智能公交调度系统技术方案设计

合集下载

公交智能调度系统功能解决方案

公交智能调度系统功能解决方案

公交智能调度系统功能解决方案1.实时监控和调度:系统可以实时监控公交车辆的位置、运行状态和乘客数量等信息,对车辆进行动态调度,提高运行效率。

通过监控,系统可以检测到车辆是否发生故障或延误,及时进行调度和安排。

2.路线优化和规划:系统可以分析历史运行数据和实时交通状况,通过智能算法优化公交线路,减少冗余和重复线路。

系统还可以根据乘客的需求和流量,合理规划公交线路和站点,提高乘车便利性和效率。

3.乘客信息服务:系统可以提供乘客实时查询公交车到站时间、到站站点和乘车位置的功能,方便乘客合理安排出行。

系统还可以提供乘客实时查询公交线路和站点信息的功能,帮助乘客快速找到合适的公交线路和站点。

4.乘客安全保障:系统可以监控公交车辆的行驶速度和驾驶行为,对违规和危险驾驶行为进行实时预警和记录。

系统还可以提供紧急求助功能,乘客在紧急情况下可以通过系统发送求助信号,方便及时救援。

5.运营数据统计和分析:系统可以对公交运营数据进行统计和分析,包括车辆运行时间、站点停留时间、乘客流量等数据。

基于数据分析,系统可以提供运营指标评估和优化建议,帮助运营商制定合理的运营策略。

6.客流预测和调度:系统可以根据历史客流数据和天气等因素,预测公交车辆的客流量,帮助运营商合理调度车辆和增加运力。

系统还可以根据实时客流情况,动态调整车辆的发车间隔和车辆数量,提高公交运营效率。

7.环境友好和节能减排:系统可以根据车辆运行情况和公交线路的行驶规划,优化车辆的行驶路径和速度,减少空驶和怠速时间。

系统还可以监测车辆的燃料消耗和排放情况,提供节能减排的建议和措施,降低城市交通的环境污染。

综上所述,公交智能调度系统可以通过实时监控和调度、路线优化和规划、乘客信息服务、乘客安全保障、运营数据统计和分析、客流预测和调度以及环境友好和节能减排等功能,提高公交运营效率和服务质量,降低城市交通拥堵和环境污染。

智慧公交市县公交智能调度系统解决方案

智慧公交市县公交智能调度系统解决方案
智慧公交市县公交智能调度 系统解决方案
汇报人:xxx
2023-12-17
• 引言 • 市县公交智能调度系统需求分析 • 市县公交智能调度系统架构设计 • 市县公交智能调度系统关键技术实

• 市县公交智能调度系统应用案例分 析
• 市县公交智能调度系统未来发展趋 势预测
01
引言
背景与意义
城市交通拥堵问题
云计算与大数据
借助云计算和大数据技术,对海量数据进行实时处理和分析,为公 交调度提供更精准的决策支持。
人工智能技术
应用人工智能技术,实现公交车辆的智能调度和优化,提高公交运 营效率。
应用场景拓展趋势预测
多元化出行服务
结合共享单车、共享汽 车等多元化出行方式, 构建综合交通体系,满 足市民多样化出行需求 。
数据分析
通过对收集到的数据进行分析,可以发现智能调 度系统在提高公交运营效率、改善乘客体验等方 面的作用。
结论总结
市县公交智能调度系统的应用对于提高公交运营 效率和服务质量具有积极作用,值得进一步推广 和应用。
06
市县公交智能调度系统未来发展 趋势预测
技术发展趋势预测
5G通信技术
利用5G通信技术,实现公交车辆与调度中心的高清视频传输和低 时延通信,提升调度效率。
班次安排
根据线路规划,合理安排公交车班次,满足乘客出行 需求。
车辆调度
根据班次安排,合理调度公交车,确保车辆按时到站 。
调度系统功能需求分析
实时监控
对公交车运行状态进行实时监控,及时掌握 车辆位置、速度等信息。
智能调度
根据实时数据和预测数据,自动生成调度方 案,提高调度效率。
数据统计与分析
对调度过程中产生的数据进行统计与分析, 为优化调度方案提供依据。

智能公交调度系统技术方案设计

智能公交调度系统技术方案设计

智能公交调度系统技术方案设计一、引言智能公交调度系统是指通过使用现代信息技术手段对公交车辆进行实时调度和管理的系统。

该系统可以通过监测公交车辆的位置和运行状况,实时调整公交车的行驶路线、发车时间和站点等,提高公交运营效率和服务质量,提供更好的乘车体验。

本文将设计一个基于智能公交调度系统的技术方案。

二、系统需求分析1.实时定位和监控公交车辆:系统需要能够实时获取公交车辆的位置和运行状况,以便进行精准调度。

2.实时路况监测和优化:系统需要能够获取实时道路交通情况,结合公交车辆位置和预定行驶路线,提供最佳路线规划和调度策略。

3.发车时刻预测和优化:系统需要能够根据公交车辆实时位置和历史数据,预测公交车辆到达各站点的时间,提前做好调度和通知。

4.站点配车和优化:系统需要能够分析各站点的客流量,并根据预测的客流情况和公交车辆的位置,做出车辆配车和调度策略。

1.定位和监控子系统设计该子系统主要负责获取公交车辆的实时位置和运行状况,可以结合GPS和地理信息系统(GIS)技术来实现。

通过GPS定位模块获取车辆位置数据,并与地图数据进行匹配,同时监测车辆的运行速度、行驶方向等参数。

采用分布式架构和高可用设计,确保数据的实时性和准确性。

2.路况监测和优化子系统设计该子系统需要实时获取道路交通情况,并根据公交车辆位置和预定行驶路线,提供最佳路线规划和调度策略。

可以利用传感器、摄像头、交通信号灯等设备来获取道路交通数据,并通过数据分析和算法模型进行路况预测和优化。

3.发车时刻预测和优化子系统设计该子系统需要根据公交车辆实时位置和历史数据,预测公交车辆到达各站点的时间,提前做好调度和通知。

可以利用机器学习算法和时间序列分析等技术来预测和优化发车时刻。

4.站点配车和优化子系统设计该子系统需要根据站点的客流量和公交车辆位置,做出车辆配车和调度策略。

可以利用数据挖掘和优化算法来分析客流量和车辆位置,提供最佳配车和调度方案。

四、系统实施和运行1.系统实施根据系统设计方案,需要开发相应的软件应用程序、数据库和接口等,并进行系统集成和测试工作。

城市交通公共交通智能化调度系统建设方案

城市交通公共交通智能化调度系统建设方案

城市交通公共交通智能化调度系统建设方案第1章项目背景与意义 (4)1.1 城市交通现状分析 (4)1.2 公共交通智能化调度需求 (4)1.3 项目建设目标与意义 (4)第2章公共交通智能化调度系统总体设计 (5)2.1 系统架构设计 (5)2.1.1 基础设施层 (5)2.1.2 数据层 (5)2.1.3 服务层 (5)2.1.4 应用层 (5)2.1.5 展示层 (5)2.2 技术路线与标准规范 (5)2.2.1 技术路线 (5)2.2.2 标准规范 (6)2.3 系统功能模块划分 (6)2.3.1 实时监控模块 (6)2.3.2 调度管理模块 (6)2.3.3 预测分析模块 (6)2.3.4 安全管理模块 (6)2.3.5 信息发布模块 (6)2.3.6 数据管理模块 (6)2.3.7 用户服务模块 (6)2.3.8 系统管理模块 (6)第3章数据采集与处理 (7)3.1 数据来源与类型 (7)3.1.1 数据来源 (7)3.1.2 数据类型 (7)3.2 数据采集技术与方法 (7)3.2.1 数据采集技术 (7)3.2.2 数据采集方法 (7)3.3 数据处理与分析 (8)3.3.1 数据预处理 (8)3.3.2 数据分析 (8)3.3.3 数据可视化 (8)第4章乘客需求分析与预测 (8)4.1 乘客出行特性分析 (8)4.1.1 出行目的 (8)4.1.2 出行时间分布 (8)4.1.3 出行空间分布 (8)4.2 乘客需求预测方法 (9)4.2.1 经典预测方法 (9)4.2.2 机器学习预测方法 (9)4.2.3 深度学习预测方法 (9)4.3 预测结果与应用 (9)4.3.1 预测结果展示 (9)4.3.2 预测结果应用 (9)4.3.3 预测结果评估与调整 (9)第5章调度策略与算法 (9)5.1 调度策略概述 (9)5.2 车辆调度算法设计 (10)5.2.1 车辆调度目标 (10)5.2.2 车辆调度算法 (10)5.3 线路调度算法设计 (10)5.3.1 线路调度目标 (10)5.3.2 线路调度算法 (10)第6章智能调度中心建设 (11)6.1 调度中心硬件设施 (11)6.1.1 硬件架构 (11)6.1.2 服务器及网络设备 (11)6.1.3 存储设备 (11)6.1.4 安全设备 (11)6.1.5 调度台及辅助设备 (11)6.2 调度中心软件系统 (11)6.2.1 软件架构 (11)6.2.2 数据采集与处理 (11)6.2.3 智能调度 (11)6.2.4 监控与报警 (11)6.2.5 统计分析 (12)6.3 调度中心运行管理 (12)6.3.1 运行管理制度 (12)6.3.2 人员培训与管理 (12)6.3.3 系统维护与升级 (12)6.3.4 应急预案 (12)第7章公交车辆智能化改造 (12)7.1 车载设备选型与安装 (12)7.1.1 设备选型 (12)7.1.2 设备安装 (12)7.2 车载信息采集与传输 (13)7.2.1 信息采集 (13)7.2.2 信息传输 (13)7.3 车辆智能调度功能实现 (13)7.3.1 车辆运行状态监控 (13)7.3.3 车内视频监控 (13)7.3.4 驾驶员行为分析 (13)7.3.5 智能调度策略 (13)第8章系统集成与测试 (14)8.1 系统集成策略与方法 (14)8.1.1 集成策略 (14)8.1.2 集成方法 (14)8.2 系统测试与调试 (14)8.2.1 测试目标 (14)8.2.2 测试内容 (14)8.2.3 调试方法 (15)8.3 系统验收与交付 (15)8.3.1 验收标准 (15)8.3.2 验收流程 (15)8.3.3 交付内容 (15)第9章项目实施与运营管理 (16)9.1 项目实施组织与进度安排 (16)9.1.1 实施组织架构 (16)9.1.2 进度安排 (16)9.2 运营管理模式与策略 (16)9.2.1 运营管理模式 (16)9.2.2 运营策略 (16)9.3 项目评估与优化 (17)9.3.1 项目评估 (17)9.3.2 优化措施 (17)第10章项目效益与风险分析 (17)10.1 项目经济效益分析 (17)10.1.1 投资回报分析 (17)10.1.2 成本效益分析 (17)10.1.3 潜在经济效益 (17)10.2 项目社会效益分析 (18)10.2.1 提高公共交通服务水平 (18)10.2.2 优化城市交通结构 (18)10.2.3 促进节能减排 (18)10.3 项目风险识别与管理 (18)10.3.1 技术风险 (18)10.3.2 政策风险 (18)10.3.3 市场风险 (18)10.3.4 运营风险 (18)10.3.5 财务风险 (18)第1章项目背景与意义1.1 城市交通现状分析我国经济的快速发展和城市化进程的推进,城市交通需求持续增长,交通拥堵、空气污染和出行效率低下等问题日益严重。

智慧公交方案

智慧公交方案
智慧公交方案
第1篇
智慧公交方案
一、项目背景
随着城市化进程的加快,公共交通系统承载的压力日益增大。为提高公交服务质量,缓解交通压力,减少空气污染,促进绿色出行,本项目旨在构建一套智慧公交系统。通过引入先进的信息技术、数据分析和智能调度等手段,实现公交运营的智能化、高效化和人性化。
二、项目目标
1.提高公交运营效率,缩短乘客等车时间。
3.开展公交信息采集设备安装和调试工作。
4.开发智慧公交APP及智能调度系统。
5.部署智能电子站牌,优化公交站台设施。
6.对公交驾驶员进行培训,提高服务质量。
7.正式启动智慧公交项目,进行试运营。
8.根据运营情况,持续优化系统功能和调度策略。
五、项目评估与监管
1.建立项目评估体系,定期对项目实施效果进行评估。
3.提供多元化支付方式,如二维码支付、公交卡支付等,提升乘客出行体验。
(四)安全保障措施
1.建立健全信息安全保障体系,确保公交信息数据安全。
2.加强对公交车辆及驾驶员的监管,确保运营安全。
3.定期对智慧公交系统进行维护和升级,保障系统稳定运行。
四、实施步骤
1.开展项目前期调研,明确项目需求。
2.设计智慧公交系统架构,制定实施方案。
6.全面推广:逐步扩大智慧公交系统的覆盖范围,实现全城覆盖。
五、评估与持续改进
1.效果评估:建立评估指标体系,定期评估项目实施效果。
2.问题反馈:通过乘客反馈、系统监控等渠道,及时发现并解决问题。
3.持续优化:根据评估结果,不断优化系统功能,提升服务品质。
六、预期效益
1.提高运营效率:减少车辆空驶,提高公交车辆利用率。
2.加强对项目资金的监管,确保资金合理使用。

智能公交方案

智能公交方案
二、目标定位
1.提高公交运营效率,缩短乘客等车时间。
2.优化公交资源配置,降低运营成本。
3.提升乘客出行体验,满足个性化出行需求。
4.促进公交与其他交通方式的衔接,提高城市交通整体运行效率。
三、方案内容
1.公交车辆智能化
(1)车辆设备升级:为公交车辆配备智能车载设备,包括GPS定位、客流统计、视频监控等功能。
4.系统部署与试运行:将智能公交系统部署到实际运营环境中,进行试运行。
5.培训与推广:对公交企业员工进行培训,确保系统正常运行;同时,向市民推广智能公交服务。
6.持续优化与升级:根据运营情况,不断优化系统功能,提升用户体验。
五、项目保障
1.政策支持:加强与政府相关部门的沟通与合作,争取政策支持和资金投入。
4.宣传推广:加大宣传力度,提高市民对智能公交的认知度和接受度。
六、项目效益
1.经济效益:提高公交运营效率,降低运营成本,提升公交企业盈利能力。
2.社会效益:提高城市公共交通服务水平,缓解交通拥堵,降低市民出行成本。
3.环保效益:优化公交线网,减少私家车出行,降低城市空气污染。
4.科技效益:推动城市公共交通领域的技术创新,提升城市形象。
二、目标定位
1.提高公交运营效率,降低运营成本。
2.提升乘客出行体验,满足个性化出行需求。
3.优化公交线网布局,提高公交线网覆盖率。
4.实现公交系统与其他交通方式的有序衔接,提升城市交通整体运行效率。
三、方案内容
1.公交车辆智能化
(1)车辆设备升级:为公交车辆配备智能车载设备,包括车辆定位、客流统计、实时视频监控等功能。
(2)车辆运行优化:利用大数据分析技术,对公交车辆运行数据进行挖掘,优化车辆运行线路、班次和发车间隔。

2023-智能公交系统整体解决方案-1

2023-智能公交系统整体解决方案-1

智能公交系统整体解决方案随着城市化的进程不断加快,城市交通问题已经成为越来越多人关注的重要话题。

在城市交通系统中,公交车是最受欢迎的交通工具之一,但公交车不能满足人们对更加高效便捷和智能化的需求。

因此,智能公交系统被认为是解决城市交通问题的有效途径之一。

智能公交系统整体解决方案包括以下步骤:1. 车载设备安装智能公交系统的基础设施是为公交车安装智能设备,包括GPS定位装置、屏幕、摄像头等。

这些设备可以从实时定位、信息发布、视频监控等多个方面提高公交车的运营效率,以及优化通行情况。

2. 车站设施更新车站设施更新也是智能公交系统整体解决方案中不可或缺的组成部分。

车站可以安装数字屏幕,提供实时公交信息和交通状况,为乘客提供更多的交通信息和舒适度,降低他们的等候时间,并提高乘车率。

3. 管理平台建设智能公交系统需要一个关联所有设备和数据的管理平台。

通过平台,可以收集车辆信息、乘客数据、交通状况等一系列数据,以便更好地统计车辆时刻表、制定路线等。

平台还可以实现在线客户服务,及时处理乘客的反馈,提升服务水平。

4. 智能调度系统建设智能调度系统是智能公交系统中最重要的组成部分。

这个系统可以收集车辆实时信息,分析交通拥堵和人流量等因素,并针对不同的路况进行优化路径规划和车辆调度。

此外,智能调度系统还可以与市民服务平台、公共安全部门等进行协调,实现联动调度,提高综合交通效率。

5. 车载App开发车载App应用程序也是智能公交系统整体解决方案中的一个重要部分。

该应用程序可以通过车辆屏幕、乘客智能手机等介质提供实时公交信息,如车辆到达时间、路线、站点等信息,并增加个性化服务,例如推荐周边具有兴趣的地点等。

综上所述,智能公交系统整体解决方案的实现需要对硬件设施和软件系统的全面布局计划,包括车载设备、车站设施更新、管理平台、智能调度系统和车载应用程序。

通过这些措施,可以实现城市交通智能化和提升城市交通运营效率的目标。

城市公交智能调度系统解决方案

城市公交智能调度系统解决方案

城市公交智能调度系统解决方案随着城市化进程的不断加速,城市公交运输成为解决交通问题的重要途径。

然而,由于城市规模扩大和人口增加,公交车的运营和调度变得越来越复杂,传统的调度方法已经难以满足当前的需求。

为了提高公交运营效率和服务质量,引入智能调度系统是提高城市公交运输管理水平的重要手段之一城市公交智能调度系统是一种利用现代信息技术和智能算法,对公交车的调度进行优化的系统。

它通过大量的数据分析,综合考虑路线、时间、客流和交通状况等因素,实时监控和调度公交车的运行。

下面是一些解决方案,可以提高城市公交智能调度系统的效果和效率:1.预测模型:通过建立基于历史数据和实时数据的预测模型,可以预测公交车的客流量和交通状况。

这可以帮助调度员根据需求做出更准确的调度决策,例如增加或减少车辆数量、改变运行路线等。

2.数据共享:通过建立城市交通数据共享平台,不同部门和企业可以共享公共交通数据,包括车辆位置、客流量、交通状况等信息。

这可以提供给调度员更全面的数据基础,使调度决策更为科学和准确。

3.车辆调度算法:通过优化算法,对车辆进行智能调度。

这些算法可以考虑多个因素,例如不同路段的交通拥堵情况、客流量分布等,以减少行车时间和提高服务质量。

例如,可以使用智能路由算法来选择最佳行驶路线,或者使用车辆调度算法来分配最优的车辆资源。

4.实时监控和调度:通过安装GPS设备和监控摄像头等设备,实时监控车辆的位置和运行情况。

调度员可以通过调度中心的终端查看车辆位置、交通状况和客流量等信息,并根据实时情况做出相应的调度决策。

5.客户服务:通过建立公交车APP和智能车站,提供实时公交信息和导航服务。

乘客可以通过手机APP查询公交车的到达时间和实时位置,从而规划自己的出行路线。

智能车站可以提供实时客流量统计和乘客健康码等服务,提高客户满意度和运营效率。

6.大数据分析:通过收集和分析大量的公交运营数据,可以帮助运营者了解公交车运行的状况,并进行绩效评估和优化。

城市公共交通智能调度系统设计与实施策略

城市公共交通智能调度系统设计与实施策略

城市公共交通智能调度系统设计与实施策略第1章引言 (3)1.1 研究背景 (3)1.2 研究目的与意义 (3)1.3 国内外研究现状 (4)第2章城市公共交通概述 (4)2.1 城市公共交通体系 (4)2.1.1 公共交通构成要素 (4)2.1.2 公共交通服务类型 (5)2.1.3 发展现状 (5)2.2 公共交通调度与管理 (5)2.2.1 公共交通调度内涵 (5)2.2.2 公共交通调度目标 (5)2.2.3 公共交通调度方法 (5)2.3 智能调度系统的优势 (6)第3章系统需求分析 (6)3.1 功能需求 (6)3.1.1 车辆调度管理 (6)3.1.2 乘客信息查询与导乘服务 (6)3.1.3 数据分析与决策支持 (6)3.2 非功能需求 (7)3.2.1 可靠性 (7)3.2.2 功能 (7)3.2.3 可扩展性 (7)3.2.4 安全性 (7)3.3 用户需求分析 (7)3.3.1 公交公司 (7)3.3.2 乘客 (7)3.3.3 管理部门 (7)第4章系统总体设计 (7)4.1 设计原则与目标 (7)4.1.1 设计原则 (7)4.1.2 设计目标 (8)4.2 系统架构设计 (8)4.2.1 系统总体架构 (8)4.2.2 系统模块划分 (9)4.3 关键技术研究 (9)4.3.1 公共交通数据采集与处理技术 (9)4.3.2 智能调度算法 (9)4.3.3 大数据挖掘与分析技术 (9)4.3.5 信息安全技术 (9)第5章数据采集与处理 (9)5.1 数据采集技术 (9)5.1.1 采集目标与内容 (9)5.1.2 采集方法 (10)5.1.3 数据传输 (10)5.2 数据处理与分析 (10)5.2.1 数据预处理 (10)5.2.2 数据分析 (10)5.3 数据存储与管理 (10)5.3.1 数据存储 (10)5.3.2 数据管理 (10)5.3.3 数据共享与交换 (11)第6章调度策略与算法 (11)6.1 公交线路优化策略 (11)6.1.1 线路优化目标 (11)6.1.2 线路优化方法 (11)6.2 车辆调度算法 (11)6.2.1 车辆调度目标 (11)6.2.2 车辆调度方法 (11)6.3 乘客需求预测 (11)6.3.1 乘客需求预测目标 (11)6.3.2 乘客需求预测方法 (12)6.3.3 乘客需求预测模型评估 (12)第7章智能调度系统模块设计 (12)7.1 车辆监控模块 (12)7.1.1 功能概述 (12)7.1.2 设计内容 (12)7.2 调度决策模块 (12)7.2.1 功能概述 (12)7.2.2 设计内容 (13)7.3 信息发布与交互模块 (13)7.3.1 功能概述 (13)7.3.2 设计内容 (13)第8章系统集成与测试 (13)8.1 系统集成技术 (13)8.1.1 集成框架设计 (13)8.1.2 数据集成 (14)8.1.3 服务集成 (14)8.1.4 应用集成 (14)8.2 系统测试方法与策略 (14)8.2.1 测试方法 (14)8.2.2 测试策略 (14)8.3.1 功能测试结果 (15)8.3.2 功能测试结果 (15)8.3.3 安全测试结果 (15)第9章实施策略与推广 (16)9.1 项目实施计划 (16)9.1.1 实施目标 (16)9.1.2 实施阶段 (16)9.1.3 实施时间表 (16)9.1.4 资源配置 (16)9.2 技术推广与培训 (16)9.2.1 技术推广 (16)9.2.2 培训工作 (16)9.2.3 培训内容 (16)9.3 风险评估与应对措施 (16)9.3.1 风险评估 (17)9.3.2 应对措施 (17)第10章总结与展望 (17)10.1 研究成果总结 (17)10.2 不足与改进 (17)10.3 未来研究方向 (18)第1章引言1.1 研究背景我国城市化进程的加快,城市公共交通系统在国民经济和市民日常生活中扮演着越来越重要的角色。

智能公交一体化系统解决方案

智能公交一体化系统解决方案
数据清洗
对数据进行清洗和整合,确保数据的准确性和完整性 。
数据存储
采用合适的数据存储方式,确保数据的安全性和可扩 展性。
系统测试与验收
功能测试
对系统的各个功能进行测试,确保功能正常 。
性能测试
对系统的性能进行测试,包括负载测试、压 力测试等。
验收标准
制定系统的验收标准,包括功能完整性、性 能稳定性、数据准确性等方面。
行人安全设施
在公交站点设置安全设施,如护栏、警示牌等,确保行人的安全。
行人安全教育
通过宣传栏、宣传册等方式对行人进行交通安全教育,提高行人的 安全意识。
05
智能公交运营管理系统
运营计划与调度
路线规划
根据客流数据、道路状况等因素 ,制定合理的公交线路和班次计 划,提高运营效率。
实时调度
通过GPS定位、车载设备等手段 ,实时掌握车辆位置、乘客数量 等信息,进行实时调度,确保车 辆准时、准点。
智能公交一体化系统具有安全监控功能, 能够及时发现和处理车辆故障和异常情况 ,保障乘客的安全出行。
02
智能公交调度系统
智能调度系统架构
云计算平台
利用云计算技术,实现数 据集中存储和处理,提高
系统效率和可扩展性。
数据采集与传输
通过各种传感器和数据采 集设备,实时采集车辆、 客流等数据,并通过通信
网络传输至云平台。
智能公交一体化系统的优势
提高运营效率
提升服务质量
通过实时监控和调度公交车辆,智能公交 一体化系统能够减少车辆的空驶率和等待 时间,提高公交系统的运营效率。
智能公交一体化系统能够提供准确的车辆 到站时间、票价信息等乘客信息服务,提 高乘客的出行体验和服务质量。

智能公交系统技术方案

智能公交系统技术方案

智能公交系统技术方案清晨的阳光透过窗户,洒在键盘上,我的思绪开始在天马行空中驰骋。

十年来,方案写作已经成为我生活的一部分,今天,我要用我的经验,为大家呈现一份“智能公交系统技术方案”。

一、项目背景随着城市化进程的加快,交通拥堵问题日益严重,公共交通成为了缓解交通压力的重要途径。

然而,传统的公交系统在运营效率、乘客体验等方面存在诸多不足。

为了提高公交系统的运营效率,提升乘客出行体验,我们提出了智能公交系统技术方案。

二、技术架构1.数据采集层数据采集层主要包括车载终端、公交站台终端、监控中心等。

车载终端负责采集车辆行驶过程中的各项数据,如速度、路线、乘客流量等;公交站台终端负责实时显示车辆运行信息,方便乘客查询;监控中心则负责汇总各终端的数据,进行分析处理。

2.数据传输层数据传输层主要采用无线通信技术,将车载终端、公交站台终端等采集的数据实时传输至监控中心。

通信方式可以采用4G、5G、Wi-Fi 等,确保数据传输的稳定性和实时性。

3.数据处理层数据处理层主要包括数据清洗、数据挖掘、数据可视化等。

数据清洗是将原始数据中的无效、错误数据剔除,保证数据质量;数据挖掘则是从大量数据中提取有价值的信息,为决策提供支持;数据可视化则是将数据分析结果以图表形式展示,便于理解。

4.应用层应用层主要包括智能调度、实时监控、乘客服务等功能。

智能调度根据实时数据,优化车辆运行路线、班次等,提高运营效率;实时监控可以随时掌握车辆运行状态,确保安全;乘客服务则为乘客提供实时公交信息、个性化推荐等服务。

三、核心功能1.智能调度智能调度是智能公交系统的核心功能之一。

通过对车辆运行数据的实时分析,系统可以自动调整车辆运行路线、班次,实现公交资源的合理配置。

同时,系统还可以根据乘客需求,提供定制化的公交线路,提高乘客满意度。

2.实时监控实时监控功能可以随时掌握车辆运行状态,包括速度、位置、故障等信息。

一旦发现异常情况,监控中心可以及时采取措施,确保车辆安全运行。

智能公交调度系统方案

智能公交调度系统方案

智能公交调度系统方案智能公交调度系统是一种利用信息技术和智能算法来优化公交运营的管理系统,其主要目的是提高公交运营效率、减少交通拥堵、提升乘客出行体验以及降低公交运营成本。

以下是一种智能公交调度系统的方案,详细介绍了系统的功能、架构、工作流程以及预期效果。

一、系统功能:1.实时调度:根据实时的交通数据和乘客需求,对公交线路、车辆和司机进行优化调度,最大程度地减少车辆之间的间隔和乘客的等待时间。

3.运营分析:通过对车辆运行数据和乘客需求数据的分析,提供公交运营效率和乘客满意度的评估报告,为管理者提供决策依据。

4.公交优先控制:结合交通信号灯和智能路网,实现公交优先通行,减少公交车辆在交通拥堵中的时间损失。

5.无缝换乘:根据乘客的换乘需求和公交线路的安排,提供无缝换乘的线路规划和导航,减少乘客的换乘时间和等待时间。

二、系统架构:1.数据采集层:通过车载传感器、GPS定位、信号灯控制器、乘客刷卡等方式,实时采集公交车辆的位置、车速、乘客上下车数量、路况等数据。

2.数据处理层:对采集到的数据进行实时处理,包括车辆轨迹分析、乘客需求分析、路况分析等,以为后续的决策和应用提供数据支持。

3.决策层:根据数据处理层提供的分析结果,运用智能算法进行线路优化、车辆调度和乘客推荐等决策,制定具体的调度方案。

4.应用层:将决策层的调度方案应用到实际运营中,包括向乘客提供实时信息、向车辆调度中心发送指令、向交通信号灯控制系统发送优先控制信号等。

三、工作流程:1.数据采集:公交车通过GPS定位和车载传感器定时上传车辆位置、车速和乘客上下车信息等数据。

2.数据处理:数据处理层对采集到的数据进行实时处理,包括分析车辆轨迹、预测乘客需求和识别路况等。

3.决策制定:决策层根据数据处理结果,运用智能算法制定针对不同线路、车辆和乘客需求的调度方案。

4.调度应用:调度方案通过应用层应用到实际运营中,包括向乘客提供实时信息、向车辆调度中心发送指令、向交通信号灯控制系统发送优先控制信号等。

公交车智慧调度系统设计设计方案

公交车智慧调度系统设计设计方案

公交车智慧调度系统设计设计方案一、背景概述随着城市化进程的加快和人口增长,公交车成为城市中重要的交通工具之一。

然而,由于城市道路拥堵、不合理的调度安排等问题,公交车运行效率较低,乘客体验不佳,给城市运输系统带来了很大的压力。

因此,设计一个智慧调度系统,对公交车进行合理的调度和管理,提高公交车的运行效率和乘车体验,对于缓解城市交通拥堵,提高城市交通运输效率具有重要意义。

二、系统设计目标1.提高公交车运行效率:通过系统对公交车进行监控和调度,实时优化公交车的行驶路线和站点,减少拥堵和等待时间,提高公交车的运行效率。

2.提高乘客体验:通过系统实时监测车辆位置,提供公交车到站提示和预测到站时间,方便乘客了解公交车的行驶情况,减少等待时间,提高乘客体验。

3.减少能源消耗:通过系统智能调度公交车行驶路线和站点,减少空驶里程和减少车辆拥堵等待时间,从而减少能源消耗,提高公交车运营效益和环保指标。

三、系统设计方案1.车辆定位系统通过在每辆公交车上安装GPS定位设备,实时监测公交车的位置信息,并将数据传输到系统后台进行处理和分析。

同时,为了保证定位数据的准确性,系统还可以通过各种传感器检测车辆的状态信息,如速度、油量等。

通过车辆定位系统,可以实现对公交车的精准定位和数据采集,为后续的调度和管理提供必要的数据支持。

2.实时调度系统通过对车辆定位数据进行实时监测和分析,系统可以实时判断车辆的行驶情况,识别交通拥堵情况,并为公交车提供实时的调度建议。

系统可以按照预设的调度策略,提供最佳行驶路线和站点,减少车辆的空驶里程和等待时间,提高运行效率。

此外,系统还可以根据乘客需求进行智能调度,优化公交车的发车时刻和车辆数量,提供有效的乘车需求满足。

3.乘客信息服务系统为了提高乘客的出行体验,系统可以通过车站和车辆上的显示屏显示公交车的实时位置、到站提示和预计到站时间等信息。

同时,乘客也可以通过手机App查询公交车的行驶情况和到站信息,并提供乘坐建议。

智能公交调度系统应用介绍及方案

智能公交调度系统应用介绍及方案

智能公交调度系统应用介绍及方案
一、智能公交调度系统介绍
智能公交调度系统是一种可以实现智能调度、智能交通分析的技术方案,可以帮助乘客寻找最快、最方便的乘车方案,减少乘车时间,改善乘
客出行效率。

它可以在线分析乘客出行行为,预测公交运输需求,根据乘
客的需求,自动分析具体路线,实时调度,减少拥堵,提高公交客运效率。

二、智能公交调度系统方案
1.智能公交调度系统采用了GIS技术,通过GIS系统能够实现自动统计、分析、地图显示的功能,可以把公交车路线网络投影到地图上,使得
乘客可以定位路线及其变化,并且可以更准确的估算出行时间,可以智能
的建议出行线路,缩短乘客出行时间,方便乘客找到最便捷的乘车方式。

2.智能公交调度系统采用了大数据技术,可以对用户的出行需求进行
采集和分析,并且采用分析工具分析分析数据,从而计算出用户的出行路
线和最佳的出行时段等,更有效的分配和调度公交车辆,提供更高效的服务。

3.智能公交调度系统采用了云技术,可以保存用户的行为数据,方便
不断的优化和升级,同时云技术还有助于远程制和监,可以实现在不同距
离上车乘客之间的信息交流。

基于计算机视觉的智能公交调度系统设计

基于计算机视觉的智能公交调度系统设计

基于计算机视觉的智能公交调度系统设计近年来,随着城市化进程的加速和交通需求的不断增长,公交出行已成为城市居民生活中最为重要和基础的出行方式。

然而,由于城市道路数量的限制、车辆数量不足以及线路设置等因素的限制,公交调度一直是公交运营中最为棘手的问题之一。

为了更好地服务群众,提高公交运营效率,基于计算机视觉的智能公交调度系统应运而生。

一、智能公交调度系统的原理及优势智能公交调度系统是一种利用计算机视觉和人工智能等技术为基础,帮助公交公司进行公交调度的系统。

这种系统的基本原理是采用公交目视识别技术和公交实时监控技术,将监控区域内的公交车辆实时显示在电子地图上,从而为公交公司提供实时监控、调度和管理服务。

该系统有着许多的优势。

首先,基于计算机视觉的智能公交调度系统可以更快速更精确的完成调度任务,提高了工作效率和工作质量。

其次,该系统可以实现实时监控,及时发现问题,有效避免不必要的交通事故,保证出行安全。

最后,该系统可以根据交通拥堵情况、车辆数量等信息实现公交优先通行,缓解出行压力,让出行更加便捷和高效。

二、智能公交调度系统应用的具体案例1、北京智能公交调度系统北京市公交集团与阿里巴巴集团合作开发的智能公交调度系统于2017年上线运行。

该系统采用公交车实时监控技术等多种先进技术,能够实现对公交车辆位置、速度、运行时间等信息的实时监控,为公交公司提供实时调度和管理服务。

该系统可以根据交通拥堵情况实现智能路由调度,提高了公交运营效率。

2、上海智能公交调度系统上海智能公交调度系统是由上海市公交总公司与华为技术有限公司共同研发的。

该系统基于智能交通、智慧城市等研究成果,采用了先进的计算机视觉、人工智能等技术,为公交公司提供实时监控和调度服务。

该系统主要惠及乘客出行和公交车驾驶员的工作,提高了乘客的出行舒适度,提高了公交车驾驶员的工作效率。

三、展望智能公交调度系统的未来基于计算机视觉的智能公交调度系统已经初步普及,并在不同的城市中得到了成功的应用。

智能公交车系统设计建设方案

智能公交车系统设计建设方案

智能公交车系统设计建设方案随着城市化进程的加速和人们生活水平的提高,城市公共交通的重要性日益凸显。

智能公交车系统作为提升公交服务质量和运营效率的重要手段,受到了广泛的关注和研究。

本文将详细阐述智能公交车系统的设计建设方案,旨在为城市公交的智能化发展提供有益的参考。

一、系统概述智能公交车系统是一个集车辆定位、实时监控、智能调度、乘客信息服务等功能于一体的综合性系统。

通过运用先进的信息技术和通信技术,实现对公交车运行状态的实时感知和精准控制,提高公交运营的安全性、可靠性和舒适性,同时为乘客提供更加便捷、高效的出行服务。

二、系统功能需求(一)车辆定位与跟踪实时获取公交车的位置信息,包括经度、纬度、速度、方向等,并将其准确显示在监控中心的电子地图上,以便管理人员随时掌握车辆的运行轨迹。

(二)实时监控通过安装在公交车上的摄像头和传感器,采集车内和车外的视频图像和运行数据,如车辆行驶状态、驾驶员操作行为、客流量等,并将其实时传输到监控中心,实现对车辆运行的全方位监控。

(三)智能调度根据车辆的实时位置、客流量、道路拥堵情况等因素,自动生成最优的调度方案,合理调整车辆的发车时间和间隔,提高公交运营效率,减少乘客等待时间。

(四)乘客信息服务通过公交车站的电子站牌和移动终端应用程序,为乘客提供实时的车辆到站信息、线路查询、换乘指南等服务,方便乘客规划出行路线。

(五)安全预警实时监测车辆的运行状态和驾驶员的操作行为,当出现超速、疲劳驾驶、违规操作等异常情况时,及时发出预警信号,保障行车安全。

三、系统架构设计智能公交车系统主要由车载终端、通信网络、数据中心和应用平台四个部分组成。

(一)车载终端车载终端是安装在公交车上的设备,包括卫星定位模块、视频监控模块、传感器模块、通信模块等,负责采集车辆的运行数据和视频图像,并将其传输到数据中心。

(二)通信网络通信网络是连接车载终端和数据中心的桥梁,负责数据的传输和交换。

常用的通信方式包括 4G/5G 移动通信网络、WiFi 网络等,确保数据传输的实时性和稳定性。

智能公交系统规划中的调度优化方案

智能公交系统规划中的调度优化方案

智能公交系统规划中的调度优化方案随着城市化进程的加速和人口的快速增长,城市交通问题日益凸显。

公共交通作为城市交通体系的重要组成部分,承担着大量人员的出行需求。

然而,传统的公交系统在面对庞大的客流量时,往往存在运营效率低下、拥堵问题严重等诸多挑战。

为了解决这些问题,智能公交系统应运而生,并引入了调度优化方案,以提高公交运营效率和乘客出行体验。

一、智能公交系统概述智能公交系统是指在传统公交系统基础上引入智能化技术,通过信息化手段实现公交车辆的实时监控、调度和管理。

其核心是利用先进的通信技术和数据分析手段,实现对公交车辆的精确定位、乘客流量的准确统计以及实时交通状况的监测。

通过这些数据,可以实现公交车辆的智能调度和优化,提高运营效率和服务质量。

二、调度优化的意义智能公交系统的调度优化方案,旨在通过合理的调度策略和算法,最大限度地提高公交车辆的运营效率,减少拥堵和延误现象,提升乘客出行体验。

具体而言,调度优化的意义主要体现在以下几个方面:1. 节约成本:通过智能调度,可以合理分配车辆资源,减少空驶和重驶现象,降低运营成本。

2. 提高效率:通过实时监控和数据分析,可以根据实际需求调整车辆的发车间隔和线路规划,提高公交车辆的运行效率。

3. 缓解拥堵:通过智能调度,可以根据实时交通情况调整公交车辆的运行路线和停靠站点,避开拥堵区域,缓解交通拥堵。

4. 提升服务质量:通过智能调度,可以根据乘客需求和实时数据,提供更加准确和及时的服务,提升乘客出行体验。

三、调度优化方案的实施智能公交系统的调度优化方案主要包括以下几个方面的实施:1. 实时监控与数据分析:通过安装车载GPS定位设备和乘客计数器,实时获取公交车辆的位置信息和乘客流量数据。

通过数据分析,可以了解公交车辆的运行状况和乘客出行需求,为后续的调度决策提供依据。

2. 调度策略的制定:根据实时监控和数据分析的结果,制定合理的调度策略。

例如,根据乘客流量高峰期和低谷期,调整车辆的发车间隔;根据交通拥堵情况,调整车辆的运行路线和停靠站点。

公交智能监控调度系统技术方案

公交智能监控调度系统技术方案

公交智能监控调度系统技术方案一、引言公交智能监控调度系统是指利用先进的信息技术手段对公交车辆和车辆周边环境进行实时监控和调度的系统。

通过该系统,可以实时掌握车辆位置、运行状态以及车内环境等信息,对公交车辆进行调度和管理,提供更加安全、高效的公交服务。

本文将详细介绍公交智能监控调度系统的技术方案。

二、系统架构1.车载端:主要包括车载设备、GPS定位设备、摄像头和无线通信模块等。

车载设备负责数据采集和传输,GPS定位设备用于获取车辆的位置信息,摄像头用于拍摄车内环境。

无线通信模块负责将采集到的数据传输给后台服务器。

2.后台服务器:主要包括数据存储、数据处理和调度管理模块。

数据存储模块负责将车载设备传输过来的数据进行存储,数据处理模块负责对存储的数据进行处理和分析,提取有价值的信息。

调度管理模块负责根据实时数据进行车辆调度和管理。

3.前端页面:用户可以通过前端页面实时监控和管理公交车辆。

通过地图显示车辆位置,提供实时车辆信息、车内环境等查询功能,方便用户实时了解公交运行情况。

三、系统功能1.实时监控:通过车载设备和GPS定位设备,实时获取车辆的位置信息,并显示在地图上。

用户可以通过前端页面实时监控车辆的运行情况。

2.数据存储与分析:将车载设备传输过来的数据进行存储,并进行数据分析。

包括车辆行驶轨迹、速度、里程等信息。

通过对数据的分析,可以得到车辆的运行状态、车内环境等信息。

3.车辆调度和管理:根据实时数据对车辆进行调度和管理。

包括车辆的发车时间、路线等信息的调整和优化,以提供更加高效的公交服务。

4.告警管理:根据车内环境监测结果,对异常情况进行告警处理。

如车内温度过高、冒烟等情况,及时通知相关部门进行处理。

5.统计分析:对公交车辆的运行情况进行统计分析,包括车辆的运行里程、速度等信息,为公交公司提供科学的决策依据。

四、技术要点1.车载设备:选择先进的车载设备,包括高精度的GPS定位设备、高清的摄像头和稳定的无线通信模块,以确保数据的准确性和稳定性。

基于物联网的智慧公交车辆调度与优化系统设计

基于物联网的智慧公交车辆调度与优化系统设计

基于物联网的智慧公交车辆调度与优化系统设计随着物联网(Internet of Things, IoT)技术的不断发展,智慧交通系统在城市管理中的作用日益凸显。

其中,公交车辆调度与优化系统作为智能交通系统的重要组成部分,对提升公交运营效率和乘客出行体验起着至关重要的作用。

本文将介绍一种基于物联网的智慧公交车辆调度与优化系统设计方案,旨在提升公交运营效率、优化路线规划和改善乘客出行体验。

一、系统设计目标与需求分析1. 提升公交运营效率:通过实时监控公交车辆的运行状态,及时处理异常情况和拥堵路段,提高车辆的载客率和运营效率。

2. 优化路线规划:根据乘客的出行需求和交通拥堵情况,合理规划公交线路,减少乘客的换乘次数和等待时间。

3. 改善乘客出行体验:提供乘客实时查询公交车到达时间和车辆拥挤情况的功能,以提前安排行程和选择相对较空的车辆。

二、系统设计方案1. 车辆调度与监控子系统该子系统通过装置在公交车上的传感器来实时监测车辆的位置、速度和载客情况。

通过无线传输技术将这些数据实时传送至调度中心。

调度员可以根据这些数据及时调度车辆,例如避免拥堵路段、接送乘客等。

2. 路线规划与优化子系统该子系统通过采集、分析和处理城市交通数据,结合乘客的出行需求和交通拥堵情况,进行优化路线规划。

通过使用智能算法,该系统能够实时计算最优路径,尽量减少乘客的换乘次数和等待时间,并且可以根据乘客的实际情况进行个性化路线规划。

3. 乘客服务与查询子系统该子系统为乘客提供实时查询公交车到达时间、车辆拥挤情况等信息的功能,可以通过移动应用程序、网页等方式方便地让乘客获取相关信息。

乘客可以提前了解公交车到达的时间,以便合理安排行程,同时也可以根据车辆拥挤情况选择相对较空的车辆。

三、系统设计实施步骤1. 物联网传感器与设备的安装:在公交车辆上安装定位器、载客感应器等传感器,确保能够实时采集车辆的运行状态和载客情况。

2. 数据传输与存储:通过物联网技术将公交车辆的运行状态和载客情况数据传输至调度中心,并使用云计算技术进行存储和处理,以保证数据的安全和实时性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术方案深圳瑞信视讯智能公交调度系统技术方案2013年1月15日技术方案1.1 瑞信视讯公交综合运营管理平台特点1.1.1 系统扩展性强瑞信视讯公交综合运营管理平台基于REST框架搭建,REST架构不仅仅能够对于互联网资源进行唯一定位,而且还能告诉我们对于该资源进行怎样运作。

为未来扩展成为交通业务数据中心的共享利用定位提供了技术支撑条件。

块式应用开发,可灵活扩展电子站牌系统、公交机务系统、公交物资管理系统、OA系统、EHR系统、收银点钞系统、停车场系统、线路策划系统等。

1.1.2 与设备兼容性强瑞信视讯公交综合运营管理平台不绑定任何厂家的硬件设备,兼容目前主流车载监控设备。

系统兼容国家规范《道路运输车辆卫星定位系统平台技术要求》 JT/T 796-2011)《道路运输车辆卫星定位系统车载终端技术要求》 JT/T 794-2011)《道路运输车辆卫星定位动态监管系统终端通讯协议及数据格式》 JT/T 808)《道路运输车辆卫星定位动态监管系统平台数据交换》 JT/T 809)等规范。

1.1.3 深入了解公交业务需求瑞信视讯目前与苏州园区、新区、黄石、福鼎等多地的公交公司有深入的战略合作伙伴关系,长期有服务人员驻场服务,及时了解用户第一线需求,并为客户的公交未来信息化提供有力的技术支撑。

技术方案1.1.4 平台性能指标1、科学性具有良好、科学的系统架构,能实现7*24小时无人值守自动调度。

实现无人值守下的自动计算发车间隔。

实现无人值守下的自动统计公里、班次。

2、灵活性用户能自定义模块、菜单、自定义窗体和字段。

用户能自定义各种报表。

用户能自定义颜色及界面选项。

调度参数可以动态进行配置。

支持多种调度模式,如计划调度、灵活调度、混合调度,其中灵活调度可以自动计算间隔,可人工预设间隔。

3、扩展性可通过增加服务器等平台硬件设备适应运营车辆增长。

可提供数据接口供其他系统调用,方便公交整体信息化系统的应用。

4、系统通讯相关指标系统支持同时接入5000个终端进行通讯。

终端的数据上报方式和时间间隔:要求上传间隔和上报方式可以根据需求及时自主进行调整和设置。

车载终端子系统提供数据包断点续传、重传的功能。

5、系统数据完整性指标趟次统计准确率达到100%,区分高峰趟次、平峰趟次、正班趟次和夜班趟次。

趟次里程计准确率100%(营运里程数、非营运里程数分别统计)技术方案2 技术方案2.1 系统总体架构技术方案2.2 系统网络架构设计智能公交系统网络架构主要由以下部分组成:1) 公交调度系统主要由公交车辆、GPS车载终端、公交调度系统平台以及无线移动网络组成。

2) 控制中心系统平台主要由网络设备、服务器、工作站以及系统管理平台软件组成。

根据系统开发功能要求,服务器按逻辑可以分为以下服务器:视频管理服务器:主要管理、备份和维护大量的视频文件。

通信应用服务器:主要负责与公交调度平台数据交互通信、与各应用终端设备之间通信、与数据库数据进行存取操作等应用服务。

WEB应用服务器:主要负责各应用B/S架构的子系统的WEB访问服务。

数据库服务器:负责整个系统项目所有数据的存储和备份工作。

工作站:主要负责视频图像的监控、多媒体节目编辑制作和发布以及其他各子系统的软件应用。

技术方案3) 网络系统主要由光纤网络建成的INTERNET专用网络为主,将公交智能电子站牌系统、控制中心系统平台以及公交调度系统连接起来。

2.3 业务架构设计技术方案2.4 软件架构设计技术方案2.5 公交基础信息平台2.5.1 公交运营动态监控平台2.5.1.1 监控车辆GPS系统监控车辆GPS系统指监控中心人员通过车载GPS设备、的运营情况进行实时了解。

具体的功能包括:2.5.1.1.1 权限控制的线路选择对调度员所能监控的线路进行权限控制,监控中心管理人员可以监控公司的所有线路的运营车辆,各线路的管理人员可以监控所管理的线路的运营车辆技术方案2.5.1.1.2 多样的监控信息不仅对车辆进行监控,对装有摄像头的站台也可以进行监控。

不仅能监控到运营中的车辆,对于非营运车辆也能监控和在地图上显示。

2.5.1.1.3 多种手段的监控信息展示可以使用实时监控的方式实时了解车辆的运营及站台情况;也可以通过车辆回场后读取车载主机保存的数据来回放车辆的历史画面。

2.5.1.1.4 丰富的告警内容和告警方式系统提供线路报警、区域报警、超速报警、异停、越界、带速开关门、线路未发车报警、突发事件报警、路阻报警、事故报警、故障报警、电子站牌故障报警、GPS 异常、投币机异常、量油器异常、报站器异常、紧急报警、超速报警、进出区域报警等19种报警内容,同时通过声音、滚动条、列表等方式对报警信息进行展示与提醒。

2.5.1.2 公交调度系统2.5.1.2.1 运行计划编制营运计划可由分公司制定,也可由线路调度室制定,完成后上传至系统,在设定时间内自动发布。

系统与终端间信息交流,均需对方确认。

超过设定时间无应答,告警提示。

根据每日车辆动态信息,根据人员动态信息(轮休、请假、所属路别等)天气、节假日、季节、间隙等建设车辆、人员排班模型,选择不同预案,生成线路运营表,由人工确认(调整)后发布。

相关管理部门能随时查询营运计划。

系统提供根据当前线路参数及基础信息等内容自动生成相应计划,技术方案批功能。

计划制定完毕后需提交计划由上一级管理人员进行审核下发。

此外编制人员还可以将当前编制计划保存为预案,在下次制定计划时打开对应的预案即可。

对于当天正运行的计划提供了临时计划调整的功能,实际需要。

可为线路设置多种时刻表模块2.5.1.2.2 配车排班支持用户根据行车计划快速、高效地制定、审批配车排班表,提供自动生成与手工调整相结合地制定方式。

技术方案智能化排班界面2.5.1.2.3 车辆调配车辆调配适用车辆在不同线路间的调配管理。

2.5.1.2.4 现场调度日常发车调度是指在车辆正常的营运过程,则的要求,结合现场客流的实际情况、车辆运行情况,通过调整发车间隔、调整前后车顺序、加趟、减趟、增加车辆等手段,使线路运行符合客流规律、提高运输效率、实现车辆均衡满载。

通过将上下行运营数据分开显示的方式来方便查看,同时将数据分为调度信息和已完成两部分:技术方案已完成:当天已按计划运营完成的趟次调度信息:当天已排定计划,但正在运营或还未开始运营的趟次,我们的调度操作是针对这部分趟次此外我们还可以查看以下运营的信息项:班次:当天运营的班次趟次:运营的班次的第几个趟次车辆编号:计划运营的车辆的编号实际车辆:实际出车的车辆编号,一般情况下计划车辆和实际车辆是相同的,但也有特殊情况造成计划车辆不能出车时会用备用的车辆来代替,计划车辆不一样了。

司机:计划出车的司机。

签到司机:和实际车辆相类似,也有可能计划的司机无法出车,由机动的司机出车。

车辆状态:当前车辆的运营状态,一般有未发、待发、途中和完成,完成后的趟次自动转入完成的数据中,此处不再显示发车时间:车辆计划发车的时间实发时间:车辆的实际发车时间(车辆可能晚点)最新到站:车辆的最新到站调度指令:各种调度指令的下发状态技术方案2.5.1.2.5 丰富的调度操作指令系统支持放站、停圈、换圈、拉班、收回、加圈、修改发车时间、手工路签、手工调度、回场处理、故障处理、换车等12种调度操作指令。

2.5.1.2.6 异常情况处理当发生调度异常情况(如遇到交通堵塞、车辆故障、交通事故、社会活动、服务纠纷、乘客滞留等)时,司机可通过车载终端上报相关信息如事故、车辆故障等,调度中心收到司机上报的报警信息后对报警内容进行相应处理,辆或下发指令让其去修理厂维修,技术方案态改变为非营运状态如故障车等即可离开运营线路。

2.5.1.2.7 跨线路运营系统提供了对多个调度台或多个线路的跨线路调度运营的功能。

2.5.1.2.8 智能的调度提醒系统能自动车辆的运营状态计算车辆的到站时间,提醒调度员调整发车时间并给出建议的修改时间,由调度人员进行修改确认。

2.5.1.3 公交排班系统公交排班调度管理系统是为了更科学、计的。

运营排班是公交公司最原始、最基础且必不可少的工作之一。

运营排班的核心工作是三项:一是车辆行车作业计划的制定,二是车辆与司乘人员、调度等排班,三是输出路单。

智能排班调度系统采用电脑与人工相结合的方式,根据历史经验,客流量数据和影响线路正常运行的其他参数,采用“基于基因的算法”公交线路运行时刻表的数学模型,对各种排班规则进行标准化定义,从而系统可自动根据运营计划生成标准的排班表,自动制定行车作业计划,再结合运营实际,人工调节,优化企业的运力,提高企业的收益。

同时,电子路单取代传统路单。

在手动排班的情况之下,路单的抄写是一项极为沉重的体力劳动。

排班系统在完成自动排班功能后,智能公交调度系统会自动生成电子路单并能够打印输出,减少了驾驶员和调度人员填表格时间,特别是在有些线路的高峰时段,每分钟都要发车,这样节省下来的时间就非常可观。

电子路单美观整齐、避免了错误、疏漏情况的发生。

不但包括旧工作模式中手工抄写的必要内容,同时还可增加会议通知、轮休信息、车辆保养等信息。

调度系统可采用双边调度与单边调度两种模式,司机、汽车进站、出站刷卡。

技术方案详细的功能包括:2.5.1.3.1 默认时刻表设定排班时使用的车辆运营时刻表,内容包括每天运营的各个趟次的计划发车时间;最早发车、最晚收车、平高峰的时间间隔;早晚高峰的时间段;各运营班组的发车数量等。

2.5.1.3.2 排班规则设定排班的原则,说明从什么时候起,按哪种方法进行排班,系统支持连续与循环两种排班的规则2.5.1.3.3 轮岗序驾驶员轮休的次序,也就是驾驶员是工作几天休息几天的规则,该次序的设置和默认时刻表相结合,确保司机能按次序休息崦不影响车辆的运营2.5.1.3.4 自动总排班根据设定的排班规则和驾驶员的轮岗序,由系统自动生成运营的班次与发车时间2.5.1.3.5 线路排班运营管理人员对系统根据规则自动生成的运营班次与发车时间进行调整2.5.1.3.6 自动生成电子路单自动根据当天的实际调度运营情况生成电子路单,为后续的司机考核提供依据技术方案电子路单2.5.1.4 综合报表系统系统具备对公交营运管理中的各种信息,如有关公司属性、分公司属性、线路属性、线路站点信息(平峰、高峰、节假日、发车间隔、配车数、站点间隔、首末班发车时间、运营里程、全程运营时间等)质量考核记录、请假类型、燃油类型、润滑油类型、车型信息、车辆信息、保养维修类型、故障类型等信息进行设置、添加、查询等管理功能。

检测车载客流情况,车辆在各个站点的上车乘客人数、下车乘客人数,以及车上的乘客数等信息计算各个时刻车辆的满载率。

系统提供多种类型的运营报表,包括日报和月报日报具体包括:技术方案线路运营状况日报线路运营收入日报车辆行使日报行车记录明显地驾驶员行车汇总驾驶行车线路汇总等月报包括:营运收入月报运营状况月报车辆行车月报线路信息月报车辆燃料消耗月等多种维度的运营管理报表技术方案2.5.1.5 性能指标应用系统充分保证体系结构设计的先进性,采用多层体系结构。

相关文档
最新文档