矩阵论复习题
矩阵论复习题 带答案1
矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵论复习题
矩阵论复习题矩阵论复习题矩阵论作为线性代数的重要分支,涉及到矩阵的性质、运算以及应用等方面。
在学习矩阵论的过程中,复习题是提高理解和巩固知识的重要工具。
本文将通过一些典型的矩阵论复习题,帮助读者回顾和加深对矩阵论的理解。
1. 矩阵的乘法性质与运算规则(1) 证明矩阵的乘法不满足交换律,即AB≠BA。
(2) 若矩阵A是m×n阶矩阵,矩阵B是n×p阶矩阵,证明矩阵乘法满足结合律,即(AB)C=A(BC)。
(3) 证明单位矩阵是矩阵乘法的单位元,即对于任意矩阵A,有AI=IA=A。
2. 矩阵的逆与行列式(1) 若矩阵A可逆,证明其逆矩阵唯一。
(2) 若矩阵A可逆,证明其逆矩阵也可逆,且逆矩阵的逆等于A。
(3) 若矩阵A可逆,证明其转置矩阵也可逆,且转置矩阵的逆等于A的逆的转置。
(4) 证明若矩阵A可逆,则其行列式不为零,即|A|≠0。
3. 矩阵的特征值与特征向量(1) 若矩阵A的特征值为λ,证明矩阵A-λI的行列式为零,即|A-λI|=0。
(2) 若矩阵A的特征向量为v,证明对于任意非零实数k,kv也是矩阵A的特征向量。
(3) 若矩阵A的特征向量v1和v2对应于不同的特征值λ1和λ2,证明v1和v2线性无关。
(4) 若矩阵A的特征向量v对应于特征值λ,证明对于任意正整数n,(A^n)v对应于特征值λ^n。
4. 矩阵的相似与对角化(1) 若矩阵A与矩阵B相似,证明矩阵B与矩阵A相似。
(2) 若矩阵A与矩阵B相似,矩阵B可对角化,证明矩阵A也可对角化。
(3) 若矩阵A可对角化,证明A的特征向量组成的矩阵P可逆,且A=PDP^-1,其中D为对角矩阵。
通过复习以上的矩阵论题目,可以加深对矩阵的性质、运算规则、逆与行列式、特征值与特征向量以及相似与对角化的理解。
同时,通过解题的过程,还可以提高解决问题的能力和运用矩阵论知识的技巧。
希望读者能够充分利用这些复习题,巩固所学的矩阵论知识,为进一步深入学习打下坚实的基础。
研究生矩阵论试题及答案
09级-研-矩阵论试题及参考答案一(15分)设实数域上的多项式321()223p x x x x =+++,322()23p x x x x =+++ 323()45p x x x x =-+--,324()367p x x x x =-++(1)求线性空间()1234span ,,,W p p p p =的一组基和维数; (2)求多项式32()41p x x x =++在你所求基下的坐标。
解:(1)111110021130101224600123357000r A -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪=−−→⎪ ⎪-- ⎪⎪-⎝⎭⎝⎭123,,p p p 是W 的一组基,dim 3W =;(2)123()()()()p x p x p x p x =++,p 的坐标为(1,1,1)T x =。
或:x^3+1 , x^2 , x+1.这三个基形式是最简单的。
坐标为(1,4,0)。
二(15分)(1)设2T ()tr()Ff X XX X ==,其中()m n ij m n X x R ⨯⨯=∈是矩阵变量,求dfdX ; (2)设()m nij m n A a R ⨯⨯=∈,12(,,,)T n n x x x x R =∈ 是向量变量,()F x Ax =,求T dF dx.解 (1)211()m nij i j f X x ===∑∑,2ij ijfx x ∂=∂, ()22ij m n ijm ndf f x X dX x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭;(2) 111()n k k k n mk k k a x F x Ax a x ==⎛⎫⎪ ⎪==⎪ ⎪ ⎪⎪⎝⎭∑∑ ,1,1,2,,i i mi a F i n x a ⎛⎫∂ ⎪== ⎪∂ ⎪⎝⎭ , 11111(,,)n T nm mn a a dF F F A dx x x a a ⎛⎫∂∂ ⎪=== ⎪∂∂ ⎪⎝⎭。
三(15分)已知微分方程组0d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,200031011A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵A 的Jordan 标准形J 和可逆矩阵P 使1P AP J -= (2)求矩阵A 的的最小多项式)(λA m (3)计算矩阵函数Ate ; (4)求该微分方程组的解。
矩阵论试题及答案
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
矩阵论试题
2017—2018学年第一学期《矩阵论》试卷(17级专业硕士)专业 学号 姓名 得分一.判断题(每小题3分,共15分)1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零,即ker A =0。
( )2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个线性空间。
( )3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分必要条件是A 的谱半径1)(<A ρ。
( )4.n 阶多项式矩阵)(λA 与)(λB 相抵当且仅当它们具有相同的秩。
( )5.对于任意n 阶复矩阵A 与B ,有B A B A e e e +=⋅。
( )二.填空题(每小题4分,共20分)1.设V 是数域K 上全体n 阶反称矩阵按通常的加法与数乘构成的一个 线性空间,则其维数V dim = ,V 的一组基是。
2.⎪⎪⎪⎭⎫ ⎝⎛+-=)1()1(1)(223λλλλλA 的初等因子组为,不变因子组为。
3.设⎪⎪⎭⎫ ⎝⎛--=211`2A ,则1||||A = ,F A ||||= , 2||||A = ,=2)(A cond 。
4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D在基12,,,,1-n x x x 以及基12)!1(1,,!21,,1--n x n x x 下的矩阵分别为, 。
5.设A 是复数域上的正规矩阵,则A 满足: ,并写出常用的三类正规矩阵 。
三.计算题(每小题12分,共48分)1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。
2. 22⨯R 中,取基(I ):⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,以及基(II ):⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='1001,0111,0011,000122211211E E E E , (1)求基(I )到基(II )的过渡矩阵;(2)若定义22⨯R 中线性变换A A c b aA ⎪⎪⎭⎫ ⎝⎛=0)(,求A 在基(I )下的矩阵。
矩阵论复习题
第二章 内积空间一、基本要求1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义,理解欧氏(酉)空间中度量的概念.2、掌握线性无关组的Schmidt 正交化与对角化方法,理解标准正交基的性质.3、理解Hermite 二次型的定义.4、掌握在一组基下的度量矩阵的概念,标准正交基下度量矩阵的性质及两组标准正交基下的度量矩阵的关系.5、了解欧氏子空间的定义.6、掌握正交矩阵与酉矩阵的定义与性质,理解正交(酉)变换与正交(酉)矩阵的关系.7、掌握对称矩阵与Hermite 矩阵的定义与性质,理解对称(Hermite)变换与对称(Hermite)矩阵的关系.8、掌握矩阵可对角化的条件,会求一个正交(酉)矩阵把实对称(Hermite)矩阵化为对角形矩阵,会求一组标准正交基使线性变换在该基下对应的矩阵是对角形矩阵.二、基本内容1、内积空间设数域F 上的线性空间)(F V n ,若)(F V n 中任意两个向量βα,都有一个确定的数与之对应,记为),(βα,且满足下列三个条件(1) 对称性:),(),(αββα=,其中),(αβ表示对数),(αβ取共轭; (2) 线性性:),(),(),(22112211βαβαβααk k k k +=+; (3) 正定性:0),(≥αα,当且仅当0=α时,0),(=αα,则称),(βα为向量α与β的内积.当R F =时,称)(R V n 为 欧氏空间;当C F =时,称)(C V n 为酉空间.注意:在n R 中,),(),(βαβαk k =;在n C 中,),(),(βαβαk k =. 通常的几个内积:(1) nR 中,αββαβαT T ni i i y x ===∑=1),(nC 中,βαβαH i ni i y x ==∑=1),(.其中T n T n y y y x x x ),,,(,),,,(2121 ==βα.(2) nm R⨯中,n m ij n m ij b B a A ⨯⨯==)(,)(,ij m i nj ij Hb a B A tr B A ∑∑====11)(),(.(3) 在实多项式空间][x P n 及],[b a 上连续函数空间],[b a C 中,函数)(),(x g x f 的内积为⎰=ba dx x g x f x g x f )()())(),((2、向量的长度、夹角、正交性定义 ),(ααα=,称为α的长度,长度为1的向量称为单位向量,ααα=0是α的单位向量.长度有三个性质:(1) 非负性:0≥α,且00),(=⇔=ααα; (2) 齐次性:k k k ,αα=表示数k 的绝对值; (3) 三角不等式:βαβα+≤+.定理(Cauchy-Schwarz 不等式)βαβα≤),(.α与β的夹角θ定义为βαβαθ),(arccos=.当0),(=βα时,称α与β正交,记βα⊥.若非零向量组s ααα,,,21 两两正交,即0),(ji j i ≠=αα,称s ααα,,,21 是一个正交组;又若s i i ,,2,1,1 ==α,则称s ααα,,,21 为标准正交组,即⎩⎨⎧≠==.,0,,1),(j i j i j i αα 定理(勾股定理) 0),(222=⇔+=+βαβαβα,即βα⊥.3、标准正交基标准正交基指欧氏(酉)空间中由两两正交的单位向量构成的基.构造方法:对欧氏(酉)空间的一个基进行Schmidt 正交化可得正交基,再对正交基进行单位化可得标准正交基.把线性无关向量s ααα,,,21 正交化为s βββ,,,21 正交向量组: 设.,,3,2,),(),(,1111s k i k i i i i k k k=-==∑-=ββββααβαβ再把i β单位化:s i i ii ,,2,1,1==ββε,则s εεε,,,21 为标准正交组.在标准正交组n εεε,,,21 下,向量可表为:=+++=n n x x x εεεα 2211n n εεαεεαεεα),(),(),(2211+++ ,坐标),(i i x εα=表示α在i ε上的投影长度. 4、基的度量矩阵度量矩阵是以欧氏(酉)空间的基中第i 个元素与第j 个元素的内积为i 行j 列元素构成的方阵.设欧氏(酉)空间V 的一个基为n x x x ,,,21 ,令),,2,1,)(,(n j i x x a j i ij ==,则该基的度量矩阵为n n ij a A ⨯=)(.基的度量矩阵是实对称(Hermite)正定矩阵,它的阶数等于欧氏(酉)空间的维数,正交基的度量矩阵是对角矩阵,标准正交基的度量矩阵是单位矩阵.设酉空间V 的一个基为n x x x ,,,21 ,该基的度量矩阵为A ,V y x ∈,在该基下的坐标(列向量)分别为α与β,那么x 与y 的内积βαA y x T =),(.当V 为欧氏空间时,βαA y x T =),(.当此基为标准正交基,酉空间V 的x 与y 的内积βαT y x =),(,欧氏空间V 的x 与y 的内积βαT y x =),(.设欧氏空间n V 的两个基分别为(Ⅰ)n x x x ,,,21 和(Ⅱ)n y y y ,,,21 ,且由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C ,基(Ⅰ)的度量矩阵为A ,基(Ⅱ)的度量矩阵为B ,则有:(1) AC C B T =.(2) 基(Ⅰ)是标准正交基的充要条件是I A =.(3) 若基(Ⅰ)与基(Ⅱ)都是标准正交基,则C 是正交矩阵.(4) 若基(Ⅰ)(或(Ⅱ))是标准正交基,C 是正交矩阵,则基(Ⅱ)(或基(Ⅰ))是标准正交基.5、正交变换与对称变换(ⅰ) 关于正交变换,下面四种说法等价:1) T 是欧氏空间n V 的正交变换,即对于任意的n V x ∈,有),(),(x x Tx Tx =;2) 对于任意的n V y x ∈,,有),(),(y x Ty Tx =; 3) T 在n V 的标准正交基下的矩阵为正交矩阵; 4) T 将n V 的标准正交基变换为标准正交基. (ⅱ) 关于对称变换,下面两种说法等价:1) T 是欧氏空间n V 的对称变换,即对于任意的n V y x ∈,,有),(),(Ty x y Tx =; 2) T 在n V 的标准正交基下的矩阵为对称矩阵.(ⅲ) 若T 是欧氏空间n V 的对称变换,则T 在n V 的某个标准正交基下的矩阵为对角矩阵.(ⅳ) 在欧氏空间n V 中,若正交变换T 的特征值都是实数,则T 是对称变换. 6、相似矩阵(1) n n C A ⨯∈相似于上(下)三角矩阵. (2) n n C A ⨯∈相似于Jordan 标准形矩阵. (3) n n C A ⨯∈酉相似于上三角矩阵.(4) 设n n C A ⨯∈,则H H AA A A =的充要条件是存在酉矩阵P ,使得Λ=AP P H (对角矩阵).(5) 设n n C A ⨯∈的特征值都是实数,则T T AA A A =的充要条件是存在正交矩阵Q ,使得Λ=AQ Q T .(6) 实对称矩阵正交相似于对角矩阵.三、典型例题例1、在n R 中,设),,,(),,,,(2121n n ηηηβζζζα ==,分别定义实数),(βα如下:(1) 21212)(),(i ni i ηζβα∑==;(2) ))((),(11∑∑===nj j n i i ηζβα;判断它们是否为n R 中α与β的内积.解 (1) 设R k ∈,由==∑=21122))((),(ni i i k k ηζβα),()(21212βαηζk k ini i=∑=知,当0<k 且0),(≠βα时,),(),(βαβαk k ≠.故该实数不是n R 中α与β的内积.(2) 取0)0,,0,1,1(≠-= α,有0),(,01==∑=ααζni i故该实数不是n R 中α与β的内积.例2、n R 中,向量组n ααα ,,21线性无关的充要条件是0),(),(),(),(),(),(),(),(),(212221212111≠n n n n n n αααααααααααααααααα .证 方法一 设),,(21n A ααα =,则⇔≠====⨯⨯0),(2A A A A A T T nn jT i nn j i ααααn A ααα,,,021 ⇔≠线性无关.方法二 设02211=+++n n x x x ααα ,则n i x x x i n n ,,2,1,0),(2211 ==+++αααα,即⎪⎪⎩⎪⎪⎨⎧=++=++=++,0),(),(,0),(),(,0),(),(1121211111n n n n nn n n x x x x x x αααααααααααα 齐次方程组仅有零解的充要条件是系数矩阵的行列式0),(≠j i αα,即n ααα,,,21 线性无关.例3、设欧氏空间3][t P 中的内积为⎰-=11)()(),(dt t g t f g f(1) 求基2,,1t t 的度量矩阵.(2) 采用矩阵乘法形式计算21)(t t t f +-=与2541)(t t t g --=的内积. 解 (1) 设基2,,1t t 的度量矩阵为33)(⨯=ij a A ,根据内积定义计算)(j i a ij ≤2)1,1(1111===⎰-dt a ,0),1(1112===⎰-tdt t a ,32),1(112213===⎰-dt t t a ,32),(11222===⎰-dt t t t a ,0),(113223===⎰-dt t t t a ,52),(1142233===⎰-dt t t t a .由度量矩阵的对称性可得)(j i a a ji ij >=,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520203203202A . (2) )(t f 和)(t g 在基2,,1t t 下的坐标分别为T T )5,4,1(,)1,1,1(--=-=βα,那么054120320320202)1,1,1(),(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==βαA g f T . 例4、欧氏空间3][t P 中的多项式)(t f 和)(t g 的内积为⎰-=11)()(),(dt t g t f g f ,取t t f =)(1,记子空间))((1t f L W =.(1) 求T W 的一个正交基;(2) 将T W 分解为两个正交的非零子空间的和.解 (1) 设T W t k t k k t g ∈++=2210)(,则有0),(1=g f ,即0)()()(112210111=++=⎰⎰--dt t k t k k t dt t g t f ,也就是01=k .于是可得},,)()({20220R k k t k k t g t g W T ∈+==.取T W 的一个基为2,1t ,并进行正交化可得,31),(),()(,1)(211112221-=-==t g g g g t t t g t g那么,)(),(21t g t g 是T W 的正交基.(2) 令))(()),((2211t g L V t g L V ==,则1V 与2V 正交,且21V V W T +=. 例5、已知欧氏空间2V 的基21,x x 的度量矩阵为⎥⎦⎤⎢⎣⎡=5445A , 采用合同变换方法求2V 的一个标准正交基(用已知基表示).解 因为A 对称正定,所以存在正交矩阵Q ,使得Λ=AQ Q T (对角矩阵),计算得,111121,9001⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=ΛQ ,131323121⎥⎦⎤⎢⎣⎡-=Λ=-Q C 则有E AC C T =.于是,由C x x y y ),(),(2121=可得2V 的一个标准正交基为)(231),(21212211x x y x x y +=-=.例6、在欧氏空间中,定义α与β的距离为:βαβα-=),(d ,试问:保持距离不变的变换是否为正交变换?答 不一定,例如2R 中向量的平移变换:)1,1(),(,),(2++=∈=∀y x y x T R y x α,)1,1()(),1,1()(,),(),,(2221112222111++=++=∈==y x T y x T R y x y x αααα, ),()()()()())(),((21212212212121ααααααααd y y x x T T T T d =-=-+-=-=. 虽然保持距离不变,但平移变换不是线性变换,更不是正交变换.例7、设n ααα,,,21 与n βββ,,,21 是n 维欧氏空间两个线性无关的向量组,证明存在正交变换T ,使n i T i i ,,2,1,)( ==βα的充要条件是n j i j i j i ,,2,1,),,(),( ==ββαα.证 必要性 因为T 是正交变换:),())(),((j i j i T T αααα=,又已知i i T βα=)(,故有),(),(j i j i ββαα=.充分性 定义变换T ,使得n i T i i ,,2,1,)( ==βα,则T 是线性变换,且是唯一的.下证T 是正交变换.已知),(),(j i j i ββαα=,则有),(),(j i j i T T αααα=,设n V ∈∀βα,,∑∑====nj j j ni i i y x 11,αβαα,则),(),(),(1111j i j ni nj i nj j j ni i i y x y x ααααβα∑∑∑∑======,))(),(())(,)(())(),((1111j i j n i nj i n j j j n i i i T T y x T y T x T T ααααβα∑∑∑∑======),(11j i j n i nj i y x αα∑∑===.即n V ∈∀βα,,),())(),((βαβα=T T ,故T 是正交变换.例8、设321,,ααα是欧氏空间3V 的一组标准正交基,求出3V 的一个正交变换T ,使得⎪⎩⎪⎨⎧+-=-+=).22(31)(),22(31)(32123211ααααααααT T 解 设3322113)(ααααx x x T ++=,使得)(),(),(321αααT T T 是标准正交的,因)(),(21ααT T 已标准正交,则只要满足1)(,0))(),((,0))(),((32313===αααααT T T T T ,即⎪⎩⎪⎨⎧=++=+-=-+.1,022,022232221321321x x x x x x x x x 解得32,32,1321==-=x x x ,即)22(31)(3213αααα++-=T ,得)(),(),(321αααT T T 是标准正交基.因T 把标准正交基变为标准正交基,故T 是正交变换.另法 设)(3αT 的坐标为T x x x ),,(321,由A x x x T T T ),,(2313132232),,())(),(),((321321321321ααααααααα=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. T 是正交变换⇔A 为正交阵.由E A A T =,解得32,31321==-=x x x ,则)22(31)(3213αααα++-=T .例9、设0x 是欧氏空间V 中的单位元素,定义变换00),(2)(x x x x x T -= )(V x ∈(1) 验证T 是线性变换;(2) 验证T 既是正交变换,又是对称变换;(3) 验证0x 是T 的一个特征向量,并求其对应的特征值. 证 (1) 设V y x ∈,,R l k ∈,,则有00),(2)()(x x ly kx ly kx ly kx T +-+=+=]),(2[]),(2[0000x x y y l x x x x k -+-=))(())((y T l x T k +, 故T 是线性变换.(2) 因为),(),(),(4),)(,(4),())(),((002000x x x x x x x x x x x x x T x T =+-=所以T 是正交变换.设V y ∈,则00),(2)(x x y y y T -=,于是有).),((),)(,(2),())(,(),,)(,(2),()),((0000y x T x x x y y x y T x y x x x y x y x T =-=-=故T 也是对称变换.(3) 直接计算可得.)1(2),(2)(00000000x x x x x x x x T -=-=-=故0x 是T 的对应于特征值1-=λ的特征向量.例10、证明欧氏空间n V 的线性变换T 为反对称变换,即),()),(,()),((n V y x y T x y x T ∈-=的充要条件是T 在n V 的标准正交基下的矩阵为反对称矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,线性变换T 在该基下的矩阵为n n ij a A ⨯=)(,即A x x x x x x T n n ),,(),,,(2121 =.则有.))(,(,)(,)),((,)(22112211ij j i n nj j j j ji j i n ni i i i a x T x x a x a x a x T a x x T x a x a x a x T =+++==+++=必要性 设T 是反对称变换,则有))(,()),((j i j i x T x x x T -=,即ij ji a a -=,),,2,1,(n j i =,故A A T -=.充分性 设A A T -=,则对任意的n V y x ∈,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x x T x x x ξξξξ 1111),,()(,),,(,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x y T x x y ηηηη 1111),,()(,),,(. 因为n x x x ,,,21 是标准正交基,所以=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅=n T n A y x T ηηξξ 11),,()),(()).(,(),,(11y T x A n n -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅-ηηξξ 故T 是反对称变换.例11、设欧氏空间n V 的正交变换T 的特征值都是实数,证明存在n V 的标准正交基,使得T 在该基下的矩阵为对角矩阵.分析 正交矩阵是实的正规矩阵,当它的特征值都是实数时,它能够正交相似于对角矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,正交变换T 在该基下的矩阵为A ,那么A 是正交矩阵,也是实的正规矩阵.因为T 的特征值都是实数,所以A 的特征值都是实数.于是存在正交矩阵Q ,使得Λ==defn Tdiag AQ Q ),,,(21λλλ ,其中),,2,1(n i i =λ是A 的特征值.令Q x x x y y y n n ),,,(),,,(2121 =,则n y y y ,,,21 是n V 的标准正交基,且T 在该基下的矩阵为Λ==-AQ Q AQ Q T 1【评注】 本例结果表明,特征值都是实数的正交变换是对称变换. 例12、设T 是欧氏空间V 的正交变换,构造子空间},),({},,)({21V x x T x y y V V x x x T x V ∈-==∈==证明⊥=21V V .证 先证⊥⊂21V V .任取10V x ∈,则有00)(x x T =.对于任意的2V y ∈,有))(,(),())(,(),(0000x T x x x x T x x y x -=-=0),(),())(),((),(0000=-=-=x x x x x T x T x x 所以,20⊥∈V x 故.21⊥⊂V V再证12V V ⊂⊥,任取⊥∈20V x ,那么200))((V x T x ∈-,从而有0))(,(000=-x T x x ,.0))(,(2),())(,(2),())(),(())(,(2),())(),((0000000000000000000=-=+-=+-=--x T x x x x x T x x x x T x T x T x x x x T x x T x所以0)(00=-x T x ,即00)(x x T =,也就是10V x ∈,故12V V ⊂⊥.例13、设n m C A ⨯∈,酉空间m C 中的向量内积为通常的,证明)()]([H A N A R =⊥.分析 设m C 中的向量T m ),,,(21ξξξα =与向量T m ),,,(21ηηηβ =的内积为βαηξηξηξβαT m m =+++= 2211),(,则0=βαT 的充要条件是0=βαH ,或者0=αβH .证 划分),,,(21n a a a A =,则有),,,()(21n a a a L A R =,},),({)]([11m j n n C C k a k a k A R ∈∈++⊥=⊥βββ},,,2,1,{m j C n j a ∈=⊥=βββ},,,2,1,0{mH jC n j a ∈===βββ )(},0{H m H A N C A =∈==βββ.例14、设n m C B A ⨯∈,,酉空间m C 中的内积为通常的,证明:)(A R 与)(B R 正交的充要条件是0=B A H .证 划分),,,(21n a a a A =,),,,(21n b b b B =,则有),,,()(21n a a a L A R =,),,,()(21n b b b L B R =根据例15结果可得,)(A R 与)(B R 正交的充要条件是)()]([)(H A N A R B R =⊂⊥,即)()(H j A N B R b ⊂∈ ),,2,1(n j =,或者0=j H b A ),,2,1(n j =,也就是0=B A H .例15、在4R 中,求一单位向量与)1,1,1,1(),1,1,1,1(---及)3,1,1,2(均正交. 解 设),,,(4321ξξξξ=x 和已知向量正交,即⎪⎩⎪⎨⎧=+++=+--=+-+.032,0,0432143214321ξξξξξξξξξξξξ 该齐次线性方程组的一个非零解为)3,1,0,4(-=x ,单位化可得)263,261,0,264(1-==x x y ,即y 为所求的单位向量. 例16、设A 为n 维欧氏空间V 的一个线性变换,试证:A 为正交变换的充分必要条件是βαβα-=-)()(A A .证 必要性))()(),()(()()(βαβαβαA A A A A A --=-),(),(),(),(βββααβαα+--= βαβαβα-=--=),(.充分性 取0=β,于是有αα=)(A ,即A 保持V 中的向量长度不变,所以A 为正交变换.例17、对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A ,求正交(酉)矩阵P ,使AP P AP P T =-1为对角矩阵.解 可求得)10()1()det(2--=-λλλA I ,于是A 的特征值为10,1321===λλλ.对应121==λλ的特征向量为T T x x )1,0,2(,)0,1,2(21=-=.正交化可得T T y y )1,54,52(,)0,1,2(21=-=;再单位化可得T T p p )535,534,532(,)0,51,52(21=-=.对应103=λ的特征向量为T x )1,1,21(3--=,单位化可得T p )32,32,31(3--=,故正交矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32535032534513153252P 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011AP P T . 例18、设A 是n 阶实对称矩阵,且A A =2(即A 是幂等矩阵),证明存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.证 设A 的属于特征值λ的特征向量为x ,即x Ax λ=,则有x x A 22λ=.因为A A =2且0≠x ,所以02=-λλ,即0=λ或1.再由A 实对称知,存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.例19、设21,V V 是欧氏空间V 的两个子空间,证明.)(,)(21212121⊥⊥⊥⊥⊥⊥+==+V V V V V V V V证 先证第一式.设⊥+∈)(21V V x ,即)(21V V x +⊥.于是1V x ⊥且2V x ⊥,或者⊥∈1V x 且⊥∈2V x ,即⊥⊥∈21V V x .故)()(2121⊥⊥⊥⊂+V V V V .又设⊥⊥∈21V V x ,即⊥∈1V x 且⊥∈2V x .于是1V x ⊥且2V x ⊥,或者)(21V V x +⊥,即⊥+∈)(21V V x .故⊥⊥⊥+⊂)()(2121V V V V .因此第一式成立.对⊥1V 与⊥2V 应用第一式,有212121)()()(V V V V V V ==+⊥⊥⊥⊥⊥⊥⊥,故⊥⊥⊥+=2121)(V V V V ,即第二式成立.例20、(1) 设A 为酉矩阵且是Hermite 矩阵,则A 的特征值为1或1-. (2) 若A 是正规矩阵,且A 的特征值1=λ,则A 是酉矩阵.证 (1) 因A 为酉矩阵,则A 的所有特征值λ具有1=λ;又A 是Hermite 矩阵,则A 的特征值皆为实数,故A 的特征值为1或1-.(2) 因A 是正规矩阵,且A 的特征值1=λ,则有酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, .11221E AU A U n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= λλ故有E A A H =,即A 是酉矩阵.例21、A 为n 阶正规矩阵,),,2,1(n i i =λ是A 的特征值,证明A A H 与HAA 的特征值为n i i ,,2,1,2=λ.证 由A 正规,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,,U AA U AU A U HH n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221λλ ,故A A H 与H AA 的特征值皆为22221,,,n λλλ .例22、设A 为n 阶正规矩阵,证明 (1) 若对于正数m ,有0=m A ,则0=A . (2) 若A A =2,则A A H =. (3) 若23A A =,则A A =2.证 (1) 若0=m A ,则A 的特征值皆为零,又A 是正规矩阵,A 可酉对角化,即有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000 AU U H , 故有0=A .(2) A A =2,则A 的特征值为1或0,假定r A r =)(;A 可酉对角化为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=000,000)(,000r HH Hr H H rH E U A U E AU U E AU U , 可得A A H =.(3) 23A A =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22121)(,n H n H AU U AU U λλλλ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33132212,n H n H U A U U A U λλλλ ,由23A A =,得0,23==i i i λλλ或1=i λ,不妨设⎪⎪⎭⎫ ⎝⎛=000rH E AU U ,也有⎪⎪⎭⎫⎝⎛=0002r H E U A U , 故有A A =2.例23、A 为n 阶Hermite 矩阵,设A 的n 个特征值为n λλλ≤≤≤ 21,证明1m in ,m ax λλ==∈∈XX AXX XX AX X H H C X n H H C X n n . 证 对于Hermite 二次型AX X f H =,必有酉变换UY X =,使化为标准形2222211n n UYX Hy y y AX X λλλ+++== ,又2222122n H y y y Y X X X+++=== ,则n nn n H H y y y y y y X X AX X λλ=++++++≤2222122221)( . 设n X 为A 对应于n λ的特征向量,即n n n X AX λ=,则n nHn nH n n n H n n H n X X X X X X AX X λλ==, 故有n H H C X XX AX X n λ=∈max . 同理有1min λ=∈XX AX X H H C X n . 例24、A 是正规矩阵,证明(1) A 的特征向量也是H A 的特征向量. (2) n C X ∈∀,AX 与X A H 的长度相等. 证 (1) A 为正规矩阵,则有酉矩阵,使得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H H n HU A U AU U λλλλλλ2121,, 其中],,,[21n U ααα =,n ααα,,,21 为A 的特征向量,由上两式可见i i i A αλα=,i i i H A αλα=,故A 与H A 有相同的特征向量.(2) 由H H AA A A =,X AA X X A X A XA H H H H H H ==)()(22)()(AX AX AX AX A X H H H ===. 证得AX X A H =.例25、B A ,为n 阶实对称矩阵,B 为正定矩阵,证明存在同一可逆矩阵P ,使Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==n T H u u AP P I BP P 1,. 证 B 为正定矩阵,必有可逆矩阵Q ,使.E BQ Q T =因A 为对称矩阵,则AQ Q T 也是对称矩阵,所以存在正交矩阵C ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T u u AQC Q C 1, 令QC P =,就有Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T u u AP P 1. 又E C C EC C BQC Q C T T T T ===,即有E BP P T =,故存在同一可逆矩阵P ,使Λ==AP P E BP P T T ,.例26、(1) 设n n C A ⨯∈,则n n U A ⨯∈的充要条件是A 的n 个列(或者行)向量是标准的正交向量组.(2) r n r U U ⨯∈1的充要条件是E U U H =11. 证 (1) 必要性 设⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H n H H Hn A A αααααα 2121],,,[.由于E A A H =,所以有E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 于是可得⎪⎩⎪⎨⎧==≠=ji ji j Hi j Hi ,1,0αααα 这表明矩阵A 的n 个列向量是一个标准的正交向量组.同样可以证明A 的n 个行向量是一个标准的正交向量组.充分性 设矩阵A 的n 个列向量n ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=ji ji j Hi j H i ,1,0αααα 从而可知E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 此即E A A H =,进一步也有E AA H =,这表明A 为一个酉矩阵.类似地可以证明行的情况.(2) 必要性 设矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 由此可得r r H r H r H r r H H H r H H H r H r H H H E U U =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=αααααααααααααααααααααααα 212221************],,,[. 充分性 设.],,,,[211211⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H r H H Hr U U αααααα 由于r H E U U =11,所以有rr H r H r H r r H H H r H H H r H r H H E =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[.于是可得⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 这表明矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组.例27、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=502613803A , 试求酉矩阵U ,使得AU U H 是上三角矩阵.解 首先求出其特征多项式3)1(+=-λλA E .当1-=λ时,求出属于特征值1--1的一个单位特征向量T ]61,61,62[1-=η.解与1η内积为零的方程02321=++-x x x ,求得一个单位解向量T]33,33,33[2=η.解与21,ηη内积为零的方程⎩⎨⎧=++=++-002321321x x x x x x 又求得一个单位解向量T]22,22,0[3-=η. 于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--=223361223361033621U , 经过计算可得⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=6265036540337227111AU U H . 记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=626536541A , 可得21)1(+=-λλA E .对于1-=λ时,求得一个单位特征向量T]515,510[1-=γ, 再求得一个与1γ正交的向量2γT]510,515[2=γ. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5105155155101V , 经计算可得⎥⎥⎦⎤⎢⎢⎣⎡---=1066251111V A V H. 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=510515051551000012U , 记⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==5523030610630615515306221U U U , 则⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=1006625102015715301AU U H . 例28、设B A ,均为n 阶正规矩阵,试证A 与B 相似的充要条件是A 与B 酉相似.证 必要性 由于A 与B 均为正规矩阵,所以分别存在正规矩阵21,U U ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HAU U λλλ2111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H BU U μμμ2122 其中),,2,1(0n i i =>λ为A 的特征值,),,2,1(0n i i =>μ为B 的特征值.又A 与B 相似,于是有2211,BU U AU U H H i i ==μλ,此时B U AU U U H =--121121)(,这表明A 与B 相似.充分性 显然.例29、已知A 为实矩阵,且有T T AA A A =,证明A 必为对称矩阵. 证 由T T AA A A =可知,A 为正规矩阵,那么存在酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221n TH AU A U λλ .又A A T 为实矩阵,由上式可知其特征值也是实数,从而矩阵U 是一个正交矩阵,即1-==U U U T H ,从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n AU U λλ 11, 其中n λλ,,1 一定为实数.同样也有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n T U A U λλ 11. 由此可得A A T =,即A 为实对称矩阵.例30、设B A ,均为正规矩阵,且有BA AB =,证明: (1)B A ,至少有一个公共的特征向量;(2)B A ,可同时酉相似于上三角矩阵,即存在酉矩阵W ,使得AW W H 以及BW W H 均为上三角矩阵;(3)B A ,可同时酉相似于对角矩阵; (4)AB 与BA 均为正规矩阵.证 (1) 设λV 是矩阵A 的属于特征值λ的特征子空间,若λαV ∈,即λαα=A ,则αλαB BA =,由于BA AB =,所以有)()(αλαB B A =,这表明λαV B ∈,从而λV 是B 的不变子空间,故在λV 中存在B 的特征向量β,它也是A的特征向量.(2) 对B A ,的阶数用归纳法证明.当B A ,的阶数均为1时,结论显然成立.设单位向量1α是B A ,的一个公共特征向量,再适当选取1-n 个单位向量n αα,,2 ,使得},,,{21n ααα 为标准正交基,于是],,,[21n U ααα =为酉矩阵,且有],,,[,2111n B B b BU b B ααααα ==.进一步可得,01B B b BU U H=⎥⎦⎤⎢⎣⎡=β这里β是)1(1-⨯n 矩阵,1B 是一个1-n 阶矩阵,另外也有A A aAU U H =⎥⎦⎤⎢⎣⎡=10η,这里η是)1(1-⨯n 矩阵,1A 是一个1-n 阶矩阵.由BA AB =又有)()()()(H H H H UAU UBU UBU UAU ⋅=⋅,于是可得BA AB =,由此可推得1111A B B A =.故由归纳法假设,存在1-n 阶酉矩阵1V ,使得∆=111V B V H ,这里∆为一个上三角矩阵,记.,0011UV W V V =⎥⎦⎤⎢⎣⎡=于是有V BU U V BW W H H H )(=⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000100011111V b V B b V H ββ, 显然BW W H 是一个上三角矩阵.容易验证W 是酉矩阵.同样可得,AW W H 也是一个上三角矩阵.(3) 由(2)可设R AW W H =,这里R 是一个上三角矩阵,那么H H H R W A W =,从而可得H H H H HH W RR W W WR WRWAA )(=⋅=,H H H H H H W R R W WRW W WR A A )(=⋅=.又A A AA H H =,所以可得R R RR H H =,从而知R 为一个对角矩阵.同样可证BW W H 也是一个对角矩阵.(4) 由(3)可设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H n H u u BW W AW W 11,λλ, 于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n H ABW W μλμλ 11. 由正规矩阵结构定理可知AB 为正规矩阵,那么BA 也为正规矩阵.【评注】教材中已给出一种证明方法,但是与这里的证明方法完全不同,这里主要运用Schur 引理的证明思想.例31、已知下列正规矩阵,求酉矩阵U ,使得AU U H 为对角矩阵.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0000110i i A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+------+=062266234426434i i i i i i i iA (3)⎥⎦⎤⎢⎣⎡-=1111A 解 (1) 首先求出矩阵A 的特征多项式为)2(2+=-λλλA E ,所以A 的特征值为0,2,2321=-==λλλi i .对于特征值i 2,求得一个特征向量T i X ]1,,2[1-=. 对于特征值i 2-,求得一个特征向量T i X ]1,,2[2--=. 对于特征值0,求得一个特征向量T i X ]1,,0[3=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TTTi i i ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=22,22,0,21,2,22,21,2,22321ααα,于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==222121222202222],,[321i i iU ααα, 而且有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000020002i i AU U H .(2) 首先求出矩阵A 的特征多项式为)9)(81(2-+=-λλλA E ,所以A 的特征值为9,9,9321==-=λλλi i .对于特征值i 9-,求得一个特征向量T iX ]1,1,2[1-=.对于特征值i 9,求得一个特征向量T i X ]1,21,[2-=.对于特征值9,求得一个特征向量T i X ]21,1,[3-=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TT T i i i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=31,32,32,32,31,32,32,32,3321ααα.于是取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---==31323232313232323],,[321i ii U ααα, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=900090009i i AU U H . (3) 首先求出矩阵A 的特征多项式为222+-=-λλλA E ,所以A 的特征值为i i -=+=1,121λλ.对于特征值i +1,求得一个特征向量T i X ]1,[1=. 对于特征值i -1,求得一个特征向量T i X ]1,[2-=.由于A 为正规矩阵,所以21,X X 是彼此正交的,只需分别将21,X X 单位化即可TTi i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=22,22,22,2221αα.于是取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==22222222],[21i i U αα, 从而有⎥⎦⎤⎢⎣⎡-+=i i AU U H1001. 【评注】这三个题目只需按照教材介绍的正规矩阵可对角化具体过程进行即可.例32、试举例说明:可对角化矩阵不一定可酉对角化.解 设Y X ,是两个线性无关但不正交的向量,记],[Y X P =,取b a b a D ≠⎥⎦⎤⎢⎣⎡=,00 那么1-=PDP A ,就是一个可对角化矩阵,但不是可酉对角化矩阵.例33、证明(1) Hermite 矩阵的特征值为实数;(2) 反Hermite 矩阵的特征值为零或纯虚数; (3) 酉矩阵特征值的模长为1.证 (1) 设A 为一个Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值为λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ==用X 从右端乘上式两端有X X AX X H H λ=,于是有X X X X H H λλ=.由于0≠X ,所以0≠X X H ,从而有λλ=,这表明λ是实数.(2) 设A 为一个反Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ=-=用X 从右端乘上式两端有X X AX X H H λ=-,于是有X X X X H H λλ=-.由于0≠X ,所以0≠X X H ,从而有λλ=-,这表明λ为零或纯虚数. (3) 设A 为一个酉矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得H H H X A X λ=.用AX 从右端乘上式两端有X X EX X H H λλ=,于是有0)1(=-X X H λλ.由于0≠X ,所以0≠X X H ,从而有1=λλ,这表明λ的模长为1.例34、设A 与B 均为Hermite 矩阵,试证A 与B 酉相似的充要条件是A 与B 的特征值相同.证 必要性 由于相似矩阵有相同的特征值,所以A 与B 的特征值相同.充分性 A 与B 均为Hermite 矩阵,所以分别存在酉矩阵21,U U ,使得.,2122211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H n H BU U AU U ηηηδδδ其中),,2,1(n i i =δ为A 的特征值,),,2,1(2n i =η为B 的特征值.又i i ηδ=,从而2211BU U AU U H H =,此即B U U A U U H H H =)()(2121,这表明A 与B 酉相似.例35、设A 是Hermite 矩阵,且A A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡=000rH EAU U . 证 由于A 是Hermite 矩阵,所以存在酉矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H AU U λλλ21, 其中),,2,1(n i i =λ为A 的特征值,又A 为幂等矩阵,于是0=i λ或1.不妨设A 的秩为r ,那么i λ中有r 个1,r n -个0.记0,12121========-++r n r r r λλλλλλ .即⎥⎦⎤⎢⎣⎡=000rH EAU U . 例36、设3R 中的向量为),,(321ξξξα=,线性变换为)32,32,22()(32132132ξξξξξξξξα+---+---=T ,求3R 的一个基,使T 在该基下的矩阵为对角矩阵.解 取3R 的简单基321,,e e e ,计算得),3,1,2()(),1,3,2()(),2,2,0()(321--=--=--=e T e T e T那么,T 在基321,,e e e 下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=312132220A . A 的特征值为2,4321-===λλλ,与之对应的线性无关的特征向量依次为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-112,201,021. 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=244,120102211P , 则有Λ=-AP P 1,由P e e e ),,(),,(321321=ααα求得3R 的另一个基为).1,1,2(2),2,0,1(2),0,2,1(23213312211=++=-=+-=-=+-=e e e e e e e ααα T 在该基下的矩阵为Λ.四、教材习题同步解析1、设V 是实数域R 上的n 维线性空间,12,,,n εεε是V 的一组基,对于V 中向量n n x x x εεεα+++= 2211,n n y y y εεεβ+++= 2211,定义内积为n n y nx y x y x +++= 22112),(βα,证明V 在此内积下构成一个内积空间.证 设R k V z z z n n ∈∈+++=,2211εεεγ ,则有n n x ny x y x y +++== 22112),(),(αββα;111222(,)()2()()n n n x y z x y z nx y z αβγ+=++++++11221122(2)(2)n n n n x y x y nx y x z x z nx z =+++++++(,)(,)αβαγ=+;1122(,)2(,)n n k kx y kx y nkx y k αβαβ=+++=.当0=α时,0),(=αα;当0≠α时,至少有一个00≠i x ,从而0),(200>=i x i αα,因此,该实数是V 上的内积,V 构成一个内积空间.2、设V 是实数域R 上的n 维线性空间,n εεε,,21 是V 的一组基,A 是一个n 阶正定实对称矩阵.定义V 的内积如下:对于V 中向量βα,,如果它们在基12,,,n εεε下的坐标分别为y x ,,则Ay x T =),(βα,证明V 是一个内积空间.证 设V ∈γ,在基12,,,n εεε下的坐标为z ,R k ∈,则有),()(),(αββα=====Ax y x A y Ay x Ay x T T T T T T ; ),(),()(),(γαβαγβα+=+=+=+Az x Ay x z y A x T T T ; ),()(),(βαβαk Ay kx Ay kx k T T ===;因为A 为n 阶正定实对称矩阵,所以Ax x T =),(αα为正定二次型.0≠α时,0),(>αα;0=α时,0),(=αα,所以V 是一个内积空间.3、在实内积空间4R (内积为实向量的普通内积)中,已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,1111,0011321βββ,试求出与321,,βββ都正交的单位向量.解 设T x x x x ),,,(4321=α满足,3,2,1,0),(==i i βα有⎪⎩⎪⎨⎧=-+-=--+=+0004321432121x x x x x x x x x x ,可取T)1,1,1,1(--=α,故单位向量为 T ⎪⎭⎫ ⎝⎛--21,21,21,21或T⎪⎭⎫⎝⎛--21,21,21,21. 4、设内积空间3C 中向量βα,的内积为αββαH =),(判断下述向量βα,是否正交:1)T T i i i i )2,1,1(,),,1(-+=--=βα; 2)T T i i i i i )3,1,,1(,)2,,1(-=+-=βα.解 1)01)2,1,1(),(=⎪⎪⎪⎭⎫⎝⎛--+-=i i i i βα,故正交.2)04721)3,,1(),(≠+=⎪⎪⎪⎭⎫ ⎝⎛+-+-=i i i i i i βα,故不正交.5、设12,,,n ααα是n 维内积空间V 的一组基,如果V 中向量β使.,2,1,0),(n i i ==αβ证明 0=β.证 令n n x x x αααβ+++= 2211,有0),(),(),(11===∑∑==ni i i ni i i x x αβαβββ,由内积定义,有0=β.6、设V 是实数域R 上的内积空间,321,,εεε是V 的一组标准正交基.证明)22(31),22(31),22(31321332123211εεεηεεεηεεεη--=+-=-+=也是V 的一组标准正交基.证 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232),,(),,(321321εεεηηη,记矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232A ,因为,E A A T =所以A 为正交矩阵,又因为321,,εεε为标准正交基,所以321,,ηηη也是标准正交基.7、设54321,,,,εεεεε是5维内积空间V 的一组标准正交基.32132125112,,εεεαεεαεεα++=-=+=.求子空间),,(321αααL 的一组标准正交基.解 设0332211=++αααk k k ,则0)()2(51332321321=+++-+++εεεεk k k k k k k ,因为5321,,,εεεε线性无关,则0321===k k k ,所以321,,ααα线性无关,所以他们是),,(321αααL 的一组基.将321,,ααα正交化,单位化,即得),,(321αααL 的一组标准正交基.记)0,0,1,1,2(),0,0,0,1,1(),1,0,0,0,1(321=-==x x x ,则正交化,11x y =; ⎪⎭⎫ ⎝⎛--=-=21,0,0,1,21),(),(1111222y y y y x x y ;()1,0,1,1,1),(),(),(),(13222231111333-=-=--=y x y y y y x y y y y x x y ;单位化)1,0,0,0,1(222211==y z ;)1,0,0,2,1(663622--==y z ; )1,0,1,1,1(213-=z 所以标准正交基)(21),2(66),(22532135212511εεεεγεεεγεεγ-++=--=+=. 8、已知线性空间4][x R 对于内积⎰-=11)()())(),((dx x g x f x g x f构成一个内积空间.从基32,,,1x x x 出发,经正交单位化求一组标准正交基.解 因为32),(,0)1,(,211)1,1(1121111=====⋅=⎰⎰⎰---dx x x x xdx x dx , 52),(,32)1,(,0),(2222===x x x x x ,…… 正交化,令11=β;x x x =⋅-=1)1,1()1,(2β; 31),(),(1)1,1()1,(22223-=⋅-⋅-=x x x x x x x x β;x x 5334-=β;再单位化x x x x x x 41434145;4104103;26),(;22)1,1(34232211-=-=====ηηβηβη9、对于实数域R 上的线性空间n m R ⨯,规定内积如下:对于n m R ⨯中任意元素][],[ij ij b B a A ==,则=),(B A 迹∑∑===n i mj ji ji Tb a A B 11)(.证明n m R ⨯对此内积构成欧氏空间.证 ∑∑∑∑=======n i m j m j ni ji ji ji ji A B a b b a B A 1111),(),(;对任意的R k ∈,n m ij R a C ⨯∈=][,有=+),(C B A 迹=+))((A C B T 迹()T T B A C A +=迹)(A B T +迹()T C A =(,)A B (,)A C +;=),(B kA 迹=))((kA B T 迹)(A kB T =k 迹)(A B T =),(B A k ;0),(112≥=∑∑==n i mj ji a A A ,当且仅当0=ji a (即0=A )时,0),(=A A ,所以nm R ⨯对此内积构成欧氏空间.10、设欧氏空间4R (内积为普通实数组向量的点积)的一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,0111,0011,00014321αααα,求在这组基下的度量矩阵A .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛==4321332122211111)),((j i A αα.11、在线性空间4R 上定义一种内积成为欧氏空间.已知在基T T T T e e e e )1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1(4321====下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3101121001211012A . 1) 求在基T T T T )1,1,0,1(,)1,2,1,0(,)0,0,2,1(,)0,0,1,1(4321==-=-=αααα下的度量矩阵B .2) 求实数a ,使向量T a )1,2,,1(-=α与向量T )0,2,1,1(-=β正交. 解 1) 因为由基4321,,,e e e e 到基4321,,,αααα的过渡矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-2100110010113112;11001200012110111P P , 设向量α在4321,,,e e e e 下的坐标为x ,则α在4321,,,αααα下的坐标为x P 1-,如果在基4321,,,αααα下的度量矩阵为B ,则Ax x x BP x P T T ==--11)(),(αα,所以⎪⎪⎪⎪⎪⎭⎫⎝⎛----===--79119130010631032,)(11AP P B A BP P T T2)βα,在4321,,,e e e e 下的坐标分别为T a )1,2,,1(-和T )0,2,1,1(-,所以0)0,2,1,1()1,2,,1(),(=--=T A a βα时,有310=a . 12、设321,,εεε是欧氏空间V 的一组基,内积在这组基下的度量矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=612121211A已知V 的子空间1V 的一组基为112αεε=+,2123αεεε=+-.1) 证明21,αα是1V 的一组正交基; 2) 求1V 的正交补⊥1V 的一组基. 证 1) 因为12111213212223(,)(,)(,)(,)(,)(,)(,)ααεεεεεεεεεεεε=+-++-112(1)2(1)0=--+-+--=,故21,αα正交,所以21,αα是1V 的一组正交基.2) 只需再找到V 中向量3α使321,,ααα为V 的一组正交基,则3α即为⊥1V 的一组基.方法一:设3322113εεεαx x x ++=,利用正交条件⎩⎨⎧==0),(0),(3231αααα 即 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0)1,1,1(0)0,1,1(321321x x x A x x x A 可得一解为2,2,7321-===x x x ,即得3213227εεεα-+=.方法二:先将21,αα扩充为V 的一组基123,,ααξ,为此只需123,,αατ的坐标线性无关.例如取31ξε=即可.再将123,,ααξ正交化.因21,αα已是正交组,正交化过程只需从第三个向量做起.令(3)(3)311223k k αααξ=++,算出(3)(3)3132121122(,)(,)20,(,)(,)5k k ξαξααααα=-==-=,即得3213525257εεεα-+=.13、设4维欧氏空间V 在基4321,,,εεεε下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100162102100101A , 已知V 中向量323312211,,εεαεεαεεα-=+=+=,V 的子空间1123(,,)V L ααα=.1) 试求1V 的一组标准正交基; 2) 设有1V 的线性变换σ,使112()(1σαα=+,212()(1(2σααα=-++-,313()2σαα=+请判明σ是不是1V 的正交变换或对称变换?解 1) 显然321,,ααα线性相关,其极大无关组21,αα即为1V 的一组基,将。
矩阵论试题
矩阵论试题一、选择题1.设A是n阶方阵,若|A|=0,则A()。
A. 一定是可逆矩阵B. 一定是不可逆矩阵C. 可能是可逆矩阵,也可能是不可逆矩阵D. 以上说法均不正确答案:B2.若矩阵A与B相似,则A与B具有()。
A. 相同的特征值B. 相同的特征向量C. 相同的秩D. 相同的行列式答案:A、D(相似矩阵具有相同的特征值和行列式,但特征向量不一定相同,秩也一定相同,但此题只问具有什么,故A、D为正确答案)3.下列矩阵中,属于正交矩阵的是()。
A. 单位矩阵B. 对角矩阵C. 上三角矩阵D. 任意方阵答案:A(单位矩阵是正交矩阵的一种特殊情况)二、填空题1.设矩阵A=(1324),则A的行列式|A|=______。
答案:-2(根据行列式的定义和计算方法,有|A|=1×4-2×3=-2)2.若矩阵A与B满足AB=BA,则称A与B为______。
答案:可交换矩阵(或称为可交换的)3.设n阶方阵A的伴随矩阵为A,则|A|=______。
答案:|A|(n-1))三、计算题1.设矩阵A=(2113),求A的逆矩阵A^(-1)。
解答:首先求|A|,有|A|=2×3-1×1=5≠0,所以A可逆。
然后利用逆矩阵的公式A^(-1)=(1/|A|)×A*,其中A*是A的伴随矩阵。
A的伴随矩阵A=(3−1−12)(伴随矩阵的元素是A的每个元素的代数余子式构成的矩阵的转置)。
所以A^(-1)=(1/5)×A=(3/5−1/5−1/52/5)。
2.设矩阵A=147258369,求A的秩R(A)。
解答:对矩阵A进行初等行变换,将其化为行最简形。
通过初等行变换,可以得到A的行最简形为1002−303−60。
所以R(A)=2(非零行的个数)。
四、证明题1.证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。
证明:根据可逆矩阵的定义,若矩阵A可逆,则存在n阶方阵B,使得AB=BA=E(E为单位矩阵)。
矩阵论练习题
练习一一﹑选择题1、对于()212,x x R ∀∈,下列变换是2R 上的线性变换的是 ( D ).(A) ()()21212,,T x x x x =; (B) ()()21212,,T x x x x =;(C) ()()1212,,0T x x x x =; (D) ()()1212,,T x x x x =-. 2、设()(),A B λλ为两个n 阶λ-矩阵,则 ( D ).(A) 若()A λ满秩,则()A λ必可逆; (B) ()A λ可逆当且仅当()0A λ≠;(C) 若()A λ与()B λ秩相等,则()A λ与()B λ等价;(D) 若()A λ与()B λ等价,则()A λ与()B λ具有相同的不变因子. 3、设()n n ij A a C ⨯=∈,则下列不能构成矩阵范数的是( A ).(A) ,max ij i ja ; (B) ,max ij i jn a ⋅; (C) 1max nij ij a =∑; (D) 1max nij j i a =∑.4、设n n A C ⨯∈,H A 为A 的共轭转置矩阵,()A ρ为A 的谱半径,A 为A 的范数,则下列说法不正确的是( C ).(A)()[]()kk A A ρρ=; (B) ()()H H A A AA ρρ=;(C) 若()1A ρ<,必有E A -可逆; (D) 若A 为收敛矩阵,必有()1A ρ<. 5、设V 为酉空间,C λ∈,,V αβ∈且(),αβ为α与β的內积,则下列说法不正确的是( B ).(A) ()(),,λαβλαβ=; (B) ()(),,αλβλαβ=; (C) ()()(),,,αβγαβαγ+=+; (D) ()()(),,,βγαβαγα+=+.二﹑填空题1、已知100231120012233002A -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则A 的LDU 分解为 .2、设sin ()2cost t t te A t t ⎛⎫= ⎪⎝⎭,则0()x A t dt ⎰=21cos 1sin x x x xe e xx ⎛⎫--+ ⎪⎝⎭.3、设矩阵2242t tt At tt t e te te e te e te ⎡⎤-=⎢⎥-+⎣⎦ ,则矩阵A =1143-⎛⎫⎪-⎝⎭.4、矩阵100110111A ⎛⎫⎪= ⎪ ⎪⎝⎭ 相对于矩阵范数∞ 的条件数为 6 .5、设11122122⎛⎫=⎪⎝⎭x x X x x ,(),A a b =,则()d AX dX =0000a a b b ⎛⎫⎪⎝⎭. 6、已知101112003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则543258884A A A A A E -+-+- =001102002⎛⎫⎪⎪ ⎪⎝⎭.7、已知⎪⎪⎪⎭⎫⎝⎛=987654321A ,则A 的正奇异值的个数为 2 .三、计算题已知 1(1,3,2,1)T α=-,2(1,0,0,2)T α=,1(0,1,1,3)T β=,2(3,2,1,6)T β=--, 且112{,}V span αα=,212{,}V span ββ=,求12V V +与12V V 的基和维数. 解:因为1212{,}V V span αα+=+12{,}span ββ=1212{,,,}span ααββ而12121103100130120102(,,,)2011001112360000ααββ--⎛⎫⎛⎫⎪ ⎪-⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭初等行变换 由于121,,ααβ是向量组1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ且21212βααβ=--. 由行最简形知12dim()2,dim()2,V V ==又121212dim()dim dim dim()V V V V V V +=+- 故12dim()1V V =311100222110201236001212A ⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭由21212βααβ=--得()12121223,3,2,3TV V ξααββ=-=+=--∈所以()3,3,2,3T--为12V V 的一组基。
矩阵论学习复习资料
x V = X = 1 x 3
x 2 x1 − x 4 = 0 x − x = 0, x4 2 3
5. 设 V1, V2 分别是
V1 = {(x1, x2 L, x2 ) x1 + x2 +L+ xn = 0, xi ∈K} V2 = {(x1, x2 L, x2 ) xi − xi+1 = 0, xi ∈K}
6. 求下列矩阵的 求下列矩阵的Jordan标准形 标准形
1 0 3 1 −1 1 − 4 −1 0 A = − 3 − 3 3 , B = 7 1 2 − 2 − 2 2 − 7 − 6 −1
7. 求下列矩阵的最小多项式
a O −1 − 2 6 a A = −1 0 3, B = b −1 −1 3 N b
0 0 1 0
b N b a O a
8.设A 是一个 阶方阵,其特征多项式为 设 是一个6阶方阵 阶方阵, 最小多项式为m ƒ(λ)=(λ+2)2(λ-1)4, 最小多项式为 A(λ)=(λ+2)(λ-1)3, λ 求出A的若当标准形 求出 的若当标准形. 的若当标准形 9.对于 阶方阵 ,如果使 m=O成立的最小正整数 对于n 阶方阵A,如果使A 对于 成立的最小正整数 为m,则称 是m次幂零矩阵,证明所有 阶n-1次幂 次幂零矩阵, ,则称A是 次幂零矩阵 证明所有n阶 次幂 零矩阵彼此相似,并求其若当标准形 零矩阵彼此相似,并求其若当标准形. 10. 如果λ1,λ2,…, λs是A 的特征值,则Ak的特征值只能 的特征值, …
矩阵论复习 一. 线性空间 1. 线性空间的概念 2. 线性空间的基,维数与坐标(基变换与与坐 线性空间的基,维数与坐标( 标变换) 标变换) 3. 线性子空间的概念与运算 (1)定义 (2) 运算(交与和,直和) 定义 运算(交与和,直和)
矩阵论复习题综合
1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++ 12323(24)T x x x y y ++=+31321)43(y y x x x T +=++ 1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基. 11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=1)()())(),((dx x g x f x g x f若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解.13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。
矩阵论考试试题(含答案)
矩阵论试题一、(10分)设函数矩阵()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫⎝⎛-⎰⎰⎰⎰t tt t tdt tdt dt t dtt 0sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-==因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A 三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
矩阵论期末试题及答案
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
矩阵论考试题和答案(详细)
因此 B = Udiag (λ ,L , λ )U = Vdiag (λ ,L , λ )V H = E 。
H
1 3 1
1 3 n
1 3 1
1 3 n
-------------4
(2)因为 A ≥ 0 ,所以 A 的特征值均非负。设 A 的特征值为 λ1 ,L , λn ,且 λ1 ≥ L ≥ λn ≥ 0 , 则 A2 的特征值为 λ12 ,L , λn2 ,于是
AT Ax = AT b
的解, 所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 AT A 非奇异, 即 rank ( AT A) = n 。因为 rank ( AT A) = rank ( A) ,所以不相容线性方程组 Ax = b 的最 小二乘解唯一当且仅当 A 列满秩。 -----------4
记 P = U H V = ( pij ) ,则 diag (λ1 ,L , λn ) P = Pdiag (λ1 ,L , λn ) ,从而
λi pij = λ j pij (i, j = 1,L , n) ,
于是
1 1
λi3 pij = λ j3 pij (i, j = 1,L , n) ,
即
diag (λ13 ,L , λn3 ) P = Pdiag (λ13 ,L , λn3 ) ,
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
)−1 ( B T B )−1 B T
1 − 4 = 0 1 4
0 1 0
---------5
1 (2)因为 AA + b = 2 ≠ b ; 所以不相容的。 -----------3 2 1 4 -----------3 其极小最小二乘通解为 x = A + b = 2 1 − 4 (3)因为 x 是不相容线性方程组 Ax = b 的最小二乘解当且仅 x 是如下相容线性方程组
2011矩阵论复习题答案
2011矩阵论复习题答案一、简答题1. 请简述矩阵的基本运算有哪些,并给出相应的运算规则。
答:矩阵的基本运算包括加法、减法、数乘、乘法以及转置。
加法和减法是对应元素相加或相减;数乘是将矩阵的每个元素都乘以一个数;矩阵乘法是将第一个矩阵的行与第二个矩阵的列对应元素相乘后求和;转置是将矩阵的行和列互换。
2. 什么是特征值和特征向量?它们在矩阵理论中有何重要性?答:特征值是方阵A的一个标量λ,使得存在非零向量v满足Av=λv。
特征向量是与特征值λ相对应的非零向量v。
特征值和特征向量在矩阵理论中非常重要,因为它们可以用来描述线性变换的性质,如可对角化、稳定性分析等。
3. 矩阵的秩是什么?如何计算矩阵的秩?答:矩阵的秩是指矩阵中线性无关的行或列的最大数目。
计算矩阵的秩通常通过高斯消元法,将矩阵转换为行最简形式,然后计算非零行的数量。
二、计算题1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],求矩阵A的逆矩阵。
答:首先计算矩阵A的行列式,det(A) = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,得到A的逆矩阵为\[ \frac{1}{-2}\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} =\begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \]。
2. 已知矩阵B = \[\begin{bmatrix} 5 & 1 \\ 2 & 3\end{bmatrix}\],求矩阵B的特征值和特征向量。
答:首先计算矩阵B的特征多项式,det(B - λI) = (5-λ)(3-λ) - 2 = λ^2 - 8λ + 13。
解得特征值λ1 = 2, λ2 = 6。
对于λ1 = 2,解方程组(B - 2I)v = 0,得到特征向量v1 = k\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]。
11级-矩阵论试题与答案
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论学习复习资料共44页文档
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
矩阵论学习复习资料
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
江苏大学研究生考试矩阵论复习题
2014复习题1、设)(x f 在]2,0[上四阶连续可导,求)(x f 次数不超过3次的插值多项式)(x P ,使满足插值条件:1)0()0(==f P 、2)1()1(==f P 、1)2()2(==f P 、1)1()1(-='='f P ,并求余项表达式。
2、(1)已知(1)2,(1)0,(2)4f f f -=-==,求()f x 的二次插值多项式; (2)如果又知道(1)=0(2)=3f f '',,求()f x 的四次插值多项式。
3、设21()1f x x =+,()h I x 是对()f x 在[5,5]-上取10n =并按等距节点所求得的分段线性插值函数。
(1)求()h I x 在各节点间中点处的表达式(只需写出其表达式,不做数值计算); (2)在[5,5]-上估计()h I x 与()f x 的误差。
4、设2()[,]f x C a b ∈,()0f a =,()1f b =, 证明:21m a x |()|()m a x |()|8a x ba xbx a fx b a f x b a ≤≤≤≤-''-≤--。
5、观测得到二次多项式)(2x p 的值:表中)(2x p 的某一个函数值有错误,试找出并校正它。
6、已知函数)(x f 是一个多项式并满足下列函数表,试运用差商的方法确定)(x f 的次数及7、(1)求,a b 使得22(sin )I ax b x dx =+-⎰取最小值,并求此最小值。
(2)确定,,a b c 使得1221(arcsin )I x ax bx c -=---⎰取最小值,并求此最小值。
8、(1)求函数x x f πcos )(=在区间]1,0[上关于的二次最佳平方逼近多项式,并计算平方误差。
(2)求函数()sin2f x x π=在[1,1]-上的二次最佳平方逼近多项式,并计算平方误差。
9、设{}0()k k x ϕ∞=是区间[0,1]上最高次项系数为1的带权()x x ρ=正交的正交多项式,其中0()=1x ϕ。
08级-研-矩阵论试题与答案
一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =;(2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)T nA R n αβαβ=≠∈≥(1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m nrA R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),nn x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n nn n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012矩阵论复习题
1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕
对于任意的数R k ∈,定义k 与x 的数乘为
k x x k =⊗
问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由.
2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为
),(112211y x y x y x y x +++=⊕
对于任意的数R k ∈,定义k 与x 的数乘为
)2
)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由.
3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .
4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,
)}()(,0)0(|)({R P x f f x f S n ∈='=
证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim .
5. 设T 是2R 上的线性变换,对于基向量i 和j 有
j i i T +=)( j i j T -=2)(
1)确定T 在基},{j i 下的矩阵;
2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵.
6. 设T 是3R 上的线性变换,对于基},,{k j i 有
k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=
1)确定T 在基},,{k j i 下的矩阵;
2)求T 的零空间和像空间的维数.
7.在线性空间)(3R P 中
321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++= 讨论)(),(),(321x f x f x f 的线性相关性.
8.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭
到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 31211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭
的过渡矩阵. 9.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基.
10.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为
⎰=1
0)()())(),((dx x g x f x g x f 若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组标准正交基.
11. 在2[]P x 中,内积定义为:1
20,()(),,[].f g f x g x dx f g P x <>=∀∈⎰ (1)如果()612+-=x x x f ,计算f ;
(2)证明:任一线性多项式()bx a x g +=,都正交于()6
12+
-=x x x f . 12.设A 是n n C ⨯上的n 阶方阵,x 是n C 上的n 维列向量,证明:
22||||||||||||F Ax A x ≤⋅. 13.设n n C A ⨯∈,并且满足E A A H =,计算2||||A 和F A ||||.
14. 设 101202011A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭
,求A 的秩分解.
15.已知122112012422A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,求A 的最大秩分解。
16. 求矩阵10002i A i +⎛⎫= ⎪⎝⎭
的奇异值分解. 17.设m n A C ⨯∈,1)证明:()()H rank A A rank A =;
2) 证明:H A A 是半正定矩阵或正定矩阵。
18.求下列矩阵的谱阵和谱分解
400031013A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 332112310A ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭
19.设s λλλ,,,21Λ是n 阶单纯矩阵A 的重数为s r r r ,,,21Λ的特征值,∑==s
i i n r 1
i E 是A 的对应于i λ的谱阵,证明
1)0=j i E E ,(j i ≠ ),,2,1,s j i Λ= 2) ∑==s
i i E E 1
20.设函数矩阵⎪⎪⎭
⎫ ⎝⎛-=t t t t A cos sin sin cos , 求)(t A dt d , ))((det t A dt d 和))(det(t A dt d . 21.证明 1))()()())((111t A t A dt
d t A t A dt d ---⋅⋅-= 2)A
e Ae e dt
d At At At == 22.已知⎪⎪⎪⎭⎫ ⎝⎛=73487612i A , ⎪⎪⎪⎭
⎫ ⎝⎛=845x , 求111||||,||||,||||,||||,||||,||||x x Ax Ax A A ∞∞∞ 23.设a ||||•是n n C ⨯的一种矩阵范数,B 和D 是n 阶可逆矩阵,且,1||||1≤-a B 1||||1≤-a D ,证明对任意的n n C A ⨯∈,a b BAD A ||||||||=也是n n C ⨯的一种矩阵范数.
24. 已知a ||||•是n n C ⨯上的矩阵范数,0y 是n C 中的某非零列向量,n x C ∀∈设
0||||||||H a x xy =证明它是n C 上的向量范数,并且与矩阵范数a ||||•相容。
25.设n n C A ⨯∈, B 和D 是酉矩阵, 证明: F F F F BAD AD BA A ||||||||||||||||===
26.设n n C A ⨯∈,k 为正整数,证明:()()k k A A ρρ=.
27.设n n C A ⨯∈,且是Hermite 矩阵,证明:()2A A ρ=.
28.已知⎪⎪⎭⎫ ⎝⎛-=00a a A , ⎪⎪⎭
⎫ ⎝⎛-=a a a a B cos sin sin cos 其中R a ∈且0≠a , 证明:B e A =. 29.已知⎪⎪⎭
⎫ ⎝⎛-=33i i A , 1)证明A 是Hermite 矩阵; 2)求方阵函数A cos . 30.已知⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=2000310020111001A , 1)求A 的Jordan 标准形J ; 2)求可逆矩阵P , 使J AP P =-1.
31.已知111111012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭
,求50303A A +.
32.求矩阵210420210A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭
的最小多项式.
33.已知111111012A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,判断矩阵级数03k k k k A ∞=∑是否收敛. 34.已知⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=3000130001300001A , 求A sin 和)sin(At . 35.设A 为n 阶方阵,求证()det()A tr A e e =特别地当A 为反对称矩阵时有det()1A e =
36.设⎪⎪⎪⎭
⎫ ⎝⎛----=163053064A , 求方阵函数A e 和()cos At . 37.证明:线性方程组b Ax =(其中n m C A ⨯∈ m C b ∈)有解的充分必要条件是b b AA =+
38.已知(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=11200111000
1A , (2)⎪⎪⎭⎫ ⎝⎛=011i i i A ,求A 的广义逆矩阵+A . 39.设BC A =是A 的最大秩分解, 证明: +++=B C A
40.求微分方程组
32113x x x dt
dx +-= 32125x x x dt
dx -+-= 32133x x x dt
dx +-= 的通解及满足初始条件123(0)1(0)1(0)0x x x ===的特解.。