行程问题典型题库完整版
3.4(15)--数轴上的动态问题(行程问题)
3.4(15)--数轴上的动态问题(行程问题)一.【知识要点】方法:1.类比行程问题解决;2.利用数轴上两点的距离=两点表示的数的差的绝对值。
二.【经典例题】1. 如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,(1)写出数轴上点B所表示的数(2)点P所表示的数;(用含t的代数式表示);(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.(4)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B 个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点出发,以每秒43P追上点R后,立即返回向点Q运动,遇到点Q后则停止运动,那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?2.(绵阳2022期末第23题)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n ﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.三.【题库】【A】【B】1. 一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.【C】1.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由.(3)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.AO P B-1-203【D】。
行程问题应用题大全
行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。
在途中,火车经过C地,小明在C地停留了20分钟。
请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。
因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。
2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。
飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。
请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。
在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。
因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。
3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。
汽车在途中经过C地,小李在C地停留了45分钟。
请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。
因此,小李在C地停留的时刻是(t0+6小时)+45分钟。
根据题目要求,我们需要求得小李在A地出发的时刻,即t0。
可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。
4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。
在途中,小张在C地停留了30分钟。
请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。
因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。
5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。
自行车在途中经过C地,小王在C地停留了15分钟。
行程问题分类练习题
相遇与追及(一)1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、两列火车同时从甲、乙两站相向而行。
第一次相遇在离甲站40千米的地方。
两车仍以原速继续前进。
各自到站后立即返回,又在离乙站20千米的地方相遇。
两站相距多少千米?4、甲、乙两辆汽车同时从东、西两地相向开出,甲每小时行驶60千米,乙每小时行驶48千米,两车在离两地中点30千米处第一次相遇,那么东、西两地相距多少千米?5、快车和慢车同时从相距600千米的A,B两地相向行驶,在离两地中点30千米处相遇,已知快车每小时比慢车多行20千米,则慢车每小时行多少千米?6、客、货两车同时从甲、乙两地出发,相向而行,5小时后在距离两地中点30千米处相遇。
已知客、货两车的速度比是5:7,求甲、乙两地之间的距离。
7、甲、乙两辆汽车同时分别从A,B 两地相对开出,甲车每小时行42千米,乙车每小时行45千米。
甲、乙两车第一次相遇后继续前进,各自到达B,A 两地后,立即按原速返回。
两车从开始到第二次相遇共用6小时。
求A,B 两地的距离。
8、甲、乙两车分别同时从A,B 两地相对开出,第一次在离A 地95千米处相遇。
相遇后继续前进到达B,A 两地后又立刻返回,第二次在离B 地25千米处相遇,求A,B 两地间的距离。
相遇与追及(二)1、甲、乙两车同时从A,B 两地相对开出,第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B 地的距离是AB 全程的51,已知甲车在第一次相遇时行了120千米。
A,B 两地相距多少千米?2、轿车以每小时80千米的速度从东村出发,货车以每小时60千米的速度从西村同时出发,两车相向而行,轿车到达西村,货车到达东村后立即原路返回,在东、西两村不断往返行驶,第100次相遇地与第101次相遇地相距200千米。
行程问题应用题集锦
行程问题应用题集锦1. 火车行程问题某列火车从A市出发,经过B市和C市最后到达D市。
已知A市到B市和B市到C市的距离分别为120公里和80公里,火车开行的平均速度为60公里/小时。
问火车从A市到D市总共需要多长时间?解析:根据题意可知,火车从A市到B市的时间为120公里/60公里/小时=2小时;从B市到C市的时间为80公里/60公里/小时=1.33小时。
所以总共需要的时间为2小时+1.33小时=3.33小时。
2. 飞机行程问题某飞行员从城市A出发,驾驶飞机以800公里/小时的速度直飞到城市B,途中休息了1小时,然后以600公里/小时的速度飞行到城市C。
已知城市A到城市B的距离为2000公里,城市B到城市C的距离为1800公里。
问整个行程所需的时间是多少?解析:飞机从城市A到城市B的飞行时间为2000公里/800公里/小时=2.5小时。
休息1小时后,从城市B到城市C的飞行时间为1800公里/600公里/小时=3小时。
所以整个行程所需的时间为2.5小时+1小时+3小时=6.5小时。
3. 跑步行程问题小明每天晨跑,并且保持一定的速度。
他从家里出发,第一小时跑了10公里,第二小时跑了8公里,第三小时跑了6公里。
问他跑完5小时后总共跑了多少公里?解析:根据题意可知小明每小时的跑步距离是递减的。
所以他第四小时跑了4公里,第五小时跑了2公里。
所以他跑完5小时后总共跑了10+8+6+4+2=30公里。
4. 自行车行程问题小红骑自行车从家里出发,经过学校到达图书馆。
已知小红骑自行车的平均速度是10公里/小时,家到学校的距离为5公里,学校到图书馆的距离为3公里。
问小红从家里到图书馆一共需要多长时间?解析:从家到学校需要的时间为5公里/10公里/小时=0.5小时,从学校到图书馆需要的时间为3公里/10公里/小时=0.3小时。
所以小红从家里到图书馆一共需要0.5小时+0.3小时=0.8小时。
总结:行程问题主要考察对速度、距离和时间的关系的理解和计算能力。
行程问题题库
行程问题(一)例1.一辆汽车从甲地开往乙地,平均每小时行20千米。
到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。
求甲乙两地间的路程。
练习1.汽车从甲地开往乙地送货,去时每小时行30千米,返回时每小时行40千米。
往返一次共用8小时45分,求甲乙两地间的路程。
练习2.师徒二人加工一批零件。
师傅每小时加工35个,徒弟每小时加工28个。
师傅先加工了这批零件的一半后,剩下的由徒弟去加工,二人共用18小时完成了加工任务。
问:这批零件共有多少个?例2.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15千米可早到0.4小时,如果每小时走12千米就要迟到0.25小时,他去某地的路程有多远?练习3.小李由乡里到县城办事,每小时行4千米,到预定到达的时间时,离县城还有1.5千米。
如果小李每小时走5.5千米,到预定到达的时间是,又会多走4.5千米。
乡里距县城多少千米?练习4.玲玲从家到县城上学,她以每分50米的速度走了2分后,发现按这个速度走下去要迟到8分,于是她加快了速度,每分多走10米,结果到学校时,离上课还有5分钟。
玲玲家到学校的路程是多少米?例3.东西两地相距5400米,甲乙从东地,丙从西地同时出发,相向而行。
甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。
多少分钟后乙正好走到甲丙两人之间的中点处?练习5.东西两镇相距60千米。
甲骑车行全程要4小时,乙骑车行全程要5小时。
现在两人同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下的路程的4倍?练习6.老师今年32岁,学生今年8岁。
再过几年老师的年龄是学生年龄的3倍?例4.快慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。
途中快车因故停留3小时。
结果两车同时到达B地。
求AB两地间的距离。
练习7.甲每分钟行120米,乙每分钟行80米,二人同时从A店出发去B店,当乙到达B店时,甲已在B 店停留了2分钟。
A店到B店的路程是多少米?练习8.兄弟二人同时从家往学校走,哥每分钟走90米,弟每分钟走70米,出发1分钟后,哥发现少带铅笔盒,则原路返回,区后立即出发,结果于弟同时到达学校。
(完整版)七年级数学应用题专题---行程问题【精】整理版
行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。
3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。
4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。
⑴两人同时同向从同地出发经过多少分钟两人再相遇。
⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。
12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。
六年级数学行程问题
六年级数学行程问题一、行程问题题目1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地同时出发相向而行,快车每小时行60千米,慢车每小时行30千米。
问几小时后两车相遇?解析:两车相向而行,它们的相对速度就是两车速度之和,即公式千米/小时。
根据时间 = 路程÷速度,总路程是450千米,所以相遇时间为公式小时。
2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?解析:根据路程 = 速度×时间,从甲地到乙地的路程为公式千米。
返回时路程不变,时间为5小时,所以返回速度为公式千米/小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明的速度是6米/秒,小红的速度是4米/秒。
如果他们同时同地同向起跑,多少秒后小明第一次追上小红?解析:同向起跑时,小明第一次追上小红时,小明比小红多跑了一圈,即400米。
小明每秒比小红多跑公式米,所以追及时间为公式秒。
4. 两列火车同时从相距720千米的两地相对开出,一列火车每小时行50千米,另一列火车每小时行70千米。
经过几小时两车相遇?解析:两车相对开出,相对速度为公式千米/小时。
根据时间 = 路程÷速度,路程为720千米,所以相遇时间为公式小时。
5. 一辆客车和一辆货车分别从A、B两地同时出发,相向而行,客车的速度是每小时75千米,货车的速度是每小时65千米,经过3小时两车相遇。
A、B两地相距多少千米?解析:两车相向而行,它们的速度和为公式千米/小时,经过3小时相遇。
根据路程 = 速度×时间,所以A、B两地相距公式千米。
6. 甲、乙两人分别从相距24千米的两地同时出发相向而行,甲每小时走4千米,乙每小时走2千米,几小时后两人相遇?解析:两人相向而行,速度和为公式千米/小时。
根据路程÷速度= 时间,总路程24千米,所以相遇时间为公式小时。
7. 一辆汽车以每小时60千米的速度从甲地开往乙地,3小时后到达乙地,然后又以每小时45千米的速度返回甲地,求汽车往返的平均速度。
3.4(13)--追及问题(行程问题)
3.4(13)--追及问题(行程问题)一.【知识要点】1.追及问题:快行距-慢行距=原距二.【经典例题】1.实验中学学生步行到郊外旅行。
(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。
前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。
(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?2.某班学生列队以每小时6km的速度去甲地,小李从队尾以每小时10km的速度赶到队伍的排头后,又以同样的速度返回队尾,一共用了7.5min,求此队伍的长.3.在某次环城自行车比赛中,速度最快的运动员出发后35min第一次遇到速度最慢的运动员,已知最快的运动员的速度是最慢的运动员的速度的1.2倍, 环城一周为7km,求两名运动员的速度各是多少.三.【题库】【A】1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐出发去追妹妹。
问:多少分钟后能追上?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.一列慢车从A地出发,每小时行60千米,慢车开出1小时后,快车也从A地出发,每小时速度为90千米,快车经过几小时可追上慢车?4.敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以8千米/时的速度追击,并在相距一千米处发生战斗,问战斗是在开始追击几小时发生的?5.AB两站相距448千米,一列慢车从A站出发,每小时行驶60千米,一列快车也从A站出发,每小时行驶80千米,要使两车同时到达B站,慢车应先出发几小时?6.甲乙两人在400米的环形跑道上练习长袍,他们同时同地出发,甲的速度是6米每秒,乙的速度是4米每秒,多长时间后甲追上乙?7.甲乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?8.几名同学约好一起去动物园,到学校集合后,一部分同学以每小时5千米的速度步行,0.5小时后,另一部分同学骑自行车上学,20分钟后,他们同时到达动物园,骑自行车的同学的速度是多少?9.某市举行环城自行车赛,最快者在35分钟后遇见最慢者,已知最快者的速度是最慢者的7/5,环城一周是6千米,则最快者和最慢者的速度各是多少?10.父子两人晨练,父亲从家到公园跑步需要30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需要多少分钟?11. 我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要_________分钟就能追上乌龟.12.一队学生去校外参加劳动,以4km/h的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员以14km/h的速度按原路追上去,则通讯员追上学生队伍所需的时间是( )A.10minB.11minC.12minD.13min13.东西两村相距20千米,甲骑自行车从西村出发往东走,每小时走13千米,同时乙步行从东村出发,沿同一条路也往东走,每小时走5千米,经过几小时后,甲可以追上乙?14.A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
行程问题100道
行程问题练习题100道 姓名:路程、时间、速度的关系:1、 汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米的速度返回甲地。
求该地的平均速度?2、 一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这俩汽车从甲地到乙地的平均速度为40千米/时,剩下的路程应以什么速度行驶?3、 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
4、 一只蚂蚁沿等边三角形的三边由A 点开始爬行一周。
在三条边上它每分钟分别爬行50cm ,20cm ,40cm (如下图)。
它爬行一周平均每分钟爬行多少厘米?5、 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用100秒。
已知每辆车长4米,两车间隔10米,那么这个车队共有多少辆车?6、 李爽从家到学校去,骑车比步行每分快120米,骑车所用时间比步行时间少53。
李爽每分钟步行多少米?7、小燕上学时骑车,回家时步行,路上共用50分钟。
如果往返都步行,则全程需要70分钟。
求往返都骑车所需时间?8、小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时。
小明去时用了多长时间?9、某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,共用了5.5小时。
问:他步行了多远?10、甲乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多1/8 。
问:甲、乙的速度之比是多少?11、乐乐放学回家需要走10分钟,晶晶放学回家需要走14分钟。
已知晶晶回家的路程比乐乐回家的路程多1/6,乐乐每分比晶晶多走12米。
晶晶回家的路程是多少米?12、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9小时。
小明往返一趟共行了多少千米?13、一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1:2:3,某人走这三段路程所用时间之比是4:5:6。
行程问题专题
行程问题(一)相遇问题1.两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程.2.相遇问题公式:根据速度和、距离和相遇时间三者之间的关系,常用下面的公式:路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.例1.在比例尺是1∶4000000的地图上,A、B两地的距离是5厘米,两辆汽车同时从A、B两地相对开出,一辆汽车每小时行35千米,另一辆汽车每小时行45千米,几小时可以相遇?例2.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。
例3.甲乙两车从相距450千米的两地同时出发相向而行,经过3小时相遇。
已知甲车每小时比乙车少行驶10千米,那么乙车每小时行多少千米?例4.甲、乙两车从相距596千米的两地同时出发,相向而行,3小时后两车还相距32千米(未相遇)。
甲车每小时行84千米,乙车每小时行多少千米?例5.客车和货车同时从AB两地相向而行,货车每小时行60千米,货车每小时行48千米。
两车离两地中点30千米相遇,求两地间的距离是多少?例6.甲、乙两城市之间的铁路总长745千米,一列客车以每小时85千米的速度从甲城开往乙城,一列货车在客车出发1小时后,立即以每小时80千米的速度从乙城开往甲城。
货车出发后经过多少小时两车相遇?(二)追及问题【知识点归纳】1.追及问题的概念:追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.2.追及问题公式:根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速﹣慢速例1.甲从A出发,每分钟走50米,甲出发30分钟后,乙也从A出发,去追甲,乙每分钟走80米。
小学数学行程问题及答案
小学数学行程问题及答案1.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?2.如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.3.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?4.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.5.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:6.一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.行程问题(一)(基础篇)行程问题的基础知识以及重要知识点★提到行程问题就不得不说3个行程问题中一定会用到的数——,t,v——路程t——时间v——速度这3个数之间的关系就是:路程=速度某时间——=vt同时可以得出另外两个关系:速度=路程÷时间——v=/t时间=路程÷速度——t=/v我们来看几个例子:例1,一个人以5米/秒的速度跑了20秒,那么他跑了多远?5米/秒是这个人的速度v,20秒是他一共跑的时间t,求他跑的距离也就是路程,我们就可以直接利用这3个数量的关系=vt来计算出路程:=vt=5某20=100(米)。
小升初复习行程问题练习(含答案)
行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
小学二年级奥数题《行程问题大全及答案》题库大全
小学二年级奥数题《行程问题大全及答案》题库大全姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、操场的一侧插着10面彩旗,每两面彩旗之间的距离是2米,从第1面彩旗到第10面彩旗之间相距多少米?答案与解析:2x(10-1)=18(米)2、小朋友做早操,9个人排成一行,前后两人之间的距离是2米,从第一个小朋友到最后一个小朋友的距离是多少米?答案与解析:(9-1)x2=16(米)3、河岸边有一排柳树,张爷爷每天早晨锻炼,沿河边第1棵树走到第9棵树,一共走了72米。
平均每两棵树之间相隔多少米?答案与解析:72(9-1)=9(米)4、随着神七问天,我国航天员翟志刚成功完成了中国人太空行走第一步。
在19分35秒的时间里,翟志刚与飞船一起飞过了9165千米,约()千米。
答案与解析:92005、根据图意完成下面各题。
1.小英从家去超市,她应该先向()走()米到书店,再向()走()米到体育馆,最后向()走()米到超市。
2.小东从家去体育馆,要先向()走()米到银行,再向()走()米到邮局,最后向()走()米到体育馆。
3.小丽从家去书店,一共要走()米;小丰从家去邮局,一共要走()米。
4.小丰要去小丽家玩,他应该怎样走?他途经哪些地方?他总共要走多远的路程?答案与解析:1.东;350;南;100;东;300;2.西;370;北;330;西;200;3.600;550;4.先向东走150米,再向北走200米,再向东走300米,最后向北走200米到小丽家。
他途经敬老院、体育馆、超市。
总共要走850米。
6、看图回答问题。
(1)文文要从家去医院,先向()走()米到超市,再向()走()米到医院。
(2)文文从学校出发,向()走()米到(),再向()走()米到(),再向()走()米到(),最后向()走()米到自己家,他从学校回家总共要走()米。
(完整版)六年级行程问题练习及答案.docx
行程问题 (1)一、填空题1.两车同时从甲乙两地相对开出 , 甲每小时行 48 千米 , 乙车每小时行 54千米 , 相遇时两车离中点36 千米 , 甲乙两地相距千米.2.小明从甲地到乙地 , 去时每小时走 6 公里 , 回来时每小时走 9 公里 , 来回共用 5 小时 . 小明来回共走了公里.3.一个人步行每小时走 5 公里 , 如果骑自行车每 1 公里比步行少用 8 分钟 ,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手 , 顺风跑 90 米用了 10 秒钟 . 在同样的风速下 , 逆风跑 70 米 , 也用了 10 秒钟 . 在无风的时候 , 他跑 100 米要用秒.5.A、B 两城相距 56 千米 . 有甲、乙、丙三人 . 甲、乙从 A 城, 丙从 B 城同时出发 . 相向而行 . 甲、乙、丙分别以每小时 6 千米、 5 千米、 4 千米的速度行进 .求出发后经小时 , 乙在甲丙之间的中点 ?6.主人追他的狗 , 狗跑三步的时间主人跑两步 , 但主人的一步是狗的两步 , 狗跑出 10 步后 , 主人开始追 , 主人追上狗时 , 狗跑出了步.7.兄妹二人在周长 30 米的圆形水池边玩 , 从同一地点同时背向绕水池而行 ,兄每秒走 1.3 米, 妹每秒走 1.2 米 , 他们第十次相遇时 , 妹妹还需走米才能回到出发点 .8.骑车人以每分钟 300 米的速度 , 从 102 路电车始发站出发 , 沿 102 路电车线前进 , 骑车人离开出发地 2100 米时 , 一辆 102 路电车开出了始发站 , 这辆电车每分钟行 500 米 , 行 5 分钟到达一站并停车 1 分钟 , 那么需要分钟,电车追上骑车人.9.一个自行车选手在相距 950 公里的甲、乙两地之间训练 , 从甲地出发 , 去时每90 公里休息一次 , 到达乙地并休息一天后再沿原路返回 , 每 100公里休息一次 .他发现恰好有一个休息的地点与去时的一个休息地点相同 , 那么这个休息地点距甲地有公里.10.如图 , 是一个边长为 90 米的正方形 , 甲从 A 出发 , 乙同时从 B 出发 , 甲每分钟行进 65 米, 乙每分钟行进 72 米 , 当乙第一次追上甲时 , 乙在边上.D CA B二、解答题11.动物园里有 8 米的大树 . 两只猴子进行爬树比赛 , 一只稍大的猴子爬上 2 米时 , 另一只猴子才爬了 1.5 米. 稍大的猴子先爬到树顶 , 下来的速度比原来快了 2 倍 . 两只猴子距地面多高的地方相遇 ?12.三个人自 A 地到 B 地, 两地相距 36 千米 , 三个人只有一辆自行车 , 这辆车只能坐两人 , 自行车的速度比步行速度快两倍 .他三人决定 : 第一个人和第二个人同乘自行 , 第三个人步行 . 三个人同出 , 当的二人到达某点 C , 人放下第二个人 , 立即沿原路返回去接第三个人 , 到某 D 与第三个人相遇 , 然后两人同乘自行前往 B;第二个人在 C 下后步行前往 B 地. 果三个人同到达 B 地. 那么 , C 距 A 多少千米?D 距 A 多少千米 ?13.路旁一条平行小路上 , 有一行人与一人同向南行 , 行人速度每小 3.6 公里 , 人速度每小 10.8 公里 . 有一列火从他背后开来 , 火通行人用22 秒 , 通人用 26秒 . 列火的身多少米 ?14.一条小河流 A、B、C 三 . A、B 两之有汽船来往 , 汽船在静水的速度每小11 千米 . B、C 两之有木船渡 , 木船在静水中的速度每小 3.5 千米 . 已知 A、C 两水路相距 50 千米 , 水流速度每小 1.5 千米 . 某人从A 上乘汽船流而下到B , 吃午用去 1 小 , 接着乘木船又流而下到C , 共用 8 小 , 那么 A、 B 两的水路路程是多少米 .———————————————答案——————————————————————1. 1224乙每小比甲多行54-48=6( 千米 ), 而乙相遇比甲多行36 2=72(千米 ), 故相遇的72 6=12(小 ), 从而甲乙两地相距 12 (48+54)=1224( 千米 ).2.36甲、乙两地相距 x 公里 , xx 5 , 故 x=18, 于是小明共行了 18 2=36(公里 )693.3个人步行每小 5 公里 , 故每 12 分 1 公里 , 故他每 12-8=4( 分 )1 公里 , 即每小 15 公里 , 故他速度是步行速度的 15 5=3( 倍).4. 12.5速度 90 10=9(米 / 秒 ), 逆速度 70 10=7( 米/ 秒). 故在无手的速度 (9+7) 2=8( 米/ 秒), 他跑 100 米要 100 8=12.5( 秒).5. 7x 小后 , 乙在甲、丙之的中点, 依意得6x-5 x=5x+4x-56, 解得x=7.6. 30狗跑 3 步的位 , 狗的速度每位 3 步, 主人的速度每位 2 2=4(步), 主人追上狗需要 10 (4-3)=10( 位 ), 从而主人追上狗 , 狗跑了 3 10=30(步).7. 6第一次相遇的 :30 (1.3+1.2)=12( 秒); 兄妹第十次相遇走的距离 1.2 1210=144( 米 ); 因 144 30=4 ⋯ 24( 米 ), 故妹妹离出点的距离 30-24=6( 米).8. 15.5不考虑停车时间 , 电车追上骑车人所用时间为 2100 (500-300)=10.5( 分 ),这期间 , 电车需要经过两站 , 停车 2 分钟 . 骑车人在 2 分钟内所走的距离为 300 2=600( 米 ). 这样 , 考虑停车时间 , 电车追上骑车人所用时间为 :(2100+600) (500-300)+2=15.5( 分).9. 450 这个选手去时休息的地点与甲地距离依次为:90 公里 ,180 公里 ,270 公里 ,360 公里 ,450 公里 ,540 公里 ,630 公里 ,720 公里 ,810 公里和 900 公里 , 而他返回休息地点时距甲的距离为 850 公里 ,750 公里 ,650 公里 ,450 公里 ,350 公里 ,250公里 ,150 公里和 50 公里 . 故这个相同的休息地点距甲地 450 公里 .10. DA乙追上甲时所用的时间是(90 3) (72-65)=270( 分); 乙追上甲时所走的距7离为 72 27021690 ( 米 ); 这 时乙 走过 了21690 90 30 6 ( 条 ) 边 , 因7 777 3064 7 2 6, 故乙追了 7 圈后 , 还需走 2 6条边便可追上甲 , 显然乙在 DA 边77 7上 .11. 设大猴爬 2 米和小猴爬 1.5 米都用时 1 秒. 当大猴爬上树稍时 , 小猴爬 的距离为 8 2 1.5=6( 米); 两猴相遇的时间为 (8-6)[1.5+2 (2+1)]= 4( 秒). 两415猴相遇时 , 距地面高度为 6 1.5 6.4 ( 米).1512. 如图 , 第一、二两人乘车的路程 AC, 应该与第一、三两人骑车的路程 DB 相等 , 否则三人不能同时到达 B 点 . 同理 AD=BC.A D C B第二人步行第三人步行当第一人骑车在 D 点与第三人相遇时 , 骑车人走的路程为 AD+2CD, 第三人步行路程为 AD. 因自行车速度比步行速度快 2 倍, 即自行车速度是步行的 3 倍, 故 AD+2CD=3CD, 从而 AD=CD=BC.因 AB=36 千米 , 故 AD=CD=BC=12 千米 , 故 C 距 A24 千米 , D 距 A12 千米 .13. 行人速度为 3.6 公里 / 时 =1米 / 秒 , 骑车人速度为 1.8 公里 / 时=3 米/ 秒. 设车身长为 x 米, 依题得x1x3, 故 x=286. 即车长 286 米.22 2614. 设某人从 A 镇到 B 镇共用 x 小时 , 依题意得 ,(11+1.5) x+(3.5+1.5)(8-1- x)=50. 解得 x=2, 故 A 、B 两镇的水路距离为(11+1.5) 2=25( 千米 ).。
小升初行程问题例题及答案
小升初行程问题例题及答案小升初行程问题例题及答案【第一篇:流水行船求时间】某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。
【解】:物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时【拓展】甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来。
7.2时后乙轮船与自漂水流测试仪相遇。
已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。
【解】:因为测试仪的漂流速度与水流速度相同,所以若水不流动,则7.2时后乙船到达A站,2.5时后甲船距A站31.25千米。
由此求出甲、乙船的航速为31.25÷2.5=12.5(千米/时)。
A,B两站相距12.5×7.2=90(千米)。
【第二篇:流水行船求船速】江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。
又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。
则游船在静水中的速度为每小时多少千米?【解】:此题可以分为几个阶段来考虑。
第一个阶段是一个追及问题。
在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米。
由于两者都是顺水航行,故在静水中两者的速度差也是3千米。
在紧接着的1个小时中,货船开始领先游船,两者最后相距3*1=3千米。
100道六年级行程问题
行程问题1、两辆汽车同时从某地出发,运送一批货物到距离165千米的工地,甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?2、甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地。
第一辆汽车每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆车从开出到相遇共用多少小时?3、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地开往A地需10小时,两车同时从两地开出,相遇时甲车距B地还有多少千米?4、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
到10点钟时两车相距112.5千米。
继续行进到下午1时,两车相距还是112.5千米。
A、B两地间的距离是多少千米?5、两辆汽车同时从东、西两站相向开出。
第一次在离东站60千米的地方相遇。
之后,两车继续以原来的速度前进。
各自到达对方车站后都立即返回。
又在距中点西侧30千米处相遇。
两站相距多少千米?6、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。
各自到站后都立即返回,又在距中点南侧15千米处相遇。
两站相距多少千米7、两列火车同时从甲、乙两站相向而行。
第一次相遇在离甲站40千米的地方。
两车仍以原速继续前进。
各自到站后立即返回,又在离乙站20千米的地方相遇。
两站相距多少千米8、甲、乙两辆汽车同时从A、B两地相对开出。
第一次相遇时离A站有90千米。
然后各按原速继续行驶,分别达到对方车站后立即沿原路返回。
第二次相遇时离A地的距离占A、B两站间全程的65%,A、B两站之间的路程是多少千米?9、A、B两地相距960千米,甲、乙两人分别从A、B两地同时出发。
若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。
甲从A地走到B地要用多少分钟?10、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若相向而行,12分钟相遇,若同向而行,8分钟甲就落在乙后面1864米。
行程问题试题及答案
行程问题试题及答案1. 一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了2小时后,又以每小时40公里的速度继续行驶了3小时,问汽车总共行驶了多少公里?答案:汽车在前2小时内行驶了60公里/小时× 2小时 = 120公里。
汽车在后3小时内行驶了40公里/小时× 3小时 = 120公里。
总共行驶了120公里 + 120公里 = 240公里。
2. 甲乙两人分别从相距120公里的A地和B地同时出发,甲以每小时5公里的速度向B地行进,乙以每小时10公里的速度向A地行进,问他们何时相遇?答案:设两人相遇所需时间为x小时,则甲行走的距离为5x公里,乙行走的距离为10x公里。
根据题意,5x + 10x = 120公里,解得x = 8小时。
所以,甲乙两人8小时后相遇。
3. 一艘船从上游的C地顺流而下,以每小时15公里的速度行驶,行驶了4小时后,又逆流而上,以每小时10公里的速度行驶了2小时,问船总共行驶了多少公里?答案:顺流而下行驶了15公里/小时× 4小时 = 60公里。
逆流而上行驶了10公里/小时× 2小时 = 20公里。
总共行驶了60公里 + 20公里 = 80公里。
4. 一辆自行车从D地出发,以每小时15公里的速度行驶,行驶了3小时后,停下来休息了1小时,然后以每小时20公里的速度继续行驶了2小时,问自行车总共行驶了多少公里?答案:前3小时行驶了15公里/小时× 3小时 = 45公里。
休息1小时后,后2小时行驶了20公里/小时× 2小时 = 40公里。
总共行驶了45公里 + 40公里 = 85公里。
5. 一个人从E地出发,步行去F地,步行速度为每小时4公里,步行了3小时后,改乘公交车,公交车速度为每小时30公里,公交车行驶了1小时后到达F地,问从E地到F地总共需要多少时间?答案:步行3小时,步行距离为4公里/小时× 3小时 = 12公里。
六年级行程问题经典例题40题
六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。
求A、B两地的距离。
解析:根据相遇问题的公式,路程 = 速度和×相遇时间。
甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。
2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。
要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。
客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。
客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。
3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。
A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。
二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。
追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。
5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题典型题库标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离=甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48(千米/小时).城门离学校的距离是48×=72(千米).答:学校到城门的距离是72千米.例2小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50×10÷(75-50)=20(分钟)·因此,小张走的距离是75×20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是35千米/小时,要40分钟才能追上.问自行车的速度是多少解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35-15=20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇解:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少”岂不是有“追及”的特点吗对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到D点.这两点距离是12+16=28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5=(小时).比C点相遇少用=(小时).甲到达D,和到达C点速度是一样的,少用小时,少走12千米,因此甲的速度是12÷=30(千米/小时).同样道理,乙的速度是16÷=40(千米/小时).A到B距离是(30+40)×6=420(千米).答:A,B两地距离是420千米.很明显,例7不能简单地说成是“相遇问题”.例8如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米解:(1)小张从A到B需要1÷6×60=10(分钟);小王从D到C也是下坡,需要÷6×60=25(分钟);当小王到达C点时,小张已在平路上走了25-10=15(分钟),走了因此在B与C之间平路上留下3-1=2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2÷(4+4)×60=15(分钟).从出发到相遇的时间是25+15=40(分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到A点需要走1÷2×60=30分钟,即他再走60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.二、环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王解:(1)75秒分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=(分).220×÷500=(圈).答:(1)小张的速度是220米/分;(2)小张跑圈后才能追上小王.例10如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了×7=(千米),=++(千米).就知道第四次相遇处,离乙村(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒例15图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12=15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是,AN所需时间是.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些. 三、稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B 与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是()千米/小时.小张比小王多走这段距离,需要的时间是÷()×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是个单位.从公园到A是1+=(单位).每个单位是2000÷=800(米).因此,从公园到家的距离是800×=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了=(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=(小时).慢车从C到A返回行驶至与快车相遇共用了++=(小时).答:从第一相遇到再相遇共需10小时48分.例19一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C 是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是12+3=15(千米).答:A至B两地距离是15千米.例20从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分时20分相当于因此就知道,汽车在第一段需要第二段需要30×3=90(分钟);甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是5∶9∶2.汽车走完全程所用时间是80×2=160(分种).例21一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟,72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有x∶120=72∶32.。