2019年高考数学试卷(文科)(新课标Ⅱ)(解析版)

合集下载

2019年高考真题答案及解析:文科数学(全国Ⅱ卷)

2019年高考真题答案及解析:文科数学(全国Ⅱ卷)

2019年高考真题答案及解析:文科数学(全国Ⅱ卷)本试卷共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C 【难度】容易【点评】本题在高考数学(文)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2.设z =i(2+i),则z = A .1+2i B .-1+2iC .1-2iD .-1-2i【答案】D 【难度】容易【点评】本题在高考数学(文)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

3.已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .50【答案】A【难度】容易【点评】本题考查向量的计算问题。

在高一数学强化提高班上学期课程讲座1,第六章《平面向量》有详细讲解。

4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35 C .25D .15【答案】B 【难度】容易【点评】本题考查概率的计算。

在高二数学(文)强化提高班下学期,第六章《概率》有详细讲解。

2019年全国II卷高考数学(文科)试题(带答案)

2019年全国II卷高考数学(文科)试题(带答案)

R心A,B,E,所以LABB一k4,EB1 •45° ,故儿在从巨3,
从I •2庄=6.
.心一作EFJ.BBl,垂足为F,则EF J.平面BB,C,C,且
EF
3.
D
所以,四棱锥E-BB1C 1C的体积V=3�Ix3x6x3:zl8.
Ai
18. (12分)
已知{心是各项均为正数的等比数列,q1 =2 , a, 罩 2ai +16.
• 4•

(2)由题意可知,
如 2 缸 16
湖,上 足x +条c件·上 的 x-点C ·p(一x1-,Y, )存了 ;在+当ib且' 仅-l当,
0
clyl..16,
@
X2 +y2 _礼
牛立. a b2 I. .
@
4
0知 由吵及a2..b2+c2得y2斗c , 又由
.
2
y
162 "'_ C2 ,
故b=4.
;
✓2 由嫡"
..
2
气 C 2 c2
平),所以c2
�b 2,
从而a2=b2
+C2 �劝2
=32,故a�4
.
当b=4, a�4✓2时 , 存在满足条件的点P.
所以丘4, a的取值范围为[众厅,+oo).
21. (12分) 已知函数f(x)=(x一l)lnx 丁 - 1.证明:
(1) /(x)存在唯一的极值点;
坐标原点. (1)若么沁只为等边三角形,求 C的离心率; (2)如果存在点P,使得PE.LP片 且纽PF:,.的面积等千16,求b的值和a的
取值范围. 解1 (1)连结P只.由t;;.POF,为等边三角形可知在ARPE中,OiPF2

2019年高考文科数学全国卷2含答案

2019年高考文科数学全国卷2含答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合={|1}A x x >-,{|2}B x x =<,则AB =( )A .()1-+∞,B .()2-∞,C .()12-,D .∅ 2.设()2z i i =+,则=z( )A .12i +B .12i -+C .12i -D .12i --3.已知向量()23a =, ,()32b =,,则a b -=( ) AB .2 C.D .50 4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设()f x 为奇函数,且当0x ≥ 时,()e 1x f x =-,则当0x <时,()f x = ( ) A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+7.设α,β为两个平面,则αβ∥的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若14x π=,24x 3π=是函数()sin f x x ω=()0ω>两个相邻的极值点,则ω=( ) A .2 B .32C .1D .129.若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p = ( ) A .2 B .3 C .4D .810.曲线2sin cos y x x =+在点()1π-,处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=( )A .15 BC D 12.设F 为双曲线C :()2222001x y a ba b -=>>,的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P 、Q 两点.若PQ OF =,则C 的离心率为( )AB C .2D 毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分。

2019年全国新课标2卷高考文科数学试题及答案

2019年全国新课标2卷高考文科数学试题及答案

2019普通高等学校招生全国统一考试II卷文科数学第_卷选择题:本大题共124、题,每4、题5分,在每4、题给出的四个选项中,只有一项是符合题目要求的。

⑴已知集合a=M t<x<2},B=H0<x<3},则AU3=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2+ai日.顽----—=3+z,贝!J q=(2)若a实数,且1+,A.-4B.-3C.3D.4(3)根据下面给出的2019年至2019年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是C.2019年以来我国二氧化碳排放量呈减少趋势;D.2019年以来我国二氧化碳年排放量与年份正相关。

(4)已知向量"=(O,T)E=(-1,2),则(2a+i)・a=A.-1B.0C.1D.2/[-\、S〃是等差数列}的前〃项和,—%+%+%=3,则S5=A.5B.7C.9D.11(6)—个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为J.£££A.8b.7 c.6 D.5⑺已知三点A(1,O),B(O,g),C(2,73),则AABC夕卜接圆的圆,《到原点的距>离为5恒2^54A.3b.3 C.3 D.3(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术,执行该程序框图,若输入的a,b分别为14,18,则输出的a为开始输入a,b{a“}丫两——=4(。

4—1),则。

2=(9)已知等比数列4C2_1A.2B.1C.2D.8(10)已知A,B是球0的球面上两点,ZAO3=90°,C为该球面上动点,若三棱锥0_ABC 体积的最大值为36,则球0的表面积为A.367tB.647tC.144冗D. 256兀(11)如图,长方形的边AB=2,BC=1,0是AB的中点,点P沿着边BC,CD,与DA运动,记ZBOP=x,将动点P到两点距离之和表示为函数/■"),贝昕⑴的图像大致为/(x)=ln(l+|x|)-—二,则使得f3)>y(2x-1)成立的x的范围是(12)设函数1+尤("I)(-8,;)U(l,+8)(—;,!)(—8,—:)U(:,+8) A.3 B.3 C.33d.33第二卷填室题:本大题共4个小题,每小题5分己知国数八工)=心'―2工的图像过点(-1,4),贝此=%+y-5<0,<2x-y-l>0,贝!Jz=2尤+y的最大值为(14)若x,y满足约束条件—2'+1'°‘。

2019高考文科数学全国卷2(附参考答案和详解)

2019高考文科数学全国卷2(附参考答案和详解)

丙 ,我 的 成 绩 比 乙 高 !
成绩公布后#三人成绩互不相 同 且 只 有 一 个 人 预 测 正 确#那
么三人按成绩由高到低的次序为
*%甲 /乙 /丙
,%乙 /甲 /丙
$! ! %
-%丙 /乙 /甲
.%甲 /丙 /乙
&!设 *$#%为 奇 函 数#且 当 #1# 时#*$#%'<# (!#则 当 ###
故选 1! !"!答 案 ;
解 析 令 双 曲 线 /+&,"" )'0"" '! !&&##'&#"的 右 焦 点 1 的 坐
标为!(##"#则(' 槡&"+'" !
如图所 示#由 圆 的 对 称 性 及 条
. ")"' 槡!)!""+!" '槡"!
故选 ;!
/!答 案 1
解析设-只兔子中测量过某 项 指 标 的 ( 只 为 &!#&"#&(#未
$
$)
"+
!)
7
$!%分别估计这类企业中产值增长率不低于)#@的 企 业 比 例 /产 值 负 增 长 的 企 业 比 例 $$%求这 类 企 业 产 值 增 长 率 的 平 均 数 与 标 准 差 的 估 计 值 $同一组中的 数 据 用 该 组 区 间 的 中 点 值 为 代 表%!$精 确 到 #!#!%
.%#0&(0!'#
$ % !!!已知3 ##$ #$9/:$'529$0!#则9/:'

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)
y 2 0,
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有 10 个车次的正 点率为 0.97,有 20 个车次的正点率为 0.98,有 10 个车次的正点率为 0.99,则经停该站 高铁列车所有车次的平均正点率的估计值为___________.
15.△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 bsinA+acosB=0,则 B=_________
f (x) x 1 ln x 1 ln x 1 .
x
x
因为 y ln x 单调递增, y 1 单调递减,所以 f (x) 单调递增,又 f (1) 1 0 , x
f
(2)
ln
2
1 2
ln
4 1 2
0
,故存在唯一
x0
(1, 2)
,使得
f
x0
0
.
又当 x x0 时, f (x) 0 , f (x) 单调递减;当 x x0 时, f (x) 0 , f (x) 单调递增.
故 B1C1 BE .
又 BE EC1 ,所以 BE⊥平面 EB1C1 .
(2)由(1)知∠BEB1=90°.由题设知 Rt△ABE≌Rt△A1B1E,所以 AEB A1EB1 45 , 故 AE=AB=3, AA1 2AE 6 .
作 EF BB1,垂足为 F,则 EF⊥平面 BB1C1C ,且 EF AB 3.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分。 17.(12 分)
如图,长方体 ABCD–A1B1C1D1 的底面 ABCD 是正方形,点 E 在棱 AA1 上,BE⊥EC1.

(完整word版)2019年高考真题——文科数学(全国卷II)Word版含解析

(完整word版)2019年高考真题——文科数学(全国卷II)Word版含解析

II卷) 2019年普通高等学校招生全国统一考试(全国文科数学1.设集合A x|x -1,B x|x 2,则A B ()A.( 1,)B.( ,2)C.( 1,2)D.答案:C解析:A x|x -1 ,B x|x 2 A B ( 1,2).2.设z i(2 i),则z ( )A. 1 2iB. 1 2iC. 1 2iD. 1 2i答案:D解析:因为z i(2 i) 1 2i,所以z 1 2i.r r r r3.已知向量 a (2,3) , b (3,2),则a b ( )A. 2B. 2C. 5 2D.50答案:A解答:3只测量过某项指标•若从这5只兔子中随机取出 3只, )B. C. D. 答案: B解答: 计测量过的 3只兔子为1、2、3,设测量过的2只兔子为 A 、B 则3只兔子的种类有(1,2,3) (1,2, A) (1,2,B) (1,3,A) (1,3,B) (1,A,B) 2,3, A 2,3,B3有两只测量过的有6种,所以其概率为55.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测 甲:我的成绩比乙高• 乙:丙的成绩比我和甲的都高 • 丙:我的成绩比乙高•成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 () A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D.甲、丙、乙答案: A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果由题意知a b ( 1,1),所以4.生物实验室有5只兔子,其中只有 则恰有2只测量过该指标的概率为(2,A,B 3, A,B6.设f (x)为奇函数,且当x 0时,f(x) e x 1,则当x 0时,f(x)( )A. e x 1B. e x 1C.e x 1D e x 1 答案: D 解答:当x 0时,x 0 , f ( x) e x 1,又f (x)为奇函数,有 f (x) f ( x) e x 1.A. 内有无数条直线与 平行B. 内有两条相交直线与平行C. ,平行于同一条直线D., 垂直于同一平面 答案:解析:根据面面平行的判定定理易得答案 _,x 2 J f (x) sin x(4’ 2 4是函数A . 2 B. C. 17.设为两个平面,则//的充要条件是()8. °)两个相邻的极值点,则1 D.2答案: A解答: A. 2 B. 3 C. 4 D. 8 答案: D解析:A. x y 1 0B. 2x y 2 1 0C. 2xy 21 0D. x y1 0答案:C解析:因为y 2cos xsin x ,所以曲线 y 2si nx cosx 在点(,1)处的切线斜率为2故曲线y 2sin x cosx 在点(, 1)处的切线方程为2x y 2 1 0.10.曲线y 2sinx cosx 在点(,1)处的切线方程为()T 3由题意可知242即“,所以=29.若抛物线 y 2px (p 0)的焦点是椭圆x 2 3p1的一个焦点,贝y p抛物线y 22px( p0)的焦点是(卫,0),椭圆22x3p2 ___________________________£1的焦点是(「2p,0),p11.已知(0,—), 2sin 2 cos2 1,则sin ( )2答案: B 解答:2(0,—), 2sin2cos 2 1 4sin cos 2cos则 2sincosta n12,所以cos12^5 51 tan 2所以sin12cos!522C :务■y 2 1(a0,b 0)12.设F 为双曲线a b的右焦点, 0为坐标原点,以OF 为直径的圆与圆"亍『交于P ,Q两点,若PQ °F ,则c 的离心率为 A. 2 B. .3 C. 2 D. . 5 答案: A2解析:设F 点坐标为(c ,0),则以OF 为直径的圆的方程为(x -)2 y 2 ------①,2 2 2A.B.if 5D.2:-5532②,则①-②,化简得到x —,代入②式,求得yca K c,化简得到2ab c2a b 2,a b , 故e c .. a 2 b 2仏、2故选ca aaA.二、填空题2x 3y 6 013.若变量x, y 满足约束条件x y 3 03x y的最大值疋一y 2 0 贝U答案:9解答:0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 答案:0.98解答:平均正点率的估计值0.97 10 0.98 20 0.99 10。

2019年全国统一高考数学试题(文科)(新课标Ⅱ)(解析版)

2019年全国统一高考数学试题(文科)(新课标Ⅱ)(解析版)

2019年全国统一高考数学试题(文科)(新课标Ⅱ)一、单选题1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅【答案】C【解析】本题借助于数轴,根据交集的定义可得. 【详解】 由题知,(1,2)A B =-,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 2.设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2i D .–1–2i 【答案】D【解析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z . 【详解】2i(2i)2i i 12i z =+=+=-+,所以12z i =--,选D . 【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 3.已知向量a =(2,3),b =(3,2),则|a –b |=A B .2C .D .50【答案】A【解析】本题先计算a b -,再根据模的概念求出||-a b . 【详解】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A 【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35 C .25D .15【答案】B【解析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙【答案】A【解析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.设f (x )为奇函数,且当x ≥0时,f (x )=1x e -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x . 【详解】()f x 是奇函数,020011()f x x x =+'.当0x <时,0x ->,()e 1()x f x f x --=-=-,得()e 1xf x -=-+.故选D .【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B . 【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误. 8.若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题. 9.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D【解析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=【答案】C【解析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解. 【详解】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程. 11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15 BC .3D .5【答案】B【解析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=,故选B .本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题13.若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________. 【答案】9.【解析】作出可行域,平移30x y -=找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得. 【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98.【解析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题. 【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.98=.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.15.V ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】共26个面. 1.【解析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题17.如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【解析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明平面BB C C ,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.18.已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和. 【答案】(1)212n na -=;(2)2n S n =.【解析】(1)本题首先可以根据数列a 是等比数列将a 转化为2a q ,a 转化为a q ,再然后将其带入32216a a =+中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果。

2019年高考文数全国卷2含答案解析

2019年高考文数全国卷2含答案解析

徐老师2019年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合={|1}A x x >-,{|2}B x x =<,则A B =()A .()1-+∞,B .()2-∞,C .()12-,D .∅2.设()2z i i =+,则=z ()A .12i +B .12i -+C .12i-D .12i--3.已知向量()23a =,,()32b =,,则a b -=()A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设()f x 为奇函数,且当0x ≥时,()e 1x f x =-,则当0x <时,()f x =()A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则αβ∥的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若14x π=,24x 3π=是函数()sin f x x ω=()0ω>两个相邻的极值点,则ω=()A .2B .32C .1D .129.若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =()A .2B .3C .4D .810.曲线2sin cos y x x =+在点()1π-,处的切线方程为()A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=()A .15BC D 12.设F 为双曲线C :()2222001x y a ba b -=>>,的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P 、Q 两点.若PQ OF =,则C 的离心率为()徐老师ABC .2D第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分。

2019年全国普通高等学校招生统一考试数学(文)(新课标II卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(新课标II卷)试题(解析版)

2019年全国普通高等学校招生统一考试数学(文)(新课标II卷)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、单选题1.A. B. C. D.【答案】D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2.已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3.函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6.双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7.在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.8.为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.12.已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.二、填空题13.曲线在点处的切线方程为__________.【答案】y=2x–2【解析】分析:求导,可得斜率,进而得出切线的点斜式方程.详解:由,得则曲线在点处的切线的斜率为,则所求切线方程为,即.点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.14.若满足约束条件则的最大值为__________.【答案】9【解析】分析:作出可行域,根据目标函数的几何意义可知当时,.详解:不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.点睛:线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.15.已知,则__________.【答案】【解析】分析:利用两角差的正切公式展开,解方程可得.详解:,解方程得.点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.【答案】8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.三、解答题17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18.下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点求参数.19.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.【答案】解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.20.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.【解析】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.21.已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】解:(1)当a=3时,f(x)=,f ′(x)=.令f ′(x)=0解得x=或x=.当x∈(–∞,)∪(,+∞)时,f ′(x)>0;当x∈(,)时,f ′(x)<0.故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.【解析】分析:(1)将代入,求导得,令求得增区间,令求得减区间;(2)令,即,则将问题转化为函数只有一个零点问题,研究函数单调性可得.详解:(1)当a=3时,f(x)=,f ′(x)=.令f ′(x)=0解得x=或x=.当x∈(–∞,)∪(,+∞)时,f ′(x)>0;当x∈(,)时,f ′(x)<0.故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.点睛:(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.22.[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.详解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23.[选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

(完整版)2019年高考文科数学全国2卷含答案

(完整版)2019年高考文科数学全国2卷含答案

2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。

2019年全国统一高考数学试卷(文科)(全国新课标Ⅱ)

2019年全国统一高考数学试卷(文科)(全国新课标Ⅱ)

2019年全国统一高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|1}A x x =>-,{|2}B x x =<,则(A B =I ) A .(1,)-+∞ B .(,2)-∞C .(1,2)-D .∅ 2.设(2)z i i =+,则(z = )A .12i +B .12i -+C .12i -D .12i -- 3.已知向量(2,3)a =r,(3,2)b =r ,则||(a b -=r r )AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 6.设()f x 为奇函数,且当0x …时,()1x f x e =-,则当0x <时,()(f x = ) A .1x e --B .1x e -+C .1x e ---D .1x e --+7.设α,β为两个平面,则//αβ的充要条件是( ) A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若14x π=,234x π=是函数()sin (0)f x x ωω=>两个相邻的极值点,则(ω= )A .2B .32C .1D .129.若抛物线22(0)y px p =>的焦点是椭圆2213x yp p +=的一个焦点,则(p = )A .2B .3C .4D .810.曲线2sin cos y x x =+在点(,1)π-处的切线方程为( )A .10x y π---=B .2210x y π---=C .2210x y π+-+=D .10x y π+-+= 11.已知(0,)2πα∈,2sin2cos21αα=+,则sin (α= )A .15B C D12.设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若||||PQ OF =,则C 的离心率为( )A.2B .3C .2D .5二、填空题:本题共4小题,每小题5分,共20分。

(2021年整理)2019年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版)

(2021年整理)2019年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版)

(完整)2019年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2019年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2019年高考新课标Ⅱ文科数学试题及答案(精校版-解析版-word版)的全部内容。

2019年普通高等学校招生全国统一考试(新课标Ⅱ卷)文 科 数 学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2iB .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=A B .2 C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .155.在“一带一路"知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4D .810.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD12.设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为ABC .2D二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是___________。

2019年全国统一高考数学试卷(文科)(新课标ⅱ)教师版

2019年全国统一高考数学试卷(文科)(新课标ⅱ)教师版

2019年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2019•海南)设z =i (2+i ),则z =( ) A .1+2iB .﹣1+2iC .1﹣2iD .﹣1﹣2i【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案. 【解答】解:∵z =i (2+i )=﹣1+2i , ∴z =−1﹣2i , 故选:D .【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 1.(5分)(2019•海南)已知向量a →=(2,3),b →=(3,2),则|a →−b →|=( ) A .√2B .2C .5√2D .50【分析】利用向量的坐标减法运算求得a →−b →的坐标,再由向量模的公式求解. 【解答】解:∵a →=(2,3),b →=(3,2), ∴a →−b →=(2,3)﹣(3,2)=(﹣1,1), ∴|a →−b →|=√(−1)2+12=√2. 故选:A .【点评】本题考查平面向量的坐标运算,考查向量模的求法,是基础题. 1.(5分)(2019•海南)已知集合A ={x |x >﹣1},B ={x |x <2},则A ∩B =( ) A .(﹣1,+∞)B .(﹣∞,2)C .(﹣1,2)D .∅【分析】直接利用交集运算得答案.【解答】解:由A ={x |x >﹣1},B ={x |x <2},得A ∩B ={x |x >﹣1}∩{x |x <2}=(﹣1,2). 故选:C .【点评】本题考查交集及其运算,是基础题.1.(5分)(2019•海南)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【分析】本题可从三人预测中互相关联的乙、丙两人的预测入手,因为只有一个人预测正确,而乙对则丙必对,丙对乙很有可能对,假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙、丙错误,从而得出结果.【解答】解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测,可知:乙、丙的预测不正确.如果乙预测正确,则丙预测正确,不符合题意.如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意.∴只有甲预测正确,乙、丙预测不正确,甲>乙,乙>丙.故选:A.【点评】本题主要考查合情推理,因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾.从而得出正确结果.本题属基础题.1.(5分)(2019•海南)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A .x ﹣y ﹣π﹣1=0B .2x ﹣y ﹣2π﹣1=0C .2x +y ﹣2π+1=0D .x +y ﹣π+1=0【分析】求出原函数的导函数,得到函数在x =π时的导数,再由直线方程点斜式得答案. 【解答】解:由y =2sin x +cos x ,得y ′=2cos x ﹣sin x , ∴y ′|x =π=2cos π﹣sin π=﹣2,∴曲线y =2sin x +cos x 在点(π,﹣1)处的切线方程为y +1=﹣2(x ﹣π), 即2x +y ﹣2π+1=0. 故选:C .【点评】本题考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,是基础题.1.(5分)(2019•海南)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( ) A .2B .3C .4D .8【分析】根据抛物线的性质以及椭圆的性质列方程可解得. 【解答】解:由题意可得:3p ﹣p =(p2)2,解得p =8.故选:D .【点评】本题考查了抛物线与椭圆的性质,属基础题. 1.(5分)(2019•海南)设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A .√2B .√3C .2D .√5【分析】由题意画出图形,先求出PQ ,再由|PQ |=|OF |列式求C 的离心率. 【解答】解:如图,由题意,把x =c 2代入x 2+y 2=a 2,得PQ =2√a 2−c 24, 再由|PQ |=|OF |,得2√a 2−c 24=c ,即2a 2=c 2, ∴c 2a =2,解得e =ca =√2.故选:A .【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题. 1.(5分)(2019•海南)已知α∈(0,π2),2sin2α=cos2α+1,则sin α=( )A .15B .√55C .√33D .2√55【分析】由二倍角的三角函数公式化简已知可得4sin αcos α=2cos 2α,结合角的范围可求sin α>0,cos α>0,可得cos α=2sin α,根据同角三角函数基本关系式即可解得sin α的值. 【解答】解:∵2sin2α=cos2α+1, ∴可得:4sin αcos α=2cos 2α, ∵α∈(0,π2),sin α>0,cos α>0,∴cos α=2sin α,∵sin 2α+cos 2α=sin 2α+(2sin α)2=5sin 2α=1, ∴解得:sin α=√55. 故选:B .【点评】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.1.(5分)(2019•海南)设f (x )为奇函数,且当x ≥0时,f (x )=e x ﹣1,则当x <0时,f (x )=( ) A .e ﹣x ﹣1B .e ﹣x +1C .﹣e ﹣x ﹣1D .﹣e ﹣x +1【分析】设x <0,则﹣x >0,代入已知函数解析式,结合函数奇偶性可得x <0时的f (x ). 【解答】解:设x <0,则﹣x >0, ∴f (﹣x )=e ﹣x ﹣1,∵设f (x )为奇函数,∴﹣f (x )=e ﹣x ﹣1,即f (x )=﹣e ﹣x +1.故选:D .【点评】本题考查函数的解析式即常用求法,考查函数奇偶性性质的应用,是基础题. 1.(5分)(2019•海南)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B .32C .1D .12【分析】x 1=π4,x 2=3π4是f (x )两个相邻的极值点,则周期T =2(3π4−π4)=π,然后根据周期公式即可求出ω.【解答】解:∵x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点, ∴T =2(3π4−π4)=π=2πω∴ω=2, 故选:A .【点评】本题考查了三角函数的图象与性质,关键是根据条件得出周期,属基础题. 1.(5分)(2019•海南)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【分析】充要条件的定义结合面面平行的判定定理可得结论 【解答】解:对于A ,α内有无数条直线与β平行,α∩β或α∥β; 对于B ,α内有两条相交直线与β平行,α∥β; 对于C ,α,β平行于同一条直线,α∩β或α∥β; 对于D ,α,β垂直于同一平面,α∩β或α∥β. 故选:B .【点评】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.1.(5分)(2019•海南)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35C .25D .15【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有情况数为C 53,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为C32C21.即可得出概率.【解答】解:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为C53,恰有2只测量过该指标的所有情况数为C32C21.∴p=C32C21C53=35.故选:B.【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题.二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(文科)(新课标Ⅱ)(海南卷)-解析版

2019年全国统一高考数学试卷(文科)(新课标Ⅱ)(海南卷)-解析版

2019年全国统一高考数学试卷(文科)(新课标Ⅱ)(海南卷)一、选择题(本大题共12小题,共60.0分)1.设z=i(2+i),则z−=()A. 1+2iB. −1+2iC. 1−2iD. −1−2i2.已知向量a⃗=(2,3),b⃗ =(3,2),则|a⃗−b⃗ |=()A. √2B. 2C. 5√2D. 503.已知集合A={x|x>−1},B={x|x<2},则A∩B=()A. (−1,+∞)B. (−∞,2)C. (−1,2)D. ⌀4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为().A. 甲、乙、丙B. 乙、甲、丙C. 丙、乙、甲D. 甲、丙、乙5.曲线y=2sinx+cosx在点处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=06.若抛物线y2=2px(p>0)的焦点是椭圆x23p +y2p=1的一个焦点,则p=()A. 2B. 3C. 4D. 87.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()A. √2B. √3C. 2D. √58.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=()A. 15B. √55C. √33D. 2√559.设f(x)为奇函数,且当x≥0时,f(x)=e x−1,则当x<0时,f(x)=()A. e−x−1B. e−x+1C. −e−x−1D. −e−x+110.若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A. 2B. 32C. 1 D. 1211.设α,β为两个平面,则α//β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面12.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. 23B. 35C. 25D. 15二、填空题(本大题共4小题,共20.0分)13.若变量x,y满足约束条件{2x+3y−6≥0,x+y−3≤0,y−2≤0,则z=3x−y的最大值是______.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.15.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.16.△ABC的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=______.三、解答题(本大题共7小题,共84.0分)17.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.18.如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E−BB1C1C的体积.(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.20.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.21.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查复数四则运算及共轭复数,是基础题.利用复数代数形式的乘除运算化简,再由共轭复数的概念即可得答案.【解答】解:∵z=i(2+i)=−1+2i,∴z−=−1−2i,故选D.2.【答案】A【解析】【分析】本题考查平面向量的坐标运算,考查向量模的求法,是基础题,利用向量的坐标减法运算求得a⃗−b⃗ 的坐标,再由向量模的公式求解,【解答】解:∵a⃗=(2,3),b⃗ =(3,2),∴a⃗−b⃗ =(2,3)−(3,2)=(−1,1),∴|a⃗−b⃗ |=√(−1)2+12=√2.故选A.3.【答案】C【解析】【分析】本题考查交集及其运算,是基础题.直接利用交集运算得答案.【解答】解:由A={x|x>−1},B={x|x<2},得A∩B={x|x>−1}∩{x|x<2}={x|−1<x<2},即A∩B=(−1,2).故选C.4.【答案】A【解析】【分析】本题主要考查合情推理,属于基础题.因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾,从而得出正确结果.【解答】解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测:如果乙预测正确,则丙预测正确,不符合题意;如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意;∴只有甲预测正确,乙、丙预测不正确,则有甲>乙,乙>丙.故选A.5.【答案】C【解析】【分析】本题考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,属于基础题.求出原函数的导函数,得到函数在x=π时的导数,再由直线方程点斜式得答案.【解答】解:由y=2sinx+cosx,得y′=2cosx−sinx,∴y′|x=π=2cosπ−sinπ=−2,∴曲线y=2sinx+cosx在点(π,−1)处的切线方程为y+1=−2(x−π),即2x+y−2π+1=0.故选:C.6.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题.根据抛物线的性质以及椭圆的性质列方程可解得.【解答】)2,解:由题意可得3p−p=(p2解得p=8.故选D.7.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C的离心率.【解答】方法一:解:设PQ与x轴交于点A,由对称性可知PQ⊥x轴又∵|PQ|=|OF|=c,∴|PA|=c2,∴PA为以OF为直径的圆的半径,∴A为圆心,|OA|=c2∴P(c2,c2),又P点在圆x2+y2=a2上,∴c24+c24=a2,即c22=a2,∴e2=c2a2=2∴e=√2,故选A.方法二:如图,以OF为直径的圆的方程为x2+y2−cx=0,又圆O的方程为x2+y2=a2,∴PQ所在直线方程为.把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即4a2(c2−a2)=c4,∴e2=2,解得e=.故选A.8.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos2α,结合角的范围可求得sinα>0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值.【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos2α,∵α∈(0,π2),∴sinα>0,cosα>0,∴cosα=2sinα,则有sin2α+cos2α=sin2α+(2sinα)2=5sin2α=1,解得sinα=√55.故选B.9.【答案】D【解析】【分析】本题考查函数奇偶性的应用,是基础题.设x<0,则−x>0,代入已知函数解析式,结合函数奇偶性可得x<0时的f(x).【解答】解:设x<0,则−x>0,∵f(x)为奇函数,∴f(x)=−f(−x)=−(e−x−1)=−e−x+1,故选D.10.【答案】A【解析】【分析】本题考查了三角函数的图象与性质,关键是根据条件得出周期,属于基础题.x1=π4,x2=3π4是f(x)两个相邻的极值点,则周期T=2(3π4−π4)=π,然后根据周期公式即可求出ω.【解答】解:∵x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,∴T=2(3π4−π4)=π=2πω∴ω=2,故选A.11.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.由充要条件的定义结合面面平行的判定定理可得结论.【解答】解:对于A,α内有无数条直线与β平行,α与β相交或α//β;对于B,α内有两条相交直线与β平行,则α//β;对于C,α,β平行于同一条直线,α与β相交或α//β;对于D,α,β垂直于同一平面,α与β相交或α//β.故选B.12.【答案】B【解析】【分析】本题主要考查概率的求解,属于基础题.利用列举法求解即可.【解答】解:记3只测量过某项指标的兔子分别为A,B,C,没有测量过某项指标的兔子为D,E,则从这5只兔子中随机取出3只的所有情况为(A,B ,C),(A,B ,D),(A,B ,E),(A,C ,D),(A,C ,E),(A,D ,E),(B,C ,D),(B,C ,E),(B,D ,E),(C,D ,E),共10种, 恰有2只测量过该指标的所有情况有6种, ∴概率为610=35. 故选:B .13.【答案】9【解析】 【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件{2x +3y −6≥0x +y −3≤0y −2≤0作出可行域如图:化目标函数z =3x −y 为y =3x −z ,由图可知,当直线y =3x −z 过A(3,0)时, 直线在y 轴上的截距最小,z 有最大值为9. 故答案为9.14.【答案】0.98【解析】 【分析】本题考查加权平均数公式等基础知识,属于基础题. 利用加权平均数公式直接求解. 【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97, 有20个车次的正点率为0.98,有10个车次的正点率为0.99, ∴经停该站高铁列车所有车次的平均正点率的估计值为: x −=110+20+10(10×0.97+20×0.98+10×0.99)=0.98.故答案为0.98.15.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+8+ 2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.16.【答案】3π4【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得sinAsinB+sinAcosB=0,由于sinA>0,化简可得tanB=−1,结合范围B∈(0,π),可求B的值为3π4.【解答】解:∵bsinA+acosB=0,∴由正弦定理可得:sinAsinB+sinAcosB=0,∵A∈(0,π),sinA>0,∴可得:sinB+cosB=0,可得:tanB=−1,∵B∈(0,π),∴B=3π4.故答案为3π4.17.【答案】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2−2q−8=0,解得q=−2(舍)或q=4.∴a n=a1q n−1=2×4n−1=22n−1.(2)b n=log2a n=log222n−1=2n−1,∵b1=1,b n+1−b n=2(n+1)−1−2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和T n=n×1+n(n−1)×22=n2.【解析】本题考查等差数列与等比数列的通项公式及前n项和,考查对数的运算性质,属于基础题.(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n}的通项公式代入b n=log2a n,得到b n,说明数列{b n}是等差数列,再由等差数列的前n项和公式求解.18.【答案】解:(1)证明:由长方体ABCD−A1B1C1D1,可知B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,∴B1C1⊥BE,∵BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,∴BE⊥平面EB1C1;(2)由(1)知BE⊥平面EB1C1,∵B1E⊂平面EB1C1,∴B1E⊥BE,∴∠BEB1=90°,由题设可知Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=3,AA1=2AE=6,∵在长方体ABCD−A1B1C1D1中,AA1//平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴E到平面BB1C1C的距离d=AB=3,∴四棱锥E−BB1C1C的体积V=13×3×6×3=18.【解析】本题考查了线面垂直的判定定理和性质,考查了四棱锥体积的求法,属于中档题.(1)由线面垂直的性质可得B1C1⊥BE,结合BE⊥EC1利用线面垂直的判定定理可证明BE⊥平面EB1C1;(2)由条件可得AE=AB=3,然后得到E到平面BB1C1C的距离d=3,再求四棱锥的体积即可.19.【答案】证明:(1)∵函数f(x)=(x−1)lnx−x−1.∴f(x)的定义域为(0,+∞),f′(x)=x−1x +lnx−1=lnx−1x,∵y=lnx在(0,+∞)上单调递增,y=1x在(0,+∞)上单调递减,∴f′(x)在(0,+∞)上单调递增,又f′(1)=−1<0,f′(2)=ln2−12=ln4−12>0,∴存在唯一的x0∈(1,2),使得f′(x0)=0.当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,∴f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=−2,又f(e2)=e2−3>0,∴f(x)=0在(x0,+∞)内存在唯一的根,记为x=a,由a>x0>1,得0<1a<1<x0,∵f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,∴1a是f(x)=0在(0,x0)的唯一根,综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.【解析】本题考查函数有唯一的极值点的证明,考查函数有且仅有两个实根,且两个实根互为倒数的证明,考查导数性质、函数的单调性、最值、极值等基础知识,考查化归与转化思想、函数与方程思想,考查运算求解能力,属于较难题.(1)推导出f(x)的定义域为(0,+∞),f′(x)=lnx−1x,从而f′(x)单调递增,进而存在唯一的x0∈(1,2),使得f′(x0)=0.由此能证明f(x)存在唯一的极值点;(2)由f(x0)<f(1)=−2,f(e2)=e2−3>0,得到f(x)=0在(x0,+∞)内存在唯一的根x=a,由a>x0>1,得0<1a <1<x0,从而1a是f(x)=0在(0,x0)的唯一根,所以f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,由此能证明f(x)=0有且仅有两个实根,且两个实根互为倒数.20.【答案】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:14+7100=0.21=21%,产值负增长的企业频率为:2100=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数y−=1100(−0.1×2+0.1×24+0.3×53+0.5×14+0.7×7)=0.3=30%,产值增长率的方程s2=1100∑n i5i=1(y i−y−)2=1100[(−0.4)2×2+(−0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=√0.0296=0.02×√74≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.【解析】本题考查了样本数据的平均值和方程的求法,考查运算求解能力,属基础题.(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.21.【答案】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=√3c,于是2a=|PF1|+|PF2|=(√3+1)c,故曲线C的离心率e=ca=√3−1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:12|y|⋅2c=16,yx+c⋅yx−c=−1,x2 a2+y2b2=1,即c|y|=16①x2+y2=c2 ②x2 a2+y2b2=1③由②③及a2=b2+c2得y2=b4c2,又由①知y2=162c2,故b=4,由②③得x2=a2c2(c2−b2),所以c2≥b2从而a2=b2+c2≥2b2=32,故a≥4√2,当b=4,a≥4√2时,存在满足条件的点P.所以b=4,a的取值范围为[4√2,+∞).【解析】本题主要考查了椭圆的性质和直线与圆锥曲线的位置关系,解答本题的关键是掌握相关知识,逐一分析解答即可.(1)根据△POF2为等边三角形,可得在△F1PF2中,∠F1PF2=90°,在根据直角形和椭圆定义可得;(2)根据三个条件列三个方程,解方程组可得b=4,根据x2=a2c2(c2−b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4√2,22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l上任取一点(ρ,θ),则有,即,故l的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP,θP),则在Rt△OAP中,有|OP|=|OA|cosθP即ρP=4cosθP,∵P在线段OM上,且AP⊥OM,∴θP∈[π4,π2 ],其中π4为P点与M点重合时的角度,由4cosθP=4sinθP得到,故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2 ].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l上任取一点(ρ,θ),利用三角形中边角关系即可求得l的极坐标方程;(2)设P(ρ,θ),在Rt△OAP中,根据边与角的关系得答案.23.【答案】解:(1)当a=1时,f(x)=|x−1|x+|x−2|(x−1),∵f(x)<0,∴当x<1时,f(x)=−2(x−1)2<0,恒成立,∴x<1;当x≥1时,f(x)=(x−1)(x+|x−2|)≥0恒成立,∴x∈⌀;综上,不等式的解集为(−∞,1).(2)∵x∈(−∞,1)时,f(x)=|x−a|x−(x−2)(x−a).当a≥1时,f(x)=2(a−x)(x−1)<0在x∈(−∞,1)上恒成立;当a<1时,若x∈(−∞,a),f(x)=2(a−x)(x−1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。

考试结束后,将本试卷和答题卡一并交回 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A. (–1,+∞)B. (–∞,2)C. (–1,2)D. ∅【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)AB =-,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.2.设z =i(2+i),则z = A. 1+2i B. –1+2i C. 1–2i D. –1–2i【答案】D 【解析】 【分析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.已知向量a =(2,3),b =(3,2),则|a –b |=A.B. 2D. 50【答案】A 【解析】 【分析】本题先计算-a b ,再根据模的概念求出||-a b . 【详解】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D. 甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A. e 1x -- B. e 1x -+ C. e 1x --- D. e 1x --+ 【答案】D 【解析】 【分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x .【详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1xf x f x e -=--=-+,得()e 1x f x -=-+.故选D .【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误. 8.若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A. 2 B. 32C. 1D. 12【答案】A 【解析】 【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.9.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A. 10x y --π-=B. 2210x y --π-=C. 2210x y +-π+=D. 10x y +-π+=【答案】C 【解析】 【分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解.【详解】当x π=时,2s i n c o s y =π+π=-,即点(,1)π-在曲线2sin cos y x x=+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.C.3D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.12.设F 为双曲线C :22221x y a b-=(a >0,b >0)右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.【答案】9. 【解析】作出可行域,平移30x y -=找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得. 【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y=-过点3,0C ()时,z 取最大值为9.【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π.【分析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得s i n s i n s i n c o s B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)1BG GE CH x GH x x ∴===∴=+==,1x ∴==1.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。

相关文档
最新文档