近世代数简介

合集下载

近世代数-文档资料

近世代数-文档资料
这里所说的不同类型的项链,指两个 项链无论怎样旋转与翻转都不能重合。
06.09.2020
11:21
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
ห้องสมุดไป่ตู้
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
图。 问题:n个点的图中互不同构的图有多少个?
06.09.2020
11:21
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
问题:用n个开关可以构造出多少种不同的 开关线路?
了几十年。
06.09.2020
11:21
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。
这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
利用近世代数的方法可得到更高效的检 错码与纠错码。
06.09.2020
11:21
7. 几何作图问题
古代数学家们曾提出一个有趣的作图问题:用 圆规和直尺能做出哪些图形?
而且规定所用的直尺不能有刻度和不能在其上 做记号。为什么会提出这样的问题呢?
一方面是由于生产发展的需要,圆规、直尺是 丈量土地的基本工具,且最初的直尺是没有刻度 的;另一方面,从几何学观点看,古人认为直线与 圆弧是构成一切平面图形的要素。据说,古人还认 为只有使用圆规与直尺作图才能确保其严密性。且 整个平面几何学是以圆规与直尺作为基本工具。

第二章 近世代数简介

第二章 近世代数简介
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
10
域(Field)
一个集合,二种运算
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
9
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
作为其根。换言之,若deg
i
(x)
=
(x-
20)
(x-
21)
(x-
(i (x))=
22 )…(x-
li,必有
) 2( li1 )
这里,deg(i (x) )= li m,本原元的共轭根系对
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
23
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的 多项式
多项式系数 m重
1
(0001)
(0010)
2
(0100)
3
(1000)
+1
(0011)
本原多项式 Primary Polynomials

近世代数简介

近世代数简介

k
= i( x )
i 1
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

多项式系数
多项式
m重
1
(0001)

(0010)
2
(0100)
多项式环Rq(x)g(x)
系数GF(q),模g(x)
g(x) 一般多项式:多项式环 m素数或合数,有限数环
PI(x) 既约多项式:多项式域(q元扩域)
q素数,整环
P(x) 本原多项式:域元素构成循环群
例2.8:剩余类环Rq(x) f(x) 中,q =2,f(x) = x3+x+1。若A(x)= x2+x+1、B(x)= x2+ 1 是 两个环元素,求A(x) B(x)是什么元素?该剩余类环至多由多少元素组成?
有限环(Ring)
一个有限集合,模m加,模m乘
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
元素的阶
15 / GCD(k,15)
1 15 15 5 15 3 5 15 15 5 3 15 5 15 15

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数发展简史

近世代数发展简史

近世代数发展简史根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。

一、近世代数的定义代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。

二、近世代数的发展代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。

然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。

由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。

同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。

域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。

近世代数中左陪集的定义

近世代数中左陪集的定义

近世代数中左陪集的定义
摘要:
一、近世代数简介
二、左陪集的定义
三、左陪集的重要性质
四、左陪集在近世代数中的应用
正文:
近世代数是研究抽象代数结构的数学分支,它涉及到群、环、域等基本代数概念。

在近世代数中,左陪集是一个重要的概念,它有助于我们更好地理解和分析群的性质。

左陪集的定义如下:设G 是一个群,a 是G 的一个元素。

对于任意元素x∈G,我们定义左陪集A(a, x) 为满足以下条件的元素集合:A(a, x) = {y∈G | x * y = a}。

换句话说,左陪集A(a, x) 包含了所有满足与x 的乘积等于a 的元素y。

左陪集具有以下几个重要性质:
1.A(a, e) = {a},其中e 是群的单位元。

2.A(a, x) = A(a, x^(-1)),即对于任意元素x,其左陪集与自身的逆元的左陪集相同。

3.A(a, x) A(a, y),当且仅当x ≤ y,其中“≤”表示群中的元素关系。

4.A(a, x) = G,当且仅当x = e 或x = a。

左陪集在近世代数中具有广泛的应用,例如:
1.研究群的结构:通过分析左陪集的性质,可以揭示群中元素之间的关系,进一步了解群的结构。

2.群的表示:给定一个群G 和一个域F,我们可以通过将群中的每个元素表示为其左陪集中的元素来研究群的表示。

这有助于我们理解群在特定域上的性质。

3.群的子结构:通过研究左陪集,我们可以找到群中的子结构,如子群、正规子群等,从而更好地分析群的性质。

总之,左陪集是近世代数中的一个重要概念,它有助于我们深入理解群的性质和结构。

第2章 近世代数

第2章 近世代数

几个概念
– 一个大于1的正整数,只能被1和它本身整除。
2. 合数
– 一个大于1的正整数,除了能被1和本身整除以外, 还能被其他的正整数整除。
例2-1
– – – 2,3,5,7,9,11,13,17,19…都是质数; 4,6,8,9,10,…都是合数; 这样,全体正整数又分为:全体素数和全体合数。
天津大学电子信息工程学院 2
2015年11月24日5时20分 天津大学电子信息工程学院 27
域存在定理
2015年11月24日5时20分 天津大学电子信息工程学院 26
3. 多项式循环群(Cycle Group)
–定义:群内的所有元素由多项式的各次幂构
成,称为多项式循环群。
• 多项式是一个群元素,被称为循环群的生成元。
–例2-7,{1, 1, 2, 3, 4, 5,…,}
构成无限循环群; – 若7 =1,以{1, 1, 2, 3, 4, 5, 6} 为周期,则称{0 =1, 1, 2, 3, 4, 5, 6}为 7阶 有限循环群。
f ( x) f n x n f n 1 x n 1 ... f1 x f 0 , f ( x) 0
–若以f(t)为模,对全体多项式做模乘运算,
q为模,对系数做模加运算,得到的多项式
剩余类的全体,可以构成一个交换环,称为
多项式剩余类环,记为Rq(x)f(x)。
2015年11月24日5时20分 天津大学电子信息工程学院 18
第2章 近世代数简介
– 线性分组码中最重要的一个子类---循环码 (RS、BCH码),它的结构完全建立在有限域 的基础之上,被称为代数几何码。 – 有限域以近世代数为基础。 – 近世代数的运算对象:整数、多项式、矩阵 等。

近世代数发展简史

近世代数发展简史

近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数与符号之间的关系。

代数的发展可以追溯到古代,但近世代数的起源可以追溯到16世纪。

以下是近世代数发展的简史。

1. 文艺复兴时期(16世纪)在文艺复兴时期,代数开始浮现了一些重要的发展。

意大利数学家Cardano首次提出了解三次方程的方法,并发表了《代数学大全》。

同时,法国数学家Viète 提出了代数中的符号表示法,开创了代数符号的使用。

2. 方程论的发展(17世纪)17世纪,方程论成为代数中的重要研究领域。

法国数学家Fermat和英国数学家Descartes分别独立地发展了代数几何学,将代数与几何相结合。

Fermat提出了著名的“费马大定理”,并在边注中提到了他的证明思路,这成为了代数中的一个重要问题。

3. 群论的兴起(19世纪)19世纪,代数的发展进入了一个新的阶段。

法国数学家Galois提出了群论的概念,并建立了现代代数的基础。

他研究了方程的可解性,并提出了著名的“Galois理论”,解决了费马大定理中的一些特殊情况。

Galois的工作对代数的发展产生了深远的影响。

4. 现代代数的建立(20世纪)20世纪,代数的发展进入了一个全新的阶段。

德国数学家Hilbert提出了代数基础的问题,并提出了一系列的公理化方法。

同时,抽象代数成为了代数中的重要分支,研究了各种代数结构的性质。

在这一时期,代数的研究范围得到了极大的扩展。

5. 应用领域的发展近世代数的发展不仅仅局限于理论研究,还涉及到了许多实际应用领域。

代数在密码学、编码理论、计算机科学等领域都有广泛的应用。

代数的发展为这些领域提供了强大的工具和方法。

总结:近世代数的发展经历了多个阶段,从文艺复兴时期的代数基础研究,到方程论的发展,再到群论和现代代数的建立,代数的研究范围不断扩展。

近世代数的发展不仅仅是理论上的突破,还涉及到了许多实际应用领域。

代数的发展为数学和其他学科的发展做出了巨大贡献。

近世代数

近世代数

近世代数
近世代数是数学中的一个分支,它研究的对象是代数结构,如群、环、域等,以及它们之间的关系和性质。

这个领域的主要目标是揭示这些结构的本质和共性,并开发出一些通用的技术和方法来处理这些结构和它们之间的关系。

近世代数主要研究群、环、域等代数结构的性质和关系。

群是一种代数结构,它由一个集合以及一个二元运算组成,满足封闭性、结合律、存在单位元素以及每个元素都有逆元素等性质。

环是另一种代数结构,它由一个集合以及两个二元运算组成,分别满足加法和乘法的封闭性、结合律、分配律、存在单位元素和每个元素都有加法和乘法的逆元素等性质。

域是群和环的进一步推广,它不仅满足群和环的所有性质,还满足乘法的交换律。

近世代数的研究方法主要是利用抽象代数的思想,即将一些常见的代数概念抽象出来,从而得到一些通用的性质和方法来处理这些抽象的代数结构。

例如,通过将群、环、域等代数结构抽象出来,我们可以得到一些通用的定理,如拉格朗日定理、卡氏定理、高斯引理等,它们在处理各种具体的代数问题时都具有广泛的应用价值。

总之,近世代数是数学中的一个重要分支,它研究的对象是代数结构及其性质和关系,通过抽象代数的思想和方法,揭示了这些结构的本质和共性,为解决各种具体的代数问题提供了一些通用的技术和方法。

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

近世代数发展简史

近世代数发展简史

近世代数发展简史近世代数是数学领域中的一个重要分支,它的发展历史可以追溯到16世纪。

在这个时期,欧洲的数学家们开始对代数进行系统的研究,逐渐形成为了近世代数的基本理论和方法。

本文将从欧洲数学家的贡献、代数的基本概念和主要发展阶段三个方面,详细介绍近世代数的发展历程。

一、欧洲数学家的贡献近世代数的发展离不开一系列杰出数学家的贡献。

其中最重要的是意大利数学家斯拉马、法国数学家笛卡尔和德国数学家高斯。

斯拉马(Niccolò Fontana Tartaglia)是16世纪意大利的一位数学家,他是近世代数的奠基人之一。

他首次提出了求解三次方程的方法,并将其应用于实际问题的解决中。

斯拉马的贡献为后来代数学的发展奠定了基础。

笛卡尔(René Descartes)是17世纪法国的一位伟大数学家,他提出了坐标系的概念,并将代数与几何相结合,创立了解析几何学。

这一理论的浮现,极大地推动了近世代数的发展。

高斯(Carl Friedrich Gauss)是18世纪德国的一位杰出数学家,他被誉为近世代数的创始人之一。

高斯在代数领域做出了许多重要的贡献,他提出了复数的概念,并建立了复数域的理论基础。

这一理论对于解决代数方程中的根的问题具有重要意义。

二、代数的基本概念近世代数是研究数与数之间关系的一门学科,它主要研究代数方程、代数结构和代数运算等内容。

在近世代数中,有一些基本概念是必须了解的。

1. 代数方程:代数方程是近世代数中的重要概念,它是将数与未知数之间的关系用等式表示出来的方程。

代数方程可以是一元方程,也可以是多元方程。

2. 代数结构:代数结构是近世代数研究的重要内容,它是指在一定的运算规则下,数集合上的一种代数性质。

常见的代数结构有群、环、域等。

3. 代数运算:代数运算是近世代数中的核心内容,它是指对数进行加、减、乘、除等运算的过程。

代数运算具有封闭性、结合律、交换律、分配律等基本性质。

三、主要发展阶段近世代数的发展经历了几个主要的阶段,每一个阶段都有不同的特点和重要的贡献。

伯克霍夫的《近世代数概论》-概述说明以及解释

伯克霍夫的《近世代数概论》-概述说明以及解释

伯克霍夫的《近世代数概论》-概述说明以及解释1.引言1.1 概述概述部分是文章的开头,用于引入伯克霍夫的《近世代数概论》一书的背景和主题。

这部分内容可以包括以下方面的描述:伯克霍夫的《近世代数概论》是一本经典的数学著作,该书是近现代代数学的里程碑之一。

它首次详细系统地介绍了近世代数的基本概念、原理和理论。

该书的出版填补了当时代数学发展中的空白,为后来代数学的研究和应用奠定了基础。

近世代数是数学中重要的分支领域,它主要研究代数结构、群论、环论、域论等概念和性质。

迄今为止,这些代数思想和理论在科学研究和工程技术中都发挥着不可替代的作用。

在伯克霍夫的《近世代数概论》中,他以其独特的写作风格和逻辑思维,系统地阐述了近世代数的发展历程、基本概念和主要原理。

通过对代数学思想的深入剖析和清晰的逻辑推导,伯克霍夫帮助读者理解和掌握了这些抽象的数学概念,并将它们应用到实际问题中。

此外,《近世代数概论》也为后来代数学的研究提供了广阔的发展空间,其深远的影响力也体现在数学教育和学术交流中。

无论是对于数学学生还是专业研究人员,这本著作都是不可或缺的参考书。

正因为如此,《近世代数概论》一书在数学学术界享有极高的声誉和影响力。

综上所述,伯克霍夫的《近世代数概论》阐述了近世代数的基本理论和概念,填补了代数学发展中的空白,对于后来代数学的研究和应用起到了重要的推动作用。

它的出版不仅对于数学学术界具有深远的意义,也为广大数学爱好者提供了重要的学习资料。

1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构《近世代数概论》是伯克霍夫在19世纪中叶撰写的一部重要著作,该书分为引言、正文和结论三个主要部分。

接下来,我将为您逐一介绍这些章节的内容和主要讨论点。

引言部分主要包括概述、文章结构和目的三个小节。

首先,在概述中,伯克霍夫对近世代数的背景和研究现状进行了简要介绍,引出了他撰写此书的动机和重要性。

其次,在文章结构部分,伯克霍夫详细列出了本书的章节和内容安排,让读者能够清晰地了解整个书籍的组织架构。

近世代数文档

近世代数文档

近世代数引言近世代数是数学中的一个分支,是研究代数结构的一种方法。

它主要研究了群、环、域等代数结构,以及它们之间的关系和性质。

本文将介绍近世代数的基本概念和一些重要的定理。

群群是近世代数的基础概念之一,它是一个集合和一个二元运算的组合。

这个二元运算满足封闭性、结合律、单位元存在性和逆元存在性等性质。

封闭性对于群中的任意两个元素a和b,它们的运算结果ab也必须属于群中的元素。

结合律群中的运算满足结合律,即对于群中的任意三个元素a、b 和c,满足(a·b)·c = a·(b·c)。

单位元存在性群中存在一个元素e,称为单位元,对于群中的任意元素a,满足a·e = e·a = a。

逆元存在性对于群中的任意元素a,存在一个元素a’,称为逆元,满足a·a’ = a’·a = e,其中e是单位元。

环环是一种比群更一般的代数结构,它是一个集合和两个运算的组合。

这两个运算分别是加法和乘法,并且满足封闭性、结合律、分配律和单位元存在性等性质。

封闭性对于环中的任意两个元素a和b,它们的加法和乘法结果a+b和a·b也必须属于环中的元素。

结合律环中的加法和乘法满足结合律,即对于环中的任意三个元素a、b和c,满足(a+b)+c = a+(b+c)和(a·b)·c = a·(b·c)。

分配律环中的加法和乘法满足分配律,即对于环中的任意三个元素a、b和c,满足a·(b+c) = a·b + a·c和(b+c)·a = b·a + c·a。

单位元存在性环中存在一个元素0,称为加法的单位元,对于环中的任意元素a,满足a+0 = 0+a = a。

同时,环中存在一个元素1,称为乘法的单位元,对于环中的任意元素a,满足a·1 = 1·a = a。

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

近世代数1

近世代数1

近世代数近世代数是数学中的一个重要分支,它主要研究代数结构及其应用。

近世代数产生于19世纪中叶,一开始被视为是整数理论的一部分,但随着研究的深入,近世代数逐渐发展成为一门独立的数学分支。

在这篇文章中,我们将对近世代数的概念、发展以及主要结论进行探讨。

一、近世代数的概念近世代数是指从巴格-瓦列理公式出发,发展起来的一种代数学,它主要研究代数结构的一般理论。

在近世代数中,我们主要研究群、环和域这三种代数结构,这三种代数结构都可以看作一组数以及对这些数进行运算的一种集合。

群:群是一种代数结构,它包含了一组有限或无限个元素以及一种二元运算。

这种运算满足结合律、单位元素存在和逆元素存在的条件,这里的逆元素指的是一个元素与之相乘可以得到单位元素。

环:环是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。

这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律和分配律。

域:域是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。

这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律、交换律、单位元素存在以及逆元素存在的条件。

此外,对于任意的非零元素,都有其乘法逆元素存在。

二、近世代数的发展1、伽罗华理论伽罗华理论是19世纪中期出现的一种代数理论,该理论最初的研究对象是方程的根式解。

伽罗华理论的主要思想是利用群论的方法研究方程的根的性质。

2、李群和黎曼猜想20世纪初,李群的概念被引入到了数学中。

李群是一种具有光滑结构和群结构的数学对象,它将代数和几何联系起来,是现代微分几何和物理学中不可或缺的数学工具之一。

黎曼猜想是数论中的一个著名猜想,它关于大约150年前被提出,至今尚未证明。

其主要内容是,对于任意正整数n,大于1的所有素数p都满足:p的虚部等于n的平方根。

3、格罗滕迪克定理格罗滕迪克定理是当代近世代数的一个重要定理,该定理表明,任何有限群都可以表示为一些简单有限群的直积。

近世代数

近世代数
基本信息
中文名称
近世代数
理论构成
全部现代数学有重要的影响
概述抽象代数发源自历史抽象代数1843年近世代数
图书详细信息
目录版权信息内容简介印刷时间:2009-2-1
理论构成
抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响。"过早的抽象落到了聋子的耳朵里"。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源-方程式论,数论和无限变换群-纳入统一的概念之中,并提出"生成元"概念。20世纪初给出了群的抽象公理系统。
1927-1935年,诺特研究非交换代数与「非交换算术」。她把表示理论、理想理论及模理论统一在所谓"超复系"即代数的基础上。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。
诺特的思想

近世代数介绍

近世代数介绍

举例——自一个集合 “红衣服” 形成一个偏正关系,但是“红空气”没 有关系,不符合某种属性(语义)的联系。
举例——关系数据库模型
(人名集合) 张三 李四 王五 (性别集合) 男 男 女 (专业集合) 计算机系 通信 中文系
目前主流的数据库SQLServer,Oracle等都是基于 关系的数据库模型
l l
l
人们研究和考察现实世界中的各种现象或过程往往要借 助于所谓的数学模型。
例如:在微积分中,物体的速度可用导数,面积、体积可用定 积分计算。 针对某个具体问题选用适宜的数学结构去进行较为确切的 描述, 这就是所谓数学模型。 可见数学结构在数学模型中占有极为重要的地位, 我们现 在下面讨论的数学结构是由集合上定义若干运算而组成 的系统——称为代数系统。
近世代数的内容
l
l l
粗略的描述:近世代数是按照某些原则,对各种 代数系统进行有意义的分类,从而研究同一种类 的代数系统所具有的共同的规律,以及不同代数 系统直接可能存在的某种联系及规律。 简略描述为:对众多代数系统分类研究,发现代 数系统之间的内在规律。 其中主要介绍群、环、域、格、布尔代数等的基 本概念和基本理论。
代数系统——2
l
在计算机科学中,研究机器可计算性语言、算法 计算的复杂性、刻划抽象的数据结构等等,都需 要这现代代数系统知识。 注意:代数系统是由一个非空集合S和定义在 S上的若干个代数运算组成的一个系统 设•是非空集合S上的一个二元代数运算,则称二 元组(S, •)为一个代数系统,也称为代数系
l l
近世代数的特点
l l l
近世代数是一门比较抽象的学科。它作为代数系 统的理论,采用集合论的记号。 对运算及其运算规律的重视 抽象化和公理化的方法

第二章 近世代数简介

第二章 近世代数简介

对于元素A ( x ) = ∑ a i x 和
i i=0
n-1
B (x ) =
n -1
∑ b x ,多项式加“+”定义为:
i i i= 0
n-1
A ( x ) + B ( x ) = ∑ ( ai + bi )mod q xi
i =0
(2-2)
多项式modf(x)乘“.”定义为 :
n-1 n−1 j +k A ( x ) ⋅ B ( x ) = ∑∑ ( a j bk ) x (2-3) mod q k = 0 j =0 mod f ( x )
) 多项式剩余类环的环元素是模f(x)乘的产物,即 A ( x ) ⋅ B ( x除以f(x)的余 式。余式也就是“剩余”类环名称的来历。 [ ] deg n 如果f(x)的最高次幂是n,称此f(x)是n次多项式,写做 deg [ f ( x)] =。这 里 表示阶次degree。显然,多项式剩余类环Rq ( x ) f ( x)中所有环元 素的次数不高于n-1次,通式形式为:
∀a, b ∈ I , ∃a − b ∈ I ; ∀a ∈ I , r ∈ R, ∃a r = r a ∈ I ,
则I是R的理想子环,建成理想。 与一般子环相比,理想子环要求更多的条件:R必须是交换环且具 有凝聚力,即任意一个子环元素与任意一个非子环的环元素运算后所得 的元素一定位于子环内。 环R的任意多个理想子环的交集仍是R的理想子环。
②结合性(Associativity),即
∀ a , b ∈ G , ∃ a * (b * c ) = ( a * b ) * c o
③存在惟一的一个单元e(Identity),即
∀a ∈ G ,∃a * e = e * a = a o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果模为合数,其因子一定能整除
它,不会产生一个余数1(单位元),
因此逆元不存在。
比如,{1,2,3}mod4 中的2, {1,2,3,4,5,6,7,8} mod9 中的3
如果a的逆元是b,必有关系式 ab = nq+1
这样才会有 ( ab ) mod q =1
四进制乘群不存在? !!!
环(Ring)
x+1
2个GF(2)元素的组合:
00, 01,
10,
11
定理2.2 循环群的存在性
若P(x)是GF(q)上m次本原多项式,则GF(q m) 域上次数小于m的非零多项式的全体(共q m1个),在模P(x)乘运算下构成一个多项式循 环群。也就是说,扩域GF(qm)里至少存在一 个本原元(代表一个次数小于m的多项式 ),它的各次幂0、1、2、…、构成了扩 域GF(q m)的全部非零域元素。
下构成一个多项式扩域 GF(22) = {0, 1, x, x+1 },
该扩域的基域是GF(2) ={0,1}。
基域GF(q)是数域,由q个元素组成;
扩域GF(qm) 则是多项式域,由qm 个元素组成。
我们可以用m个基域元素去对应一个扩域元素,
比如q=2、m=2时,扩域GF(22)的元素:
0,
1,
x,
例2.3 集合G = {0,1,2 … m-1}在模m加(用符 号表示)运算下构成一个群(G,)。
该加群是m阶有限群,单位元是0。元素0的 逆元是0,1的逆元是m-1, 2的逆元是m-2,…。
例2.4:集合G = {1,2 … q-1}在模q乘(q是素 数)运算下构成一个乘群(G,)。
为什么有限加群对模数m无要求, 而有限乘群要求模数q必须为素数?
定理2.8 最小多项式因式分解
GF(q)上多项式 ( xqm 1 1) 一定可以分解成
若干最小多项式之积,即
( xqm 1 1) = 1(x) 1(x)… k (x)
k
= i( x )
i 1
(2-8)
共轭元与最小多项式关系
li次最小多项式i (x)必然有同一根系的li个共轭元
g(x) 一般多项式:多项式环 m素数或合数,有限数环
PI(x) 既约多项式:多项式域(q元扩域)
q素数,整环
P(x) 本原多项式:域元素构成循环群
例2.8:剩余类环Rq(x) f(x) 中,q =2,f(x) = x3+x+1。若A(x)= x2+x+1、B(x)= x2+ 1 是两个环元素,求A(x) B(x)是什么元素 ?该剩余类环至多由多少元素组成?
星 际判官 /0/33/
拉格朗日定理(Lagranges):
有限群(G,*)的子群(S,*)的阶数一定是群 (G,*)阶数的因子。
若(A, * ),(B, * )分别是群(G, * )的两个 子群, 则A、B的交集在同样运算下也构成 (G, * )的子群(A∩B,*)。
定理2.1 多项式域的存在性
若PI(x)是GF(q)上的m次既约多项式,则 GF(q)域上次数小于m的多项式的全体,在 模q加、模PI(x)乘运算下构成一个qm阶 的有限域,称为GF(q)域的扩域(Extension Field),写作GF(qm),而称GF(q)是扩域 GF(qm)的基域。
二元域上的多项式,在模2加、模x2+x+1乘运算
有限环(Ring)
一个有限集合,模m加,模m乘
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
循环群的构成步骤是: ① 找一个 m 次本原多项式 P(x)
② 取其根及根的各次幂0、…、 qm 2
③ 构成循环群
定理2.4 各元素的阶
GF(q m)扩域上非零元素{k} (k=0,1,…, q m-2) 的阶一定是(q m-1)的因子,其值为:
n = (q m-1)/GCD(k, q m-1)
(2-4)
加法成“群”
去零后乘法也成
“群”
G1:封闭性
G1:封闭性
G2:结合性
G2:结合性
G3:单位元存在 G3:单位元存在
G4:逆元存在
非零元素逆元存在
分配性
交换环
乘法交换率
有限整数集合F={0,1,2,…,q-1} (q是素 数)在模q加、模q乘运算下构成一个q阶有 限域,又称伽逻华(Galois)域,记作GF(q)。
0 1 2 3 的阶 逆元 逆元
1111114 1
2124343 3
3134242 2
4141421 4
既约多项式 Irreducible Polynomials
对于某数域上的多项式PI(x),若除了常数C以 及CPI(x)外不能被该数域上的任何其它多项式 整除,则称为是该数域上的既约多项式。
本原多项式 Primary Polynomials
近世代数简介
群(group): 一个集合,一种运算
满足 G1:封闭性 G2:结合性 G3:单位元存在 G4:逆元存在
交换群 星际 判官 /0/33/
G5:交换性
加群一定是交换群,加群一定含零元素
乘群不一定是交换群,乘群一定不含零元素
包含无数个元素的群称为无限群。
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
但这是零因子环,乘法消除律不成立。
若 a是m的因子,a b= 0 ,而a0,b 0
称a、b为零因子。
有零因子时,乘法消除率不能成立,即 从a b = a c (mod m)不能推得b = c (mod m) , 因为当 c =0时,前式成立而后式并不成立。带 来的后果是,方程a x = 0无唯一解,因为 x =0和x =b都是解。
得(见右边竖式)
x4 + x2 + x
A(x) B(x)] mod f (x) = x2+ x 本题f(x)是3次多项式deg [f(x)]=3, 因此环元素的幂次不会超过2, 环元素的通式可表示为
x3+ x2 + 0 +1
x3 + 0 + x +1 余式x2 + x
a2x2+ a1x+ a0 ,其中a2, a1, a0GF(2)={0,1}, 3系数最多可有8种组合,即该剩余类环至多有8个域元素
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的 多项式
多项式系数 m重
1
(0001)
(0010)
2
(0100)
3
(1000)
+1
(0011)
2+
(0110)
某一元素a(称作生成元a)的一切乘幂a0, a1, a2,…的全体组成一个群,称为循环群, 写作G ={ a0, a1, a2, …},其中a0= e是单位元。
若序列a0= e,a1, a2, …中没有两个元素是相 等的,称之为无限循环群。
若上述序列中有两个相等的元素a i= a j, (ij) ,可推出G 的元素必以n为周期重复,即an = a0=e , 这样的循环群称为有限循环群。
例2.9
定理2.5 完全分解性
扩域GF(qm)上所有非零元素0,1,… qm 2 都 是GF(q)上多项式 ( xqm 1 1) 的根,即
( xqm 1 1) 可完全分解为一次项之积
( xqm 1 1) =(x-0) (x-1) (x-2)…(x- qm 2 )
(2-5)
定理2.6 幂和特性
3+ 2
(1100)
3++1
(1011)
2+1
(0101)
3+
(1010)
2+ +1
(0111)
3+ 2+ (1110)
3+ 2+ +1 (1111)
3+ 2+1 (1101)
3+1
(1001)
上表利用了关系式4 = +1和15 = 1
元素的阶 15 / GCD(k,15)
1 15 15 5 15 3 5 15 15 5 3 15 5 15 15
不能被 x5+1 整除 不能被 x6+1 整除


不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
解:多项式系数取自GF(2)={0,1},系数作模2加、模2乘。 第一步是先做一般的多项式乘法运算如下
相关文档
最新文档