高考数学(理)配套文档 专题3 函数与导数 第14练 Word版含解析
高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。
考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。
2023-2024学年高考数学专项复习——函数与导数(含答案)

河南省平顶山市郏县2023-2024学年九年级上学期期末数学模拟试题注意事项:1.本试卷共4页,三个大题,满分125分,其中试题120分,卷面5分,考试时间100分钟.2.本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上,答在试卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置.一、选择题(本大题共10小题,共30分)1.四条边都相等的四边形是( )A .等腰梯形B .矩形C .菱形D .平行四边形2.如图所示的几何体,其主视图是( )A .B .C .D .3.某林业局将一种树苗移植成活的情况绘制成如统计图,由此可估计这种树苗移植成活的概率约为( )A .0.95B .0.90C .0.85D .0.804.如图,已知的内接正方形的边长为1,则的半径为( )O ABCD OxA.①②④B.②③第13题图第14题图第15题图19.(9分)如图,AB 为的直径,点在上,AD 与过点的切线互相垂直,垂足O C O C 为.连接BC 并延长交AD 的延长线于点.D E(1)求证:;AE AB =(2)若,求CD 的长.10,6AB BC ==20.(9分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成的夹角.树杆AB 旁有一座与地面垂直的铁53︒塔DE ,测得米,塔高米.在某一时刻的太阳照射下,未折断树杆AB 落在6BE =9DE =地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:)sin 530.8,cos530.6,tan 53 1.33︒≈︒≈︒≈21.(8分)如图,隧道的截面由抛物线和长方形构成,长方形的长为16m ,宽为6m ,抛物线的最高点C 离地面的距离为8m .1AA(1)按如图所示的直角坐标系,求表示该抛物线的函数表达式.(2)一大型货车装载某大型设备后,高为(1)填空:一次函数的解析式为是边上的中线,,又,∵BO AC ∴AO =CO ∵BO =OE 四边形是平行四边形,由【探究发现】,可得,∴ABCE BE 2+AC 2=2AB 2+2BC 2,,∵BE =2BO ∴BE 2=4BO 2,,,,.∵AB =a BC =b AC =c ∴4BO 2+c 2=2a 2+2b 2∴BO 2=a 2+b 22−c 24【尝试应用】.200。
高考数学专题03导数与应用-高考数学试题分项版解析(解析版).docx

专题3 导数与应用1. 【2014高考安徽卷文第15题】若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3yx =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =3. 【2014高考湖南卷文第9题】若1201x x <<<,则( )A.2121ln ln xxe e x x ->-B.2121ln ln x xe e x x -<-C.1221xxx e x e >D.1221xxx e x e <①②解得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【考点】导数与切线斜率.5. 【2014高考江西卷文第10题】在同意直角坐标系中,函数22322()2ay ax x y a x ax x a a R =-+=-++∈与的图像不可能的是( )6. 【2014高考江西卷文第11题】若曲线P x x y 上点ln =处的切线平行于直线P y x 则点,012=+-的坐标是_______. 【答案】(,)e e 【解析】试题分析:因为ln 1y x '=+,设切点(,)a b ,则ln 12,,k a a e =+==又ln ,b a a e ==(,).P e e 考点:利用导数求切点7. 【2014高考辽宁卷文第12题】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 【答案】C 【解析】试题分析:不等式32430ax x x -++≥变形为3243ax x x ≥--.当0x =时,03≥-,故实数a 的取值8. 【2014高考全国1卷文第12题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-9. 【2014高考全国2卷文第11题】若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞10. 【2014高考上海卷文第9题】设,0, ()1,0,x a xf xx xx-+≤⎧⎪=⎨+>⎪⎩若(0)f是()f x的最小值,则a的取值范围是.12. 【2014高考北京卷文第20题】已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】2(3,1)--;(3)详见解析.【解析】试题分析:(1)求导数,导数等于0求出x ,再代入原函数解析式,最后比较大小,即可;(2)设切点,由相切得出切线方程,然后列表并讨论求出结果;(3)由(2)容易得出结果.同零点”, '()g x =21212x x -=12(1)x x -,()g x 与'()g x 的情况如下:x(,0)-∞0 (0,1)1 (1,)+∞'()g x+ 0 -+ ()g xt+31t +所以,(0)3g t =+是()g x 的极大值,(1)1g t =+是()g x 的极小值,当(0)30g t =+≤,即3t ≤-时,此时()g x 在区间(,1]-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当(1)10g t =+≥,1t ≥-时,此时()g x 在区间(,0)-∞和[0,)+∞上分别至多有1个零点,所以()g x 至多有2个零点.当(0)0g >且(1)0g <,即31t -<<-时,因为(1)70g t -=-<,(2)110g t =+>,所以()g x 分别为区间[1,0),[0,1)-和[1,2)上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和[1,)+∞上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是(3,1)--.13. 【2014高考大纲卷文第21题】函数f(x)=a x3+3x2+3x(a≠0). (1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.考点:1.函数的导数;2.导数性质的应用. 14. 【2014高考福建卷文第22题】已知函数()x f x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)证明:当0x >时,2x xe <(3)证明:对任意给定的正数e ,总存在0x ,使得当0(,)x x ∈+∞时,恒有xx ce <(3)思路一:对任意给定的正数c ,取01x c=, 根据2x x e <.得到当0x x >时,21x e x x c>>. 思路二:令1(0)k k c=>,转化得到只需ln ln x x k >+成立. 分01k <≤,1k >,应用导数研究()ln ln h x x x k =--的单调性. 思路三:就①1c ≥,②01c <<,加以讨论. 试题解析:解法一:②若01c <<,令()xh x ce x =-,则'()1xh x ce =-, 令'()0h x =得1ln x c=. 当1lnx c >时,'()0h x >,()h x 单调递增. 取022ln x c =,22ln0222()2ln2(ln )ch x cec c c=-=-, 易知22ln 0c c->,又()h x 在0(,)x +∞内单调递增, 所以当0(,)x x ∈+∞时,恒有0()()0h x h x >>,即xx ce <.综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有xx ce <.考点:导数的计算及导数的应用,全称量词与存在量词,转化与化归思想,分类讨论思想.15. 【2014高考广东卷文第21题】已知函数()()32113f x x x ax a R =+++∈. (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭U ,使得()012f x f ⎛⎫= ⎪⎝⎭.(2)()3232000011111111233222f x f x x ax a ⎡⎤⎛⎫⎛⎫⎛⎫-=+++-⋅++⋅+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦323200011113222x x a x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦20000001111113224222x x x x x a x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 20000111236122x x x x a ⎛⎫⎛⎫=-+++++⎪ ⎪⎝⎭⎝⎭()200011414712122x x x a ⎛⎫=-+++ ⎪⎝⎭, 若存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭U ,使得()012f x f ⎛⎫= ⎪⎝⎭,【考点定位】本题以三次函数为考查形式,考查利用导数求函数的单调区间,从中渗透了利用分类讨论的思想处理含参函数的单调区间问题,并考查了利用作差法求解不等式的问题,综合性强,属于难题.16. 【2014高考湖北卷文第21题】π为圆周率,⋅⋅⋅=71828.2e 为自然对数的底数. (1)求函数xxx f ln )(=的单调区间; (2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(3)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论.【答案】(1)单调增区间为),0(e ,单调减区间为),(+∞e ;(2)最大数为π3,最小数为e 3;(3)e 3,3e ,e π,πe ,3π,π3.【解析】试题分析:(1)先求函数)(x f 的定义域,用导数法求函数)(x f 的单调区间;(2)利用(1)的结论结合函17. 【2014高考湖南卷文第21题】已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<L . 【答案】(1) 单调递减区间为()()()2,21*k k k N ππ+∈,单调递增区间为()()()()21,22*k k k N ππ++∈.(2)详见解析【解析】试题分析:(1)对函数()f x 求导得到导函数()()'0f x x >,求()'f x 大于0和小于0的解集得到单调减区间和单调增区间,但是必须注意正余弦的周期性和原函数的定义域()0,+∞.的,故()11n n x n ππ+<<+,因此, 当1n =时,2211423x π=<; 当2n =时,()222121112413x x π+<+<; 当3n ≥时,()22222221231111111+4121n x x x x n π⎡⎤+++<++++⎢⎥-⎢⎥⎣⎦L L()()222221*********+51221n x x x x n n π⎡⎤⇒+++<+++⎢⎥⨯--⎣⎦L L 2222212311111111+51221n x x x x n n π⎡⎤⎛⎫⎛⎫⇒+++<+-++- ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦L L 221162613n ππ⎛⎫=-<< ⎪-⎝⎭, 综上所述,对一切的*n N ∈,2221211123n x x x +++<L . 【考点定位】导数 单调性 放缩法 裂项求和 18. 【2014高考江苏第19题】已知函数()xxf x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0(1,)x ∈+∞,使得3000()(3)f x a x x <-+成立,试比较1a e -与1e a -的大小,并证明你的结论.个幂的大小比较,我们同样适当变形,要比较它们的大小,就是要比较1a -与(1)ln e a -的大小,为此研19. 【2014高考江西文第18题】 已知函数x a ax x x f )44()(22++=,其中0<a .(1)当4-=a 时,求)(x f 的单调递增区间; (2)若)(x f 在区间]4,1[上的最小值为8,求a 的值.,min ()min{(1),(4)},f x f f =由于(1)8,f ≠所以2(4)2(6416)8,f a a =++=且(4)(1),f f <解得10a =-或6a =-(舍),当10a =-时,()f x 在(1,4)上单调递减,满足题意,综上10a =-.试题解析:(1)定义域:[0,),+∞而 2222()(84)222f x x a x xxx'=++==,当4-=a 时,()f x x'=,由()0f x '=得25x =或2x =,列表: x2(0,)5 252(,2)5 2 (2,)+∞ ()f x '+-+20. 【2014高考辽宁文第21题】已知函数()(cos )2sin 2f x x x x π=---,1sin 2()()11sin x xg x x x ππ-=-+-+.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>..因此存在唯一的1(,)2x ππ∈,使得1()0g x =.由于10x t π=-,00x t <,所以01x x π+>.【考点定位】1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.21. 【2014高考全国1文第21题】设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0(1)求b;(2)若存在01,x ≥使得()01a f x a <-,求a 的取值范围。
2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)

导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x >0时,x >sin x >x −12x 2.②余弦函数:cos x ≥1−12x 2.③正切函数:当x ∈0,π2时,sin x <x <tan x . ④数值域:sin x ∈-1,1,cos x ∈ -1,1 .3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x -ax ,a ∈R ,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x >2x ;(2)若函数g x =f x -x cos x 在区间0,+∞ 内有唯一的零点,求a 的取值范围.2024年高考数学专项练习导数与三角函数结合问题的研究(解析版)2已知函数f x =sin x-x-ae x,其中a为实数,e是自然对数的底数.(1)若a=-1,证明:f x ≥0;(2)若f x 在0,π上有唯一的极值点,求实数a的取值范围.3已知函数f x =e x,g x =sin x+cos x.(1)求证:f x ≥x+1;(2)若x≥0,问f x +g x -2-ax≥0a∈R是否恒成立?若恒成立,求a的取值范围;若不恒成立,请说明理由4已知函数f(x)=e x+cos x-a(a∈R).(1)讨论f(x)在[-π,+∞)上的单调性;(2)当x∈[0,+∞)时,e x+sin x≥ax+1恒成立,求a的取值范围.5已知函数f x =a sin x,其中a>0.(1)若f x ≤x在0,+∞上恒成立,求a的取值范围;(2)证明:∀x∈0,+∞,有2e x>x+1 xln x+1+sin x.6已知函数f x =ae x+4sin x-5x.(1)若a=4,判断f x 在0,+∞上的单调性;(2)设函数p x =3sin x-2x+2,若关于x的方程f x =p x 有唯一的实根,求a的取值范围.7已知函数f x =e x,g x =2-sin x-cos x.(1)求证:当x∈0,+∞,x>sin x;(2)若x∈0,+∞,f x >g x +ax恒成立,求实数a的取值范围.8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2 ,都有f (x )≥0,求整数k 的最大值.9已知函数f (x )=(x -1)e x +ax +1.(1)若f (x )有两个极值点,求a 的取值范围;(2)若x ≥0,f (x )≥2sin x ,求a 的取值范围.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.11(2023全国新高考2卷)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f x =cos ax-ln1-x2,若x=0是f x 的极大值点,求a的取值范围.【跟踪训练】1已知函数f x =xe-x+a sin x,e是自然对数的底数,若x=0恰为f(x)的极值点.(1)求实数a的值;上零点的个数.(2)求f(x)在区间-∞,π42已知函数f x =2cos x+ln1+x-1.上零点和极值点的个数,并给出证明;(1)判断函数f x 在区间0,π2(2)若x≥0时,不等式f x <ax+1恒成立,求实数a的取值范围.3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立.(1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2 ,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.5已知函数f(x)=ax2-a(x sin x+cos x)+cos x+a(x>0).(1)当a=1时,(I)求(π,f(π))处的切线方程;(II)判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a的取值范围.6已知f(x)=ax2-cos x-x sin x+a(a∈R).(1)当a=14时,求y=f(x)在[-π,π]内的单调区间;(2)若对任意的x∈R时,f(x)≥2恒成立,求实数a的取值范围.7已知函数f(x)=e x-a-x-cos x,x∈(-π,π)其中e=2.71828⋯为自然对数的底数.(1)当a=0时,证明:f x ≥0;(2)当a=1时,求函数y=f x 零点个数.8已知函数f x =x-1e x+ax+1.(1)若a=-e,求f x 的极值;(2)若x≥0,f x ≥2sin x,求a的取值范围.9已知函数f x =2sin x-ln1+x0<x<π.(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.11已知函数f x =ln x+sin x. (1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.12已知函数f(x)=12ax2-(a-2)x-2ln x.(1)当a=2时,证明:f x >sin x.(2)讨论f x 的单调性.13(1)证明:当x<1时,x+1≤e x≤11-x;(2)是否存在正数a,使得f x =2e x+a sin x-ax2-a+2x在R上单调递增,若存在,求出a的取值范围;若不存在,请说明理由.导数与三角函数结合问题的研究有关导数与三角函数交汇的试题在高考与模拟试题中频频出现.在函数与导数试题中加入三角函数,由于三角函数具有周期性,无法通过多次求导使三角函数消失,使得后续问题的处理比较困难,从而造成学生思维上的难度.我们可从以下几个角度来突破此类问题的难点.1.分段讨论①以-π2,0,π2,π,⋯为端点分区间讨论;②以三角函数的最值点为端点分段讨论.2.巧用放缩,消去三角函数①正弦函数:当x>0时,x>sin x>x−12x2. ②余弦函数:cos x≥1−12x2.③正切函数:当x∈0,π2时,sin x<x<tan x. ④数值域:sin x∈-1,1,cos x∈-1,1.3.分离函数:将含有三角函数的式子放到一起.4.分离参数:转化为函数值域问题.5.半分离参数:将不等式等价转化,化为左右两边函数是一直线与一曲线,考虑端点处的切线斜率.【精选例题】1已知函数f x =e x-ax,a∈R,f x 是f x 的导数.(1)讨论f x 的单调性,并证明:e x>2x;(2)若函数g x =f x -x cos x在区间0,+∞内有唯一的零点,求a的取值范围.【答案】(1)答案见解析;(2)a≥1【详解】(1)因为f x =e x-ax,所以f x =e x-a,当a≤0时,f x =e x-a>0,则f x =e x-ax在R上单调递增,当a>0时,令f x =e x-a>0得x>ln a,令f x =e x-a<0得x<ln a,所以函数f x 的增区间为(ln a,+∞),减区间为(-∞,ln a),令F x =e x-2x,则F x =e x-2,令F x =e x-2>0得x>ln2,令F x =e x-2<0得x<ln2,所以函数F x 的增区间为(ln2,+∞),减区间为(-∞,ln2),所以当x=ln2时,F x 取得最小值为F ln2=e ln2-2ln2=2-2ln2>0,所以e x>2x,得证;(2)由(1)知,g x =e x-a-x cos x,因为函数g x 在区间0,+∞内有唯一的零点,所以方程a=e x-x cos x在区间0,+∞内有唯一解,令h(x)=e x-x cos x,x≥0,则函数h(x)=e x -x cos x与y=a在0,+∞上只有一个交点,记m x =e x-x-1,(x≥0),则m x =e x-1≥0,所以m x 在0,+∞上单调递增,所以m x =e x-x-1≥e0-1=0,即e x≥x+1,故h (x)=e x-cos x+x sin x≥1-cos x+x(1+sin x)≥0,所以h(x)=e x-x cos x在0,+∞上单调递增,又h(0)=1,如图:要使方程a=e x-x cos x在区间0,+∞内有唯一解,则a≥1.所以a的取值范围是a≥1.2已知函数f x =sin x -x -ae x ,其中a 为实数,e 是自然对数的底数.(1)若a =-1,证明:f x ≥0;(2)若f x 在0,π 上有唯一的极值点,求实数a 的取值范围.【解析】(1)证明:a =-1时,f x =sin x -x +e x ,令g x =e x -x ,则g x =e x -1,当x <0时,g x <0,g x 在-∞,0 上为减函数,当x >0时,g x >0,g x 在0,+∞ 上为增函数,函数g x 的极小值也是最小值为g 0 =1,所以g x ≥g 0 =1,而-sin x ≤1,所以e x -x ≥-sin x ,即f x ≥0.(2)f x 在0,π 上有唯一的极值点等价于f x =cos x -1-ae x =0在0,π 上有唯一的变号零点,f x =0等价于a =cos x -1e x ,设h x =cos x -1e x,x ∈0,π ,h x =-sin x -cos x +1e x =1-2sin x +π4 e x,因为x ∈0,π ,所以x +π4∈π4,5π4 ,当0<x <π2时,x +π4∈π4,3π4 ,sin x +π4 >22,h x <0,h x 在0,π2 上为减函数,当π2<x <π时,x +π4∈3π4,5π4 ,sin x +π4 22,h x 0,h x 在π2,π 上为增函数,所以函数h x 的极小值也是最小值为h π2 =-1e π2,又h 0 =0,h π =-2e π,所以当-2e π≤a <0时,方程a =cos x -1e x 在0,π 上有唯一的变号零点,所以a 的取值范围是-2e π,0.3已知函数f x =e x ,g x =sin x +cos x .(1)求证:f x ≥x +1;(2)若x ≥0,问f x +g x -2-ax ≥0a ∈R 是否恒成立?若恒成立,求a 的取值范围;若不恒成立,请说明理由【答案】(1)证明见解析;(2)a ≤2【详解】(1)令F x =e x -x -1,F x =e x -1,当x ∈-∞,0 ,F x <0,所以此时F x 单调递减;当x ∈0,+∞ ,F x >0,所以此时F x 单调递增;即当x =0时,F x 取得极小值也是最小值F 0 =0,所以F x ≥0,得证;(2)设h x =f x +g x -2-ax ,即证h x =e x +sin x +cos x -2-ax ≥0在0,+∞ 上恒成立,易得h x =e x +cos x -sin x -a ,当x =0时,若h 0 =2-a ≥0⇒a ≤2,下面证明:当a ≤2时,h x =e x +sin x +cos x -2-ax ≥0,在0,+∞ 上恒成立,因为h x =e x +cos x -sin x -a ,设u x =h x ,令v x =x -sin x ,v x =1-cos x ≥0,所以v x 在0,+∞ 上是单调递增函,所以v x ≥v 0 =0,又因为1-cos x ≥0,则u x =e x -sin x -cos x ≥x +1-sin x -cos x =x -sin x +1-cos x ≥0所以h x 在0,+∞ 上是单调递增函数,所以h x ≥h 0 =2-a ≥0,所以h x 在0,+∞ 上是严格增函数,若a >2时,h 0 <0,即h x 在x =0右侧附近单调递减,此时必存在h x 0 <h 0 =0,不满足f x +g x -2-ax ≥0a ∈R 恒成立,故当a ≤2时,不等式恒成立.4已知函数f (x )=e x +cos x -a (a ∈R ).(1)讨论f (x )在[-π,+∞)上的单调性;(2)当x ∈[0,+∞)时,e x +sin x ≥ax +1恒成立,求a 的取值范围.【答案】(1)f (x )在[-π,+∞)上的单调递增;(2)(-∞,2]【详解】(1)f (x )=e x -sin x ,当-π≤x ≤0时,e x >0,sin x <0,∴f (x )=e x -sin x >0,当x >0时,e x >1,sin x ≤1,∴f (x )=e x -sin x >0,即:f (x )>0在[-π,+∞)上恒成立,所以f (x )在[-π,+∞)上的单调递增.(2)方法一:由e x +sin x ≥ax +1得:e x +sin x -ax -1≥0当x =0时,e x +sin x -ax -1≥0恒成立,符合题意令g (x )=e x +sin x -ax -1,x >0g (x )=e x +cos x -a =f (x ),由(1)得:g (x )在(0,+∞)上的单调递增,∴g (x )>2-a ,①当a ≤2时,g (x )>2-a ≥0,所以g (x )在(0,+∞)上的单调递增,所以g (x )>g (0)=0,符合题意②当a >2时,g (0)=2-a <0,g (ln (2+a ))=2+cos (ln (2+a ))>0,∴存在x 0∈(0,ln (2+a )),使得g (x 0)=0,当0<x <x 0时,g (x )<g (x 0)=0;所以g (x )在(0,x 0)上的单调递减,当0<x <x 0时,g (x )<g (0)=0,这不符合题意综上,a 的取值范围是(-∞,2].方法二:令h (x )=e x +sin x ,s (x )=ax +1,x ≥0则h (0)=s (0)=1,符合题意h(x )=e x +cos x =f (x )+a ,f (x )=e x -sin x 由(1)得:f (x )>0在(0,+∞)上恒成立,h (x )在(0,+∞)上单调递增所以,h (x )>h (0)>0,所以h (x )在(0,+∞)上单调递增,其图象是下凸的,如图: ∵h (0)=2,所以,曲线h (x )在点(0,1)处的切线方程为:y =2x +1,要使得h (x )≥s (x )在[0,+∞)上恒成立,只需a ≤2所以,a 的取值范围是(-∞,2].5已知函数f x =a sin x ,其中a >0.(1)若f x ≤x 在0,+∞ 上恒成立,求a 的取值范围;(2)证明:∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x .【答案】(1)0,1 ;(2)证明见解析【详解】(1)令h x =x -a sin x ,x ∈0,+∞ ,则h x =1-a cos x ,当a ∈0,1 时,h x >0,h x 单调递增,所以h x ≥h 0 =0,当a ∈1,+∞ 时,令m x =h x =1-a cos x ,则m x =a sin x ,所以对∀x ∈0,π2 ,m x >0,则h x 在0,π2 上单调递增,又因为h 0 =1-a <0,h π2 =1>0,所以由零点存在定理可知,∃x 0∈0,π2使得h x 0 =0,所以当x ∈0,x 0 时,h x <0,h x 单调递减,h x <h 0 =0,与题意矛盾,综上所述,a ∈0,1 .(2)由(1)知,当a =1时,sin x ≤x ,∀x ∈0,+∞ . 先证ln x +1 ≤x ,x ∈0,+∞ ,令φx =x -ln x +1 ,则φ x =1-1x +1≥0,所以φx 单调递增,φx >φ0 =0,即ln x +1 ≤x . 所以当x ∈0,+∞ 时,ln x +1 +sin x ≤2x ,x +1x ln x +1 +sin x ≤2x 2+1 .要证∀x ∈0,+∞ ,有2e x >x +1x ln x +1 +sin x ,只需证e x >x 2+1. 令g x =x 2+1 e -x -1,x ∈0,+∞ ,则g x =2x -x 2-1 e -x =-x -1 2e -x ≤0.所以g x 在0,+∞ 上单调递减,所以g x <g 0 =0,即e x >x 2+1.综上可得∀x ∈0,+∞ ,有2e x >x +1xln x +1 +sin x .6已知函数f x =ae x +4sin x -5x .(1)若a =4,判断f x 在0,+∞ 上的单调性;(2)设函数p x =3sin x -2x +2,若关于x 的方程f x =p x 有唯一的实根,求a 的取值范围.【答案】(1)函数f x 在0,+∞ 上单调递增.(2)a ≤0或a =2【详解】(1)当a =4时,f x =4e x +4sin x -5x ,f x =4e x +4cos x -5,令g x =f x =4e x +4cos x -5,则g x =4e x -4sin x .当x ∈0,+∞ 时,4e x ≥4(x =0时等号成立);-4sin x ≥-4(x =π2+2k π,k ∈Z 时等号成立),所以g x =4e x -4sin x >0,即函数f x =4e x +4cos x -5在0,+∞ 上递增,所以f x ≥f 0 =3>0,即函数f x 在0,+∞ 上单调递增.(2)方程f x =p x 即ae x +4sin x -5x =3sin x -2x +2有唯一的实根,则a =3x +2-sin x e x只有一个解,等价于直线y =a 与函数y =3x +2-sin x e x 的图象只有一个交点.令h x =3x +2-sin x ex ,则h x =sin x -cos x +1-3x e x ,因为e x >0,所以h x =sin x -cos x +1-3x e x 的符号由分子决定,令m x =sin x -cos x +1-3x ,则m x =cos x +sin x -3=22sin x +π4-3<0.所以m x =sin x -cos x +1-3x 在R 上递减,因为m 0 =0,所以当x ∈-∞,0 时,m x >m 0 =0;当x ∈0,+∞ 时,m x <m 0 =0.即当x ∈-∞,0 时,h x >0;当x ∈0,+∞ 时,h x <0.所以函数h x =3x +2-sin x e x 在-∞,0 上递增,在0,+∞ 上递减,当x 趋于-∞时,e x 趋于0且大于0,分子3x +2-sin x 趋于-∞,则3x +2-sin x e x趋于-∞;当x =0时,h max x =h 0 =2;当x 趋于+∞时,e x 趋于+∞,分子3x +2-sin x 也趋于+∞,令φx =e x-3x +2-sin x ,则φ x =e x -3+cos x ,当x >2时,φ x =e x -3+cos x >0,则x 趋于+∞时,e x 增长速率大于3x+2-sin x 的增长速率,故x 趋于+∞时,3x +2-sin x e x趋于0.画出函数h x =3x +2-sin x e x 的草图,并画出直线y =a ,要使直线y =a 与函数y =3x +2-sin x e x的图象只有一个交点.则a ≤0或a =2.所以当a ≤0或a =2时,方程f x =p x 有唯一的实根.7已知函数f x =e x ,g x =2-sin x -cos x .(1)求证:当x ∈0,+∞ ,x >sin x ;(2)若x ∈0,+∞ ,f x >g x +ax 恒成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)-∞,2 【详解】(1)证明:设F x =x -sin x ,x >0,则F x =1-cos x >0,所以F x 在区间0,+∞ 上单调递增,所以F x >F 0 =0,即x >sin x .(2)由f x >g x +ax 在区间0,+∞ 上恒成立,即e x +sin x +cos x -ax -2>0在区间0,+∞ 上恒成立,设φx =e x +sin x +cos x -ax -2,则φx >0在区间0,+∞ 上恒成立,而φ x =e x +cos x -sin x -a ,令m x =φ x ,则m x =e x -sin x -cos x ,设h x =e x -x -1,则h x =e x -1,当x >0时,h x >0,所以函数h x 在区间0,+∞ 上单调递增,故在区间0,+∞ 上,h x >h 0 =0,即在区间0,+∞ 上,e x >x +1,由(1)知:在区间0,+∞ 上,e x >x +1>sin x +cos x ,即m x =e x -sin x -cos x >0,所以在区间0,+∞ 上函数φ x 单调递增,当a ≤2时,φ 0 =2-a ≥0,故在区间0,+∞ 上函数φ x >0,所以函数φx 在区间0,+∞ 上单调递增,又φ0 =0,故φx >0,即函数f x >g x +ax 在区间0,+∞ 上恒成立.当a >2时,φ 0 =2-a ,φ ln a +2 =a +2+cos ln a +2 -sin ln a +2 -a =2-2sin ln a +2 -π4 >0,故在区间0,ln a +2 上函数φ x 存在零点x 0,即φ x 0 =0,又在区间0,+∞ 上函数φ x 单调递增,故在区间0,x 0 上函数φ x <φ x 0 =0,所以在区间0,x 0 上函数φx 单调递减,由φ0 =0,所以在区间0,x 0 上φx <φ0 =0,与题设矛盾.综上,a 的取值范围为-∞,2 .8已知函数f (x )=a sin x -ln (1+x )(a ∈R ).(1)若a =-1,求证:∀x >0,f (x )+2x >0;(2)当a ≥1时,对任意x ∈0,k 2,都有f (x )≥0,求整数k 的最大值.【答案】(1)证明见解析;(2)3【详解】(1)a =-1时,设g (x )=f (x )+2x =-sin x -ln (1+x )+2x ,则g (x )=-cos x -11+x +2,∵x >0∴x +1>1∴-1x +1∈(-1,0)∵cos x ∈[-1,1]∴-cos x -1x +1+2>0,即g (x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调增, 又g (0)=0∴g (x )>g (0)=0,即∀x >0,f (x )+2x >0;(2)a =1时,当k =4时,f (2)=sin2-ln3<0,所以k <4.下证k =3符合.k =3时,当x ∈0,32时,sin x >0,所以当a ≥1时,f (x )=a sin x -ln (1+x )≥sin x -ln (1+x ).记h (x )=sin x -ln (1+x ),则只需证h (x )=sin x -ln (1+x )≥0对x ∈0,32恒成立.h (x )=cos x -1x +1,令ϕ(x )=cos x -1x +1,则ϕ (x )=-sin x +1(x +1)2在0,π2 递减,又ϕ (0)=1>0,ϕ π2 =-1+1π2+1 2<0,所以存在x 1∈0,π2,使得ϕ x 1 =0,则x ∈0,x 1 ,ϕ x 1 >0,ϕ(x )在0,x 1 递增,x ∈x 1,π2 ,ϕ x 1 <0,ϕ(x )在x 1,π2 递减;又ϕ(0)=0,ϕπ2 =-1π2+1<0,所以存在x 2∈x 1,π2 使得ϕx 2 =0,且x ∈0,x 2 ,ϕ(x )>0,x ∈x 2,π2,ϕ(x )<0,所以h (x )在0,x 2 递增,在x 2,π2递减,又h (0)=0,h π2 =1-ln 1+π2 >0,所以h (x )≥0对x ∈0,π2 恒成立,因为0,32 ⊆0,π2,所以k =3符合.综上,整数k 的最大值为3.9已知函数f (x )=(x -1)e x +ax +1.(1)若f(x)有两个极值点,求a的取值范围;(2)若x≥0,f(x)≥2sin x,求a的取值范围.【答案】(1)0,1 e;(2)2,+∞.【详解】(1)由f(x)=(x-1)e x+ax+1,得f (x)=xe x+a,因为f(x)有两个极值点,则f (x)=0,即方程-a= xe x有两个不等实数根,令g(x)=xe x,则g (x)=(x+1)e x,知x<-1时,g (x)<0,g(x)单调递减,x>-1时,g (x)>0,g(x)单调递增,则x=-1时,g(x)取得极小值g(-1)=-1e,也即为最小值,且x<0时,g(x)<0,x→-∞时,g(x)→0,x>0时,g(x)>0,x→∞时,g(x)→+∞,故-1e<-a<0,即0<a<1e时,方程-a=xe x有两个实数根,不妨设为x1,x2x1<x2.可知x<x1时,f (x)>0,x1<x<x2时,f (x)< 0,x>x2时,f (x)>0,即x1,x2分别为f(x)的极大值和极小值点.所以f(x)有两个极值点时,a的取值范围是0,1 e.(2)令h(x)=(x-1)e x+ax-2sin x+1,原不等式即为h(x)≥0,可得h(0)=0,h (x)=xe x+a-2cos x,h (0)=a-2,令u(x)=h (x)=xe x+a-2cos x,则u (x)=(x+1)e x+2sin x,又设t(x)=(x+1)e x,则t (x)= (x+2)e x,x≥0时,t (x)>0,可知t(x)在0,+∞单调递增,若x∈0,π,有(x+1)e x>0,sin x>0,则u (x)>0;若x∈π,+∞,有(x+1)e x>(π+1)eπ>2,则u (x)>0,所以,x≥0,u (x)>0,则u(x)即h (x)单调递增,①当a-2≥0即a≥2时,h (x)≥h (0)≥0,则h(x)单调递增,所以,h(x)≥h(0)=0恒成立,则a≥2符合题意.②当a-2<0即a<2时,h (0)<0,h (3-a)=(3-a)e(3-a)+a-2cos(3-a)≥3-a+a-2cos(2-a)> 0,存在x0∈(0,3-a),使得h (x0)=0,当0<x<x0时,h (x)<0,则h(x)单调递减,所以h(x)<h(0)=0,与题意不符,综上所述,a的取值范围是2,+∞.10已知函数f x =x-sinπ2x-a ln x,x=1为其极小值点.(1)求实数a的值;(2)若存在x1≠x2,使得f x1=f x2,求证:x1+x2>2.【答案】(1)a=1;(2)证明见解析【详解】(1)f(x)的定义域为(0,+∞),f (x)=1-π2cosπ2x-a x,依题意得f (1)=1-a=0,得a=1,此时f (x)=1-π2cosπ2x-1x,当0<x<1时,0<π2x<π2,0<π2cosπ2x<π2,1x>1,故f (x)<0,f(x)在(0,1)内单调递减,当1<x<2时,π2<π2x<π,π2cosπ2x<0,1x<1,故f (x)>0,f(x)在(1,2)内单调递增,故f(x)在x=1处取得极小值,符合题意.综上所述:a=1.(2)由(1)知,f(x)=x-sinπ2x-ln x,不妨设0<x1<x2,当1≤x1<x2时,不等式x1+x2>2显然成立;当0<x1<1,x2≥2时,不等式x1+x2>2显然成立;当0<x1<1,0<x2<2时,由(1)知f(x)在(0,1)内单调递减,因为存在x 1≠x 2,使得f x 1 =f x 2 ,所以1<x 2<2,要证x 1+x 2>2,只要证x 1>2-x 2,因为1<x 2<2,所以0<2-x 2<1,又f (x )在(0,1)内单调递减,所以只要证f (x 1)<f (2-x 2),又f x 1 =f x 2 ,所以只要证f (x 2)<f (2-x 2),设F (x )=f (x )-f (2-x )(1<x <2),则F (x )=f (x )+f (2-x )=1-π2cos π2x -1x +1-π2cos π2(2-x ) -12-x =2-1x +12-x -π2cos π2x +cos π-π2x =2-1x +12-x -π2cos π2x -cos π2x =2-1x +12-x,令g (x )=2-1x +12-x(1<x <2),则g (x )=1x 2-1(2-x )2=4-4x x 2(2-x )2,因为1<x <2,所以g (x )<0,g (x )在(1,2)上为减函数,所以g (x )<g (1)=0,即F (x )<0,所以F (x )在(1,2)上为减函数,所以F (x )<F (1)=0,即f (x 2)<f (2-x 2).综上所述:x 1+x 2>2.11(2023全国新高考2卷)(1)证明:当0<x <1时,x -x 2<sin x <x ;(2)已知函数f x =cos ax -ln 1-x 2 ,若x =0是f x 的极大值点,求a 的取值范围.【答案】(1)证明见详解(2)-∞,-2 ∪2,+∞【详解】(1)构建F x =x -sin x ,x ∈0,1 ,则F x =1-cos x >0对∀x ∈0,1 恒成立,则F x 在0,1 上单调递增,可得F x >F 0 =0,所以x >sin x ,x ∈0,1 ;构建G x =sin x -x -x 2 =x 2-x +sin x ,x ∈0,1 ,则G x =2x -1+cos x ,x ∈0,1 ,构建g x =G x ,x ∈0,1 ,则g x =2-sin x >0对∀x ∈0,1 恒成立,则g x 在0,1 上单调递增,可得g x >g 0 =0,即G x >0对∀x ∈0,1 恒成立,则G x 在0,1 上单调递增,可得G x >G 0 =0,所以sin x >x -x 2,x ∈0,1 ;综上所述:x -x 2<sin x <x .(2)令1-x 2>0,解得-1<x <1,即函数f x 的定义域为-1,1 ,若a =0,则f x =1-ln 1-x 2 ,x ∈-1,1 ,因为y =-ln u 在定义域内单调递减,y =1-x 2在-1,0 上单调递增,在0,1 上单调递减,则f x =1-ln 1-x 2 在-1,0 上单调递减,在0,1 上单调递增,故x =0是f x 的极小值点,不合题意,所以a ≠0.当a ≠0时,令b =a >0因为f x =cos ax -ln 1-x 2 =cos a x -ln 1-x 2 =cos bx -ln 1-x 2 ,且f -x =cos -bx -ln 1--x 2 =cos bx -ln 1-x 2 =f x ,所以函数f x 在定义域内为偶函数,由题意可得:f x =-b sin bx -2x x 2-1,x ∈-1,1 ,(i )当0<b 2≤2时,取m =min 1b ,1 ,x ∈0,m ,则bx ∈0,1 ,由(1)可得fx =-b sin bx -2x x 2-1>-b 2x -2x x 2-1=x b 2x 2+2-b 2 1-x 2,且b 2x 2>0,2-b 2≥0,1-x 2>0,所以f x >x b 2x 2+2-b 21-x 2>0,即当x ∈0,m ⊆0,1 时,f x >0,则f x 在0,m 上单调递增,结合偶函数的对称性可知:f x 在-m ,0 上单调递减,所以x =0是f x 的极小值点,不合题意;(ⅱ)当b 2>2时,取x ∈0,1b ⊆0,1 ,则bx ∈0,1 ,由(1)可得f x =-b sin bx -2x x 2-1<-b bx -b 2x 2 -2x x 2-1=x 1-x2-b 3x 3+b 2x 2+b 3x +2-b 2 ,构建h x =-b 3x 3+b 2x 2+b 3x +2-b 2,x ∈0,1b ,则h x =-3b 3x 2+2b 2x +b 3,x ∈0,1b,且h 0 =b 3>0,h 1b=b 3-b >0,则hx >0对∀x ∈0,1b 恒成立,可知h x 在0,1b 上单调递增,且h 0 =2-b 2<0,h 1b=2>0,所以h x 在0,1b 内存在唯一的零点n ∈0,1b ,当x ∈0,n 时,则h x <0,且x >0,1-x 2>0,则f x <x1-x 2-b 3x 3+b 2x 2+b 3x +2-b 2 <0,即当x ∈0,n ⊆0,1 时,fx <0,则f x 在0,n 上单调递减,结合偶函数的对称性可知:f x 在-n ,0 上单调递增,所以x =0是f x 的极大值点,符合题意;综上所述:b 2>2,即a 2>2,解得a >2或a <-2,故a 的取值范围为-∞,-2 ∪2,+∞ .【跟踪训练】1已知函数f x =xe -x +a sin x ,e 是自然对数的底数,若x =0恰为f (x )的极值点.(1)求实数a 的值;(2)求f (x )在区间-∞,π4上零点的个数.【答案】(1)-1;(2)1【详解】(1)由题意得f x =1-xex+a cos x ,因为x =0为f (x )的极值点,故f (0)=1+a =0,∴a =-1,此时f x =1-x e x-cos x ,则x <0时,1-xe x >1,故f (x )>0,则f (x )在(-∞,0)上单调递增;由f x =1-x e x -cos x =1-x -e x cos x e x,令g x =1-x -e x cos x ,∴g x =-1-e x cos x -sin x ,当0<x <π4时,cos x -sin x >0,则g (x )<0,则g (x )在0,π4上单调递减,故g (x )<g (0)=0,即f(x )<0,故f (x )在0,π4 上单调递减,则x =0为f (x )的极大值点,符合题意,故a =-1.(2)由(1)知f x =xe -x -sin x ,f x =1-xex-cos x ,x <0时,f (x )>0,f (x )在(-∞,0)上单调递增,则f (x )<f (0)=0,故f x 在(-∞,0)上不存在零点;当0<x <π4时,f (x )<0,故f (x )在0,π4上单调递减,则f (x )<f (0)=0,故f x 在0,π4上不存在零点;当x =0时,f (0)=0,即x =0为f x 的零点,综合上述,f (x )在区间-∞,π4上零点的个数为1.2已知函数f x =2cos x +ln 1+x -1.(1)判断函数f x 在区间0,π2上零点和极值点的个数,并给出证明;(2)若x ≥0时,不等式f x <ax +1恒成立,求实数a 的取值范围.【答案】(1)函数f x 在区间0,π2上只有一个极值点和一个零点,证明见解析;(2)实数a 的取值范围是1,+∞【详解】(1)函数f x 在区间0,π2 上只有一个极值点和一个零点,证明如下,f x =-2sin x +1x +1,设t x =f x =-2sin x +1x +1,t x =-2cos x -1x +12,当x ∈0,π2 时,t x <0,所以f x 单调递减,又f 0 =1>0,f π2=-2+1π2+1=-2+2π+2<0,所以存在唯一的α∈0,π2 ,使得f α =0,所以当x ∈0,α 时,f x >0,当x ∈α,π2 时,f x <0,所以f x 在0,α 单调递增,在α,π2单调递减,所以α是f x 的一个极大值点,因为f 0 =2-1=1>0,f α >f 0 >0,f π2=ln 1+π2 -1<0,所以f x 在0,α 无零点,在α,π2上有唯一零点,所以函数f x 在区间0,π2 上只有一个极值点和一个零点;(2)由f x ≤ax +1,得2cos x +ln 1+x -ax -2≤0,令g x =2cos x +ln 1+x -ax -2,x >0 ,则g 0 =0,g x =-2sin x +11+x-a ,g 0 =1-a ,①若a ≥1,则-a ≤-1,当x ≥0时,-ax ≤-x ,令h x =ln x +1 -x ,则h x =1x +1-1=-xx +1,当x ≥0时,h x ≤0,所以h x 在0,+∞ 上单调递减,又h 0 =0,所以h x ≤h 0 ,所以ln x +1 -x ≤0,即ln x +1 ≤x ,又cos x ≤1,所以g x ≤2+x -x -2=0,即当x ≥0时,f x ≤ax +1恒成立,②若0≤a <1,因为当x ∈0,π2 时,g x 单调递减,且g 0 =1-a >0,g π2 =-2+11+π2-a <0,所以存在唯一的β∈0,π2,使得g β =0,当x ∈0,β 时,g x >0,g x 在0,β 上单调递增,不满足g x ≤0恒成立,③若a <0,因为g e 4-1 =2cos e 4-1 +ln e 4 -a e 4-1 -2=2-2cos e 4-1 -a e 4-1 >0不满足g x ≤0恒成立,综上所述,实数a 的取值范围是1,+∞ .3已知函数f x =xe x -1,g x =a x +ln x 且f x -g x ≥0恒成立. (1)求a 的值;(2)证明:x 3e x >x 2+3 ln x +2sin x .(注:其中e =2.71828⋯为自然对数的底数)【答案】(1)a =1;(2)证明见解析【详解】(1)因为f x -g x ≥0恒成立,所以xe x -a (ln x +x )≥1恒成立,令h (x )=xe x -a (ln x +x ),则h (x )=e x+xe x-a 1x +1 =(x +1)⋅xe x -ax(x >0),当a <0时,h (x )>0,所以h (x )在(0,+∞)上递增,当x→0时,xe x →0,ln x →-∞,所以h (x )→-∞,不合题意,当a =0时,h 12=e2<1,不合题意,当a >0时,令xe x -a =0,得a =xe x ,令p (x )=xe x ,则p (x )=(x +1)e x >0,所以p (x )=xe x 在(0,+∞)上递增,且p (0)=0,所以a =xe x 有唯一实根,即h (x )=0有唯一实根,设为x 0,即a =x 0e x 0,且x ∈(0,x 0)时,h (x )<0,x ∈x 0,+∞ 时,h(x )>0,所以h (x )在0,x 0 上为减函数,在x 0,+∞ 上为增函数,所以h (x )min =f x 0 =x 0e x 0-a ln x0+x 0 =a -a ln a ,所以只需a -a ln a ≥1,令t =1a ,则上式转化为ln t ≥t -1,设φ(t )=ln t -t +1,则φ (t )=1t -1=1-tt,当0<t <1时,φ (t )>0,当t >1时,φ (t )<0,所以φ(t )在(0,1)上递增,在(1,+∞)上递减,所以φ(t )≤φ(1)=0,所以ln t ≤t -1,所以ln t =t -1,得t =1,所以t =1a=1,得a =1,(2)证明:由(1)知,当a =1时,f x ≥g x 对任意x >0恒成立,所以∀x ∈0,+∞ ,xe x ≥x +ln x +1(当且仅当x =1时取等号),则x 3e x ≥x 3+x 2ln x +x 2(x >0),所以要证明x 3e x >x 2+3 ln x +2sin x ,只需证明x 3+x 2ln x +x 2>(x 2+3)ln x +2sin x (x >0),即证x 3+x 2>3ln x +2sin x (x >0),设t (x )=ln x -x +1,m (x )=sin x -x ,则由(1)可知ln x ≤x -1(x >0),m (x )=cos x -1≤0在(0,+∞)上恒成立,所以m (x )在(0,+∞)上递减,所以∀x ∈0,+∞ ,m (x )<m (0)=0,所以sin x <x (x >0),所以要证x 3+x 2>3ln x +2sin x (x >0),只要证x 3+x 2≥3(x -1)+2x (x >0),即x 3+x 2-5x +3≥0(x >0),令H (x )=x 3+x 2-5x +3,则H (x )=3x 2+2x -5=(3x +5)(x -1),当0<x <1时,H (x )<0,当x >1时,H (x )>0,所以H (x )在(0,1)上递减,在(1,+∞)上递增,所以当x ∈0,+∞ 时,H (x )≥H (1)=0,即x 3+x 2-5x +3≥0(x >0)恒成立,所以原命题成立.4已知函数f (x )=x +sin x ,x ∈R .(1)设g (x )=f (x )-12x ,求函数g (x )的极大值点;(2)若对∀x ∈0,π2,不等式f (x )≥mx cos x (m >0)恒成立,求m 的取值范围.【答案】(1)x =2π3+2k π(k ∈Z );(2)(0,2].【详解】(1)函数g (x )=12x +sin x ,求导得g (x )=12+cos x ,由g (x )=0,得cos x =-12,当-2π3+2k π<x<2π3+2k π(k ∈Z )时,cos x >-12,即g (x )>0,函数g (x )单调递增;当2π3+2k π<x <4π3+2k π(k ∈Z )时,cos x <-12,即g (x )<0,函数g (x )单调递减,因此函数g (x )在x =2π3+2k π(k ∈Z )处有极大值,所以函数g (x )的极大值点为x =2π3+2k π(k ∈Z ).(2)依题意,m >0,∀x ∈0,π2 ,不等式f (x )≥mx cos x ⇔x +sin x -mx cos x ≥0,当x =π2时,π2+1≥0成立,则m >0,当x ∈0,π2时,cos x >0,x +sin x -mx cos x ≥0⇔x +sin x cos x-mx ≥0,令h (x )=x +sin x cos x -mx ,x ∈0,π2 ,求导得h(x )=(1+cos x )cos x +(x +sin x )sin x cos 2x -m =cos x +x sin x +1cos 2x -m ,令φx =cos x +x sin x +1cos 2x -m ,x ∈0,π2 ,求导得φ (x )=x cos 2x +2x sin 2x +sin2x +2sin x cos 3x >0,因此φ(x )在0,π2 上单调递增,即有φx ≥φ0 =2-m ,而cos x +x sin x +1cos 2x ≥cos x +1cos 2x >1cos 2x,又函数y =1cos 2x在x ∈0,π2 上的值域是[1,+∞),则函数φ(x ),即h x 在0,π2 上的值域是2-m ,+∞ ,当0<m ≤2时,h (x )≥0,当且仅当m =0,x =0时取等号,于是函数h (x )在0,π2上单调递增,对x ∈0,π2 ,h (x )≥h (0)=0,因此0<m ≤2,当m >2时,存在x 0∈0,π2,使得h (x 0)=0,当x ∈(0,x 0)时,h (x )<0,函数h (x )在(0,x 0)上单调递减,当x ∈(0,x 0)时,h (x )<h (0)=0,不符合题意,所以m 的取值范围为(0,2].5已知函数f (x )=ax 2-a (x sin x +cos x )+cos x +a (x >0).(1)当a =1时,(I )求(π,f (π))处的切线方程;(II )判断f x 的单调性,并给出证明;(2)若f x >1恒成立,求a 的取值范围.【答案】(1)(I )y =3πx -2π2+1;(II )f x 单调递增,证明见解析;(2)a ≥1【详解】(1)当a =1时,f (x )=x 2-x sin x +1,可得f (x )=2x -sin x -x cos x .(I )f (π)=π2+1,f (π)=3π,所以在(π,f (π))处的切线方程为y -π2+1 =3πx -π ,即y =3πx -2π2+1.(II )f (x )=2x -sin x -x cos x =x -sin x +x (1-cos x ),设m (x )=x -sin x (x >0),则m (x )=1-cos x ≥0,m (x )单调递增,所以m (x )>m (0)=0,即x >sin x ,所以当x >0时,f (x )>0,f (x )单调递增.(2)设g (x )=f (x )-1=ax 2-a (x sin x +cos x )+cos x +a -1,由题意g (x )>0恒成立.①当a ≤0时,g π2=a π2π2-1 +a -1<0,g (x )>0不恒成立,不合题意;②当0<a <1时,设h (x )=g(x )=2ax -ax cos x -sin x ,h (0)=0,h (x )=2a -a cos x +ax sin x -cos x ,h (0)=a -1<0,h π2=2a +π2a >0,设r (x )=h (x ),x ∈0,π2,r (x )=2a sin x +ax cos x +sin x >0,h (x )单调递增,由零点存在定理得∃t ∈0,π2,使得h (t )=0.h (x )在(0,t )上h (x )<0,h (x )<h (0)=0,即g (x )<0,所以g (x )在(0,t )上单调递减,g (x )<g (0)=0,g (x )>0不恒成立,不合题意;③当a ≥1时,g(x )=2ax -ax cos x -sin x ,则g (x )x =2a -a cos x -sin x x =a (1-cos x )+a -sin x x,当x>0时,1-cos x ≥0,x >sin x ,即sin xx <1,则g (x )x >0,所以当x >0时,g (x )>0,g (x )单调递增.可得:g (x )>g (0)=0,即f (x )>1,所以a ≥1.综上,a 的取值范围为1,+∞ .6已知f (x )=ax 2-cos x -x sin x +a (a ∈R ).(1)当a =14时,求y =f (x )在[-π,π]内的单调区间;(2)若对任意的x ∈R 时,f (x )≥2恒成立,求实数a 的取值范围.【答案】(1)单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3 ;(2)[3,+∞).【详解】(1)当a =14时,f (x )=14x 2-cos x -x sin x +14,求导得f (x )=12x -x cos x =x 12-cos x ,而x ∈[-π,π],由cos x =12,得x =±π3,当x ∈-π3,π3 时,12-cos x <0,当x ∈π3,π ∪-π,-π3时,12-cos x >0,则当x >0时,若f (x )>0,则x ∈π3,π ;若f (x )<0,则x ∈0,π3,当x <0时,若f (x )>0,则x ∈-π3,0 ;若f (x )<0,则x ∈-π,-π3 ,所以函数y =f (x )在[-π,π]内的单调增区间为:-π3,0 ,π3,π ;单调减区间为:0,π3 ,-π,-π3.(2)因为f (-x )=a (-x )2-cos (-x )-(-x )sin (-x )+a =f (x ),于是函数f (x )=ax 2-cos x -x sin x +a (a ∈R )为偶函数,则f (x )≥2对任意x ∈R 恒成立,等价于对任意的x ∈[0,+∞),恒有f (x )≥2成立,求导得f (x )=2ax -x cos x =x (2a -cos x ),当x ∈[0,+∞)时,当2a ≥1,a ≥12成立时,2a -cos x ≥0恒成立,即f (x )≥0恒成立,函数f (x )在[0,+∞)内单调递增,则有f x min =f 0 =a -1,因此a -1≥2,解得a ≥3,则a ≥3;当2a <1,a <12时,函数y =cos x 在[0,π]上单调递减,且-1≤cos x ≤1,因此存在x 0>0,使得当x ∈(0,x 0)时,2a -cos x <0,f (x )<0,函数f (x )在(0,x 0)上递减,此时x ∈0,x 0 ,f x <f 0 =a -1<2,不符合题意,所以实数a 的取值范围为[3,+∞).7已知函数f (x )=e x -a -x -cos x ,x ∈(-π,π)其中e =2.71828⋯为自然对数的底数.(1)当a =0时,证明:f x ≥0;(2)当a =1时,求函数y =f x 零点个数.【答案】(1)证明见解析;(2)2.【详解】(1)当a =0时,f (x )=e x -x -cos x ,x ∈(-π,π),求导得f (x )=e x -1+sin x ,显然f (0)=0,当-π<x <0时,e x -1<0,sin x <0,则f (x )<0,当0<x <π时,e x -1>0,sin x >0,则f (x )>0,因此函数f (x )在(-π,0)上单调递减,在(0,π)上单调递增,则当x ∈(-π,π)时,f (x )≥f (0)=0,所以f x ≥0.(2)当a =1时,f (x )=e x -1-x -cos x ,x ∈(-π,π),求导得f (x )=e x -1-1+sin x ,当-π<x <0时,e x -1-1<0,sin x <0,则f (x )<0,当1<x <π时,e x -1-1>0,sin x >0,则f (x )>0,当0≤x ≤1时,函数y =e x -1-1,y =sin x 都递增,即函数f (x )在(0,1)上单调递增,而f (0)=e -1-1<0,f (1)=sin1>0,因此存在x 0∈(0,1),使得f (x 0)=0,当0≤x <x 0时,f (x )<0,当x 0<x ≤1时,f (x )>0,从而当-π<x <x 0时,f (x )<0,当x 0<x <π时,f (x )>0,即有函数f (x )在(-π,x 0)上单调递减,在(x 0,π)上单调递增,f (x 0)<f (0)=e -1-1<0,而f -π2 =e -π2-1+π2>0,f π2 =e π2-1-π2>e -π2>0,于是函数f (x )在(-π,x 0),(x 0,π)各存在一个零点,所以函数y =f x 零点个数是2.8已知函数f x =x -1 e x +ax +1.(1)若a =-e ,求f x 的极值;(2)若x ≥0,f x ≥2sin x ,求a 的取值范围.【答案】(1)f x 极小值=1-e ,无极大值.(2)2,+∞【详解】(1)当a =-e 时f x =x -1 e x -ex +1,则f x =xe x -e ,令g x =f x =xe x -e ,则g 1 =0,gx =x +1 ex,所以当x <-1时g x <0,g x 单调递减且g x <0,当x >-1时g x >0,g x 单调递增,所以当x <1时g x <0,即f x <0,当x >1时g x >0,即f x >0,所以f x 在-∞,1 上单调递减,在1,+∞ 上单调递增,所以f x 在x =1处取得极小值,即f x 极小值=f 1 =1-e ,无极大值.(2)令h x =f x -2sin x =x -1 e x +ax -2sin x +1,x ∈0,+∞ ,则原不等式即为h x ≥0,可得h 0 =0,h x =xe x +a -2cos x ,h 0 =a -2,令u x =h x =xe x +a -2cos x ,则u x =x +1 e x +2sin x ,令t x =x +1 e x ,x ∈0,+∞ ,则t x =x +2 e x >0,所以t x 在0,+∞ 上单调递增,则t x ≥t 0 =1,则x ∈0,π 时x +1 e x >0,sin x ≥0,所以u x >0,当x ∈π,+∞ 时x +1 e x ≥π+1 e π>2,所以u x >0,所以u x >0在0,+∞ 上恒成立,所以u x 即h x 在0,+∞ 上单调递增,当a -2≥0,即a ≥2时h x ≥h 0 ≥0,所以h x 单调递增,所以h x ≥h 0 =0恒成立,所以a ≥2符合题意,当a -2<0,即a <2时h 0 <0,h 3-a =3-a e 3-a+a -2cos 3-a ≥3-a +a -2cos 3-a >0,所以存在x 0∈0,3-a 使得h x 0 =0,当0<x <x 0时h x <0,则h x 单调递减,所以h x <h 0 =0,与题意不符,综上所述,a 的取值范围是2,+∞ .9已知函数f x =2sin x -ln 1+x 0<x <π .(1)证明:函数f x 有唯一的极值点α,及唯一的零点β;(2)对于(1)问中α,β,比较2α与β的大小,并证明你的结论.【答案】(1)证明见解析;(2)2α>β,证明见解析【详解】(1)当π2<x <π时,由于y =2sin x 单调递减,y =ln 1+x 单调递增,所以f x 单调递减,又f π2=2-ln 1+π2 >0,f π =-ln 1+π <0,所以f x 只有一个零点(设为x 0),无极值点;当0<x <π2时,由f x =2sin x -ln 1+x 得f x =2cos x -1x +1,设g x =2cos x -1x +1,则g x =-2sin x +1x +1 2,由于y =-2sin x 和y =1x +12在0,π2 上均单调递减,所以g x 单调递减,又g 0 =1>0,g π2=-2+1π2+12<0,所以存在x 1∈0,π2,使得g x 1 =0,当0<x <x 1时,g x >0,g x 单调递增,即f x 单调递增,当x 1<x <π2时,g x <0,g x 单调递减,即f x 单调递减,又f π3=1-11+π3>0,f π2 =-1π2+1<0,所以当0<x <x 1时,f x >0恒成立,且存在x 2∈π3,π2 ,使得fx 2 =0,当0<x <x 2时,fx >0,f x 单调递增,当x 2<x <π2时,fx <0,f x 单调递减,所以x 2是f x 的极值点,又f 0 =0,f π2=2-ln 1+π2 >0,所以当0<x <π2时,f x >0恒成立,即函数f x 无零点;综上,函数f x 有唯一的极值点α(α=x 2),及唯一的零点β(β=x 0).(2)2α>β,证明如下:由(1)知α∈π3,π2,2α,β∈π2,π ,由于α为f x 的极值点,所以f α =2cos α-1α+1=0,即2cos α=11+α,所以f 2α =2sin2α-ln 1+2α =4sin αcos α-ln 1+2α =2sin α1+α-ln 1+2α ,设y =x -sin x 0<x <π2,则y =1-cos x >0,所以y =x -sin x 单调递增,所以x -sin x >0,即x >sin x ,所以f2α=2sinα1+α-ln1+2α<2α1+α-ln1+2α,令φ(x)=2x1+x-ln(1+2x)0<x<π2,则φ (x)=-2x21+x21+2x<0,所以φ(x)在0,π2上单调递减,所以φ(x)<φ(0)=0,所以f2α <0=fβ ,又f x在π2,π递减,所以2α>β.10已知函数f x =ax2+x-ln2x.(1)若f x 在1,+∞上单调递增,求a的取值范围;(2)若函数g x =f x -x+ln2xx-sin x在0,π上存在零点,求a的取值范围.【答案】(1)a≥0;(2)0<a<1【详解】(1)由题得f x =2ax+1-1x,因为f x 在1,+∞上单调递增,所以f x =2ax+1-1x≥0在1,+∞上恒成立,即2a≥1x2-1x在1,+∞上恒成立,因为1x2-1x=1x-122-14≤0,所以a≥0.(2)因为g x =ax-sin x,则g x =a-cos x,注意到:g0 =0,g 0 =a-1,若a≥1,则g x =a-cos x≥0,所以g x 在0,π上单调递增,所以g x >g0 =0,g x 在0,π上不存在零点,若a≤-1,则g x =a-cos x≤0,所以g x 在0,π上单调递减,所以g x <g0 =0,g x 在0,π上不存在零点,若-1≤a≤0,显然g x =ax-sin x<0,在0,π上不存在零点,若0<a<1,显然存在t∈0,π,使得g t =0,且g x 在0,π上单调递增,注意到:g 0 =a-1<0,g π =a+1>0,所以g x 在0,t上小于零,在t,π上大于零,所以g x 在0,t上单调递减,在t,π上单调递增,注意到:g0 =0,g t <0,且gπ >0,所以存在唯一β∈t,π使得gβ =0,综上,所以0<a<1.11已知函数f x =ln x+sin x.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.【答案】(1)sin1;(2)f x 有1个零点,证明见解析【详解】(1)f(x)=ln x+sin x的定义域为0,+∞,故f (x)=1x+cos x,令g x =f (x)=1x+cos x,g x =-1 x2-sin x,当x∈1,e时,g x =-1x2-sin x<0,所以g x 在1,e上单调递减,且g1 =1+cos1>0,g e =1e +cos e<1e+cos2π3=1e-12<0,所以由零点存在定理可知,在区间[1,e]存在唯一的a,使g a =f a =0,又当x∈1,a时,g x =f x >0;当x∈a,e时,g x =f x <0;所以f x 在x∈1,a上单调递增,在x∈a,e上单调递减,又因为f1 =ln1+sin1=sin1,f e =ln e+sin e=1+sin e >f1 ,所以函数f(x)在区间[1,e]上的最小值为f1 =sin1.(2)f x 有1个零点,证明如下:因为f(x)=ln x+sin x,x∈0,+∞,若0<x≤1,f (x)=1x+cos x>0,所以f(x)在区间0,1上单调递增,又f1 =sin1>0,f1e=-1+sin1e<0,结合零点存在定理可知,。
艺术生高考数学专题讲义:考点14 导数与函数的极值、最值

考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.①在(-∞,0)上为减函数② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), ∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. 13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。
2022年高考数学新题好题汇编 第3讲 函数与导数小题(原卷版=解析版)

第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0D .f (x )在定义域内单调5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3-B .1-C .0D .26.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫--⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为58.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭ D .101f m ⎛⎫<⎪-⎝⎭9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>12.(2021·全国高三专题练习)已知函数2()22x xf x x -=++,若不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,则实数a 的取值范围是()A.()-B.(-C.(-D .(2,2)-13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞D .(,3][1,0][1,)-∞-⋃-⋃+∞14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的(). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+--D .()1 xxf x e e =-16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞B .(,6)-∞C .(0,6)D .(3,)+∞17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=() A .1- B .0 C .1 D .2三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________.19.(2021·全国高二课时练习(理))设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______. 21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >【答案】BD 【分析】先分析得到()f x 在R 上单调递增,得到12x x >,由于二次函数2yx 不是单调函数,2212x x >不一定成立,所以选项A 错误;121x x e->,所以选项B 正确;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以12ln ln x x >不一定成立.所以选项C 错误;因为函数2200x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以选项D 正确. 【详解】因为()2cos222cos20xxf x e ex x -'=+-≥-≥,所以()f x 在R 上单调递增,由()()12f x f x >可得12x x >,所以121x x e ->,所以选项B 正确;又因为函数220x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以1122x x x x >,所以选项D 正确;由于二次函数2yx 不是单调函数,所以当12x x >时,2212x x >不一定成立,所以选项A 错误;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以当12x x >时,12ln ln x x >不一定成立.所以选项C 错误. 故选:BD 【点睛】关键点睛:解答本题的关键是想到利用导数分析得到函数的单调性,研究函数的问题,一般先要通过探究函数的奇偶性、单调性和周期性等,再求解函数问题.2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项. 由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】 由ln (),0x f x x x =>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<<,且()f x 在(0,)e 单调递增ln f fe ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ====252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确.故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <【答案】BD 【分析】确定函数是增函数,然后比较自变量的大小后可得正确选项. 【详解】易知3()3xf x x =+是R 上的增函数,01m n <<<时,m n +>1n m m n <<成立,BD 一定成立; 1m -与1n -的大小关系不确定,A 不一定成立;同样log m n 与log m n 的大小关系也不确定,如1m n=时,log log 1m n n m ==-,C 也不一定成立. 故选:BD .4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0 D .f (x )在定义域内单调【答案】BC 【分析】直接对f (x )=x 3-3ln x -1,求出导函数,利用列表法可以验证A 、C 、D;对于B:直接求出切线方程进行验证即可. 【详解】f (x )=x 3-3ln x -1的定义域为()0+∞,,()()23333=1f x x x x x'=-- 令()()23333=1=0f x x x x x'=--,得1x =, 列表得:所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调;故C 正确,A 、D 错误; 对于B:由f (1)=0及()10f '=,所以y =f (x )在(1,f (1))处的切线方程()001y x -=-,即0y =.故B 正确. 故选:BC 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤-⎥⎝⎦,故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.6.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为【答案】AC 【分析】对A :求出()f x 的定义域,再利用奇偶性的定义判断即可; 对B :利用()f x 的导数可判断;对C :计算(2)g x π+,看是否等于()g x 即可; 对D :设cos t x =,根据对勾函数的单调性可得最值. 【详解】()2tan f x x x =+的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣,其定义域关于坐标原点对称, 且()2tan()2tan (2tan )()f x x x x x x x f x -=-+-=--=-+=-, 所以()f x 是奇函数,所以()f x 的图象关于原点对称,故A 项正确;由()2tan f x x x =+,得22()1cos f x x '=+,则2()()cos cos cos g x f x x x x'==+. 22()10cos f x x '=+>恒成立,所以()f x 在,()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上单调递增,并不是在R 上单调递增,故B 项错误; 由2()cos cos g x x x =+,得函数()g x 的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣22(2)cos(2)cos ()cos(2)cos g x x x g x x xπππ+=++=+=+,故C 项正确;设cos t x =,当0,2x π⎛⎫∈ ⎪⎝⎭时,(0,1)t ∈, 此时()2()h t g x t t==+,(0,1)t ∈,根据对勾函数的单调性,()h t 在(0,1)上单调递减, ()()13g x h ∴>=,故D 项错误.故选:AC .7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe'=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈;当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确.因()f x 在,2x ππ⎛⎫∈⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误.对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x x π=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x xf x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.8.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭D .101f m ⎛⎫<⎪-⎝⎭【答案】AC 【分析】构造函数()()g x f x mx =-,由已知可得()g x 在R 上单调递增,利用单调性对各个选项进行分析判断即可. 【详解】根据题意设()()g x f x mx =-,其导数为()()g x f x m ''=-, 由()1f x m '>>知()g x 在R 上单调递增,对于A, 1,1,10m m <<>由函数单调性得1(0)g g m ⎛⎫> ⎪⎝⎭即11(0)f m f m m ⎛⎫-⨯> ⎪⎝⎭,即111f m ⎛⎫->- ⎪⎝⎭,即10f m ⎛⎫>⎪⎝⎭,又由1m ,则10m m -<,必有11mf m m -⎛⎫> ⎪⎝⎭,故A 正确,B 错误;对于C, 1m ,则101m >-,则有1(0)1g g m ⎛⎫> ⎪-⎝⎭,即1(0)111m f f m m ⎛⎫->=- ⎪--⎝⎭,即1110111m f m m m ⎛⎫>-=> ⎪---⎝⎭,故C 正确,D 错误; 故选:AC 【点睛】本题考查利用导数研究函数的单调性,常用解题方法构造新函数,考查学生推理能力和计算能力,属于中档题.9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222tttt y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222tttt y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A 【分析】 首先设()xf x x e=-,利用导数判断函数的单调性,比较,a b 的大小,设利用导数判断1x e x ≥+,放缩2ln 2c >-,再设函数()ln xg x x e=-,利用导数判断单调性,得()20g >,再比较,b c 的大小,即可得到结果. 【详解】设()x f x x e=-,()112f x e x '=-, 当204e x ≤<时,()0f x '>,函数单调递增,当24ex >时,()0f x '<,函数单调递减,()()3,2a f b f ==,2234e <<时,()()32f f <,即a b <,设1xy e x =--,1xy e '=-,(),0-∞时,0y '<,函数单调递减,()0,∞+时,0y '>,函数单调递增,所以当0x =时,函数取得最小值,()00f =,即1x e x ≥+恒成立, 即212e->,令()ln x g x x e =-,()11g x e x'=-,()0,x e ∈时,()0g x '<,()g x 单调递减,(),x e ∈+∞时,()0g x '>,()g x 单调递增,x e =时,函数取得最小值()0g e =,即()20g >,得:2ln 2e >222ln 2e<, 即212ln 22ln 22ee->>,即b c <, 综上可知a b c <<.故选:A 【点睛】关键点点睛:本题考查构造函数,利用导数判断函数的单调,比较大小,本题的关键是:根据1x e x ≥+,放缩ln 2c >,从而构造函数()ln xg x x e=-,比较大小. 11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>【答案】B 【分析】先求出函数的定义域,判断函数()f x 为偶函数,再对函数求导判断出函数()f x 在0,上单调递增,然后作差比较45log 5,log 6的大小,可得456log 5log 61log 40>>>>,从而可比较出a ,b ,c 的大小 【详解】由题可知:()f x 的定义域为R ,且()()1ln 12xf x e x --=++()111ln ln 122x x x e x e x e +=+=+-,则()f x 为偶函数,()112x x e e f x =-+'()()2112121x x xx xe e e e e ---==++,当0x >时,0f x,()f x 在0,上单调递增.又由45551log 5log 6log 6log 4-=-5551log 4log 6log 4-⋅=2555log 4log 612log 4+⎫⎛- ⎪⎝⎭≥255log 25120log 4⎫⎛- ⎪⎝⎭>= 所以456log 5log 61log 40>>>>,41log 5a f ⎫⎛= ⎪⎝⎭()()44log 5log 5f f =-=,故a b c >>. 故选:B 【点睛】关键点点睛:此题考查利用函数的单调性比较大小,考查导数的应用,考查对数运算性质的应用,考查了基本不等式的应用,解题的关键是判断函数的奇偶性,再利用导数判断函数的单调性,然后利用单调性比较大小,属于中档题12.(2021·全国高三专题练习)已知函数2()22x x f x x -=++,若不等式()2(1)2f ax f x -<+对任意x ∈R恒成立,则实数a 的取值范围是()A .()- B .(-C .(-D .(2,2)-【答案】D 【分析】先利用定义确定函数()f x 为偶函数,再利用单调性证明()f x 在[)0,+∞上为增函数,所以不等式()2(1)2f ax f x -<+化简为212ax x -<+,转化为22212x ax x --<-<+在R 上恒成立,求出a 的取值范围. 【详解】函数2()22x xf x x -=++的定义域为R ,且2()22()xx f x x f x -=-=++,所以()f x 为偶函数.又当0x ≥时, 2()g x x =是增函数,任取[)12,0,x x ∈+∞,且12x x >,()112212()()2222x x x xh x h x ---=++-()()121212121212121112122221222222x x x x x x x x x x x x x x +++⎛⎫-⎛⎫+-= ⎪ ⎪⎝⎭⎝=-=--⎭- 120x x >>,12120,22210x x x x +∴-->>,12()()0h x h x ∴->所以()22-=+x xh x 在[)0,+∞上是增函数,即()y f x =在[)0,+∞上是增函数.所以不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,转化为212ax x-<+,即22212x ax x --<-<+,从而转化为210x ax ++>和230x ax -+>在R 上恒成立①若210x ax ++>在R 上恒成立,则240a ∆=-<,解得22a -<<;②若230x ax -+>在R 上恒成立,,则2120a ∆=-<,解得a -<< 综上所述,实数a 的取值范围是(2,2)-. 故选:D.方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞ D .(,3][1,0][1,)-∞-⋃-⋃+∞【答案】B 【分析】按1x =或0,0x <,1x >和01x <<四种情况,分别化简解出不等式,可得x 的取值范围. 【详解】①当1x =或0时,(1)0xf x -=成立;②当0x <时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥,可有()31611x x -≤-,解得1x ≤-; ③当0x >且1x ≠时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥ 若1x >,则()4116x -≥,解得3x ≥ 若01x <<,则()4116x -≤,解得01x << 所以(,1][0,1][3,)x ∈-∞-⋃⋃+∞则原不等式的解为(,1][0,1][3,)x ∈-∞-⋃⋃+∞, 故选:B14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A求得函数的导数,利用导数求得函数的单调性与极值,结合充分条件、必要条件的判定,即可求解. 【详解】由题意,函数()()xf x x a e =-,则()()1xf x x a e '=-+,令()0f x '=,可得1x a =-,当1x a <-时,()0f x '<;当1x a >-时,()0f x '>, 所以函数()y f x =在1x a =-处取得极小值,若函数()y f x =在()0,∞+上有极值,则10a ->,解得1a >.因此“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A .15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+-- D .()1 xxf x e e =-【答案】B 【分析】利用函数奇偶性的定义判断各选项中函数的奇偶性,利用导数法判断各选项中函数在区间()0,1上的单调性,由此可得出合适的选项. 【详解】对于A 选项,由0x x x xe e e e --⎧+>⎨->⎩,解得0x >, 所以,函数()()()ln ln xx xxf x e eee --=+--的定义域为()0,∞+,该函数为非奇非偶函数,A 选项不满足条件;对于B 选项,由sin 0x ≠,可得()x k k Z π≠∈,即函数()1sin sin f x x x=+的定义域为{},x x k k Z π≠∈. ()()()()11sin sin sin sin f x x x f x x x-=-+=--=--,该函数为奇函数,当()0,1x ∈时,()322cos cos cos 0sin sin x xf x x x x-'=-=<, 所以,函数()1sin sin f x x x=+在()0,1上单调递减,B 选项满足条件; 对于C 选项,由1010x x +>⎧⎨->⎩,解得11x -<<,所以,函数()()()ln 1ln 1f x x x =+--的定义域为()1,1-,()()()()ln 1ln 1f x x x f x -=--+=-,该函数为奇函数,当()0,1x ∈时,()21120111f x x x x '=+=>+--,该函数在()0,1上为增函数,C 选项不满足条件; 对于D 选项,函数()1xx f x e e=-的定义域为R ,()()11x x x x f x e e f x e e---=-=-=-,该函数为奇函数,当()0,1x ∈时,()10xx f x e e'=+>,该函数在()0,1上为增函数,D 选项不满足条件.故选:B. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;(4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定.16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞ B .(,6)-∞C .(0,6)D .(3,)+∞【答案】A 【分析】首先根据题中所给的条件,判断出“先享点”的特征,之后根据()f x 存在5个“先享点”,等价于函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,构造函数利用导数求得结果.【详解】依题意,()f x 存在5个“先享点”,原点是一个,其余还有两对,即函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,而函数32()6(0)f x x x x =-≤关于原点对称的函数为32()6(0)f x x x x =-≥,即3166ax x x -=-有两个正根,32166166x x a x x x-+==+-, 令()2166(0)h x x x x=+->, 322162(8)'()2x h x x x x -=-=, 所以当02x <<时,'()0h x <,当2x >时,'()0h x >,所以()h x 在(0,2)上单调递减,在(2,)+∞上单调递增,且(2)4866h =+-=,并且当0x →和x →+∞时,()f x →+∞,所以实数a 的取值范围为(6,)+∞,故选:A.【点睛】该题考查的是有关新定义问题,结合题意,分析问题,利用等价结果,利用导数研究函数的性质,属于较难题目.17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=()A .1-B .0C .1D .2 【答案】C【分析】令()0f x =可求得其零点,即α的值,再利用导数可求得其极值点,即β的值,从而可得答案.【详解】解:39,0(),0x x x f x xe x ⎧-=⎨<⎩,当0x 时,()0f x =,即390x -=,解得2x =;当0x <时,()0x f x xe =<恒成立,()f x ∴的零点为2α=.又当0x 时,()39x f x =-为增函数,故在[0,)+∞上无极值点;当0x <时,()x f x xe =,()(1)x f x x e '=+,当1x <-时,()0f x '<,当1x >-时,()0f x '>,1x ∴=-时,()f x 取到极小值,即()f x 的极值点1β=-,211αβ∴+=-=.故选:C .【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题.三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y axa =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________. 【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭【解析】解:由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,设公切线与曲线C 1切于点(x 1,ax 12),与曲线C 2切于点()22,x x e ,则22211212x x e ax ax e x x -==-, 可得2x 2=x 1+2,∴11212x e a x +=,记()122x e f x x +=,则()()1222'4x e x f x x +-=,当x ∈(0,2)时,f ′(x )<0,f (x )递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )递增.∴当x =2时,()2min 4e f x =. ∴a 的范围是2,4e ⎡⎫+∞⎪⎢⎣⎭. 19.(2021·全国高二课时练习(理))设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.【答案】【详解】设00(,)P x y .对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线1(0)y x x =>上点P 处的切线斜率为-1,由02011x x y x ==-=-',得01x =,则01y =,所以P 的坐标为(1,1). 考点:导数的几何意义.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______.【答案】3-【分析】利用奇函数性质,求在0x >时()f x 的解析式,根据导数的几何意义有()14f '=,即可求参数a 的值.【详解】当0x >时,则0x -<,∴()()()222121a x x ax x f x =⋅--⋅-+=++-,此时()()221f x f x ax x =--=---. 所以,当0x >时,()22f x ax '=--,则()1224a f '=--=,解得3a =-.故答案为:3-.21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim 23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________. 【答案】3【分析】根据极限形式和求导公式得(1)213f a '=+=,进而得1a =,计算12f ⎛⎫'⎪⎝⎭得解. 【详解】 由0(1)(12)lim23x f f x x ∆→--∆=∆,可得0(12)(1)lim 32x f x f x∆→-∆-=-∆. 因为1()2f x ax x '=+,所以(1)213f a '=+=,即1a =,则2()ln f x x x =+, 所以1()2f x x x '=+,132f ⎛⎫'= ⎪⎝⎭. 故答案为:3.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.【答案】0【分析】对()()21f x f x +-=两边同时求导得()()20x x f f '-'-=,进而得答案.【详解】因为()()21f x f x +-=,两边同时求导可得:()()20x x f f '-'-=,故()()201902021f f '-='.故答案为:0【点睛】本题考查复合函数导数问题,解题的关键在于根据已知对函数求导,考查运算求解能力,是中档题.。
2019届高考数学一轮复习第三章导数及其应用考点规范练14导数的概念及运算文新人教B版

考点规范练14 导数的概念及运算基础巩固1.已知函数f (x )=√x 3+1,则lim Δx →0f (1-Δx )-f (1)Δx 的值为 ()A.-13 B.13 C.23D.02.已知曲线y=ln x 的切线过原点,则此切线的斜率为() A.e B.-e C.1eD.-1e3.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=04.(2017江西上饶模拟)若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x-2的距离的最小值为() A.1 B.√2 C.√22D.√35.曲线f (x )=x 3-x+3在点P 处的切线平行于直线y=2x-1,则点P 的坐标为() A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)6.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),则a b等于() A.-8B.-6C.-1D.57.若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是() A.y=sin x B.y=ln x C.y=e xD.y=x 38.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+154x-9都相切,则a 等于() A.-1或-2564B.-1或214C.-74或-2564D.-74或79.(2017吉林长春二模)若函数f (x )=lnx x,则f'(2)=.10.(2017山西太原模拟)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是. 11.曲线y=log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于. 12.若函数f (x )=12x 2-ax+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是.能力提升13.函数y=f (x ),y=g (x )的导函数的图象如图所示,则y=f (x ),y=g (x )的图象可能是()14.(2017广州深圳调研)如图,y=f (x )是可导函数,直线l :y=kx+2是曲线y=f (x )在x=3处的切线,令g (x )=xf (x ),g'(x )是g (x )的导函数,则g'(3)=()A.-1B.0C.2D.415.设直线l 1,l 2分别是函数f (x )={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是() A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)16.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=e x+x 2+1,则函数h (x )=2f (x )-g (x )在点(0,h (0))处的切线方程是.高考预测17.若函数f (x )=ln x-f'(1)x 2+5x-4,则f'(12)=.参考答案考点规范练14 导数的概念及运算1.A 解析limΔx →0f (1-Δx )-f (1)Δx =-lim Δx →0f (1-Δx )-f (1)-Δx=-f'(1)=-(13×1-23)=-13.2.C 解析由题意可得y=ln x 的定义域为(0,+∞),且y'=1x.设切点为(x 0,ln x 0),则切线方程为y-ln x 0=1x 0(x-x 0).因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e,故此切线的斜率为1e.3.B 解析由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0).因为y'=-2x+1,所以y'|x=1=-1, 故切线方程为y=-(x-1),即x+y-1=0.4.B 解析因为定义域为(0,+∞),所以y'=2x-1x ,令2x-1x=1,解得x=1,则曲线在点P (1,1)处的切线方程为x-y=0,所以两平行线间的距离为d=√2=√2.故所求的最小值为√2.5.C 解析∵f (x )=x 3-x+3,∴f'(x )=3x 2-1.设点P (x ,y ),则f'(x )=2,即3x 2-1=2,解得x=1或x=-1, 故P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,符合题意.故选C . 6.A 解析由题意得y=kx+1过点A (1,2),故2=k+1,即k=1.∵y'=3x 2+a ,且直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),∴k=3+a ,即1=3+a ,∴a=-2.将点A (1,2)代入曲线方程y=x 3+ax+b ,可解得b=3, 即a b=(-2)3=-8.故选A .7.A 解析设曲线上两点P (x 1,y 1),Q (x 2,y 2),则由导数几何意义可知,两条切线的斜率分别为k 1=f'(x 1),k 2=f'(x 2). 若函数具有T 性质,则k 1·k 2=f'(x 1)·f'(x 2)=-1.A 项,f'(x )=cos x ,显然k 1·k 2=cos x 1·cos x 2=-1有无数组解,所以该函数具有性质T;B 项,f'(x )=1x(x>0),显然k 1·k 2=1x 1·1x 2=-1无解,故该函数不具有性质T;C 项,f'(x )=e x>0,显然k 1·k 2=e x 1·e x 2=-1无解,故该函数不具有性质T;D 项,f'(x )=3x 2≥0,显然k 1·k 2=3x 12×3x 22=-1无解,故该函数不具有性质T .综上,选A .8.A 解析因为y=x 3,所以y'=3x 2.设过点(1,0)的直线与y=x 3相切于点(x 0,x 03),则在该点处的切线斜率为k=3x 02,所以切线方程为y-x 03=3x 02(x-x 0),即y=3x 02x-2x 03.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y=0与y=ax 2+154x-9相切,可得a=-2564; 当x 0=32时,由y=274x-274与y=ax 2+154x-9相切,可得a=-1. 9.1-ln24解析由f'(x )=1-lnxx 2,得f'(2)=1-ln24. 10.y=2e x-e 解析∵f (x )=x e x,∴f (1)=e,f'(x )=e x+x e x,∴f'(1)=2e,∴f (x )的图象在点(1,f (1))处的切线方程为y-e =2e(x-1),即y=2e x-e .11.12log 2e 解析∵y'=1xln2,∴k=1ln2, ∴切线方程为y=1ln2(x-1),∴所围三角形的面积为S=12×1×1ln2=12ln2=12log 2e .12.[2,+∞)解析∵f (x )=12x 2-ax+ln x ,∴f'(x )=x-a+1x .∵f (x )存在垂直于y 轴的切线, ∴f'(x )存在零点,∴x+1x -a=0有解, ∴a=x+1x ≥2(x>0).13.D 解析由y=f'(x )的图象知y=f'(x )在(0,+∞)内单调递减,说明函数y=f (x )的切线的斜率在(0,+∞)内也单调递减,故可排除A,C .又由图象知y=f'(x )与y=g'(x )的图象在x=x 0处相交,说明y=f (x )与y=g (x )的图象在x=x 0处的切线的斜率相同,故可排除B .故选D . 14.B 解析由题图可知曲线y=f (x )在x=3处的切线斜率等于-13,即f'(3)=-13.又g (x )=xf (x ),g'(x )=f (x )+xf'(x ),g'(3)=f (3)+3f'(3).由题图可知f (3)=1,所以g'(3)=1+3×(-13)=0. 15.A 解析由题意得P 1,P 2分别位于两段函数的图象上.设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1.所以x 2=1x 1.所以切线l 1的方程为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2), 即y-ln x 1=-x 1(x -1x 1). 分别令x=0得A (0,-1+ln x 1),B (0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,lnx 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x 11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A .16.x-y+4=0解析∵f (x )-g (x )=e x+x 2+1,且f (x )是偶函数,g (x )是奇函数,∴f (-x )-g (-x )=f (x )+g (x )=e -x +x 2+1.∴f (x )=e x +e -x +2x 2+22,g (x )=e -x -e x2.∴h (x )=2f (x )-g (x )=e x +e -x +2x 2+2-e -x -e x2=32e x +12e -x +2x 2+2.∴h'(x )=32e x -12e -x +4x ,即h'(0)=32−12=1.又h(0)=4,∴切线方程为x-y+4=0.-2f'(1)x+5,17.5解析∵f'(x)=1x∴f'(1)=1-2f'(1)+5,解得f'(1)=2,)=2-2+5=5.∴f'(12。
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第练函数的极值与最值
[题型分析·高考展望]本部分内容为导数在研究函数中的一个重要应用,在高考中也是重点考查的内容,多在解答题中的某一问中考查,要求熟练掌握函数极值与极值点的概念及判断方法,极值和最值的关系.
体验高考
.(·四川改编)已知为函数()=-的极小值点,则等于.
答案
解析∵()=-,∴′()=-,
令′()=,则=-,=.
当∈(-∞,-),(,+∞)时,′()>,则()单调递增;
当∈(-)时,′()<,则()单调递减,
∴()的极小值点为=.
.(·课标全国甲)()讨论函数()=的单调性,并证明当>时,(-)++>;
()证明:当∈[)时,函数()=(>)有最小值.设()的最小值为(),求函数()的值域.
()解()的定义域为(-∞,-)∪(-,+∞).
′()==≥,
当且仅当=时,′()=,
所以()在(-∞,-),(-,+∞)上单调递增.
所以当∈(,+∞)时,()>()=-.
所以(-)>-(+),即(-)++>.
()证明′()==(()+).
由()知,()+单调递增,对任意∈[),()+=-<,()+=≥.
因此,存在唯一∈( ],使得()+=,
即′()=.
当<<时,()+<,′()<,()单调递减;
当>时,()+>,′()>,()单调递增.
因此()在=处取得最小值,最小值为()===.
于是()=.
由′=>,得=单调递增.
所以,由∈(],
得=<()=≤=.
因为单调递增,对任意λ∈,存在唯一的∈(],=-()∈[),使得()=λ. 所以()的值域是.
综上,当∈[)时,()有最小值(),()的值域是.
.(·安徽)设函数()=-+.
()讨论函数()在内的单调性并判断有无极值,有极值时求出极值;()记()=-+,求函数()-()在上的最大值;
()在()中,取==,求=-满足≤时的最大值.
解()()=-+
=(-)+,-<<.
[( )]′=(-),-<<.
因为-<<,所以>,-<<.
①≤-,∈时,函数()单调递增,无极值.
②≥,∈时,函数()单调递减,无极值.
③对于-<<,在内存在唯一的,。