江苏省泰兴市实验初级中学2015届九年级上学期期末考试数学试题苏科版
江苏省泰州中学附属初级中学2015届九年级数学上学期第三次月考试题苏科版

第5题江苏省泰州中学附属初级中学2015届九年级数学上学期第三次月考试题第一部分 选择题(共18分)一、选择题((本大题共有6小题,每小题3分,共18分) 1.关于x 的方程ax 2—3x +2=0是一元二次方程,则A .a >0B .a ≥0C .a ≠0D .a =1 2.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数 ‾x 与方差s 2,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择 A .甲 B .乙 C .丙 D .丁3.如图,小红周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是 A .12 B.13 C.14D.04.边长为a 的正六边形的面积等于 A.43a² B.a² C.233a² D.33a² 5.如图,△ABC 中,DE∥BC ,DE =1,AD =2,DB =3,则BC 的长是 A .21 B .23 C .25 D .276.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2,则S 1﹣S 2=A .9413-πB .9415-πC .459π-D .259π-第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分)7.关于x 的一元二次方程x 2+3x —m =0有两个不相等的实数根,则实数m 的取值范围为_____▲_________.8.如图,AB 是半圆的直径,点C 、D 是半圆上两点,∠ADC = 128°,则∠ABC = ▲ ___.9.有五张不透明的卡片除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到写着无理数的卡片的概率为_____ ▲____.10.如图,在△ABC 中,AB =AC =10,BC =16.若∠BPC =21∠BAC ,则cos ∠BPC = ▲ .11.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1:2,点A 的坐标为(0,2),则点E 的坐标是 ▲ .12.用半径为6cm ,圆心角为150的扇形做成一个圆锥模型的侧面,则此圆锥的底面半径长为___ ▲_______cm.13.如果钟表的轴心到分针针端的长为5cm ,那么经过_▲___分钟,分针的针端转过的弧长是35πcm. 14.如图,O 为△ABC 的外心,△OCP 为正三角形,OP 与AC 相交于D 点,连接OA .若∠BAC=70°,AB=AC ,则∠ADP=___ ▲_____.第10题第11题15.在Rt △ABC 中,∠C = 90°,AC = 3,BC = 4,点O 、点G 分别是Rt △ABC 的外心和重心,连结OG ,则OG=_____▲__________.16.如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个⊙O 上,连接BG 并延长交AD 于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论:①AE=DF ;②DF=DH ;③△DGH ∽△BGE ;④当CG 为⊙O 的直径时,DF=AF .其中正确结论有_______ ▲___________(填序号) 三、解答题(共102分) 17.(本题满分10分)(1)计算题:()︒︒+-+)--(- 3.1430sin 31121π (2)解方程:(2x -1)2= -3 (2x -1)18.(本题满分8分)化简求值:111122+÷⎪⎭⎫ ⎝⎛-+x x x , 其中x=122+ 19.(本题满分8分).如图,在方格纸上,△ABC 与△A 1B 1C 1是关于点O 为位似中心的位似图形,它们的顶点都在格点上. (1)画出位似中心O ;(2)求出△ABC 与△A 1B 1C 1的位似比;(3)以O 点为位似中心,再画一个△A 2B 2C 2,使它与△ABC 的位似比等于3. 20.(本题满分10分)如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一建筑物DC,当他走到教学楼前P 处时,抬头发现:越过教学楼顶部A 刚好看见建筑物顶部D 。
2014-2015年江苏省泰州市泰兴实验中学初三上学期期末数学试卷及参考答案

2014-2015学年江苏省泰州市泰兴实验中学初三上学期期末数学试卷一、选择题(每题3分)1.(3分)﹣的倒数是()A.3B.﹣3C.D.﹣2.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.3a2+2a3=5a5D.a6÷a3=a33.(3分)地球与月球的平均距离大约为384000km,将384000用科学记数法表示应为()A.0.384×106B.3.84×106C.3.84×105D.384×103 4.(3分)已知一元二次方程的两根分别是3和﹣5,则这个一元二次方程是()A.x2﹣2x+15=0B.x2+2x﹣15=0C.x2﹣x﹣6=0D.x2﹣2x﹣15=0 5.(3分)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.6.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0有实数根,下列结论:①abc>0;②b2﹣4ac>0;③m>﹣2,其中,正确的个数是()A.0B.1C.2D.3二、填空题(每题3分)7.(3分)使根式有意义的x的取值范围是.8.(3分)一组数据3、﹣4、1、﹣2的极差为.9.(3分)分解因式:a3﹣a=.10.(3分)一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为.11.(3分)如图,四边形ABCD是⊙O的内接四边形,如果∠AOC+∠ABC=90°,那么∠ADC的度数为.12.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为等腰三角形的概率是.13.(3分)如图,AB为半圆的直径,且AB=3,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为(结果保留π).14.(3分)Rt△ABC中,∠C=90°,AB=9,点G是△ABC的重心,则CG的长为.15.(3分)抛物线y=﹣x2沿y轴向上平移若干个单位长度后,新抛物线与x轴的两个交点和顶点构成等腰直角三角形,则新抛物线的解析式为.16.(3分)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△DEC :S△ADC=1:3,则S△BDE:S△ACD=.三、解答题:17.(12分)计算:(1)﹣4sin60°﹣tan45°(2)﹣﹣|﹣2|.18.(8分)先化简,再求值:(+)÷,其中x=﹣1.19.(8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计九月(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入7650万元,若2014年各月份的租车量与九月份的租车量基本相同,每车次平均收入租车费0.1元,请估计2014年租车费收入占总投入的百分率.20.(8分)(1)如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC的平分,交BC于点O;②以O为圆心,OC为半径作圆.(2)在你所作的图中,①AB与⊙O的位置关系是;(直接写出答案)②若AC=6,BC=8,求⊙O的半径.21.(10分)在一个不透明的箱子里,装有2个红和2个黄球,它除了颜色外均相同.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.(10分)我国深潜器目前最大的深潜极限为7062.68m,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在深潜极限范围内?并说明理由;(2)现要打捞沉船,打涝时沉船竖直上升,上升速度为200米/时,求该沉船从开始上升直至回到海面的时间.(精确到0.1h)(参考数据:≈1.414,≈1.732)23.(10分)如图,以△ABC的边AC为直径的⊙O与BC相切于点C,⊙O与AB 相交于点D,E是BC的中点.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,,求DE的长.24.(10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?25.(12分)如图1,在△ABC中,AB=AC=5,BC=6,AD是高,点E是AB上一动点,过E作EF∥BC交AC于F,交AD于H,设AE=x,AH=y.(1)求y与x的函数关系式;(2)如图2,将△AEF沿EF翻,点A落在射线AD上的点A′①是否存在这样的x值,使CA′⊥AB?若存在,求出x的值;若不存在,说明理由.②探索当x为何值时,A′DE为等腰三角形?26.(14分)如图,抛物线y=x2+bx+c与x轴相交于点A(﹣1,0)、B(3,0),直线y=kx+1与抛物线相交于A、C两点(1)求抛物线y=x2+bx+c和直线AC的解析式;(2)以AC为直径的圆与y轴交于两点M、N,求M、N两点的坐标;(3)在抛物线的对称轴上是否存在一点P,△ACP的内心也在对称轴上,若存在,求点P的坐标;若不存在,说明理由.2014-2015学年江苏省泰州市泰兴实验中学初三上学期期末数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)﹣的倒数是()A.3B.﹣3C.D.﹣【解答】解:﹣的倒数是﹣3,故选:B.2.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.3a2+2a3=5a5D.a6÷a3=a3【解答】解:A、(﹣a3)2=a6,故本选项错误;B、(a﹣b)2=a2﹣2ab+b2,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、a6÷a3=a3,故本选项正确.故选:D.3.(3分)地球与月球的平均距离大约为384000km,将384000用科学记数法表示应为()A.0.384×106B.3.84×106C.3.84×105D.384×103【解答】解:将384000用科学记数法表示为:3.84×105.故选:C.4.(3分)已知一元二次方程的两根分别是3和﹣5,则这个一元二次方程是()A.x2﹣2x+15=0B.x2+2x﹣15=0C.x2﹣x﹣6=0D.x2﹣2x﹣15=0【解答】解:设此一元二次方程为x2+px+q=0,∵二次项系数为1,两根分别为﹣5,3,∴p=﹣(﹣5+3)=2,q=(﹣5)×3=﹣15,∴这个方程为:x2+2x﹣15=0.故选:B.5.(3分)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【解答】解:在Rt△ABC中,设a=2m,则c=3m.根据勾股定理可得b=m.根据三角函数的定义可得:tanB==.故选:A.6.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0有实数根,下列结论:①abc>0;②b2﹣4ac>0;③m>﹣2,其中,正确的个数是()A.0B.1C.2D.3【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线的顶点的纵坐标为﹣2,∴方程ax2+bx+c=﹣2有两个相等的实数解,而关于x的一元二次方程ax2+bx+c﹣m=0有实数根,∴m≥﹣2,所以③错误.故选:C.二、填空题(每题3分)7.(3分)使根式有意义的x的取值范围是x≤3.【解答】解:根据题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.8.(3分)一组数据3、﹣4、1、﹣2的极差为7.【解答】解:极差为:3﹣(﹣4)=7.故答案为:7.9.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).10.(3分)一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为2.【解答】解:设圆锥的底面半径为r,根据题意得•2πr•3=6π,解得r=2,即圆锥的底面半径为2.故答案为2.11.(3分)如图,四边形ABCD是⊙O的内接四边形,如果∠AOC+∠ABC=90°,那么∠ADC的度数为150°.【解答】解:∵∠AOC+∠ABC=90°,∠B=∠AOC,∴设∠B=x,则∠AOC=2x,即x+2x=90,解得:x=30,故∠B+∠ADC=180°,则∠ADC=150°.故答案为:150°.12.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为等腰三角形的概率是.【解答】解:如图所示:所标位置都是符合题意的位置,故使△ABC为等腰三角形的概率是:.故答案为:.13.(3分)如图,AB为半圆的直径,且AB=3,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为π(结果保留π).【解答】解:∵半圆AB绕点B顺时针旋转45°,点A旋转到A′的位置,∴S半圆AB=S半圆A′B,∠ABA′=45°,∵S阴影部分+S半圆AB=S半圆A′B+S扇形ABA′,∴S阴影部分=S扇形ABA′==π.故答案为π.14.(3分)Rt△ABC中,∠C=90°,AB=9,点G是△ABC的重心,则CG的长为3.【解答】解:在Rt△ABC中,∠C=90°,∵AB=9,∴AB边上的中线CD=,∵点G为重心,∴CG=CD=×=3.故答案是:3.15.(3分)抛物线y=﹣x2沿y轴向上平移若干个单位长度后,新抛物线与x轴的两个交点和顶点构成等腰直角三角形,则新抛物线的解析式为y=﹣x2+1.【解答】解:设二次函数向上平移a个单位,由题意可得:图象过(0,a),(a,0),故平移后解析式为:y=﹣x2+a,则0=﹣a2+a,解得;a1=0(舍去),a2=1,故新抛物线的解析式为:y=﹣x2+1.故答案为:y=﹣x2+1.16.(3分)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△DEC :S△ADC=1:3,则S△BDE:S△ACD=1:6.【解答】解:过点D作DF⊥AC于点F;∵DE∥AC,∴DF为△ADC、△DEC的公共高,∴,∵S△DEC :S△ADC=1:3,∴DE:AC=1:3;若设S△DEC=λ,则S△ADC=3λ;∵DE∥AC,∴△BDE∽△ABC,∴,∴S△ABC=9S△BDE,而S△ABC=4λ+S△BDE,∴S△BDE=0.5λ,∴S△BDE :S△ACD=1:6,故答案为1:6.三、解答题:17.(12分)计算:(1)﹣4sin60°﹣tan45°(2)﹣﹣|﹣2|.【解答】解:(1)原式=4﹣4×﹣1 =4﹣2﹣1=3﹣2;(2)原式=2﹣(2+2+1)+﹣2=2﹣3﹣2+﹣2=﹣5.18.(8分)先化简,再求值:(+)÷,其中x=﹣1.【解答】解:原式=•=•=,当x=﹣1时,原式=.19.(8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计九月(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入7650万元,若2014年各月份的租车量与九月份的租车量基本相同,每车次平均收入租车费0.1元,请估计2014年租车费收入占总投入的百分率.【解答】解:(1)众数为8万车次,中位数为8万车次,平均数为(9+8+8+7.5+8+9+10)=8.5(万车次);(2)8.5×30=255(万车次);(3)租车费收入是:255×0.1=25.5(万元),则估计2014年租车费收入占总投入的百分率是:×100%=48%.20.(8分)(1)如图,△ABC 是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作∠BAC 的平分,交BC 于点O ;②以O 为圆心,OC 为半径作圆.(2)在你所作的图中,①AB 与⊙O 的位置关系是 相切 ;(直接写出答案)②若AC=6,BC=8,求⊙O 的半径.【解答】解:(1)如图;(2)①作OD ⊥AB 于D ,∵AO 平分∠BAC ,而OD ⊥AB ,OC ⊥AC ,∴OD=OC ,∴AB 为⊙O 的切线;故答案为相切;②设⊙O 的半径为r ,则OC=OD=r ,在Rt △ABC 中,∵AC=6,BC=8,∴AB==10,∵S △AOB +S △AOC =S △ABC , ∴•10•r +•6•r=•6•8,解得r=3,即⊙O 的半径为3.21.(10分)在一个不透明的箱子里,装有2个红和2个黄球,它除了颜色外均相同.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.【解答】解:(1)∵在一个不透明的箱子里,装有2个红和2个黄球,它除了颜色外均相同,∴随机地从箱子里取出1个球,取出红球的概率是:=;(2)不公平,如图所示:一共有12中情况,两球颜色相同的有4种情况,故P(小明胜)=,P(小亮胜)=.22.(10分)我国深潜器目前最大的深潜极限为7062.68m,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在深潜极限范围内?并说明理由;(2)现要打捞沉船,打涝时沉船竖直上升,上升速度为200米/时,求该沉船从开始上升直至回到海面的时间.(精确到0.1h)(参考数据:≈1.414,≈1.732)【解答】解:(1)过点C作CD垂直AB延长线于点D,设CD=x米,在Rt△ACD中,∵∠DAC=45°,∴AD=x,在Rt△BCD中,∵∠CBD=60°,∴BD=x,∴AB=AD﹣BD=x﹣x=2000,解得:x≈4732,∴船C距离海平面为4732+1800=6532米<7062.68米,∴沉船C在“蛟龙”号深潜极限范围内;(2)t=≈32.7(h).答:该沉船从开始上升直至回到海面的时间为32.7小时.23.(10分)如图,以△ABC的边AC为直径的⊙O与BC相切于点C,⊙O与AB 相交于点D,E是BC的中点.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为5,,求DE的长.【解答】(1)证明:连接OD.∵BC是⊙O⊙的切线,AC是直径,,∴∠ACB=90°,∵AC是直径,∴∠ADC=90°,∴∠CDB=90°,又∵EB=EC∴DE为直角△DCB斜边的中线,∴DE=CE=BC.∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ODC+∠CDE=∠OCD+∠DCE=∠ACB=90°,∴∠ODE=90°∴DE是⊙O的切线.(2)∵,∴设AD=x,CD=2x,∵AC=5,AD2+DC2=AC2,∴x2+(2x)2=52,∴x=,即AD=,CD=2,在Rt△BDC和Rt△ADC中,∠ADC=∠BDC=90°,∠ABC=90°,∴∠ABC+∠A=90°,∠ABC+∠BCD=90°,∴∠A=∠BCD,∵△ADC∽△CDB,∴=,即=,∴BC=10.∴DE=BC=5.24.(10分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?【解答】解:(1)由题意得:w=(x﹣200)y=(x﹣200)(﹣2x+1000)=﹣2x2+1400x ﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.25.(12分)如图1,在△ABC中,AB=AC=5,BC=6,AD是高,点E是AB上一动点,过E作EF∥BC交AC于F,交AD于H,设AE=x,AH=y.(1)求y与x的函数关系式;(2)如图2,将△AEF沿EF翻,点A落在射线AD上的点A′①是否存在这样的x值,使CA′⊥AB?若存在,求出x的值;若不存在,说明理由.②探索当x为何值时,A′DE为等腰三角形?【解答】解:(1)设∠ABC=α,∵EF∥BC,∴∠AEF=α,∵AB=AC,AD是高,∴BD=CD=BC=3,由勾股定理得:AD===4,∴sinα==,cosα==,在Rt △AHE 中,sinα==,即=, ∴y 与x 的函数关系式为:y=x ;(2)①存在,x=;理由如下:如图1所示:∵CA′⊥AB ,AD ⊥BC ,∴∠BG A′+∠BDA′=90°+90°=180°,∴B 、D 、A′、G 四点共圆,∴∠AA′G=∠ABC=α,BG=BC•cosα=6×=,AG=AB ﹣BG=5﹣=,AA′===,∵△AEF 沿EF 翻,点A 落在射线AD 上的点A′,∴AH=AA′=×=,∴AE===,解得:x=;②分两种情况:当A′在AD 上时,如图2所示:∵∠EA′D=90°+∠A′EF >90°,∴△A'DE 为等腰三角形就一种可能,即A′E=A′D ,∵A′是沿EF 翻折的,∴AH=A'H ,H 是EF 的中点,AH ⊥EF ,对角线互相垂直平分,∴四边形AEA'F 是菱形,∴A'D=x ,AH=AE•sinα=x ,∴y与x的关系式为:y=x;∴AD=AA+A′D,∴AD=2AH+A′D,即4=2×x+x,解得:x=;当A'在AD的延长线上时,如图3所示:根据题意得:DE=DA′,∵AD=4,AH=A′H=x,∴DE=DA′=,∵EH=x,在Rt△DEH中,由勾股定理得:EH2+DH2=DE2,即(x)2+(4﹣x)2=(x﹣4)2,解得:x=;综上所述:当x为或时,A′DE为等腰三角形.26.(14分)如图,抛物线y=x2+bx+c与x轴相交于点A(﹣1,0)、B(3,0),直线y=kx+1与抛物线相交于A、C两点(1)求抛物线y=x2+bx+c和直线AC的解析式;(2)以AC为直径的圆与y轴交于两点M、N,求M、N两点的坐标;(3)在抛物线的对称轴上是否存在一点P,△ACP的内心也在对称轴上,若存在,求点P的坐标;若不存在,说明理由.【解答】解:(1)∵抛物线y=x2+bx+c与x轴相交于点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为,∵直线y=kx+1经过点A(﹣1,0),∴﹣k+1=0,解得k=1,∴直线AC的解析式为y=x+1;(2)解得或,∴A(﹣1,0),C(5,6),∴圆心D的坐标为(2,3),AC==6,作DE⊥y轴于E,则DE=2,连接DM,则DM=3,∴EM==,∴M(0,3+),N(0,3﹣)(3)作CG⊥y轴,交对称轴与G,设对称轴与x轴交于H,由题意可知∠APH=∠CPG,∴△APH∽△CPG,∴=,∵抛物线的解析式为=(x﹣1)2﹣2∴抛物线的对称轴为x=1,设P的坐标为(1,a),∴AH=2,PH=﹣a,CG=4,PG=6﹣a,∴=,解得a=﹣6,∴P(1,﹣6).。
苏科版2015年上学期九年级第三次学业检测名校联考数学试题及答案

苏科版 2015年上学期九年级第三次学业检测名校联考数学试卷时间120分钟 满分150分 2015.4.3一、精心选一选(本大题共8题,每题3分,共24分)1.下列方程是一元二次方程的是 ( ▲ )A .7=xB .8=+y xC .)1()1(4-=-y y yD .3)1(43=+x2.在⊙O 中,半径为6,圆心O 在坐标原点上,点P 的坐标为(4,5),则点P 与⊙O 的位置关系是( ).A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定 3.样本方差的计算式S 2=901[(x 1-30)2+(x 2-30)2+…+(x 90-30)2]中,数字90和30分别表示样本中的 ( ▲ )A .众数、中位数B .样本中数据的个数、平均数C .方差、标准差D .样本中数据的个数、中位数4、如图,是半圆,O 为AB 中点,C 、D 两点在上,且AD∥OC,连接BC 、BD .若=63°,则的度数是(▲)A .54°B .57°C .60°D .63°5、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=(▲ ) A .215- B .215+ C . 3 D .2(第4题图) (第5题图) (第7题图) 6、对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x ≥0时,y 随x 的增大而减小,其中正确结论的个数为(▲)A .1B .2C .3D .47、如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,则AE 的长为(▲)A. 4B. 5C. 6D.7 8.如图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE+DC >DE ;④BE 2+DC 2=DE 2,其中正确的有(▲ )个. A. 1 B.2 C.3 D.4二、填空题(本大题共10小题,每小题3分,共30分)9.数据1、2、3、5的方差是 ▲10.在⊙O 的内接四边形ABCD 中,∠A=50°则∠C= ▲ °. 11.方程x 5x 2=的两个解是 ▲12.已知圆锥的底面半径为cm 3,母线长为cm 5,则这个圆锥的侧面积为 ▲ 2cm .13一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 ▲ .(第13题) 14、比例尺为1:150000的某地图上,黄海路在图上长度约为6cm, 黄海路的实际长度约为▲ km (精确到个位)15.关于x 的一元二次方程02x 2kx 2=+-有实数根,则k 的取值范围是 ▲ .16、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 ▲17、如图,已知点P 是边长为4的正方形ABCD 内的一点,且PB=3,BF ⊥BP ,若在射线BF 有一点M ,使以点B ,M ,C 为顶点的三角形与△ABP 相似,那么BM= ▲)0,)0,2(C ,以点C 为圆心,半径为1作⊙C,将⊙C 沿x 轴向左平移, 在平移的过程中,当⊙C 与ABO ∆的一边所在的直线相切时, 平移的距离为 ▲ .三、解答题(本大题共10题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题满分8分)(1)计算:﹣24﹣+|1﹣23|+(π﹣)0;(2)解方程:3x2﹣4x+1=0.20.(本题满分8分)甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;(1)通过计算甲队队员身高的平均数为178厘米,请你计算出乙队队员身高的平均数为多少厘米。
泰州市苏科版九年级数学上 期末测试题(Word版 含答案)

泰州市苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③5.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .6.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .37.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.4 8.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.69.已知关于x的一元二次方程(x - a)(x - b)-12= 0 (a < b)的两个根为 x1、x2,(x1< x2)则实数 a、b、x1、x2的大小关系为()A.a < x1< b <x2B.a < x1< x2 < b C.x1< a < x2< b D.x1< a < b < x210.如图,如果从半径为6cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A.2cm B.4cm C.6cm D.8cm11.如图,△AOB为等腰三角形,顶点A的坐标(2,5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(203,103)B.(16345)C.(20345)D.(163,312.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A .1 个B .2 个C .3 个D .4 个13.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .37 14.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 19.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 20.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).23.数据1、2、3、2、4的众数是______.24.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 25.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)26.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____. 28.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?32.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.33.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.34.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.35.解方程:3x2﹣4x+1=0.(用配方法解)四、压轴题36.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.37.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案. 【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.2.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;故A 正确; 调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.4.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.5.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.6.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是13,∴BC AC 3, ∵BC=50,∴3,∴()2222AC +BC 503+50100==(m ).故选A7.B解析:B 【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 8.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.9.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x =a 或x =b ,当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.10.B解析:B【解析】【分析】 因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 11.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(25∴5OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.12.B解析:B【解析】【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=1=2 BEAB,∴∠BAE≠30°,故①错误;∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,在△BAE和△CEF中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF , ∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴AE AFBE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.13.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC3AC21,∵DE∥AB,∴CDCA=CECB,721,∴CE3∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=32,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.14.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BEN K 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵A E=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm , 故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 19.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m -2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.20.9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【分析】根据抛物线平移的规律计算即可得到答案. 【详解】根据题意:平移后的抛物线为()2231y x =-+-. 【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.22.【解析】 【分析】直接利用黄金分割的定义求解. 【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC , ∴AC =AB . 故答案为:. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分【解析】 【分析】直接利用黄金分割的定义求解. 【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =12AB .故答案为. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则12AC BC =,正确理解黄金分割的定义是解题的关键.23.2 【解析】 【分析】根据众数的定义直接解答即可.解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.24.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.25.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.26.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱解析:2 5【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DFS BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出.【详解】解:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点,∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高,∴2ADF ABF S DFS BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABF ECDFS S ∆=四边形, 故答案为:25. 【点睛】本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.27.x1>2或x1<0. 【解析】 【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.28.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x 在Rt △CDF 中,由勾股定理得: DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22 解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32故答案为32. 【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.29.7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】 解:∵, ∴, ∴, ∴, ∴;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】解:∵2430x x +-=, ∴243x x +=, ∴2447x x ++=, ∴2(2)7x +=, ∴7n =;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.30.乙 【解析】 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】 解:∵, ∴队员身解析:乙 【解析】 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙, 故答案为:乙. 【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题31.(1)20%;(2)8640万元. 【解析】 【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算. 【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得, 5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去) 答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.32.(1)49;(2)13【解析】【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可.【详解】解:列表得:相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=31 93 .【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.33.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,。
2015届苏科版数学九年级上学期期末考试试题1

江苏省扬州梅岭中学2015届九年级数学上学期期末考试试题(满分:150分 考试时间:120分钟) 友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.在Rt △ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正切值A .扩大2倍B .缩小2倍C .不变D .扩大1倍2.用配方法解方程x 2-2x =2,原方程可变形为A .(x +1)2=3B .(x -1)2=3C .(x +2)2=7D .(x -2)2=73.如果关于x 的一元二次方程(m -1)x 2+2x +1=0有两个不相等的实数根,那么m 的取值范围是A .m >2B .m <2C .m >2且m ≠1D .m <2且m ≠14.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A .2)1(2+-=x y B .2)1(2++=x y C .2)1(2--=x y D .2)1(2-+=x y5.下列各组图形不一定相似的是A .两个正方形B .两个等边三角形C .各有一角是100°的两个等腰三角形D .各有一角是45°的两个等腰三角形 6.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°, 则∠DAB 等于A .60°B .65°C .70°D .75°7.如果给定数组中每一个数都加上同一个非零常数,则数据的 A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数改变,方差不变 D .平均数不变,方差改变8.若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值范围是A .3a <B .3a >C .3a <-D .3a >-二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9.方程220x x -=的根是 ▲ .10.如果cos 2A =,那么锐角A 的度数为 ▲ .11. 二次函数22810y x x =+-的图象与x 轴的交点坐标是 ▲ .(第6题)12.点),2(1y P -和点),1(2y Q -分别为抛物线322--=x x y 上的两点,则1y▲ 2y .(用“>”或“<”填空)13.两个相似三角形的面积比为9∶16,则它们的周长之比为 ▲ . 14.正方形网格中,AOB ∠如图放置,则sin ∠AOB 的值为 ▲ .15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为 ▲ .16.某班九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片,如果全班有x 名学生,根据题意,列出方程为 ▲ . 17. 已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = ▲ 时,1y =2y .18. 如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tan BAO ∠=,则k = ▲ . 三.解答题(本大题共有10小题,共96分.请在答题卷指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:20140+121-⎪⎭⎫⎝⎛−2sin45°+tan60°;(2)解方程:0222=--x x .20.(本题满分8分) 已知:二次函数1322-+-=a x ax y 的图象开口向上,并且经过原点O (0,0).(1)求a 的值;(2)用配方法求出这个二次函数图象的顶点坐标. 21.(本题满分8分)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况(单位:元):甲:18, 8,10,43, 5,30,10,22, 6,27,25,58,14,18,30,41(第18题) DCBAO(第15题) (第14题)乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23 小强用如图所示的方法表示甲城市16台自动售货机的销售情况.(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;(2)用不等号填空:x 甲 ▲ x 乙;2s 甲 ▲ 2s 乙;(3)请说出此种表示方法的优点.. 22.(本题满分8分)为了庆祝春节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐三种卡片可获奖,现购买该种食品3袋,能获奖的概率是多少?23.(本题满分10分) 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?24.(本题满分10分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E .(1)若AD =15,4cos 5BDC ∠=,求AC 的长和tan A 的值; (2)若30BDC ∠=︒,求tan15︒的值.(结果保留根号)25.(本题满分10分)如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求⊙A 的半径及点N 的坐标.B AC E D26.(本题满分10分) 已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.27.(本题满分12分)已知点PPA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°. (1)利用图1,求证:PA =PB ;(2)如图2,若点C 是AB 与OP 的交点,当3POB PCB S S ∆∆=时,求PC 与PB 的比值; (3)若∠MON =60°,OB =2,射线AP 交ON 于点D ,且满足且PBD ABO ∠=∠, 请借助图3补全图形,并求OP 的长.28.(本题满分12分)如图,抛物线233y mx mx =+-(m >0)与y 轴交于点C ,与x 轴交于A 、B 两点,点 A 在点B 的左侧,且1tan 3OCB ∠=. (1)求此抛物线的解析式;(2)如果点D 是线段AC 下方抛物线上的动点,设D 点的横坐标为x ,△ACD 的面积为S ,求S 与x 的关系式,并求当S 最大时点D 的坐标;C A O P B M N T图2 图1 T N MB P O A 图3 TNM B P O A C(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点的平行四边形?若存在求点P 坐标;若不存在,请说明理由.(备用图)2014-2015学年第一学期期末考试九年级数学参考答案说明:以下解答及标准,如有其它方法可参照评分.一、选择题二、填空题(每题3分,共30分)9.12=02x x =, 10.30° 11.(5,0),(1,0)- 12.> 13.3∶414.216.(1)1640x x -= 17.3218.-6三.解答题(本大题有10题,共96分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分8分)(1)化简一个1分共4分,结果错误扣1分. (2)配方得:2(1)3x -= (2分)直接开平方得:1211x x ==(4分).20.(本题满分8分) 解:(1)a =1; ……………………………………………………………3分(2)x x y 32-=494932-+-=x x 49232--=)(x ………………………6分 ∴抛物线顶点坐标为)49,23(- ………………………………8分 21.(本题满分8分)解:(1)图略. ……………………………………………………2分 (2)_ x 甲<_x 乙;s 2甲>s 2乙. ……………………………………………………6分 (3)优点:所有的信息都可以从这张图中获得(或便于记录与表示)等; ………8分22.(本题满分8分)解:分别用卡1、卡2、卡3表示3张卡片,画出树状图(图略) …………4分 P(集齐三种卡片) 62279== …………………………………8分 23.(本题满分10分)设矩形温室的宽为m x ,则长为2m x .根据题意,得 …………………………1分(2)(24)288x x --=. ……………………………………5分解这个方程,得110x =-(不合题意,舍去),214x =. …………………………8分所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ……10分 24.(本题满分10分) 解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. …………………………1分 在Rt △ACD 中,90C ∠=︒,AD =15,4cos 5BDC ∠=, ∴ 4cos 15125CD AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ………………4分 3sin 1595BC AD BDC =⋅∠=⨯=.在Rt △ABC 中,90C ∠=︒,∴ 91tan 273BC A AC ===. …………………………7分 (2)tan15︒=…………………………10分25.(本题满分10分)解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B (0,32),∴AB ⊥y 轴. 又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形. ∴AC =OB =32,OC =BA . ……… 3分 ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . ∵M (12,0),∴OM =12.在 Rt △AMC 中,设AM =r .理得:222MC AC AM +=.即22213()()22r r -+=, …………………… 6分 求得r=52.∴⊙A 的半径为52. …………………… 8分即AM =CO =AB =52. ∴MC =CN=2 .∴N (92, 0) . …………………… 10分26.(本题满分10分)(1)证明:连接OD .∵AB =AC ,∴ABC ACB ∠=∠.∵OD =OC ,∴ODC OCD ∠=∠. ∴ABC ODC ∠=∠.∴AB ∥OD .∴AED ODF ∠=∠. …………… 3分 ∵DE ⊥AB ,∴90AEF ∠=︒.∴90ODF ∠=︒.∴DE OD ⊥. ∴DE 是⊙O 的切线. …………………………………… 5分 (2)解:连接AD .∵AC 为⊙O 的直径,∴BC ⊥.又∵DE ⊥AB ,∴Rt AED ∆∽Rt ADB ∆.AEAD=.∴2AD AE AB =⋅. ∵⊙O 的半径为4,∴AB =AC =8.∴6AE AB BE =-=.∴AD =.…………………………………………………… 8分在Rt ADB ∆中,∵sin AD B AB ∠===,∴60ABC ∠=︒. 又∵AB =AC ,∴ABC ∆是等边三角形.∴60BAC ∠=︒∴30F ∠=︒. ………………………………………………10分27.解:(1)在OB 上截取OD =OA ,连接PD ,∵OP 平分∠MON ,∴∠MOP =∠NOP . 又∵OA =OD ,OP =OP ,∴△AOP ≌△DOP . ……………2分 ∴PA =PD ,∠1=∠2.∵∠APB +∠MON =180°,∴∠1+∠3=180°.∵∠2+∠4=180°,∴∠3=∠4. ∴PD =PB . ∴PA =PB . ……………4分(2)∵PA =PB ,∴∠3=∠4.∵∠1+∠2+∠APB =180°,且∠3+∠4+∠APB =180°, ∴∠1+∠2=∠3+∠4.∴∠2=∠4.……………6分 ∵∠5=∠5,∴△PBC ∽△POB .∴33P S =∆∆=POB S BC PB PC . …………… 8分 (3)作BE ⊥OP 交OP 于E ,∵∠AOB =600,且OP 平分∠MON , ∴∠1=∠2=30°.∵∠AOB +∠APB =180°,∴∠APB =120°.∵PA =PB ,∴∠5=∠6=30°. ∵∠3+∠4=∠7,∴∠3+∠4=∠7=(180°-30°)÷2=75°.∵在Rt △OBE 中,∠3=600,OB =2∴∠4=150,OE =3,BE =1…………… 10分∴∠4+∠5=450,∴在Rt △BPE 中,EP =BE =1∴OP =13+ ……………12分 28.(本题12分)(1)由已知可得C (0,-3), ∵1tan 3OCB ∠=,∠COB =90°,∴13OB OC = , ∴B (1,0) -----------------------2分∵抛物线233y mx mx =+-(m >0)过点B ,∴m+3m-3=0 , ∴m=43∴抛物线的解析式为349432-+=x x y 51243TNMP OA C7612435ECAOPBM NTD1234A O PBMNT-----------------------4分 (2)如图1,∵抛物线对称轴为23-=x ,B (1,0)∴A (-4,0) 联结OD ,∵点D 在抛物线349432-+=x x y 上 ∴设点D (x ,349432-+x x ),则 ACD AOD DOC AOC S S S S ∆∆∆∆=+-=()2139114334324422x x x ⎛⎫⨯--++⨯--⨯⨯ ⎪⎝⎭ =2362x x -- ---------------------------------------------------------6分 ∴S=()23262x -++ ∴当x=-2时,△ACD 的面积S 有最大值为6. ------ 7分 此时,点D的坐标为(-2,92-). ----------------------------------------------------- 8分 (3)①如图2,当以AC 为边,CP 也是平行四边形的边时, CP ∥AE ,点P 与点C 关于抛物线的对称轴对称,此时P (-3,-3).②如图3,当以AC 为对角线,CP 为边时,此时P 点的坐标是(-3,-3) --------- 9分 ③如图4、图5,当以AC 为边,CP 是平行四边形的对角线时,点P 、C 到x 轴的距离相等,则349432-+x x =3,解得2413±-=x ,此时P (2413--,3)(如图4) 或(2413+-,3)(如图5)--------------------------------------------------------------12分 综上所述,存在三个点符合题意,分别是1P (-3,-3),2P (2413--,3),3P (2413+-,3).(图2)(图3)(图4) (图5)。
苏科版2014-2015年九年级上学期期末考试名校联考数学试题及答案

苏科版2014~2015年九年级上学期期末考试名校联考数学试题时间120分钟满分130分2015、2、17一、选择题(每题3分,共30分.)1.一元二次方程x2-x-2=0的解是…………………………………………………().A.x1=1,x2=2 B.x1=1,x2=-2 C.x1=-1,x2=-2 D.x1=-1,x2=2 2.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是…………().A.r> 6 B.r≥ 6 C.r< 6 D.r≤ 6 3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为………………………………………………………………………………().A.302海里 B.303海里 C.60海里 D.306海里4.某机械厂七月份生产零件50万个,第三季度共生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是……………………………………………().A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 5.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是……………………………………………………………………………().A.众数 B.方差 C.中位数 D.平均数6.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是………………………………………().A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM∶MA=1∶2 7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列有4个结论:①b2-4ac>0;②abc<0;③b<a+c;④4a+b=1,其中正确的结论为……………………().A.①② B.①②③ C.①②④ D.①③④(第9题) 8.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是……………………………………………………………( ).A .2B . 3C . 32D . 329.如图,点A (a ,b )是抛物线y =12x 2上位于第二象限的一动点,OB ⊥OA交抛物线于点B (c ,d ).当点A 在抛物线上运动的过程中,以下结论: ①ac 为定值;②ac =-bd ;③△AOB 的面积为定值;④直线AB 必过一定点.其中正确的结论有………………………………………( ). A .4个 B .3个 C .2个 D .1个10.现定义一种变换:对于一个由任意5个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2).则下面序列可以作为S 1的是……………………………………………………( ).A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)二、填空题(每题2分,共16分.)11.抛物线y =x 2-2x +3的顶点坐标是 .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下洗匀后放在桌子上,任取一张,那么取到字母e 的概率为 .13.已知命题“关于x 的一元二次方程x 2+bx +14=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是 . 14.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .15.如图,添加一个条件: ,使△ADE ∽△ACB .16.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 .(第7题)(第8题)(第3题)(第6题)(第17题)(第18题)C17.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .18.如图,在Rt △ABC 中,∠B=90°, sin ∠BAC =13,点D 是AC 上一点,且BC =BD=2,将Rt △ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长为 .三、解答题(本大题共10小题,共84分.)19.(本题8分)解方程:(1) (4x -1)2-9=0 (2) x 2-3x -2=020.(本题8分)如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E . (1)求证△BPD ∽△CEP .(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长; 若不存在,说明理由.(第14题)(第15题)(第16题)A BCDE O 21.(本题8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线.(2)若圆心O到弦DB的距离为1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)22.(本题8分)2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB=50°,则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)23.(本题8分)有七张除所标数值外完全相同的卡片,把所标数值分别为-2、-1、3、4的四张卡片放入甲袋,把所标数值分别为-3、0、2的三张卡片放入乙袋.现在先后从甲、乙两袋中各随机取出一张卡片,按照顺序分别用x、y表示取出的卡片上标的数值,并把x、y分别作为点A的横坐标、纵坐标.(1)请用树状图或列表法写出点A(x,y)的所有情况.(2)求点A属于第一象限的点的概率.24.(本题8分)学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:甲组7 8 9 7 10 10 9 10 10 10乙组10 8 7 9 8 10 10 9 10 9甲组成绩的中位数是分,乙组成绩的众数是分.(2)计算乙组的平均成绩和方差.(3)已知甲组成绩的方差是1.4,则选择组代表八(5)班参加学校比赛.25.(本题8分)在“美化校园”活动中,某兴趣小组想借助如图所示的直角墙角(两边DA、DC足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x (m).(1)若花园的面积为192m2,求x的值.(2)若在P处有一棵树与墙DC、DA的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细).求花园面积S的最大值.26.(本题8分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D(1,n).(1)求抛物线的函数表达式.(2)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.27.(本题10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P、Q分别从点A、点B同时出发,相向而行,速度都为1cm/s.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设运动时间为t (0≤t≤2,单位:s),正方形APDE 和梯形BCFQ重合部分的面积为S (cm2) .(1)当t= s时,点P与点Q重合.(2)当t= s时,点D在QF上.(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数表达式.28.(本题10分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.答案及评分标准一、选择题:(本大题共10小题,每小题3分,共30分.)1.D 2.A 3. A 4. C 5. C 6 . D 7. B 8.B 9. B 10. D 二、填空题:(本大题共8小题,每小题2分,共16分.)11.(1,2) 12.27 13.当b =-12时,方程无解(答案不唯一) 14.300π15.∠AED =∠B (答案不唯一) 16.x <-1或1<x <2 17.2 18.143三、解答题:(本大题共10小题,共84分.)19.(1) (4x -1)2-9=0 (2)x 2―3x ―2=0 4x -1=±3 ……… 2分 Δ=17 ………2分x 1=1,x 2=-12 ……… 4分 x 1=3+172,x 2=3-172……4分 20.解:(1)∵AB =AC ∴∠B =∠C ……………………1分∵∠DPC =∠DPE +∠EPC =∠B +∠BDP ……2分 ∴∠EPC =∠BDP …………………………3分 ∴△ABD ∽△DCE ……………………………4分 (2)作AH ⊥BC在Rt △ABH 和Rt △PDE 中 ∴cos ∠ABH =cos ∠DPE =BH AB =PD PE =35………………… 6分 ∴PD PE =BD PC =35 又∵PC =4 ∴BD =125……………8分 21.(1)证明:连接OD ∵BC 是⊙O 的切线 ∴∠ABC =90°………………1分∵CD =CB ,OB =OD ∴∠CBD =∠CDB ,∠OBD =∠ODB ……………2分 ∴∠ODC =∠ABC =90°即OD ⊥CD ∴CD 为⊙O 的切线 ……………4分 (2)解:作OF ⊥DB ,在Rt △OBF 中,∵∠ABD =30°,OF =1, ∴∠BOF =60°,OB =2,BF = 3 ……… 5分H……3分∵OF ⊥BD , ∴BD =2BF =23, ∠BOD =2∠BOF =120° …………6分 ∴S 阴影=43π-3. …………………………………………………………8分22.解:过A 点作AE ⊥CD 于E .在Rt △ABE 中,∠ABE =62°.∴AE =AB •sin62°=25×0.88=22米, ……2分 BE =AB •cos62°=25×0.47=11.75米,………4分 在Rt △ADE 中,∠ADB =50°, ∴DE =AE tan50°=553…………………6分 ∴DB =DC -BE ≈6.58米.………………7分 答:向外拓宽大约6.58米. ……………8分23.(1)-2 -1 3 4 -3 (-2, -3) (-1, -3) (3, -3) (4, -3) 0 (-2, 0) (-1, 0) (3, 0) (4, 0) 2(-2, 2)(-1, 2)(3, 2)(4, 2)∴如表所示,所有情况共有12种 …………………………………………………4分(2)因为属于第一象限的点的坐标有(3, 2)和(4, 2)共2种,…………………………6分所以概率P =16 ……………………………………………………………………8分24.(1)9.5 10 ……2分 (2)x —=9,方差=1 ……6分 (3)乙 ……8分 25.(1)根据题意,得x (28-x )=192 ………………………………………………2分解得x =12或x =16 ………………………………………………3分 ∴x 的值为12m 或16m ………………………………………………4分(2)∵根据题意,得6≤x ≤13 …………………………………………………5分 又∵S =x (28-x )=-(x -14)2+196 ……………………………………………6分∴当x ≤14时,S 随x 的增大而增大所以当x =13时,花园面积S 最大,最大值为195m 2 ……………………………8分 26.解:(1)设抛物线顶点为E ,根据题意OA =4,OC =3,得:E (2,3),………1分则可求得抛物线函数关系式为y=-34(x-2)2+3=-34x2+3x;………………………3分(2)可得点D坐标为(1,94) (4)分存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,∵DM=2,∴AN=2,∴N1(2,0),N2(6,0)………………………………………6分②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=94,NP=AQ=3,∴N3(-7-1,0),N4(7-1,0).………………8分27.解:(1)1 ……1分(2)45……2分(3)当1<t≤43时,如图②,设DE交FQ于点H,则重合部分为梯形DHQP可求得:PQ=2t-2,HD=52t-2 ……3分∴S=12(PQ+HD)·DP=12(2t-2+52t-2)·t=94t2-2t(1<t≤43) ……5分当43<t<2时,如图③,设DE交BC于点M,DP交BC于点N,则重合部分为六边形EFQPNM可求得:AQ=2-t,AF=4-2t∴S△FAQ=12AQ·AF=(2-t)2 ………………………………………7分同样可求得:DN=3t-4,DM=12(3t-4)初三数学期终试卷2015.2 第 11 页 共 11 页 ∴S △DMN =12 DM ·DN =12 ·12 ( 3t -4 )( 3t -4 )=14( 3t -4 )2………………8分 ∴S =S 正方形APDE -S △FAQ -S △DMN =-94t 2+10t -8……………………9分 综上所述,S =⎩⎪⎨⎪⎧94t 2-2t (1<t ≤43)-94t 2+10t -8(43<t <2) ……………………10分 28.解:(1)方案一中的最大半径为1.………………………2分(2)设半径为r ,方案二:在Rt △O 1O 2E 中, (2r )2=22+(3-2r )2,解得 r =1312 …4分 方案三:∵△AOM ∽△OFN , ∴r3-r =2-r r ,解得r =65…6分 ∵1312<65,∴方案三半径较大 ……………………………………7分 (3)方案四所拼得的图形水平方向跨度为3-x ,竖直方向跨度为2+x .所以所截出圆的直径最大为(3-x )或(2+x )两者之中较小的.……………………………8分当3-x <2+x 时,即当x >12时,r =12(3-x );此时r 随x 的增大而减小,所以r <12(3-12)=54; 当3-x =2+x 时,即当x =12时,r =12(3-12)=54; 当3-x >2+x 时,即当x <12时,r =12(2+x ).此时r 随x 的增大而增大,所以r <12(2+12)=54; ∴方案四,当x =12时,r 最大为54.………………………………………………………………9分 ∵1<1312<65<54, ∴方案四中所得到的圆形桌面的半径最大.……………………………10分。
江苏省泰兴市实验初级中学2015届九年级6月最后模拟数学试卷

泰兴市实验初级中学 初三数学第二次模拟试题2015.6(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔作答,并请加黑加粗.第一部分 选择题(共18分)一、选择题(共6小题,每小题3分,满分18分) 1.下列各数中,绝对值最大的数是A .-3B .-2C .0D .1 2.下列计算正确的是A .x+x 2=x 3B .2x+3x=5xC .(x 2)3=x 5D .x 6÷x 3=x23.如图,左面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是4.以下说法正确的是A .小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是103 B .随机抛掷一枚均匀的硬币,落地后反面一定朝上C .某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D .在一次课堂进行的抛硬币试验中,同学们估计硬币落地后正面朝上的概率为0.51 5.在直角坐标系中,M(2,0),⊙M 的半径为4,那么点P(-2,3)与⊙M 的位置关系 A .点P 在圆内 B. 点P 在圆上 C.点P 在圆外 D.不能确定6.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一个锐角等于60°.这样的图形有A .4个 B.3个 C.2个 D.1个 二、填空题(共10小题,每小题3分,满分30分) 7.计算:8×21= ▲ . 8.分解因式:x 2﹣9= ▲ . 9.Rt △ABC 中,∠C=90°,sinA=135,则tanB= ▲ . 10.若x=-1是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m 的值为 ▲ . 11.一个圆柱的底面直径为6cm ,高为10cm ,则这个圆柱的侧面积是 ▲ cm 212.若A(x 1,y 1)、B(x 2,y 2)是一次函数y=a 2x-2图象上不同的两点,记m=(x 1-x 2)( y 1-y 2),A B C D第13题 第14题 第15题 第16题yx则m ▲ 0.(填“>”或“<”) 13.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是41,则大、小两个正方形的边长之比是 ▲ . 14.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是▲ .15.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O 与矩形ABCD 的边BC ,AD 分别相切和相交(E ,F 是交点),已知EF=CD=8,则⊙O 的半径为 ▲ . 16.如图,平面直角坐标系中,A 、B 两点的纵坐标分别为8和2,直线AB 与y 轴所夹锐角为60°,反比例函数y=xk(x >0)的图像经过A 、B 两点,则k= ▲ . 三、解答题(共10小题,满分102分) 17.(12分) (1) 计算:|﹣2|+(﹣1)2014﹣2cos45°+16(2) 解不等式组: ⎩⎨⎧+<+>-②x x ①x 7)2(2 51318.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中-119.(8分)某班组织活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品。
江苏省泰州中学附属初级中学2015届九年级数学上学期期末调研考试试题

某某省某某中学附属初级中学2015届九年级数学上学期期末调研考试试题(考试时间:120分钟,满分:150分)一、选择题(共6小题,每小题3分,共18分)1.下列四组线段中,不构成比例线段的一组是( ▲ ) A .1 cm ,2 cm ,3 cm ,6 cmB .2 cm ,3 cm ,4 cm ,6 cmC .1cm ,2cm ,3cm ,6cmD .1 cm ,2 cm ,3 cm ,4 cm2x 3x 40++=的根的情况是(▲)5cm 和3cm ,圆心距为2cm ,则这两个圆的位置关系是( ▲ )A .外切B .内切C .内含D .相交 4.二次函数y =x 2+2x -3的图象的顶点坐标是( ▲ )A .(-1,-4)B .(1,-4)C .(-1,-2)D .(1,-2) 5.在ABC R ∆t 中,︒=∠90C ,如果把ABC R ∆t 的各边的长都缩小为原来的41,则A ∠的正切值 ( ▲ ) 来的4121 D.不变6.如图,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC ABCD BC=;④AC 2=AD ·AB .其中能够单独判定△ABC ∽△ACD 的条件个数为 ( ▲ ) A .1B .2C .3D .4二、填空题(共10小题,每小题3分,共30分) 第6题图 7.一组数据2,-1,3,5,6,5,7的中位数是▲. 8.△ABC 中,∠A 、∠B 都是锐角,若sinA =,cosB =,则∠C =▲.9.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率 是▲.10.已知△ABC 与△DEF 相似且周长比为2∶5,则△ABC 与△DEF 的面积比为▲.11.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,6.3S 2=甲, 8.15S 2=乙,则小麦长势比较整齐的试验田是▲.12.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB =▲.第12题图第16题图13.若将抛物线y =3x 2+1向下平移1个单位后,则所得新抛物线的解析式是▲. 14.圆锥的母线为5cm ,底面圆的半径为3cm ,则圆锥的侧面积为▲2cm (保留π). 15.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2.则线段AB 的长为▲.16.如图,在平面直角坐标系xOy 中,直线AB 经过点A (-4,0)、B (0,4),⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值▲.三、解答题(共10题,共102分) 17. (本小题满分12分)⑴计算:tan 2600+4sin300cos450⑵解方程x 2-4x+2=018. (本小题满分8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1) . (1)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B 、C 两点的对应点B ′、C ′的坐标.第18题图19.(本小题满分8分)有四X 背面图案相同的卡片A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图),小刚同学将这四X 卡片背面朝上洗匀摸出一X ,放回洗匀再摸出一X .(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片用A 、B 、C 、D 表示)(2)求摸出的两X 卡片图形都是中心对称图形的概率.第19题图20.(本题满分10分)A 、B 、C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如图一和表一: (1)请将图一和表一中的空缺部分补充完整;(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票分别是A :105票;B :120票;C :75票.若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.第20题图一 第20题表一21. (本小题满分10分)在平原上,一门迫击炮发射的一发炮弹飞行的高度y (m )与飞行时A B C 笔试 859590口试 80 85ADCB间x (s )的关系满足 y =-51x 2+10x .⑴经过多长时间,炮弹达到它的最高点?最高点的高度是多少? ⑵经过多长时间,炮弹落在地上爆炸?22.(本小题满分10分)如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°. (1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到).23. (本小题满分10分)如图 ,在ΔABC 中,AB =AC ,∠A =360,线段 AB 的垂直平分线交 AB 于 D ,交 AC 于 E ,连接BE .⑴求证:∠CBE =36°;⑵求证:AE 2= AC ·E C.第23题图24.(本题满分10分)某商店准备进一批季节性小家电,每个小家电的进价为40元,经市场预测,每个小家电的销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个小家电定价增加x 元.(1)写出售出一个小家电可获得的利润是多少元?(用含x 的代数式表示);(2)商店若准备获得利润6000元,并且使进货量较少.....,则每个小家电的定价为多少元?25.(本题满分12分)如图,O 为正方形ABCD 对角线AC 上一点,以O为圆心,OA 长为半径的⊙O 与BC 相切于点M .第22题图DC BA5°12°参考数据 sin12°≈ cos12°≈ tan5°9DA(1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长.第25题图26.(本题满分12分)如图,二次函数213y x bx 22=+-的图象与x 轴交于点A (﹣3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E .⑴请直接写出点D 的坐标:;⑵当点P 在线段AO (点P 不与A 、O 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;⑶在x 轴负半轴上是否存在这样的点P ,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.第26题图2014~2015学年度第一学期期末调研检测九年级数学试题参考答案一、选择题(每题3分,共18分) 1D 2D 3B 4A 5D 6C 二、填空题(每题3分,共30分)7 . 5 8. 6009 . 5% 10. 4:25 11. 甲 12 . 65 013 .23x y 14 . 15π 15. 8 16. 7三、解答题(共10小题,共102分)17. (12分)(1)3+2………6分 (2)x 1=2+2 x 2=2-2…………6分 18.(8分)(1)画图 ……………………………………………………………4分(2) B ′(-6,2),C ′(-4,-2) ………………………………4分19.(8分)(1)树状图或列表………………(4分)开始第一次 A B C D第二次 A B C D A B C D A B C D A B C D (2)P (两X 都是中心对称图形)=41………………(4分) 20. (10分)(1)略………………(5分)(2)A 85×40%+90×30%+105×30%=92.5 B 95×40%+80×30%+120×30%=98 C 90×40%+85×30%+75×30%=84 ∴B 当选。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰兴市 实验初级中学 初三数学阶段试题
2015.2
(考试时间:120分钟 满分:150分)
一、选择题(每题3分): 1.1
3
-
的倒数是 A .
1
3
B .3-
C .3
D . 13
-
2. 下列计算正确的是 A .()
62
3
a a -=- B .222()a
b a b -=- C .235325a a a += D .336a a a =÷
3.地球与月球的平均距离大约为384000千米.将数384000用科学记数法表示为 A .6
0.38410⨯ B .6
3.8410⨯
C .5
3.8410⨯ D .3
38410⨯
4.已知一元二次方程的两根分别是3和-5,则这个一元二次方程是
A .x 2-2x+15=0
B .x 2+2x -15=0
C .x 2-x -6=0
D .x 2-2x -15=0
5.如图,在Rt △ABC 中,∠C=90°,sinA=3
2
,那么tanB 的值是
A .25
B .35
C .552
D .32
6.已知二次函数2(0)y ax bx c a =++≠的图像如图所示,且关于x 的 一元二次方程2
0ax bx c m ++-=有实数根,下列结论: ①abc >0;②24b ac ->0;③m >2- 其中,正确的个数是
A .0
B .1
C .2
D .3 二、填空题(每题3分):
7
有意义的x 的取值范围是 . 8.一组数据3、-4、1、-2的极差为 . 9.因式分解:a 3-a =_____________.
10.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为 .
11.如图,四边形ABCD 是⊙O 的内接四边形,如果∠AOC +∠ABC =90°,那么∠ADC 的度数为 .
(第12题) (第13题)
12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC
为等腰三角形的概率是 .
(第5题)
(第6题)
13.如图,AB 为半圆的直径,且AB=3,半圆绕点B 顺时针旋转45°,点A 旋转到A′的位置,则图中阴
影部分的面积为 (结果保留π).
14.Rt △ABC 中,∠C=90°,AB=9,点G 是△ABC 的重心,则CG 的长为 .
15.抛物线2y x =-沿y 轴向上平移若干个单位长度后,新抛物线与x 轴的两个交点和顶点构成等腰直角
三角形,则新抛物线的解析式为 . 16.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,
若S △DEC :S △ADC =1:3,则S △BDE :S △ACD = .
三、解答题: 17.(本题12分)计算:
(1)2
1()4sin 60tan 452
---
21)2
18.(本题8分)先化简,再求值:22
1
11121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭
,其中1x =
19.(本题8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租
车量的统计,结果如图:
(1)求这7天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计九月份 (30天)共租车多少万车次; (3)市政府在公共自行车建设项目中共投入7650万元,若 2014年 各月份的租车量与九月份的租车量基本相同,每车次平均收入租 车费0.1元,请估计2014年租车费收入占总投入的百分率.
20.(本题8分)
(1)如图,△ABC 是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中 标明相应的字母.(保留作图痕迹,不写作法) ①作∠BAC 的平分线,交BC 于点O ; ②以O 为圆心,OC 为半径作圆. (2)在你所作的图中,
①AB 与⊙O 的位置关系是______;(直接写出答案) ②若AC=6,BC=8,求⊙O 的半径. 21.(本题10分)
在一个不透明的箱子里,装有2个红球和2个黄球,它们除了颜色外均相同. (1)随机地从箱子里取出1个球,则取出红球的概率是多少?
(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.
22.(本题10分)
我国深潜器目前最大的深潜极限为7062.68m ,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C 的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B 点,此时测得海底沉船C 的俯角为60°。
(1)沉船C 是否在深潜极限范围内?并说明理由;
(2)现要打捞沉船,打涝时沉船竖直上升,上升速度为200米/时, 求该沉船从开始上升直至回到海面的时间。
(精确到0.1h) (参考数据:2≈1.414,3≈1.732)
23.(本题10分)
如图,以△ABC 的边AC 为直径的⊙O 与BC 相切于点C ,⊙O 与
AB 相交于点D ,E 是BC 的中点. (1)求证:DE 是⊙O 的切线; (2)若⊙O 的直径为5,1
2
AD CD =,求DE 的长.
24.(本题10分)
由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为
21000y x =-+.
(1)该公司每月的利润为w 元,写出利润w 与销售单价x 的函数关系式; (2)若要使每月的利润为40000元,销售单价应定为多少元?
(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?
25.(本题12分)
如图1,在△ABC 中,AB=AC=5,BC=6,AD 是高,点E 是AB 上一动点,过E 作EF ∥BC 交AC 于F ,交AD 于H ,设AE=x ,AH=y . (1)求y 与x 的函数关系式;
(2)如图2,将△AEF 沿EF 翻折,点A 落在射线..AD 上的点A’
①是否存在这样的x 值,使CA’⊥AB ,若存在,求出x 的值;若不存在,说明理由.
图1 图2
备用图
②探索当x 为何值时,△A ’DE 为等腰三角形?
26.(本题14分) 如图,抛物线212
y x bx c =++与x 轴相交于点A(-1,0)、B(3,0),直线1y kx =+与抛物线相交于A 、
C 两点 (1)求抛物线2
12
y x bx c =
++和直线AC 的解析式; (2)以AC 为直径的圆与y 轴交于两点M 、N ,求M 、N 两点的坐标;
初三数学阶段试题参考答案
2015.2
一、选择题:
1-6 B D C B A C 二、填空题
7.x ≤3 8.7 9.a(a+1)(a -1) 10.2 11.150° 12..57
13.
9
8
π 14.3 15. 21y x =-+ 16.1∶6
三、解答题:
17.(1)3- (2)5-
18.化简为
2
1
x + 19.(1)众数为8万车次,中位数为8万车次,平均数为8.5万车次
(2)255万车次(3)4﹪
20.(1)略 (2)①相切 ②3 21.(1)
12 (2)不公平,P(小明胜)=13,P(小亮胜)=23
22.(1)在范围内 (2)32.7h
23.(1)略 (2)5
24.(1)2
21400200000y x x =-+- (2)300或400
(3)最高利润为45000元,最低利润为25000元
25.(1)4
5
y x =
(2)①存在,3532x = ②20160
1339
x =或
26.(1)213
22
y x x =--,1y x =+
(2) M(0,2+14),N(0,2-14)
(3)P(1,-6)。