.生酮氨基酸有____和____。 24.氨的来源有____、____、____,其中____是氨的主要来源。 25.氨的转运有两种方式,分别是____、____,在肌肉和肝脏之间转运氨的方式是____。 26.鸟氨酸循环又称____或____。 28.γ-氨基丁酸是由____脱羧基生成,其作用是____。 27.尿素分子中碳元素来自____,氮元素来自____和____,每生成1 分子尿素消耗____个高能磷酸键。 29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶是____。 30.可产生一碳单位的氨基酸有____、____、____、____。 31.肌酸激酶有三种同工酶分别是____、____、____,其中____ 主要存在于心肌中。 32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 是体内硫酸根的主要来源。 33.儿茶酚胺包括____、____、____,帕金森氏病是由于脑组织中____生成减少。 34.支链氨基酸包括____、____、____。 三、选择题 A型题 35.下列哪种氨基酸是生糖兼生酮氨基酸? A. Gly B. Ser C. Cys D. Ile E. Asp 36.下列哪种不是必需氨基酸?

新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展1 何子双1,印遇龙2,胡元亮1 1南京农业大学动物医学院,南京(210095) 2中国科学院亚热带农业生态研究所,长沙(410125) E-mail:hezishuang@https://www.360docs.net/doc/0a6055841.html, 摘要:精氨酸是新生仔猪的必需氨基酸,具有许多重要的生理生化功能。7~21日龄哺乳仔猪精氨酸不足和极限下生长的主要原因是母猪乳汁精氨酸浓度低及仔猪小肠上皮细胞内源性合成的精氨酸/瓜氨酸减少。小肠上皮细胞线粒体N-乙酰谷氨酸水平下降是仔猪内源性精氨酸/瓜氨酸合成减少的潜在机理。N-氨基甲酰谷氨酸和皮质醇在调控新生仔猪内源性精氨酸/瓜氨酸合成方面具有重要作用。 关键词:仔猪;精氨酸;营养;调控 精氨酸是幼龄哺乳动物(包括仔猪)的必需氨基酸[1]、组织蛋白中最丰富的氮载体及细胞合成肌酸、脯氨酸、谷氨酸、多胺和一氧化氮等的前体;可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶、精氨酰-tRNA合成酶等[2]。新生仔猪生长迅速,代谢功能旺盛,对精氨酸的需求特别高,而精氨酸不足是影响仔猪快速生长的主要因素。 1.新生仔猪精氨酸营养研究进展 新生仔猪是指出生后到断奶期的哺乳仔猪。美国NRC(national research council)指出3~5 kg仔猪的精氨酸需要量总计为1.5 g/day[3]。虽然传统的观点认为,母猪乳汁可以提供适当的氨基酸以促进仔猪的生长,但是,近年来的研究表明,哺乳仔猪实际上为极限下生长(Sub-maximal growth)。人工喂养的资料表明,新生仔猪的生物学生长潜力≥400g/d(出生至21日龄),或者说要高于哺乳期生长(230g/d)的74%[4]。哺乳仔猪极限下生长的代谢依据还不明了,有学者认为,精氨酸不足是主要因素[2]。 1.1 新生仔猪精氨酸不足 新生仔猪精氨酸不足指的是其体内精氨酸供给不足,不能保持仔猪最快生长和最佳代谢功能的需要。推测其原因可能是多方面的,包括日粮精氨酸供给不足、肠道精氨酸/瓜氨酸合成减少、精氨酸合成酶遗传缺陷、肠道精氨酸输送障碍、肠道精氨酸酶基因过度表达、肾脏转化瓜氨酸为精氨酸的功能障碍等。以前的研究主要集中在母猪乳汁精氨酸不足和仔猪内源性精氨酸合成减少两个方面。 1.1.1 母猪乳汁精氨酸不足根据母猪乳汁和仔猪的氨基酸模式、乳汁精氨酸供给量与估计的仔猪需要量之间的差异证明了母猪乳汁精氨酸不足。精氨酸/赖氨酸质量比在母猪乳汁(哺乳第7 d)和7日龄仔猪体内平均值分别为0.35和0.97,说明有一定数量的精氨酸由仔猪体内合成。根据仔猪精氨酸摄入量和精氨酸存积和代谢量计算结果表明,母猪乳汁供给1周龄仔猪的精氨酸≤需要量的40%。因此,体内合成的精氨酸对哺乳仔猪具有重要意义[5~7]。对婴儿、新生小鼠的研究结果与此一致[8, 9]。 1.1.2 仔猪内源性精氨酸合成减少仔猪小肠上皮细胞合成精氨酸/瓜氨酸,称为内源性精氨酸/瓜氨酸合成。1~7日龄以精氨酸、7日龄后以瓜氨酸为主。肠源瓜氨酸主要在肾脏被转 1本课题得到国家自然科学基金(编号:30528006)的资助。

微生物生化鉴定

常用生化试验 一.糖、醇发酵试验 1.糖、醇发酵试验原理:各种细菌因含有发酵不同糖、醇的酶,所以分解糖、醇的能力个不相同。有的能分解某些糖、醇类,有的则不能分解。有的分解某些糖、醇类发酵产酸产气,有的仅产酸,而不产气。根据这些特点,可鉴别细菌。 培养基:糖发酵试验应用的培养基种类很多,大致可分为液体,半固体,固体(高层、斜面)等几类。可根据试验的要求和细菌的特性来选择。 2.乙酰甲基甲醇试验(V-P 试验) 原理:某些细菌如产气杆菌,分解葡萄糖产生丙酮酸,并将丙酮酸脱羧,变为乙酰甲基甲醇,乙酰甲基甲醇在碱性环境下,被空气中的氧氧化成二乙酰,二乙酰与培养基内蛋白胨中精氨酸所含的胍基起作用,生成红色的化合物。故在培养基中加入少量含胍基的化合物,如肌酸、肌酐可增加胍基含量。试验中加入的 a -萘酚为催化剂,可加速此反应,使反应颜色增加, 提高反应的敏感性。大肠埃希菌不能将丙酮酸脱羧,故V-P 试验呈阴性。培养基:磷酸盐葡萄糖蛋白胨水培养基 3.甲基红试验(MR 试验)原理:许多细菌如大肠埃希菌等,分解葡萄糖产生丙酮酸,丙酮酸再次被分解,产生甲酸、乙酸、乳酸等,这样使培养基的PH 降至 4.5 以下。这时加入甲基红指示剂呈红色。若细菌分解葡萄糖产酸量少,或产生的酸进一步转化为其他物质(如醇、酮、醛、气体和水等),则培养基的酸度仍在PH6.2 以上,故加入甲基红指示剂呈黄色,为阴性反应。培养基:磷酸盐葡萄糖蛋白胨水培养基 MUG 葡萄糖醛酸苷酶试验 原理:细菌的葡萄糖醛酸苷酶在碱性条件下,作用于4-甲基伞形酮-3 -D葡萄糖醛酸甘 (4-Methylumbelliferyl- 3 -D-glucuronide简称MUG )的3葡萄糖醛酸甘键,使其水解,释 放的4-甲基伞形酮在366nm 紫外灯下产生蓝白色荧光。 培养基:MUG 培养基 4.3-半乳糖苷酶试验 原理:肠杆菌科细菌发酵乳糖,依靠半乳糖苷渗透酶和3-半乳糖苷酶两种不同的酶作用, 能水解邻硝酸酚-3-D 半乳糖苷(O-nitrophenyl- 3-D-galactopyranoside,ONPG ),而释放出黄色 的邻硝酸酚。发酵乳糖的细菌具有上述两种酶,可迅速分解乳糖。迟缓发酵乳糖的细菌只有 3■半乳糖苷酶,而缺少半乳糖苷渗透酶或是其活性很弱,不能将乳糖很快运送到菌细胞内,

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模拟研究

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模 拟研究 目的:蛋白酪氨酸磷酸酶SHP2是新的抗肿瘤药物研究靶点。为寻找新的具有较强抗肿瘤活性的SHP2抑制剂,本课题以文献报道的SHP2抑制剂GS493,SHP836等为先导化合物,设计、合成了苯磺酸和吡嗪胺两类新的衍生物;测试了苯磺酸类衍生物对SHP2蛋白活性中 心的抑制作用;在细胞水平测试了所有化合物对人乳腺癌细胞 MDA-MB-231和非小细胞肺癌NCI-H1975的增殖抑制活性;选择活性较好的化合物If、IIe进行计算机辅助的分子动力学研究,以探讨它们与SHP2作用的具体模式及对SHP2的选择性。方法:1.目标化合物的设计与合成:(1)保留GS493的苯基腙吡唑啉酮以及磺酸基团,用内脂环或酰胺代替1位苯环的硝基,3位苯环的硝基替换为氟、甲氧基等基团,设计了12个目标化合物 Ia-Il。其合成方法为:对硝基苯甲酸经酰氯化,再与胺反应形成酰胺,然后再将其硝基还原,重氮化,还原,得到N-取代-4-肼基苯甲酰胺中间体;对氨基苯磺酸经过重氮化,与取代苯甲酰乙酸乙酯耦合得到4-{2-[1-乙氧基-3-(4-取代)-1,3-二氧代丙-2-基]肼基}苯磺酸中间体,其再与N-取代-4-肼基苯甲酰胺中间体反应得到目标产物Ia-Il。(2)保留 SHP836,SHP099的吡嗪胺结构,3位引入新的芳环或芳杂环替代二氯 苯环,6位引入大位阻的取代哌嗪基团,设计了12个目标化合物 IIa-IIl。其合成方法为:以2-氨基-3-溴-6-

乳酸菌1

乳酸菌的耐酸机制 摘要:对乳酸菌耐酸机理进行了初步介绍, 主要从以下几个方面进行 了阐述, 包括质子泵机制、蛋白质及RNA修复、细胞膜及代谢方式的改变和碱生成等, 以期为人们了解乳酸菌耐酸的生理生化机制提供借鉴, 为研究者对乳酸菌耐酸性研究提供理论指导。 关键词:乳酸菌; 耐酸性; 机理 Review on the Mechanism of Acid Tolerance of Lactic Acid Bacteria Abstract:This review provided the possible acid tolerance mechanism of Lactic acid bacteria, including proton pump, repair of protein and RNA, cell membrane and metabolic ways change, production of alkali and so on. The purpose of this article was to make comprehensive understandings of the mechanism for acid tolerance of Lactic acid bacteria and provide a theoretical basis for the research work related to Lactic acid bacteria. Key words:Lactic acid bacteria; acid tolerance; mechanism 引言 乳酸菌是一类能利用可发酵糖产生大量乳酸的细菌的通称。它们在自然界分布广泛,可栖居于人和动物的肠道及其他器官中。在土壤、植物根际和许多的人类食品、动物饲料,还有自然界的湖泊和污泥以及一些临床样品中都发现有乳酸菌的存在。很久以前人们就利用乳酸菌来发酵动物(乳、肉、鱼等)和植物制品(蔬菜、葡萄酒、橄榄等)生产各种各样的产品。随着食品发酵工业的不断发展壮大,乳酸菌的经济效益不断在增长,因为虽然它们在发酵食品中的含量非常少,但是对食品的感官品质和质量却有决定作用。因此,发酵剂菌株的质量功能特性和生长特性对于产品的成功发酵是非常必要的。 乳酸菌不但包括在食品发酵中使用的一般认为安全的微生物,而且还包括胃肠道中普遍存在的共生体和具有潜在益生作用的益生菌。对这些微生物来说,食品和胃肠道中的酸性环境对它们的生存是一个很大的挑战。例如,益生菌的最佳

蛋白质酪氨酸磷酸酶SHP_1的中药抑制剂筛选

第46卷 第6期吉林大学学报(理学版) Vol .46 No .6 2008年11月JOURNAL OF J I L I N UN I V ERSI TY (SC I E NCE E D I TI O N ) Nov 2008 蛋白质酪氨酸磷酸酶SHP 21的中药抑制剂筛选 李婉南1 ,李 莹1 ,庄 妍1 ,李 贺1 ,陈颖丽2 ,赵志壮 1,3 ,付学奇 1 (1.吉林大学生命科学学院,长春130012;2.吉林省中医药科学院,长春130021; 3.美国俄克拉荷马大学健康科学中心,俄克拉荷马城73104,美国) 摘要:用含有蛋白质酪氨酸磷酸酶SHP 21催化结构域(ΔSHP 21)的质粒转化大肠杆菌,得到 ΔSHP 21的高效表达,经分离纯化后,以ΔSHP 21为靶标,通过体外酶反应动力学实验,对157种中药水提液的抑制效果进行研究,筛选出两种对ΔSHP 21具有显著抑制作用的中药:山茱萸和蒲公英,并对其I C 50及抑制类型做了进一步研究.为建立蛋白质酪氨酸磷酸酶抑制剂的筛选方法和中药在治疗免疫疾病和糖尿病上的开发和应用提供了理论依据.关键词:包含SH2结构域的蛋白质酪氨酸磷酸酶1(SHP 21);中药;抑制剂;筛选中图分类号:Q55 文献标识码:A 文章编号:167125489(2008)0621211206 Screen i n g Traditi onal Chi n ese M edi ci n es for I nhi bitors of Prote i n Tyrosi n e Phosphat ase SHP 21 L IW an 2nan 1 ,L I Ying 1 ,ZHUANG Yan 1 ,L I He 1 ,CHEN Ying 2li 2 ,ZHAO Zhi 2zhuang 1,3 ,F U Xue 2qi 1 (1.College of L ife Sciences,J ilin U niversity,Changchun 130012,China; 2.A cade m y of Traditional Chinese M edicine and Herbs of J ilin P rovince,Changchun 130021,China; 3.Health Sciences Center ,O klaho m a U niversity,O klaho m a C ity 73104,USA ) Ab s trac t:W ith pT7as a vect or,ΔSHP 21,a recombinant p r otein containing the catalytic domain of p r otein tyr osine phos phatase SHP 21,was highly exp ressed in E .coli cells .The enzy me was further purified t o near homogeneity .W ith the purified recombinant enzy me as a target,aqueous extracts of 157traditi onal Chinese herb medicines were analyzed f or their abilities t o inhibit SHP 21.T wo most potent inhibit ors,na mely,cornel and dandeli on,were identified,and their I C 50values and inhibit ory types were further analyzed .This study thus established a good syste m t o screen inhibit ors of SHP 21and de monstrated the potential of traditi onal Chinese medicines in treat m ent of i m munol ogical diseases and diabetes . Key wo rd s:SH22containing tyr osine phos phatase 1(SHP 21);traditi onal Chinese herb;inhibit or;screening 收稿日期:2008201215. 作者简介:李婉南(1975~),女,汉族,博士,讲师,从事蛋白质酪氨酸结构与功能的研究,E 2mail:wyshshk@https://www.360docs.net/doc/0a6055841.html,.联系人:付学奇(1960~),男,汉族,博士,教授,博士生导师,从事细胞信号传导与药物筛选的研究,E 2mail:fxq@jlu .edu .cn . 基金项目:吉林省科技发展计划项目基金(批准号:20060563;200705394;20080434). 蛋白质酪氨酸磷酸酶(Pr otein Tyr osine Phos phatase,PTPs )与蛋白质酪氨酸激酶(Pr otein Tyr osine Kinases,PTKs )协同作用,控制着蛋白质酪氨酸的磷酸化过程,调节细胞生长发育,并在细胞信号传导过程中发挥重要作用 [1] ,许多生理和病理现象都与此相关 [2] .研究表明,一些疾病如某些癌症、糖尿 病、白血病、免疫缺陷病、努南氏综合症等正是由于PTPs 的基因突变或异常表达导致的[3,4] ,因此 PTPs 已经成为继PTKs 之后又一个热门的研究领域.SHP 21(SH22Containing Tyr osine Phos phatase 1),又称为HCP,SHPTP1或PTP1C,是含有SH2结构域的具有高度保守序列的蛋白质酪氨酸磷酸酶的亚家

生物化学试题及答案7

生物化学试题及答案(7) 第七章氨基酸代谢 【测试题】 一、名词解释 1.氮平衡 2.必需氨基酸 3.蛋白质互补作用 4.内肽酶 5.外肽酶 6.蛋白质腐败作用 7.转氨基作用 8.氧化脱氨基作用 9.联合脱氨基作用 10.多胺 11.一碳单位 12. PAPS 13. SAM 二、填空题 14.氮平衡有三种,分别是氮的总平衡、____、____ ,当摄入氮<排出氮时称____。 15.正常成人每日最低分解蛋白质____克,营养学会推荐成人每日蛋白质需要量为____克。 16.必需氨基酸有8种,分别是苏氨酸、亮氨酸、赖氨酸、____、 ____ 、 ____ 、_____、____。17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____和____。 18.氨基酸吸收载体有四种,吸收赖氨酸的载体应是____ ,吸收脯氨酸的载体是____。 19.假神经递质是指____和____,它们的化学结构与____相似。 20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 是氨基酸的主要分解代谢去路。21.肝脏中活性最高的转氨酶是____,心肌中活性最高的转氨酶是____。 22.L-谷氨酸脱氢酶的辅酶是____或____,ADP和GTP是此酶的变构激活剂,____ 和____是此酶的变构抑制剂。 23.生酮氨基酸有____和____。 24.氨的来源有____、____、____,其中____是氨的主要来源。 25.氨的转运有两种方式,分别是____、____,在肌肉和肝脏之间转运氨的方式是____。 26.鸟氨酸循环又称____或____。 28.γ-氨基丁酸是由____脱羧基生成,其作用是____。 27.尿素分子中碳元素来自____,氮元素来自____和____,每生成1 分子尿素消耗____个高能磷酸键。29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶是____。 30.可产生一碳单位的氨基酸有____、____、____、____。 31.肌酸激酶有三种同工酶分别是____、____、____,其中____ 主要存在于心肌中。 32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 是体内硫酸根的主要来源。 33.儿茶酚胺包括____、____、____,帕金森氏病是由于脑组织中____生成减少。 34.支链氨基酸包括____、____、____。 三、选择题 A型题 35.下列哪种氨基酸是生糖兼生酮氨基酸? A. Gly B. Ser C. Cys D. Ile E. Asp 36.下列哪种不是必需氨基酸? A. Met B. Thr C. His D. Lys E. Val 37.苯酮酸尿症是由于先天缺乏: A.酪氨酸酶 B.酪氨酸羟化酶 C.酪氨酸转氨酶 D.苯丙氨酸转氨酶 E.苯丙氨酸羟化酶 38.不参与构成蛋白质的氨基酸是: A.谷氨酸 B.谷氨酰胺 C.鸟氨酸 D.精氨酸 E.脯氨酸 39.体内氨基酸脱氨基的主要方式是: A.转氨基 B.联合脱氨基 C.氧化脱氨基

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶 蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)是细胞增殖和信号传导的调节过程中,调节蛋白酪氨酸残基磷酸化水平的酶家族。PTP 和蛋白酪氨酸激酶(protein tyrosine kinase,PTK)及其各自相应的底物协同作用,形成一个复杂的信号传导网络,通过调控蛋白氨基酸残基的磷酸化水平,调节生物体内细胞的生长、分化、代谢过程,参与细胞周期调控、细胞迁移、基因转录和免疫应答等过程。目前的研究发现人类共有112 种PTPs,依据它们的结构分为酪氨酸特异性、双特异性和低分子量磷酸酶,其中蛋白酪氨酸磷酸酶-1B (Protein Tyrosine Phos-phatase-1B,PTP-1B)于1988 年由Tonks 等首次在人的胎盘细胞中分离和纯化得到,属于酪氨酸特异性磷酸酶,依据受体结构可分为受体样PTP-1B 和胞内PTP-1B。PTP-1B 专一水解芳香族磷酸,由435 个氨基酸残基组成,分子量约50ku。其结构中有一个氨基末端催化区和两个富含脯氨酸的模序。PTP-1B 在肌肉、心、肝、睾丸、肾、脾、脑和脂肪等组织中广泛表达,主要集中在细胞浆的内质网的表面。PTP-1B 的N 端为包含半胱氨酸和精氨酸残基的催化中心,朝向胞浆方向;C 端通过35 个特异性氨基酸与内质网相结合,羧基末端水解断裂后从内质网释放出有活性的PTP1B;N 端和C 端之间为两段富含脯氨酸的区域,在PTP1B 与其他蛋白之间的相互作用上发挥重要作用。 PTP-1B DNA 的启动子上有一个转录因子Y 盒结合蛋白-1 的结合位点,它的过度表达可使PTP-1B 的表达水平增加。使用反义寡核苷酸技术减少其表达后,PTP-1B 的表达随之降低,呈正相关趋势。 PTP-1B 在体内没有自身的特异性受体,而是在细胞信号传导过程中,与PTP 家族中的其他成员以及蛋白酪氨酸激酶协同作用,调控蛋白底物中酪氨酸的磷酸化水平,进而对细胞的生长、分化、代谢、基因转录和免疫应答等功能进行调节。 1 PTP-1B 的生理功能 目前研究发现PTP-1B主要表现出以下几个方面的生理功能: (1)与胰岛素受体(insulin receptor ,IR)、胰岛素受体底物(insulin receptor substrate,IRS)等信号蛋白作用,使这些蛋白调节区的酪氨酸残基去磷酸化,进而阻断胰岛素信号级联反应的下传,在胰岛素信号中起着负调控作用。与II 型糖尿病的发生具有密切的联系。 (2)在瘦素信号传导过程中,通过降低转录激活子-3(STAT-3)和Janus 激酶-2(JAK-2)的磷酸化水平,在瘦素信号中起负调控作用。与肥胖的发生具有密切的联系。 (3)PTP-1B 通过与生长因子等底物相互作用,参与细胞生长周期的调节,与肿瘤的发生具有一定的联系。 除此之外,研究还发现PTP-1B 在催乳素信号传导、血小板凝集等方面具有一定的影响。 2 PTP-1B 与糖尿病之间的关系 糖尿病是一类慢性代谢性疾病,随着生活水平的提高,糖尿病的发病率呈逐年上升趋势,成为继心脑血管疾病及癌症之后,威胁人类健康的第三大类疾病。目前已有约 3 亿糖尿病患者,到2030 年,预计患者人数将突破5 亿。根据糖尿病的发病机制,糖尿病可分为I 型糖尿病和II 型糖尿病,其中II 型糖尿病患者超过糖尿病患者总数的80%,主要表现为胰岛素抵抗或胰岛素受体不敏感,分泌胰岛素的胰腺B 细胞数量减少,功能障碍,从而导致糖代谢障碍,血糖水平升高。对PTP-1B 生理功能的研究已经证实,其与胰岛素及瘦素信号传导呈负调节关系,因此PTP-1B 与II 型糖尿病的发病原因关系密切,是开发II 型糖尿病治疗药物的重要靶点之一。 2.1 PTP-1B 胰岛素抵抗:代谢过程中,胰岛素可与脂肪、骨骼肌、肝细胞等细胞的细胞膜上的胰岛素受体胞外亚基结合,进而使受体胞内亚基酪氨酸激酶活化,导致自身及其底物

多胺在植物生长发育过程中的生理作用(精)

收稿日期:2004-12-16 作者简介:刘宽灿,男(1978-华南热带农业大学2004级硕士研究生;*通讯作 者:Em ai:l zzl_catas @hot m ai.l co m 多胺在植物生长发育过程中的生理作用 刘宽灿,梁秋芬,赵丽红,张治礼 * (中国热带农业科学院热带生物技术研究所,热带作物生物技术国家重点实验室海口571101 摘要:多胺在植物生长发育过程中具有广泛的生理作用,如参与植物衰老进程的调控、体细胞胚发生、花芽分化、花和果实的发育及参与各种生理胁迫反应等。本文重点综述了多胺在植物生长发育过程中生理学功能方面的研究进展,并对有关问题进行了讨论和展望。 关键词:多胺;植物生长发育;生理功能中图分类号:Q 945 文献标识码:A 文章编号:1006-8376(200501-0022-05 多胺指包括腐胺(Put、尸胺(C ad、亚精胺(Spd、精胺(Sp m 等在内的一类小分子脂肪族化合物,它们可以通过离子键和氢键形式与核酸、蛋白质及带负电荷基团的磷脂等生物大分子相结合,并通过调节它们的生物活性,在植物生长发育中发挥广泛的生物学功能。一般氨基数目越多,其生理活性越大。 1 多胺在植物中的分布 多胺广泛分布于原核生物和真核生物中,甚至在植物的RNA 病毒和植物肿瘤中也有发现。在高等植物中,多胺主要以游离形式存在,其分布具有组织和器官特异

性。植物细胞分裂最旺盛的地方多胺生物合成也最为活跃,不同类型多胺分布具有差异。对玉米的研究发现,精胺主要分布于玉米根部的分生组织区,腐胺主要分布在玉米芽鞘基部(以细胞伸长生长为主,越向上含量越少,亚精胺则均匀分布。植物细胞发育阶段不同,多胺在细胞器中的分布也有差异。年幼细胞中,大部分多胺位于原生质体内,而较老细胞中多胺则主要结合在细胞壁上。 高等植物中的一些多胺还能与小分子酚酸结合形成复合物。多胺与肉桂酸如阿魏酸、咖啡酸等结合产生HCAAs (hydroxycinna m ic acid a m ids复合物。HCAAs 广泛分布于植物中,是13个不同科的20种植物繁殖器官和种子的主要酚复合物。2 多胺与植物衰老 多胺可以延缓植物叶片衰老进程。尹路明发现,多胺和激动素抑制稀脉浮萍离体叶状体在暗诱导衰老过程中叶绿素的损失,且多胺的作用大于激动素[1] 。张青等发现,外施精胺和亚精胺可明显抑 制离体小麦叶片老化过程中蛋白水解酶活性的上 升 [2] 。 赵福庚对大田条件下花生的研究结果表明,不同发育阶段多胺代谢酶活性和多胺含量发生规律性变化 [3] 。随花生叶片衰老,ADC (精氨酸脱羧酶和 ODC (鸟氨酸脱羧酶活性降低,而DAO (二胺氧化酶和P AO (多胺氧化酶活性升高,多胺含量下降

生物化学氨基酸代谢知识点总结

第九章氨基酸代谢 第一节:蛋白质的生理功能和营养代谢 蛋白质重要作用 1.维持细胞、组织的生长、更新和修补 2.参与多种重要的生理活动(免疫,酶,运动,凝血,转运) 3.氧化供能 氮平衡 1.氮总平衡:摄入氮= 排出氮(正常成人) 氮正平衡:摄入氮>排出氮(儿童、孕妇等) 氮负平衡:摄入氮<排出氮(饥饿、消耗性疾病患者) 2.意义:反映体内蛋白质代谢的慨况。 蛋白质营养价值 1.蛋白质的营养价值取决于必需氨基酸的数量、种类、量质比 2.必需氨基酸-----甲来写一本亮色书、假设梁借一本书来 3.蛋白质的互补作用,指营养价值较低的蛋白质混合食用,其必需氨 基酸可以互相补充 而提高营养价值。 第二节:蛋白质的消化、吸收与腐败 外源性蛋白消化 1.胃:壁细胞分泌的胃蛋白酶原被盐酸激活,水解蛋白为多肽和氨基

酸,主要水解芳香族氨基酸 2.小肠:胰液分泌的内、外肽酶原被肠激酶激活,水解蛋白为小肽和氨基酸;生成的寡肽继续在小肠细胞内由寡肽酶水解成氨基酸 氨基酸和寡肽的主动吸收 1.吸收部位:小肠,吸收作用在小肠近端较强 2.吸收机制:耗能的主动吸收过程 ○1通过转运蛋白(氨基酸+小肽):载体蛋白与氨基酸、Na+组成三联体,由ATP供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。○2通过r-谷氨酰基循环(氨基酸):关键酶----r--谷氨酰基转移酶, 具体过程参P199图

大肠下段的腐败作用 1.产生胺:肠道细菌脱羧基作用生成胺,其中 :酪胺和苯乙胺未能及时在肝转化,入脑羟基化成β-羟酪胺,苯乙醇胺,其结构类似儿茶酚胺,它们可取代儿茶酚胺与脑细胞结合,但不能传递神经冲动,使大脑发生异常抑制。 2.产生氨: 3.产生其他物质:有害(多),如胺、氨、苯酚、吲哚; 可利用物质(少),如脂肪酸、维生素 第三节:氨基酸的一般代谢 体内氨基酸分解 1.蛋白质降解速率---半衰期 2.真核细胞内蛋白降解两大途径:○1溶酶体内ATP非依赖途径+○2蛋

相关文档
最新文档