新人教版小学六年级上册数学概念

合集下载

小学六年级人教版数学上册知识点(各单元)

小学六年级人教版数学上册知识点(各单元)

小学六年级人教版数学上册知识点(各单元)一、分数乘法分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

gt;gt;gt;人教版小学六年级数学上册知识点:分数乘法二、倒数倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

gt;gt;gt;人教版小学六年级数学上册知识点:倒数三、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

gt;gt;gt;人教版小学六年级数学上册知识点:分数除法四、比和比的应用1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

gt;gt;gt;人教版小学六年级数学上册知识点:比和比的应用五、圆柱与圆锥圆柱的特征:1、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

2、圆柱的高:圆柱两个底面之间的距离叫做高。

圆柱的高有无数条。

3、圆柱的侧面展开图:圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

4、圆柱的侧面积 = 底面周长times;高即S侧=Ch 或2pi;rtimes;h圆锥的特征:1、圆锥只有一个底面,底面是个圆。

圆锥的侧面是个曲面。

2、从圆锥的顶点到底面圆心的距离是圆锥的高。

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:

六年级上册数学知识点(人教版)

六年级上册数学知识点(人教版)

六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。

人教版小学数学六年级上册知识点总结

人教版小学数学六年级上册知识点总结

小学数学六年级上册知识点总结12月30日1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

12月31日10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

最新人教版六年级数学上册概念汇总

最新人教版六年级数学上册概念汇总

六年级数学上册概念汇总1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘分数的意义就是一个数的几分之几是多少,它与整数乘法的意义不相同。

综合以上两条,说明分数乘法的意义与整数乘法的意义不完全相同。

3、分数乘整数,分母不变,用整数与分子的乘积做分子,能约分的要约分。

4、分数乘分数,用分子乘分子,分母乘分母,能约分的要约分。

5、分数乘小数,能约分的先直接约分,不能约分的先化成最简分数,然后再计算。

6、带分数乘法,先把带分数化成假分数,然后再约分计算。

7、一个数(零除外)乘真分数,积就小于这个数。

8、一个数(零除外)除以假分数,积就大于或等于这个数。

9、一个数(零除外)除以真分数,商就大于这个数。

10、一个数(零除外)除以假分数,商就小于或等于这个数。

11、乘积为1的两个数互为倒数。

倒数是相互依存的。

12、真分数的倒数大于1,真分数的倒数大于它本身。

13、假分数的倒数小于或等于1。

假分数的倒数小于1或等于它本身。

14、1的倒数是1,1的倒数等于它本身。

15、0乘任何数积都不等于1,所以0没有倒数。

16、求小数的倒数,先把小数化成最简分数,然后颠倒分子分母的位置,分母上的1可以省略。

17、求带分数的倒数,先把带分数化成假分数,然后颠倒分子分母的位置。

18、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

19、找单位“1”的方法⑴、先找分率句,再找单位“1”⑵、分率前面找单位“1”,谁的几分之几“谁”就是单位1。

⑶、“的”前、“比”后找单位“1”,比谁、占谁,“谁”就是单位“1”⑷、原来、原价、原计划是单位“1”20、解分数应用题的方法⑴、先找分率句,再找单位“1”⑵、看单位“1”的量给了没有⑶、如果单位“1”的量给了,求谁就用单位“1”的量乘分率。

⑷、如果单位“1”的量没有给,设为“X”,或者直接用数量除以对应分率,求出单位“1”21、两个数相除,又叫两个数的比。

比是有序的。

新人教版六年级上册数学全册单元教材分析

新人教版六年级上册数学全册单元教材分析

新人教版六年级上册数学全册单元教材分析第1单元分数乘法一、教材简析本单元包括分数的乘法、分数混合运算、用分数乘法解决实际问题三部分内容。

本单元内容是在学生掌握了整数乘法、分数的意义和性质以及分数加、减法的计算等知识的基础上进行教学的。

通过本单元的学习,可以促进学生对分数这一抽象概念的进一步深化理解,对乘法问题中的数量关系有进一步的认知和掌握,有助于学生处理实际问题。

二、知识结构第2单元位置与方向(二)一、教材简析本章的内容是在学生学习了根据上、下、左、右、前、后和东、南、西、北这十个方向描述物体的相对位置,而且通过第几行、第几列确定物体的位置;初步认识了在一个平面内可以通过两个条件确定物体的位置;能描述简单的路线图,以及会用量角器测量角的基础上展开。

本章将系统地讲解用方向和距离确定位置的方法。

从教材的编排体系可以看出,“用方向和距离确定位置”是平面直角坐标系在小学的进一步渗透,难度要大于“用数对确定位置”(直角坐标在小学的初步渗透)。

学习了本章的知识能为后面学习平面直角坐标系打下基础。

二、知识结构第3单元分数除法一、教材简析本单元包括倒数的认识、分数除法、用分数除法解决问题三部分内容,是在学生掌握了整数除法、分数的意义和性质以及分数加、减、乘法的计算等知识的基础上进行教学的。

学完分数除法的计算,学生就基本完成了分数加、减、乘、除的学习任务,较系统地掌握了分数四则运算。

随后进一步学习分数除法在解决实际问题中的应用,将提高学生解决问题的能力。

二、知识结构第4单元比一、教材简析本单元学习比的简单知识,认识比的意义,求比值,类比分数的基本性质学习比的基本性质,化简比,以及解决有关比的实际问题,为后期比例的学习提供铺垫。

比是学习比例相关知识的必要基础,比与分数、除法有重要的联系,把比单独设置为单元,有利于学生从量与量之间的关系这一角度去认识比,而不仅仅从运算的角度去理解比。

二、知识结构第5单元圆一、教材简析圆是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开的,也是小学阶段认识的最后一种常见的平面图形。

小学六年级人教版数学上册第四单元《圆》知识点汇总

小学六年级人教版数学上册第四单元《圆》知识点汇总

第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。

(2) 圆心到圆上任意一点的距离都相等。

(3) 一张圆形纸片至少对折两次,就能找到圆心。

2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。

(2) 在同一个圆里面,半径都相等。

(3) 在同一个圆里面,半径有无数条。

(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。

(2) 在同一个圆里面,直径有无数条。

(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。

(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。

(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。

(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。

(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。

三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。

2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。

我国数学家祖冲之是第一个把圆周率算出来的人。

2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。

新人教版小学六年级上册数学概念

新人教版小学六年级上册数学概念

小学六年级数学(sh ùxu é)上册概念及公式(g ōngsh ì)***单元一 位置(w èi zhi)1.找位置(w èi zhi):先列后行。

格式为:(列,行)。

例如(l ìr ú):(a ,b )。

2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。

3.平移方法:左右平移,列变行不变;上下平移,行变列不变。

***单元二 分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。

例如: +b a +b a =b a ×3(b 0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例如:a ×(cb ×a ) =(为了计算简便,能约分的要先约分,然后再乘。

) 【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。

例如:b a ×n=b a +b a +ba 、、、、、、(b ≠0) ②、整数乘以分数,可以看作是求整数的几分之几是多少。

例如: n ×b a 的意义是:表示求n 的ba 是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

例如:b a × = (b 、d ≠0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。

例如:b a ×=1,那b a 和ab 就是互为倒数。

6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。

1的倒数是1。

0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。

本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。

二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。

2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。

o整数与分数相乘,将整数化成分数再相乘。

o乘法的交换律、结合律和分配律同样适用于分数乘法。

4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。

o计算路程:速度×时间 = 路程,其中速度为分数。

三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。

o方向角:描述物体相对于参考点在平面上的方向。

o距离:描述两个物体之间的直线距离。

2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。

四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。

2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。

o除法的交换律、结合律和分配律同样适用于分数除法。

3.解题方法:o将除法转化为乘法,约分得到最简结果。

o整数与分数相除,将整数化成分数再相除。

4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。

o计算平均数:总和÷个数 = 平均数。

五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。

人教版小学六年级数学上册课程

人教版小学六年级数学上册课程

人教版小学六年级数学上册课程数学上册六年级课程目录一、认识数:1.学习大小数的概念;2.了解数的特征;3.学会大小数排序;4.学习比大小。

二、进行数的运算:1.学习数的4则运算;2.了解与和、差、积、商的概念;3.学习符号的正确使用;4.熟练掌握基本的口算。

三、应用数的运算:1.学会用数表求和;2.掌握平方和立方的概念;3.学会用简便方法解决复杂的计算问题;4·掌握实数的四则运算。

四、处理数的概念:1.学习数的比较;2.掌握有理数的概念;3.应用分母为不同常数乘积的等比数列;4.掌握分数乘除法。

五、研究不等式:1.学习不等式的概念;2.掌握数轴上不等式的解法;3.学会解多项不等式;4.熟悉概率的计算。

六、学习图形:1.学习几何图形的概念;2.掌握平面几何图形的性质;3.学习长方体和四面体的表示;4.掌握几何图形的基本操作。

此课程共分六大部分:认识数、进行数的运算、应用数的运算、处理数的概念、研究不等式、学习图形。

1、认识数:在认识数方面,我们要学习大小数的概念,了解数的特征,学会比大小以及大小数的排序。

2、进行数的运算:运算方面,学习数的4则运算,掌握与和、差、积、商的概念,学会符号的正确使用以及熟练掌握基本的口算。

3、应用数的运算:在运算应用方面,我们要学会用数表求和,掌握平方和立方的概念,学会用简便方法解决复杂的计算问题,以及掌握实数的四则运算。

4、处理数的概念:处理数的概念方面,学习数的比较,掌握有理数的概念,了解分母为不同常数乘积的等比数列以及分数乘除法。

5、研究不等式:在不等式研究方面,学习不等式的概念,掌握数轴上不等式的解法,学会解多项不等式,掌握概率的计算方法。

6、学习图形:最后要学习几何图形,掌握平面几何图形的性质,学习长方体和四面体的表示,掌握几何图形的基本操作。

本课程通过以上内容,既有理论阐述,又有具体操作练习,能够让学生学会理解数字作用,培养其运算能力,帮助学生形成正确的数学思维方式,建立熟练的数学技能,为今后的学习打下坚实的数学基础。

新人教版小学数学6年级上册六年级数学上册各单元知识点归纳

新人教版小学数学6年级上册六年级数学上册各单元知识点归纳

新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b ×a乘法结合律:( a × b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

人教版小学数学六年级上册知识点总结

人教版小学数学六年级上册知识点总结

人教版小学数学六年级上册知识点总结第一章:整数整数是由正整数、0和负整数组成的数。

1. 整数的表示方法整数可以用数轴表示,数轴上0点表示正整数和负整数之间的分界点。

2. 整数的比较比较两个整数的大小时,可以通过它们在数轴上的位置关系来判断。

3. 整数的运算整数的加法、减法、乘法和除法运算规则与正整数相同,需要特别注意负数的运算规则。

4. 整数的绝对值整数的绝对值是该数到0点的距离,绝对值大于0的整数称为正整数。

5. 整数的借位和进位在整数的加法和减法中,可能会涉及到借位和进位的操作。

第二章:分数1. 分数的基本概念分数表示了一个整体被分成若干等分,其中的分子表示被分的部分,分母表示整体被分成的等分数。

2. 分数的大小比较比较两个分数的大小时,可以通过找出它们的公共分母,然后比较分子的大小来判断。

3. 分数的运算分数的加法、减法、乘法和除法运算规则可以通过分子、分母的相应运算来得出。

4. 分数的化简将一个分数化简到最简形式,即分子和分母没有公共因子。

5. 分数的整数部分和小数部分分数可表示为整数部分和真分数部分之和,也可以表示为小数的形式。

第三章:小数小数是整数和分数之间的数。

1. 小数的读法小数的读法与整数相似,小数点后的数按照数位读取。

2. 小数的大小比较比较两个小数的大小时,可以按照数位从左到右逐个比较。

3. 小数的运算小数的加法、减法、乘法和除法运算规则与整数和分数类似,需要注意小数点的对齐。

4. 小数的化简将一个小数化简到最简形式,即去掉尾部0后使得剩余数字最少。

5. 小数与分数的转换小数可以转化为分数,分数可以转化为小数。

第四章:几何图形几何图形是由点、线、面组成的图形。

1. 点、线和线段点是几何图形的最基本单位,线是连接两个点的直线轨迹,线段是连接两个点并且包含这两个点的线。

2. 直线、射线和角直线是一条连续的无限延伸的线,射线是起点是一个点,向一个方向无限延伸的线,角是由两条射线共享一个端点组成的图形。

人教版小学数学六年级上册详细知识点

人教版小学数学六年级上册详细知识点

六年级下册第一单元负数1.1 负数的意义,负数的读写法1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3、结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

1.2 负数大小的比较1、借助数轴初步学会比较正数、0和负数乊间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

3、使学生能运用负数表示简单的问题。

第二单元圆柱、圆锥和球2.1 圆柱的认识1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2、培养学生细致的观察能力和一定的空间想像能力。

2.2 圆柱的侧面积、表面积的计算在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2.3 综合运用圆柱表面积知识解决有关实际问题1、使学生熟练掌握圆柱表面积、侧面积的计算方法,并能解决有关实际问题。

2、形成解决问题的一些基本策略,发展应用意识,发展实践能力。

2.4 圆柱体积的计算方法1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力渗透转化思想,培养学生的自主探索意识。

2.5 圆柱的表面积和体积使学生进一步熟练掌握求圆柱表面积和体积的方法,并能运用所学知识解决有关问题。

2.6 圆锥的认识1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高。

2、通过动手测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

2.7 圆锥体积1、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确地计算圆锥体积。

2、能运用圆锥体积的计算方法,解决有关实际问题,增强学生的应用意识。

人教版六年级数学上册教材分析教材的重难点与解决方法

人教版六年级数学上册教材分析教材的重难点与解决方法

人教版六年级数学上册教材分析教材的重难点与解决方法一、教材的重难点人教版六年级数学上册是小学六年级学生的数学教材,旨在帮助学生加强对数学知识的掌握和应用能力的提升。

在教学过程中,我们发现该教材存在以下几个重点和难点:1. 乘法与除法的应用:在六年级数学上册中,乘法与除法的应用是一个重点内容。

学生需要能够熟练运用乘法和除法进行实际问题的解决,如购物问题、分组问题等。

然而,很多学生对乘法与除法的应用掌握不够扎实,容易出现混淆和错误的情况。

2. 分数的运算:分数的运算也是一个重难点内容。

六年级学生需要学会分数的加减乘除,并能熟练应用到实际问题中。

但是,由于分数的概念相对抽象,学生在运算过程中容易出现错位、错分、计算错误等问题。

3. 多边形的性质:六年级数学上册中也包含了多边形的性质。

学生需要了解不同多边形的定义、性质和特点,并应用到解决问题中。

然而,对于多边形的分类和性质理解不深刻,学生在分辨和描述多边形时存在困难。

4. 图形的坐标与变换:教材中还介绍了图形的坐标与变换。

学生需要学会理解坐标系、坐标点的表示及图形的移动、翻转、旋转等变换。

然而,由于这是一个相对新的概念,学生对于坐标和变换的理解容易出现模糊和混淆。

二、解决方法针对教材的重难点,我们可以采取以下几种解决方法,以提高学生的学习效果和应用能力:1. 多练习、多应用:乘法与除法的应用、分数的运算、多边形的性质等内容需要学生进行大量的练习,以提高他们的熟练度和应用能力。

可以设计一些具体案例和实际问题,让学生进行操作和解答,培养他们的思考和分析能力。

2. 建立知识框架:在教学过程中,我们应该将知识进行系统归纳和整理,帮助学生建立起知识的框架。

例如,可以设计思维导图、知识结构图等形式,将乘法与除法的应用、分数的运算、多边形的性质等内容进行有机组织,帮助学生更好地理解和记忆。

3. 引导思考、启发发现:对于图形的坐标与变换等较为抽象的内容,我们可以通过引导学生思考和启发发现的方式进行教学。

新人教版六年级数学上册各单元知识点归纳

新人教版六年级数学上册各单元知识点归纳

新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。

用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。

2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。

3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。

4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。

第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。

2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。

3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。

4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。

第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。

2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。

3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。

4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。

第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。

2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。

3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。

4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。

第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。

2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。

小学六年级数学课本上册(人教版)内容

小学六年级数学课本上册(人教版)内容

小学六年级数学课本上册(人教版)内容小学六年级数学是数学学科中的升华阶段,通过学习,将初步掌握的数学概念、公式、方法和技能进行深入和拓展,在求解实际问题的能力和思维能力上得到极大的提高。

下面是人教版小学六年级数学课本上册的内容相关介绍:第一章:数的认识本章主要是对数的概念进行介绍,如整数、分数和小数以及它们之间的互换。

还讲解了正数、负数等基本概念,并通过练习书写数、比较数大小、发现数的规律等方式来让学生建立起正确的数学观念和思维方式。

第二章:简单数学运算本章主要包括加减乘除四种基本运算的概念、相关符号的认识和方法的应用,让学生能够使用加减乘除进行简单的计算和求解问题,同时懂得在实际生活中如何通过这些方法解决一些日常的问题。

第三章:简单分式本章学习了分数的概念和发展,具体包括了分数的读法,分数和整数的互换,分数的大小比较,分数的四则运算,以及一些相关的应用。

第四章:米与毫米本章主要介绍长度的概念和相关的测量单位(米、分米、厘米、毫米)。

学生通过练习计算长度、比较长度、尺子的读法等方式,掌握测量长度的方法和技巧,并能够在实际生活中应用。

第五章:体积和容量本章主要引入容积和体积的概念和测量方法,并通过比较体积、加减容积、理解容积和体积意义的方式来让学生更好地理解这两个概念。

第六章:三角形和四边形本章主要引入三角形和四边形的概念和特点,并通过练习三角形和四边形的构造、分类、比较等方式来让学生更好地理解和掌握这两种图形的属性。

第七章:平面图形与立体图形本章主要介绍了平面图形和一些常用的立体图形的概念和特征,并引导学生通过展示模型、比较面积、比较体积等方式来更好地加深对这些图形的认识和理解。

总之,人教版小学六年级数学课本上册的内容丰富、有趣、生动,具有很强的示范性和可操作性,对学生求解实际问题的能力和思维能力有明显的提高作用。

同时,它也是教师们备课的一份有力工具,为数学课的教学提供了科学的基础和重要保障。

小学六年级数学书上册人教版内容

小学六年级数学书上册人教版内容

小学六年级数学书上册人教版内容小学六年级数学书上册人教版包含:一、基本知识:1.实数和负数:介绍实数的概念及运算法则,学习已知数和未知数的概念,重点学习实数的负数,基本的绝对值概念,同类项的加减与绝对值的关系等。

2.代数式:学习代数式的概念,如果因式分解、同类项的加减、乘除法等。

3.方程:通过研究方程的概念,了解平行线、垂直线、倾斜线的特点,求方程的根的方法,涉及二元一次方程和二元二次方程等。

4.不等式:学习不等式的概念,求不等式的解,了解大于、小于、大于等于、小于等于等四种不等式的概念,理解不等式的图像,练习不等式的求解。

5.比例:学习比例的概念,包括比、倍数、比例的等式,比例的增减,比例中间数,比例步骤,正比关系等。

6.图形:介绍平行四边形,菱形,六边形,正多边形,正六边形,正九边形,正十二边形,圆形等几何图形,同时学习几何图形之间的关系,了解分类规则。

7.统计:学习分类表,图表和统计图,如条形图,柱状图,饼状图,茎叶图等,观察统计图的特征,以及求总数,平均数,众数等。

8.试验:学习实验概念,如控制变量,自变量,实验设计,实验步骤等,结合实际情况,了解假设,结论及其特点。

二、应用:1.数学解决问题:学习从实际问题中抽象出的模型问题,找出问题解决的方法,结合实际情况设计解题步骤,包括解方程,比例,三角形等。

2.空间图形:介绍三维图形的特点,有关空间图形的定义,如立方体,棱柱,圆柱,球等特性及其形状,求空间图形体积,表面积和体积的关系等。

3.数位标志:介绍数位标志的特点,了解分解成各位数,整十,百位数的意义,学习同类数的加减,型数的关系,比较同类数的大小等。

4.测量:学习长度,角度,面积,体积,质量和时间之间的换算关系,学习角度,平面图形角度的计算公式,求三角形周长,面积等。

总结,小学六年级数学书上册人教版内容囊括了实数和负数,表达式,方程,不等式,比例,图形,统计,试验,数学解决问题,空间图形,数位标志,测量等内容,以帮助孩子们更好的掌握数学的基本知识和应用技能,为自己学好数学打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学十一册概念***单元一 位置 1.找位置:先列后行。

格式为:(列,行)。

例如:(a ,b )。

2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。

3.平移方法:左右平移,列变行不变;上下平移,行变列不变。

***单元二 分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。

例如: b a +b a +b a =ba ×3(b ≠0) 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例如:a ×c b (c b ×a ) =cab (为了计算简便,能约分的要先约分,然后再乘。

) 【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】 3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。

例如:b a ×n=b a +b a +ba 、、、、、、(b ≠0) ②、整数乘以分数,可以看作是求整数的几分之几是多少。

例如: n ×b a 的意义是:表示求n 的ba 是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

例如:b a ×dc =bd ac (b 、d ≠0) 【注:为了计算简便,可以先约分再乘】 5.乘积是1的两个数叫互为倒数。

例如:b a ×a b =1,那b a 和ab 就是互为倒数。

6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。

1的倒数是1。

0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。

8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

9.一个数(0除外)乘以一个带分数,所得的积大于它本身。

10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? ②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。

③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员” 是“少”的意思;“相当于”、“占”、“是”“等于”的意思。

④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。

***单元三 分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。

2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。

例如:b a ÷c=a b ×c1(a 、c ≠0) ②整数除以分数等于整数乘以这个分数的倒数。

例如:c ÷a b =c ×ba (a ≠0) 3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

4.两个数相除又叫做两个数的比。

5、“:”是比号,读做“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如:a :b=b a (a 是比的前项;b 是比的后项;ba 是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。

例如:b a :d c =b a ÷dc (b 、d ≠0) 8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。

例如:a :b=a ÷b=ba (b ≠0)。

9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

例如:a :b=a ÷b=ba (b ≠0)。

10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

例如:a :b= a :b =ba (b ≠0) 11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。

②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

③、一个数(0除外)除以一个带分数,所得的商小于它本身。

单元四 圆1.圆的定义:平面上的一种曲线图形。

例如:“O ”。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O 表示。

它到圆上任意一点的距离都相等. 例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d 表示。

例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。

②在同一个圆内,有无数条半径,有无数条直径。

③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r或r =d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。

8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。

圆周率是一个无限不循环小数。

在计算时,取π≈ 3.14。

9.圆的周长公式:C= πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。

S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。

(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。

半圆的周长公式:C=πd ÷2+d或C=πr+2r16.半圆面积=圆的面积÷2公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。

21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。

23.直径所在的直线是圆的对称轴。

单元五百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

2.百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。

分子部分可为小数、整数,可以大于100,小于100或等于100。

①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。

②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

6.百分率公式:合格率= 合格人数÷总人数100% 发芽率= 发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。

9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。

11.利息:取款时银行多支付的钱叫做利息。

12.利率:利息与本金的比值叫做利率。

13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。

***单位换算:1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。

a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。

ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(a±b)×c=a c±bc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。

如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。

a÷b÷c=a÷(b×c)。

相关文档
最新文档