新人教版小学六年级上册数学概念(整理版)
人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)
人教版六年级上册知识点总结六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
12 3 4 0行号一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
六年级上册数学知识点(人教版)
六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。
人教版小学数学六年级上册知识点总结
小学数学六年级上册知识点总结12月30日1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
12月31日10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×512 ,表示:27 的512 是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤. (1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
新人教版六年级上册数学全册单元教材分析
新人教版六年级上册数学全册单元教材分析第1单元分数乘法一、教材简析本单元包括分数的乘法、分数混合运算、用分数乘法解决实际问题三部分内容。
本单元内容是在学生掌握了整数乘法、分数的意义和性质以及分数加、减法的计算等知识的基础上进行教学的。
通过本单元的学习,可以促进学生对分数这一抽象概念的进一步深化理解,对乘法问题中的数量关系有进一步的认知和掌握,有助于学生处理实际问题。
二、知识结构第2单元位置与方向(二)一、教材简析本章的内容是在学生学习了根据上、下、左、右、前、后和东、南、西、北这十个方向描述物体的相对位置,而且通过第几行、第几列确定物体的位置;初步认识了在一个平面内可以通过两个条件确定物体的位置;能描述简单的路线图,以及会用量角器测量角的基础上展开。
本章将系统地讲解用方向和距离确定位置的方法。
从教材的编排体系可以看出,“用方向和距离确定位置”是平面直角坐标系在小学的进一步渗透,难度要大于“用数对确定位置”(直角坐标在小学的初步渗透)。
学习了本章的知识能为后面学习平面直角坐标系打下基础。
二、知识结构第3单元分数除法一、教材简析本单元包括倒数的认识、分数除法、用分数除法解决问题三部分内容,是在学生掌握了整数除法、分数的意义和性质以及分数加、减、乘法的计算等知识的基础上进行教学的。
学完分数除法的计算,学生就基本完成了分数加、减、乘、除的学习任务,较系统地掌握了分数四则运算。
随后进一步学习分数除法在解决实际问题中的应用,将提高学生解决问题的能力。
二、知识结构第4单元比一、教材简析本单元学习比的简单知识,认识比的意义,求比值,类比分数的基本性质学习比的基本性质,化简比,以及解决有关比的实际问题,为后期比例的学习提供铺垫。
比是学习比例相关知识的必要基础,比与分数、除法有重要的联系,把比单独设置为单元,有利于学生从量与量之间的关系这一角度去认识比,而不仅仅从运算的角度去理解比。
二、知识结构第5单元圆一、教材简析圆是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开的,也是小学阶段认识的最后一种常见的平面图形。
人教版六年级数学上册(全)复习知识点【精品】
小学数学六年级上册期末复习知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版小学数学六年级上册知识点总结
小学数学六年级上册知识点总结12月30日1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
12月31日10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
小学六年级数学上下册重点知识归纳
小学六年级数学上下册重点知识归纳人教版新课标六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一样规则:竖排叫做列,横排叫做行;确定第几列一样是从左往右数,确定第几行一样是从前往后数。
2、用数对表示位置时,一样先表示第几列,再表示第几行。
如数对(3,2)中的“3”表示第三列,“2”表示第二行。
3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。
第二单元:分数乘法1、分数乘整数的运算方法:分母不变,分子与整数相乘的积作分子。
2、分数乘分数,应该分子乘分子,分母乘分母。
注意:能约分的能够先约分再乘。
注意:一个大于0的数乘大于1的数,积大于那个数。
一个大于0的数乘小于1的数,积小于那个数。
3、分数混合运算的顺序和整数的混合运算顺序相同。
(1)在没有括号的算式里,同级运算从左往右进行运算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号别处的数。
4、整数乘法的交换律、结合律和分配律,关于分数乘法也适用。
(1)乘法交换律:a×b=b ×a(2)乘法结合律:(a ×b)×c=a ×(b ×c)(3)乘法分配律:(a+b)×c=a ×c+b ×c5、解决求一个数的几分之几是多少的问题,用乘法运算。
6、乘积是1的两个数互为倒数。
求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。
注意:1的倒数是1,0没有倒数。
7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。
六年级上册数学素材知识点整理人教新课标
六年级上册数学素材知识点整理人教新课标人教版六年级数学上册概念知识点整理第一单元 分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义相反。
都是求几个相反加数的和的简便运算。
例如: 98×5表示求5个98的和是多少,也表示98的5倍是多少。
2、一个数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少。
〔二〕分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
〔整数和分母约分〕2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
留意:当带分数停止乘法计算时,要先把带分数化成假分数再停止计算。
4、分数连乘的计算方法:先约分,就是把一切的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
〔三〕、乘法规律:〔乘法中比拟大小时〕 一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序相反。
速记歌谣:先乘除后加减,有了括号先算里,同级运算从左起,简便方法不遗忘。
〔五〕、整数乘法的交流律、结合律和分配律,关于分数乘法也异样适用。
乘法交流律: ab = ba乘法结合律: (ab)c = a(bc)乘法分配律:〔a + b〕c = ac + bc二、分数乘法的处置效果〔单位〝1〞的量〔用乘法〕1〞的几分之几是多少〕1、画线段图:〔1〕两个量的关系:画两条线段图;〔2〕局部和全体的关系:画一条线段图。
2、找单位〝1”:普通在分率句中分率的前面;或〝占〞、〝是〞、〝比〞的前面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:〔1〕〝的〞相当于〝×〞〝占〞、〝是〞、〝比〞相当于〝 = 〞〔2〕分率前是〝的〞:单位〝1〞的量×分率=对应量〔比竞赛〕〔3〕分率前是〝多或少〞:单位〝1〞的量×〔1 分率〕=对应量〔比竞赛〕三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
小学六年级人教版数学上册第四单元《圆》知识点汇总
第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。
(2) 圆心到圆上任意一点的距离都相等。
(3) 一张圆形纸片至少对折两次,就能找到圆心。
2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。
(2) 在同一个圆里面,半径都相等。
(3) 在同一个圆里面,半径有无数条。
(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。
(2) 在同一个圆里面,直径有无数条。
(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。
(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。
(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。
(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。
(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。
三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。
2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。
我国数学家祖冲之是第一个把圆周率算出来的人。
2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。
人教版小学六年级数学上册知识点总结
人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。
本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。
二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。
2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。
o整数与分数相乘,将整数化成分数再相乘。
o乘法的交换律、结合律和分配律同样适用于分数乘法。
4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。
o计算路程:速度×时间 = 路程,其中速度为分数。
三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。
o方向角:描述物体相对于参考点在平面上的方向。
o距离:描述两个物体之间的直线距离。
2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。
四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。
2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。
o除法的交换律、结合律和分配律同样适用于分数除法。
3.解题方法:o将除法转化为乘法,约分得到最简结果。
o整数与分数相除,将整数化成分数再相除。
4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。
o计算平均数:总和÷个数 = 平均数。
五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册概念整理第一单元 位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元 分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×512 ,表示:27 的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
人教版小学数学六年级上册知识点整理归纳(同名7688)
六年级上册数学知识点第一单元位置1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
比如:第2列第3行,写作:(2 ,3)作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中横轴上的坐标表示列,纵轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)(列,行)↓↓竖排叫列横排叫行(从左往右看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少。
或表示:53的7倍是多少。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少。
9 ×61表示:求9的61是多少。
A ×61表示: 求A的61是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
小学六年级数学上册知识点归纳
小学人教版六年级数学上册知识点公式归纳分数的大体性质:分子分母同时乘或除以一个相同的数时(0除外),分数值不变。
三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
四、分数混合运算的运算顺序和整数的运算顺序相同。
五、整数乘法的互换律、结合律和分派律,对于分数乘法也一样适用。
乘法互换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分派律:( a + b )×c = a×c + b×c六、分数乘法的解决问题(一)(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数×几分之几1、找单位“1”:在分数句中分数的前面; 或“占”、“是”、“比”的后面;二、看有无多或少的问题;3、写数量关系式技能:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”:单位“1”的量×分数=具体量(3)分数前是“多或少”的意思:单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)(二)、倒数一、倒数的意义:乘积是1的两个数互为倒数。
1的倒数是1; 0没有倒数。
强调:互为倒数,即倒数是两个数的关系,它们彼此依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
二、求倒数的方式:(1)、求分数的倒数:互换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再互换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
最新六年级上册数学知识点(概念)归纳与整理(人教版)
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义.1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算. 例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少.2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少.例如:6×512 ,表示:6的512 是多少.27 ×512 ,表示:27 的512 是多少.(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变.2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母.3、注意:能约分的先约分,然后再乘,得数必须是最简分数.当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身.一个数(0除外)乘以一个带分数,所得的积大于它本身.2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大.(四)、解决实际问题. 1分数应用题一般解题步行骤. (1)找出含有分率的关键句. (2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量. (4)根据已知条件和问题列式解答. 2.乘法应用题有关注意概念.(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几.(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近.(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式. (7)乘法应用题中,单位“1”是已知的.(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则. (9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前). 单位“1”×分率=比较量 ; 比较量÷分率=单位“1” (10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.(11).单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. (12)分率与量要对应.①多的对应量对多的分率; ②少的对应量对少的分率; ③增加的对应量对增加的分率; ④减少的对应量对减少的分率; ⑤提高的对应量对提高的分率; ⑥降低的对应量对降低的分率; ⑦工作总量的对应量对工作总量的分率; ⑧工作效率的对应量对工作效率的分率; ⑨部分的对应量对部分的分率; ⑩总量的对应量对总量的分率; 例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算) 方法:单位“1”的数量×对应分率=对应数量. 2、分数的连乘.找到每一个分率的单位“1”. (五)、倒数1、倒数:乘积是1的两个数互为倒数.2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置.3、0没有倒数,1的倒数是它本身.4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身. 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数.第三单元 分数除法(一)、分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.例如: 4152 表示:已知两个数的积是52 ,与其中一个因数41,求另一个因数是多少.52÷4表示已知两个数的积是52,与其中一个因数4,求另一个因数是多少.还表示把52平均分成4份,每份是多少.(二)、分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数. (三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比.比的后项不能为0. 2. 比值的意义:比的前项除以后项所得的商,叫做比值. 3.比值的表示方式:通常用分数、小数和整数表示.4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商. 5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值. 6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数.例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5 (2)56 ﹕34 =(56 ×12)﹕(34 ×12)=10﹕9(3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几. (2)用总数乘各部分的分率求出各部分的数量. 10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身. 一个数(0除外)除以一个假分数,所得的商小于或等于它本身. 一个数(0除外)除以一个带分数,所得的商小于它本身. (四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则.当句子中的单位“1”不明显时,把原来的量看做单位“1”.2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前).数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减.4.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量. 5.“已知一个数的几分之几是多少,求这个数”的解题方法:(1)设单位“1”的量为x,列方程解答. (2)对应数量÷对应分率=单位“1”的总数量. 6.工程问题:把工作总量看作单位“1”,工作效率=1工作时间工作时间=1÷工作效率合作时间 = 工作总量÷工作效率之和 第四单元 圆1、圆心:圆中心一点叫做圆心.用字母“O ”来表示.半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示. 直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示. 2.圆心确定圆的位置,半径确定圆的大小.3.在同一个圆内,所有的半径都相等,所有的直径都相等.在同一个圆内,有无数条半径,有无数条直径.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半.用字母表示为:d =2r r =12d4.圆的周长:围成圆的曲线的长度叫做圆的周长.5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示.圆周率是一个无限不循环小数.在计算时,取π≈3.14.世界上第一个把圆周率算出来的人是我国的数学家祖冲之.6.圆的周长公式:C=πd 或C=2πr7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr ×r =πr²9.圆的面积公式:S=πr² 或者S=π(d ÷2)² 或者S=π(C ÷π ÷2)²10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.圆的面积和正方形面积的比是π:4. 在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 .11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边.12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR ²-πr² 或 S=π(R ²-r²). (其中R =r +环的宽度.)13.环形的周长=外圆周长+内圆周长14.半圆的周长等于圆的周长的一半加直径. 半圆周长公式:C=πd ÷2+d 或C=πr +2r 15.半圆面积=圆面积÷2 公式为:S=πr²÷246.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小以上倍数的平方倍.例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍. 17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方.例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9. 18.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米.19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小; 当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小.*21.扇形弧长公式:L=2360n nr d ππ⨯⨯ 或 360扇形的面积公式:S=360n⨯πr² (n 为扇形的圆心角度数,r 为扇形所在圆的半径)22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.23.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆.有2条对称轴的图形是:长方形 有3条对称轴的图形是:等边三角形 有4条对称轴的图形是:正方形 有无数条对称轴的图形是:圆、圆环. 24.直径所在的直线是圆的对称轴. 25、π倍表第五单元 百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比. 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称. 例如:25%的意义:表示一个数是另一个数的25%.2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示.分子部分可为小数、整数,可以大于100,小于100或等于100.3.小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右) 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.(去向左) 4.百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数. 5、常用的分数、小数及百分数的互化12 =0.5=50% 14 =0.25=25% 34 =0.75=75% 15 =0.2=20% 25 =0.4=40% 35 =0.6=60 45 =0.8=80% 18 =0.125=12.5% 38 =0.375=37.5% 58 =0.625=62.5% 78 =0.875=87.5% 110 =0.1=10%116 =0.0625=6.25% 120 =0.05=5% 125 =0.04=4% 140 =0.025=2.5%150 =0.02=2% 1100=0.01=1% 6.百分率公式:求百分率就是求一个数是另一个数的百分之几.(算式要加×100%,包括浓度、利润率)100%=⨯发芽种子数发芽率试验种子总数 100%=⨯面粉的重量出粉率小麦的重量100%=⨯合格产品数合格率产品总数 100%=⨯实际出勤人数出勤率总人数()100%=⨯油的重量出油率花生仁油菜子的重量100%=⨯盐的重量含盐率盐水的重量 100%⨯糖的重量含糖率=糖水的重量 100%=⨯及格的人数及格率参加考试的总人数100%=⨯命中的数量命中率打的总数量 100%=⨯活了的棵数成活率栽的总棵数100%=⨯正确的题数正确率做题的总数 100%=⨯大米的重量出米率稻谷的重量7. 求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几 (甲-乙)÷乙×100% 求乙比甲少百分之几 (甲-乙)÷甲×100%8.求一个数的百分之几是多少 ? 一个数(单位“1”) ×百分率9. 已知一个数的百分之几是多少,求这个数 ? 部分量÷百分率=一个数(单位“1”) 10、浓度问题溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量 溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度 溶液(盐水)的重量×浓度=溶质(盐)的重量 溶质(盐)的重量÷浓度=溶液(盐水)的重量 最常用的是用方程解浓度问题比如两种不同浓度的溶液混合,最常用的数量关系是 甲溶液质量×甲的浓度+乙溶液质量×乙的浓度 =总溶液质量×总的浓度第六单元 统计扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系.折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况. 条形统计图的特点:能够清楚的看出数量的多少.补充一:图形计算公式1 正方形:周长=边长×4 面积=边长×边长2 长方形:周长=(长+宽)×2 长=周长÷2-宽 面积=长×宽 长=面积÷宽3 三角形:面积=底× 高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高4 平行四边形:面积=底×高 底=面积÷高5 梯形:面积=(上底+下底)×高÷2 高=面积 ×2÷(上底+下底) 上底=面积 ×2÷高-下底6 圆形 (1)周长=直径×圆周率(π)=2×圆周率π×半径 (2)面积=半径×半径×圆周率(π)7 正方体 表面积=棱长×棱长×6 体积=棱长×棱长×棱长8 长方体 表面积=(长×宽+长×高+宽×高)×2 体积=长×宽×高补充二:其他应用题基本数量关系式平均数问题:总数÷总份数=平均数和差问题:(和+差)÷2=大数(和-差)÷2=小数和倍问题:和÷(倍数+1)=1份数 1份数×倍数=几份数差倍问题:差÷(倍数-1)=1份数 1份数×倍数=几份数植树问题:(1)两端都要植树棵数=全长÷棵距+1⑵一端植树及封闭线路上植树棵数=全长÷棵距⑶两端都不植树棵数=全长÷棵距-1盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间年龄问题:年龄差永远不变。
新人教版小学六年级数学知识点归纳
小学六年级数学知识点归纳六年级上册知识点概念总结分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算1分数乘法:分数乘法的计算法则:2分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母但分子分母不能为零 3分数乘法意义就是求几个相同加数的和的简便运算一个数与分数分数乘整数的意义与整数乘法的意义相同,相乘,可以看作是求这个数的几分之几是多少分数乘整数:数形结合、转化化归4 1的两个数叫做互为倒数5倒数:乘积是分数的倒数6这个分数的分子和分母交换位置,把原的分子做分母,原把3/4找一个分数的倒数,例如3/43/4的倒数4/3的倒数,也可以说4/3是的分母做分子则是4/33/4是 7整数的倒数这个分数的分子和分母,再把12/112化成分数,即12/1 找一个整数的倒数,例如12,把交换位置,把原的分子做分母,原的分母做分子则是1/12 ,12是1/12的倒数小数的倒数:8普通算法:找一个小数的倒数,例如025 ,把025化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原的分子做分母,原的分母做分子则是4/19用1计算法:也可以用1去除以这个数,例如025 ,1/025等于4 ,所以025的倒数4 ,因为乘积是1的两个数互为倒数分数、整数也都使用这种规律10分数除法:分数除法是分数乘法的逆运算11分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数12分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数13分数除法应用题:先找单位1单位1已知,求部分量或对应分率用乘法,求单位1用除法14比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:ab);比例,由至少两个称为比的 ab=cd 式子由等号连接而成,且这两个比的比值是相同(如:)所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个1比的前项和后项都乘以或除以一个不为零的数比值不变15比的基本性质:比的性质用于化简比比表示两个数相除;只有两个项:比的前项和后项比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项在比例里,两个外项的乘积等于两个内项的乘积比例的性质用于解比例16比例的性质:17比和比例的区别这ab (1)意义、项数、各部分名称不同比表示两个数相除;只有两个项:比的前项和后项如:比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项是比ab=34 这是比例比的前项和后项都乘或除以(2)比的基本性质和比例的基本性质意义不同、应用不同比的性质:比例一个不为零的数比值不变比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等比例是由两个相等的比组成的性质用于解比例联系:比和比例的意义18而比例的意义是表示两个比相等的式子是叫做比例比的意义是两个数的除又叫做两个数的比,比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项因此,比和比例的意义而且,比号没有括号的含义也有所不同而另一种形式,分数有括号的含义!比和比例的联系:19比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两比和比例有着密切联系比例是由比组成的,如果没有两种量的比,种量中两组相对应数的关系,所以比例是由四项组成比例就不会存在比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一如果两个比相等,那么这两个比就可以组成比例成比例的两个比的比值一定相等起2圆叫做成的图形的等于定长所有点组点20圆:平面上到定的距离21圆心:圆任意两条对称轴的交点为圆心注:圆心一般符号O表示22直径:通过圆心,并且两端都在圆上的线段叫做圆的直径直径一般用字母d表示23半径:连接圆心和圆上任意一点的线段,叫做圆的半径半径一般用字母r表示圆的直径和半径都有无数条圆是轴对称图形,每条直径所在的直线是圆的对称轴在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一d=2r或r=d/2圆的半径或直径决定圆的大小,圆心决定圆的位置24圆的周长:围成圆的曲线的长度叫做圆的周长,用字母表示25圆周率:圆的周长与直径的比值叫做圆周率圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示计算时,通常取它的近似值,π≈314直径所对的圆周角是直角90°的圆周角所对的弦是直径26圆的面积公式:圆所占平面的大小叫做圆的面积πr^2;,用字母S表示一条弧所对的圆周角是圆心角的二分之一在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等27周长计算公式(1)已知直径:=πd(2)已知半径:=2πr(3)已知周长:D=c/π(4)圆周长的一半1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28面积计算公式:3r(1)已知半径:S=2 (d/2)(2)已知直径:S=π2π)]π[c÷(2)已知周长:(3S=百分数2π与分数的区别29)意义不同百分数是“表示一个数是另一个数的百分之几的数”它只能表示两数之间的倍数关(1'平均分成若干系,不能表示某一具体数量因此,百分数后面不能带单位名称分数是“把单位‘1 份,表示这样一份或几份的数”分数还可以表示两数之间的倍数关系)应用范围不同百分数在生产、工作和生活中,常用于调查、统计、分析与比较而分数常常是(2 在测量、计算中,得不到整数结果时使用”表示因此,不论百分数的分)书写形式不同百分数通常不写成分数形式,而采用百分号“%(3 子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简是假分数的要化成带分数任何一个百分数都可以写成分母是分数的一般要通过约分化成最简分数,的分数并不都具有百分数的意义100100的分数,而分母是)百分数不能带单位名称;当分数表示具体数时可带单位名称(4百分数应用30以下,如:发芽率、成②100%①100%以上,如:增长率、增产率等百分数一般有三种情况:,如:正确率,合格率等③刚好长率等 100%百分数的意义31所以不能带单位百分数概念的形成应以学生实际,百分数只可以表示分率,而不能表示具体量生活中的事例或工农业生产中的事例引入日常应用32每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提六级大风,降水概率是,明天白天有五~示大家提前做好准备,就像今天的夜晚的降水概率是20% 让人一目了然,既清楚又简练、,早晚应增加衣服20%10%10%知识点扩展圆的定义1几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆定点称为圆心,定长称为半径轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆集合说:到定点的距离等于定长的点的集合叫做圆圆上任意两点间的部分叫做圆弧,简称弧大于半圆的弧称为优弧,小于半圆的弧称为2圆弧和弦:劣弧,半圆既不是优弧,也不是劣弧连接圆上任意两点的线段叫做弦圆中最长的弦为直径 4顶点在圆心上的角叫做圆心角顶点在圆周上,且它的两边分别与圆有另一个交3圆心角和圆周角:点的角叫做圆周角和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心过三角形的三内心和外心:4 个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心在圆上,由两条半径和一段弧围成的图形叫做扇形圆锥侧面展开图是一个扇形这个扇形的扇形:5 半径称为圆锥的母线)螺旋)缠丝圆,(6)扁圆,(4)椭形圆,(5圆的种类:6(1)整体圆形,(2)弧形圆,(3 )斜圆)横圆,(10)竖圆,(11)圆中圆、圆外圆,(圆,(78)重圆,(9是点到POO的为例(设P是一点,则圆和点的位置关系:以点P与圆圆和其他图形的位置关系:7PO<r 内,0≤PO=rO上,;P在⊙OO圆心的距离),P在⊙外,PO>r;P在⊙ 8百分数的由米长的一根绳子分成三等200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米,就是一份是不可能的,因为找不到一个合适的数表示它如果我们把它分成三等份,每份是7/3 100做基数,发明了百分数种新的数,我们把它叫做分数而后,人们在分数的基础上又以六年级下册知识点归纳总结3的实数,如?1负数:负数是数学术语,指小于0所有的负数都比自然数小负数用负0的左侧,任何正数前加上负号都等于负数在数轴线上,负数都在等?06??533,45,,号“-”标记,如?2 0)0的数叫正数(不包括正数:2大于”表示正数有无数个,+若一个数大于零(>0),则称它是一个正数正数的前面可以加上正号“正分数和正无理数其中分正整数, 右边的数叫做正数数轴上3正数的几何意义0 数轴:规定了原点,正方向和单位长度的直线叫数轴4 所有的实数都可以用数轴上的点表示也可以用数轴比较两个实数的大小 5原点、单位长度、正方向5数轴的三要素:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体6圆柱: 360即AG矩形的一条边为轴,旋转°所得的几何体就是圆柱D'G 和DA的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,其中AG叫做圆柱的轴,AG 旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面,则hr,高为7圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积设一个圆柱底面半径为2V=Sh S为底面积,高为h,体积为V:h :体积VV=πr;如d)πcS=8圆柱的侧面积:圆柱的侧面积底面的周长*高,侧=h (注:为圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)特征:圆柱的底面都是圆,并且大小一样9圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥圆锥解析几何定义:其余两边旋转形成的面所围成的旋以直角三角形的一条直角边所在直线为旋转轴,圆锥立体几何定义:10 转体叫做圆锥该直角边叫圆锥的轴6叫做这个圆锥的体积一个圆锥的体积等于与它等底等高11圆锥的体积:一个圆锥所占空间的大小,1/3的圆柱的体积的V=1/3Shh根据圆柱体积公式),得出圆锥体积公式:V=Sh(V=rrπ是圆锥的底面半径S是圆锥的底面积,h是圆锥的高,r如(圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成圆锥体展开图的绘制:12 a右图)在绘制指定圆锥的展开图时,一般知道(母线长)和d(底面直径)一个圆锥表面的面积叫做这个圆锥的表面积圆锥的表面积:13圆锥的表面积由侧面积和底面积两部分组成2222(n/180) π,为角度制rπ(此n,α为弧度制α=+α或πRS=π(n/360)+r(1/2)R 与圆柱等底等高的圆锥体积是圆柱体积的三分之一14圆柱与圆锥的关系:体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍底面积和高不相等的圆柱圆锥不相等生活中经常出现的圆锥有:沙堆、漏斗、帽子圆锥在日常生活中也是不可或缺的15生活中的圆锥:比的意义16 7(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”比号前面的数叫做比的前项,比号后面的数叫做比的后项比的前项除以后项所得的商,叫做比值(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数(5)比的后项不能是零(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值17比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质18求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数根据比的基本性质可以把比化成最简单的整数比它的结果必须是一个最简比,即前、后项是互质的数19比例尺:图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离线段比例尺:在图上附有一条注有数目的线段,用表示和地面上相对应的实际距离20按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比进行分配这种分配的方法通常叫做按比例分配方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少21比例的意义:比例的意义表示两个比相等的式子叫做比例组成比例的四个数,叫做比例的项两端的两项叫做外项,中间的两项叫做内项22比例的性质:在比例里,两个外项的积等于两个两个内向的积这叫做比例的基本性质23解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项求比例中的未知项,叫做解比例24成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系用字母表示y/=(一定)25成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系用字母表示×y=(一定)26统计表:把统计数据填写在一定格式的表格内,用反映情况、说明问题,这样的表格就叫做统计表27统计组成部分:一般分为表格外和表格内两部分表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面28统计种类:8单式统计表:只含有一个项目的统计表复式统计表:含有两个或两个以上统计项目的统计表百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表29统计表制作步骤:(1)搜集数据(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期30统计图:用点线面积等表示相关的量之间的数量关系的图形叫做统计图31条形统计图(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起(2)优点:很容易看出各种数量的多少注意:画条形统计图时,直条的宽窄必须相同(3)取一个单位长度表示数量的多少要根据具体情况而确定(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例(5)制作条形统计图的一般步骤a) 根据图纸的大小,画出两条互相垂直的射线b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少d) 按照数据的大小画出长短不同的直条,并注明数量32折线统计图(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起(2)优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔确定(3)制作折线统计图的一般步骤a) 根据图纸的大小,画出两条互相垂直的射线b) 在水平射线上,适当分配折线的位置,确定直线的宽度和间隔c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少d) 按照数据的大小描出各点,再用线段顺次连接起,并注明数量933扇形统计图(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数(2)优点:很清楚地表示出各部分同总数之间的关系(3)制扇形统计图的一般步骤:a) 先算出各部分数量占总量的百分之几b) 再算出表示各部分数量的扇形的圆心角度数c) 取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形d) 在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开10。
小学六年级数学课本上册(人教版)内容
小学六年级数学课本上册(人教版)内容小学六年级数学是数学学科中的升华阶段,通过学习,将初步掌握的数学概念、公式、方法和技能进行深入和拓展,在求解实际问题的能力和思维能力上得到极大的提高。
下面是人教版小学六年级数学课本上册的内容相关介绍:第一章:数的认识本章主要是对数的概念进行介绍,如整数、分数和小数以及它们之间的互换。
还讲解了正数、负数等基本概念,并通过练习书写数、比较数大小、发现数的规律等方式来让学生建立起正确的数学观念和思维方式。
第二章:简单数学运算本章主要包括加减乘除四种基本运算的概念、相关符号的认识和方法的应用,让学生能够使用加减乘除进行简单的计算和求解问题,同时懂得在实际生活中如何通过这些方法解决一些日常的问题。
第三章:简单分式本章学习了分数的概念和发展,具体包括了分数的读法,分数和整数的互换,分数的大小比较,分数的四则运算,以及一些相关的应用。
第四章:米与毫米本章主要介绍长度的概念和相关的测量单位(米、分米、厘米、毫米)。
学生通过练习计算长度、比较长度、尺子的读法等方式,掌握测量长度的方法和技巧,并能够在实际生活中应用。
第五章:体积和容量本章主要引入容积和体积的概念和测量方法,并通过比较体积、加减容积、理解容积和体积意义的方式来让学生更好地理解这两个概念。
第六章:三角形和四边形本章主要引入三角形和四边形的概念和特点,并通过练习三角形和四边形的构造、分类、比较等方式来让学生更好地理解和掌握这两种图形的属性。
第七章:平面图形与立体图形本章主要介绍了平面图形和一些常用的立体图形的概念和特征,并引导学生通过展示模型、比较面积、比较体积等方式来更好地加深对这些图形的认识和理解。
总之,人教版小学六年级数学课本上册的内容丰富、有趣、生动,具有很强的示范性和可操作性,对学生求解实际问题的能力和思维能力有明显的提高作用。
同时,它也是教师们备课的一份有力工具,为数学课的教学提供了科学的基础和重要保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学十一册概念***单元一 位置 1.找位置:先列后行。
格式为:(列,行)。
例如:(a ,b )。
2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。
3.平移方法:左右平移,列变行不变;上下平移,行变列不变。
***单元二 分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
例如: b a +b a +b a =ba ×3(b ≠0) 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
例如:a ×c b (c b ×a ) =cab (为了计算简便,能约分的要先约分,然后再乘。
) 【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】 3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。
例如:b a ×n=b a +b a +ba 、、、、、、(b ≠0) ②、整数乘以分数,可以看作是求整数的几分之几是多少。
例如: n ×b a 的意义是:表示求n 的ba 是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
例如:b a ×dc =bd ac (b 、d ≠0) 【注:为了计算简便,可以先约分再乘】 5.乘积是1的两个数叫互为倒数。
例如:b a ×a b =1,那b a 和ab 就是互为倒数。
6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。
1的倒数是1。
0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。
8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9.一个数(0除外)乘以一个带分数,所得的积大于它本身。
10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。
③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员” 是“少”的意思;“相当于”、“占”、“是”“等于”的意思。
④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。
***单元三 分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。
2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。
例如:b a ÷c=ab ×c 1(a 、c ≠0) ②整数除以分数等于整数乘以这个分数的倒数。
例如:c ÷a b =c ×ba (a ≠0) 3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
4.两个数相除又叫做两个数的比。
5、“:”是比号,读做“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如:a :b=b a (a 是比的前项;b 是比的后项;ba 是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。
例如:b a :d c =b a ÷dc (b 、d ≠0) 8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
例如:a :b=a ÷b=ba (b ≠0)。
9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
例如:a :b=a ÷b=ba (b ≠0)。
10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
例如:a :b= a :b =ba (b ≠0) 11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。
②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
③、一个数(0除外)除以一个带分数,所得的商小于它本身。
单元四 圆1.圆的定义:平面上的一种曲线图形。
例如:“O ”。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O 表示。
它到圆上任意一点的距离都相等. 例如:“⊙”3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
例如:“⊙”4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
例如:“⊙”6.①在同一个圆内,所有的半径都相等,所有的直径都相等。
②在同一个圆内,有无数条半径,有无数条直径。
③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r或r =d÷27.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。
圆周率是一个无限不循环小数。
在计算时,取π≈ 3.14。
9.圆的周长公式:C= πd 或C=2πr10、圆的面积:圆所占面积的大小叫圆的面积。
S=π×r×r=πr²11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
(其中R=r+环的宽度.)14.环形的周长=外圆周长+内圆周长15.半圆的周长等于圆的周长的一半加直径。
半圆的周长公式:C=πd ÷2+d或C=πr+2r16.半圆面积=圆的面积÷2公式为:S=πr²÷21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
18.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
21.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
22.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
②只有2条对称轴的图形是:长方形③只有3条对称轴的图形是:等边三角形④只有4条对称轴的图形是:正方形;⑤有无数条对称轴的图形是:圆、圆环。
23.直径所在的直线是圆的对称轴。
单元五百分数1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,小于100或等于100。
①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
6.百分率公式:合格率= 合格人数÷总人数100% 发芽率= 发芽数量÷总数量100%出勤率= 出勤人数÷总人数100%7.应纳税额:缴纳的税款叫应纳税额。
9.应纳税额的计算:应纳税额=各种收入×税率10.本金:存入银行的钱叫做本金。
11.利息:取款时银行多支付的钱叫做利息。
12.利率:利息与本金的比值叫做利率。
13.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。
***单位换算:1、长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算1平方千米=100公顷1公顷10000平方米1平方米=100平方分米1平方分米=100平方厘米3、体(容)积单位换算1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米1立方厘米=1毫升4、重量单位换算:1吨=1000千克1千克=1000克***运算定律:1.加法交换律:两数相加交换加数的位置,和不变。
a+b=b+a2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
如:a+b+c=a+c+b=a+(b+c)3.乘法交换律:两数相乘,交换因数的位置,积不变。
ab=ba4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
如:a×b×c=a×c×b=a×(b×c)5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(a±b)×c=a c±bc6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。
如:a-b-c=a-(b+c)7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。
a÷b÷c=a÷(b×c)(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。