近似数 (3)
人教版七年级数学上册1.5.3《近似数》教学设计
人教版七年级数学上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版七年级数学上册 1.5.3的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的接受能力较强。
但是,对于近似数的概念和求法可能还存在一定的困惑。
因此,在教学过程中,需要通过具体实例和操作活动,帮助学生理解和掌握近似数的概念和求法。
三. 教学目标1.了解近似数的概念,能够正确地求一个数的近似数。
2.能够运用近似数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.情境教学法:通过具体实例和操作活动,引导学生理解和掌握近似数的概念和求法。
2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题的能力。
3.小组合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,包括近似数的定义、求法及应用的实例。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.计时器:用于控制教学过程中的时间。
七. 教学过程1.导入(5分钟)利用课件展示一些与近似数相关的实例,如天气预报中的温度、身高体重等,引导学生思考和探索近似数的概念和求法。
2.呈现(10分钟)利用课件呈现近似数的定义和求法,结合具体实例进行讲解,让学生理解和掌握近似数的概念和求法。
3.操练(10分钟)学生分组进行操作活动,利用所学知识求一些数的近似数,并交流分享各自的解题过程和方法。
4.巩固(10分钟)利用课件呈现一些实际问题,学生独立解决,巩固所学知识,提高解决问题的能力。
人教版七年级数学上册:1.5.3《近似数》说课稿
人教版七年级数学上册:1.5.3 《近似数》说课稿一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,进一步对数的认知。
本节课主要介绍了近似数的概念、求法以及应用。
通过学习近似数,学生能更好地理解和掌握数的运算,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有一定的了解。
但学生在求近似数方面可能存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及掌握求近似数的方法。
三. 说教学目标1.知识与技能:理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。
2.过程与方法:通过观察、分析、实践等活动,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.重点:近似数的概念、求法以及应用。
2.难点:掌握求近似数的方法,能运用近似数解决实际问题。
五. 说教学方法与手段1.采用情境教学法,以生活中的实际问题引入近似数的概念,激发学生的学习兴趣。
2.利用多媒体课件,直观展示近似数的求法,帮助学生更好地理解。
3.采用小组合作学习,让学生在讨论中掌握求近似数的方法,培养学生的合作意识。
4.运用练习题,巩固所学知识,提高学生的解题能力。
六. 说教学过程1.导入:以生活中的实际问题引入近似数的概念,让学生感受近似数在生活中的应用。
2.新课讲解:介绍近似数的概念,讲解求近似数的方法,并通过例题展示求解过程。
3.学生练习:让学生独立完成练习题,巩固所学知识。
4.小组讨论:学生分组讨论,探讨近似数在实际问题中的应用,分享解题心得。
5.课堂小结:总结本节课所学内容,强调近似数的概念和求法。
6.布置作业:布置适量作业,让学生进一步巩固近似数的相关知识。
七. 说板书设计板书设计如下:1.近似数的概念2.求近似数的方法3.近似数在实际问题中的应用八. 说教学评价1.学生对近似数的概念、求法的掌握程度。
近似数教学教案(优秀10篇)
近似数教学教案(优秀10篇)近似数教学教案篇一… …一。
教学内容:求出积的近似数和有关它的一些内容。
二。
教学目的:(1)进一步巩固小数乘法计算。
(2)根据要求,会用“四舍五入法”取积的近似值。
(3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。
三。
教学重、难点:重点:应用“四舍五入法”取积的近似数。
难点:要根据实际需要求出积的近似值。
四。
教学过程:(一)复习:1.保留一位小数2.345.682.保留两位小数4.25634.7083.保留整数5.676.502(二)导入课:1.老师出示几个语句,你知道那些句子表达是准确数,哪些是近似数。
你是根据句中的哪些字词来判断的呢?(1)我们班有28人(2)这个箱子里大约有23个苹果。
(3)小明的身高是172厘米,体重约60千克。
2.我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值生:四舍五入法3.师:现在就用“四舍五入法”求出小数的近似值。
保留整数保留一位小数保留两位小数2.0954.307思考并回答:怎么样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,去它们的近似值?按要求,它们的近似值各应是多少?4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。
板书:积的'近似数(三)探求新知:1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)(1)读题,找出已知所求,列式计算,板书:0.04945(2)指明板演,集体订正。
(3)按要求,积保留一位小数,怎么保留?结果怎样?0.49×45≈2.2(亿个)师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。
小学数学二年级学习近似接近数知识点清单归纳总结整理
小学数学二年级学习近似接近数知识点清单归纳总结整理文章目录二年级数学近似数的认识近似数是指与真实数相似的数值,也就是比真实数稍微差一些的数值。
在我们日常生活中,我们常常使用近似数来进行估算,比如说我们说路上有大约10辆车,或者说这个东西的价格大概在100元左右。
因为实际数值可能无法精确计算,使用近似数就可以在一定程度上帮助我们估算出更为接近实际的数值。
一、什么是近似数?近似数是指在误差范围内与真实数相似的数值,即比真实数稍微差一些的数值。
比如说,精确计算后我们得到了一个结果是3.14567,但是我们可以把它近似为3.15或3.1,因为这些数值和真实数值的差距很小。
二、近似数的特点1. 近似数是一种估算数值的方法,而非精确计算。
2. 近似数有一定的误差范围,误差范围越小,近似数越接近真实数。
3. 近似数通常会依据上下取整、四舍五入等方法进行计算。
三、近似数的运用在我们的日常生活中,使用近似数可以帮助我们更快速地进行计算和估算。
1. 使用近似数可以简化计算,减少计算量和计算时间。
2. 通过使用近似数,可以进行数值大小的比较和判断,寻找最优解。
3. 在商业和金融领域中,近似数也是一种重要的应用方法。
因为实际数值通常无法被精确计算,使用近似数可以帮助我们更好地进行风险评估和决策。
四、近似数的四舍五入四舍五入是近似数常用的一种方法,它的原理是根据小数点后的数值,把前面的数值进行调整。
比如说,如果要把3.14567四舍五入到小数点后两位,我们可以将这个数值调整为3.15或3.14五、小数位数的近似在数学、物理等领域中,很多时候我们需要进行小数位数的近似。
比如说,我们可以使用3.14来近似π的值,也可以用1.73来近似根号3的值。
六、使用近似数的注意事项1. 在使用近似数时,要明确其误差范围和使用方法。
2. 在进行商业和金融运算时,要尽可能地减少误差,保证计算结果的准确性。
3. 在进行科学研究和实验时,要结合实际情况,确定近似数的精度范围,避免因近似数误差而导致的实验结果错误。
2024年秋新人教版七年级上册数学教学课件 2.3.2 科学记数法 2.3.3 近似数
关于该火箭,下列各数中是准确数的是( B )
A.火箭直径约3.8 m B.一级采用4台液氧/煤油发动机
C.近地轨道运载能力不小于10 t
D.700公里太阳同步轨道运载能力不小于6 t
变式:下列语句中给出的数据,是近似数的是( C )
A.小王所在班有50人
B.一本书有186页
C.吐鲁番盆地低于海平面约155米 D.我国有56个民族
(2)确定n时,一般有两种方法: 方法1:利用整数的位数来求n,n等于原数的整数位数减1; 方法2:看小数点移动的位数,小数点向左移动了几位,n就等于几. (3)写出用科学记数法表示的数的原数:先看10的指数,指数是多少,就
将a中的小数点向右移动多少位,位数不足的用0补全.
知识点2:近似数与精确度(重难点)
什么是准确数,什么是近似数. 准确数:与实际完全符合的数.近似数:与实际接近的数
4.下列数据是准确数还是近似数. (1)妈妈去买水果,买了8个苹果,约3千克; (2)小民与小李买了2瓶水,4根黄瓜,约20元,然后骑车去大
约3.5 km外郊游,约玩了4.5小时后回家; (3)我国共有56个民族.
准确数:8,2,4,56. 近似数:3,20,3.5,4.5
D.4 400 000 000
变式:下列用科学记数法表示的数,原来各是什么数?
(1)1×105;
(2)5.18×103;
(3)-3.12×105.
解:(1)原式=100 000. (2)原式=5 180. (3)原式=-312 000.
【题型三】准确数与近似数
例3:截至2024年2月,长征十二号运载火箭已完成各项研制工作,
(3)原式=-1.026×105.
【题型二】还原用科学记数法表示的数
《近似数》教学设计
《近似数》教学设计近似数教学教案篇一一、教学目标(一)知识与技能1、认识“四舍五入”法是截取积的近似数的一般方法。
2、掌握求小数乘法的积的近似数的方法。
(二)过程与方法经历求小数乘法的积的`近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。
(三)情感态度与价值观在学习活动中,激发学生的学习兴趣,感受知识源于生活。
二、教学重点会用“四舍五入”法截取积是小数的近似数。
三、教学难点能根据生活实际灵活截取积是小数的近似数。
四、新授(一)导入(复习导入)师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?生:小数成整数和小数成小数。
师:今天学习积的近似数。
一说到求近似乎,想一想,我们四年级学过求什么数的近似数?生:求小数的近似数。
师:还都记得怎么做吗?生:记得(忘了)。
师:让我们先来热热身,看看谁掌握的最为牢固。
(PPT展示题目)求下列小数的近似数,并说出你的思考过程。
要求:1、(精确到十分位)2、省略百分位后面的尾数。
通过做题,总结规律:1、先确定保留的数位,在要保留的数位下划条横线;2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。
(四舍五入法)3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉(二)情景导入例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。
0.049×45=2.205≈2.2(亿个)竖式略答:此处强调两点,一个单位,一个答句不能丢。
(三)经典练习0.95×0.95(得数保留一位小数)0.95×0.95=0.9025≈0.9(竖式略)想一想,若此题改为保留两位小数,怎么做?(做在练习本上)0.95×0.95=0.9025≈0.90(取近似数)(四)做一做(书上)P11现学现练,加深印象。
近似数(精选7篇)
近似数(精选7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!近似数(精选7篇)近似数篇一课题:教学目标1.使学生理解并掌握近似数的概念。
《近似数》四年级数学教案
《近似数》四年级数学教案《近似数》四年级数学教案1【教学内容】义务教育课程标准实验教科书(西师版)四年级上册第22页例2,课堂活动的第2题及练习三的第4、5题。
【教学目标】1.让学生经历探索求近似数的方法的过程,会用“四舍五入”法求近似数。
2.让学生明确学习和掌握用四舍五入法求近似数的重要性,加强数学与生活的联系。
3.培养学生的主体意识和探索精神。
【教学重点】掌握求近似数的方法【教学难点】正确选择“四舍法”或“五入法”【教学过程】一、引入新课教师:这学期,我们班转来了几位新同学,为了增进大家的了解,谁愿意用数据向他们介绍一下自己或者我们学校的情况?学生1:我今年10岁,身高大约140厘米。
学生2:我的体重在36千克左右,我家有3个人,爸爸妈妈每月的收入大约1万元。
学生3:我们学校有学生2125人。
教师:在刚才介绍的这些数据中,哪些是准确数?哪些是近似数?学生:10、 3、2125是准确数,大约140、36千克左右、大约1万是近似数。
教师:在我们的生活中,有时不需要也不可能得到准确数,这时就要用到近似数,比如:20xx年重庆市总人口约3100万,中国大陆总人口约13亿等都是近似数。
那么,怎样求一个数的近似数呢?[点评:体现数学的现实性。
利用学生身边现有的、熟悉的学习材料引入教学,让学生在相互介绍的过程中,感受到近似数在生活中的存在和广泛应用,突出其学习价值。
]二、学习新知1探索“四舍五入”法。
(出示:534607)教师:这是一个准确数,如果改成一个近似数,大约等于多少?学生1:约等于五十三万四千六百。
学生2:也可以约等于五十三万四千。
学生3:还可以约等于五十三万、五十万。
教师:了不起,还写成了用“万”作单位的数,你们认为“五十三万”和“五十万”谁比较合适?学生1:我认为五十万比较合适,因为这样的近似数比较简单。
学生2:我不同意,我认为五十三万比较合适,因为五十万与准确数相比,比准确数少了三万多,相差太多,而五十三万与准确数很接近,只相差四千多。
4-5小数的近似数(例2例3)(课件) -四年级下册人教版数学
相同点: 它们都是把一个以“个”为单位的数
改写成以“万”为单位的数。
不同点: 80000和90000是整万的数,可以直接改写
成以“万”为单位的数;84000和86000不是整 万的数。
把整万或整亿的数改写成用“万” 或“亿”作单位的数,知道了直接去 掉万位或亿位后面的4个0或8个0,再 加上一个“万”或“亿”字。
(保留两位小数)
思考:说一说你是怎么想的? 122314000台=1.22314亿台
2. 把下面各数改写成用“亿”作单位的数。
这是2011年全国客运量统计结果。
说一说你是怎么想的?
这是2011年全国铁路客运统计结果。
铁路:1860000000人次=18.6亿人次
2. 把下面各数改写成用“亿”作单位的数。
2
木星离太阳的距离是多少亿千米(保留一位小数)?
问题:1. 怎样改写成用“亿”作单位的数呢? 778330000km=7.7833亿千米
小数点向左移动八位,在亿位的右下角,点上小数点, 小数末尾的“0”去掉,在数的后面加上“亿”字。
怎样保留一位小数?说一说保留一位 小数的方法。
求小数近似数,如果保 留一位小数,表示精确到十 分位,就要把百分位和后面 的数省略。
求整数或小数的近似数,用“四舍五 入”法。是“舍”还是“入”,要看 省略的尾数部分的最高位上的数是小 于5,还是等于或大于5。
想一想
怎样把不是整万或整亿的数改写 成用“万”或“亿”作单位的数呢?
为了读写方便,常常通过移动小数 点位置的方法来改写。
1
地球与月球的距离是多少万千米?
问题:把384400改写成用“万”作单位的数
相同点:两个数的 大小相等。 不同点:表示形式 不同
三年级数学上册《近似数》教案、教学设计
(二)讲授新知
1.教学内容讲解
-介绍近似数的概念,解释什么是四舍五入,并通过示例进行说明。
-讲解如何利用计算器或口算方法求得一个数的近似数。
2.教学实施
-用生动的语言和形象的比喻,帮助学生理解近似数的含义。
-结合具体例子,演示四舍五入的方法,让学生跟随操作,加深印象。
(三)学生小组讨论
1.教学活动设计
-将学生分成小组,每组讨论并完成一个实际问题的近似数求解。
-提供多个问题情境,如购物时如何快速估算价格,测量教室的长宽高等。
2.教学实施
-引导学生通过小组合作,共同探讨问题的解决方法。
-在讨论过程中,鼓励学生发表自己的观点,学会倾听他人意见。
(四)课堂练习
1.教学活动设计
(二)教学设想
1.创设情境,激发兴趣
-通过生活实例,如购物时找零、测量身高体重等,引出近似数的概念,让学生感受到数学与生活的紧密联系。
-设计有趣的教学活动,如估算游戏、小组竞赛等,激发学生的学习兴趣。
2.自主探究,合作交流
-引导学生自主探究求近似数的方法,鼓励他们发表自己的观点,培养独立思考能力。
-组织学生进行小组讨论,分享各自的想法和经验,提高合作交流能力。
3.分层指导,关注个体差异
-针对不同学生的学习程度,设计难易适度的练习题,使每个学生都能在课堂上得到锻炼和提升。
-对于学习困难的学生,教师应及时关注,给予个别指导,帮助他们克服学习难点。
4.实践应用,巩固知识
-结合生活实际,设计丰富多样的练习题和应用题,让学生在实践中巩固近似数的概念和求法。
-鼓励学生运用近似数解决实际问题,如估算家庭开支、规划旅游路线等,提高解决问题的能力。
近似数教学教案优秀8篇
近似数教学教案优秀8篇近似数篇一教学内容:苏教版国标本小学数学第七册96~97页教学目标:1. 使学生知道近似数的含义,并会根据要求用“四舍五入”的方法省略一个数的末尾求近似数。
2. 会用“万”或“亿”作单位求一个大数目的近似数。
3. 使学生在认识、理解近似数的过程中感受大数目近似数的实用价值,增强应用意识,提高应用意识。
4. 通过选择社会、自然和科学知识中的数据信息,拓展学生的知识视野,培养学生数学学习的积极情感,体现数学的文化价值。
教学重点:用“四舍五入”的方法求一个数的近似数。
教学准备:多媒体演示课件,一些数量信息。
教学过程:设计意图教学过程让学生在读的过程中,能够初步体会到四个数所表达的数量的准确程度是不同的。
加深学生对于近似数含义的体验,并认识和理解近似数。
扩大学生的参与面,将学生的生活经验上升为数学经验,帮助学生进一步认识近似数,体会近似数的实际应用,也能拓宽学生的知识面。
让学生联系已有的经验尝试练习,使他们体会知识之间的密切联系。
围绕内容的重点,让学生参与探索、交流、听讲、阅读、回答等活动,展开对“四舍五入”法的自主探索、加深领悟,能全面了解和掌握知识的要点。
让学生明确用“万”或“亿”作单位表示近似数是因为实际的需要。
及时总结,能深化认识,巩固方法,并形成比较全面的理解。
一、初步感悟,认识新知。
1.在读读想想中初步感悟近似数。
媒体演示:出示教科书第96页上第一个例题。
让学生读一读,说一说每幅图中的数字。
(1)提问:画线的四个数所表达的数量的准确程度是否一样?(2)组织讨论,引入准确数、近似数的概念学生交流、讨论。
指出:在日常生活中,有些数据是与实际完全符合的数字。
像2709和1999这样的数,表示的事物的数量是准确的,我们就称它们是准确数;而有的时候,不可能用精确的数据来表示,而只是用一个与它比较接近的数来表示,如43776万和14398万表示的是大约的数,这样的数就是近似数。
2.在实际应用中进一步认识近似数。
《近似数》知识点解读
《近似数》知识点解读知识讲解:准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为6.37×106m等.相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。
举几个例子:3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。
精确度:即数字末尾数字的单位。
比如说:9800.8精确到十分位(又叫做小数点后面一位),80万精确到万位。
9×105精确到10万位(总共就9一个数字,10n 看作是一个单位,就和多少万是一个概念)。
请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样. ()2.近似数4千万与近似数4000万的精确度一样. ()3.近似数660万,它精确到万位.有三个有效数字. ()4.用四舍五入法得近似数6.40和6.4是相等的. ()5.近似数3.7×102与近似数370的精确度一样. ()满意回答1.错。
前者精确到十分位(小数点后面一位),后者精确到个位数。
2.错。
4千万精确到千万位,4000万精确到万位。
3.对。
4.错。
值虽然相等,但是取之范围和精确度不同.5.错。
3.7×102精确到十位,370精确到个位.典型例题:例1判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是31.4cm;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例2下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200;(2)0.040;(3)20.05000;(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;像20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例3下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万;(2)9.03万;(3)1.8亿;(4)6.40×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.例4 用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01);(2)0.03049(保留两个有效数字);(3)3.3074(精确到个位);(4)81.661(保留三个有效数字).分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.(3)、(4)同上.解:(1)1.5982≈1.60;(2)0.03049≈0.030;(3)3.3074≈3;(4)81.661≈81.7.说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.例5用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).(1)26074(精确到千位);(2)7049(保留2个有效数字);(3)26074000000(精确到亿位) ;(4)704.9(保留3个有效数字).分析:根据题目的要求:(1)26074≈26000;(2)7049≈7000;(3)26074000000≈26100000000;(4)704.9≈705.(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.解:(1)26074=2.6074×104≈2.6×104,精确到千位,有2个有效数字2、6.(2)7049=7.049×103≈7.0×103,精确到百位,有两个有效数字7、0.(3)26074000000=2.6074×1010≈2.61×1010,精确到亿位,有三个有效数字2、6、1.(4)704.9≈705,精确到个位,有三个有效数字7、0、5.说明:求整数的近似数时,应注意以下两点:(1)近似数的位数一般都与已知数的位数相同;(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数)的数可以体现出整数的精确度.反馈练习:1. 由四舍五入得到的近似数0.600的有效数字是()A. 1个B. 2个C. 3个D. 4个2. 用四舍五入法取近似值,3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.3. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.4. 用四舍五入法取近似值,396.7精确到十分位的近似数是______________;保留两个有效数字的近似数是____________.5. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.答案:1. C 2. 3.14,3.142. 3. 0.012,0.0125.4.396.70,4.0×102.5. 千分,百.。
1-5-3 近似数 课件 人教版七年级数学上册
精确到数字8 对0四舍五入
(4). 1.804(精确到0.01).
精确到数字0 对4四舍五入
解:(1). 0.0158 ≈0.016
(2). 304.35 ≈304
(3). 1.804 ≈1.8
(4). 1.804 ≈1.80
新知讲解
思考:
这里的1.8和1.80的精确度相同吗?表示近似数时,能简单地把
报道说:“会议秘书处宣布,参加今天会议的有513人.”这里数
准确 数.另一则报道
字513确切地反映了实际人数,它是一个______
说:“约有五百人参加了今天的会议.”五百这个数只是接近实
际人数,但与实际人数还有_____
13 ,它是一个________
近似 数.
新知讲解
阅读P45—P46的内容,回答下列问题:
课堂练习
7.下列各数是通过四舍五入得到的近似数:
百分
(1) 0.80它精确到_______位:
(2) 4.10× 精确到________位:
百
千
(3) 3.6万精确到________位.
2.用四舍五入法,按要求取近似值:
7.05
(1) 7.05072 (精确到0.01)≈________;
面所有数再向前进位,则4.2046≈4.205
(4)解:3.102百分位数字是0,后一位是2,小于5,则直接舍掉
后面所有数字,且0要保留,则3.102≈3.10
课堂总结
1.精确度的两种形式∶
(1)精确到个位,十分位,百分位…
(2)精确到1,0.1,0.01...
2.近似数的表示方法∶
先根据要求,找准所在位的数字,再把这个数字后面一位四舍五入.
人教版七年级数学上册:1.5.3 《近似数》教学设计
人教版七年级数学上册:1.5.3 《近似数》教学设计一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,对数的进一步理解。
本节内容主要介绍近似数的概念、求法及其应用,通过学习,使学生掌握求近似数的方法,能够准确地运用近似数进行计算和估算,为后续的学习和实际应用打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有了初步的了解。
但学生在求近似数方面可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及如何准确地求出近似数。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够准确地运用近似数进行计算和估算。
3.培养学生的数感,提高学生的数学思维能力。
四. 教学重难点1.近似数的概念及其求法。
2.运用近似数进行计算和估算。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过生活实例引入近似数的概念,引导学生主动探究求近似数的方法,并在小组合作中互相交流、讨论,从而达到理解掌握的目的。
六. 教学准备1.教学课件:制作课件,展示近似数的定义、求法及应用。
2.教学素材:准备一些生活实例,用于引入近似数的概念。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时找零、测量身高等,引导学生思考:什么是近似数?为什么要用近似数?从而引出本节内容。
2.呈现(10分钟)介绍近似数的定义,通过课件展示,使学生对近似数有直观的认识。
接着讲解求近似数的方法,如四舍五入、进一法、去尾法等,并给出具体例子,让学生明白各种方法的适用场景。
3.操练(10分钟)学生在课堂上进行近似数的计算练习,教师巡回指导,解答学生疑问。
练习题可包括简单的生活实例和计算题,让学生在实际操作中掌握求近似数的方法。
4.巩固(10分钟)学生分组进行小组讨论,总结近似数的求法及其应用。
教师引导学生归纳总结,加深对知识点的理解。
第三章估算与近似数
第三章《估算与近似数》【要点提示】近似数:接近实际数值的数。
近似数是与精确数非常接近,用来估计精确数的数。
四舍五入:在很多情况下,常采用四舍五入的方法得到一个数的近似数,一般地,一个近似数四舍五入到哪一位,就说这个数精确到哪一位。
一个近似数精确到某一位是,应看它的下一位数字,若不小于5,则进一,否则社区。
另外,最后一位是0的近似数不要将0去掉,否则精确度就变了。
有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数字的有效数字。
科学计数法:把一个较大的数表示成n a 10⨯(101<≤a ,n 为正整数)的形式,这种技术方法叫做科学计数法科学计数法中的有效数字:若一个大于10的近似数用科学计数法表示成na 10⨯(101<≤a ,n 为正整数)的形式,则n a 10⨯的有效数字的个数就是a 的位数科学计数法中近似数的精确度:若一个大于10的近似数用科学计数法表示成n a 10⨯(101<≤a ,n 为正整数)的形式,则n a 10⨯中的a 的末位数字在n a 10⨯的原数中是哪一位,就说n a 10⨯精确到哪一位 【例 题】【例1】用四舍五入法对数0.0870156取近似数(1)保留1个有效数字 (2)保留2个有效数字 (3)保留3个有效数字 (4)保留4个有效数字【例2】下列各数是由四舍五入法得到的近似数,指出他们个精确到哪一位,各有哪几个有效数字。
(1)0.0401 (2) 5.0 (3) 11.54 (4)128 (5)13.08亿【例3】用四舍五入法对下列各数取近似数:(1)199.5(精确到个位) (2) 0.175(保留两个有效数字) (3)23.149(精确到0.1)【例4】如果一个数a 利用四舍五入的方法得到的近似数是3.45,那么你能否求出a 的取值范围?若能,是多少?【例5】下列用四舍五入的方法得到的近似数,各精确到哪一位?有几个有效数字?(1)14.0 (2)0.0180 (3)123.5万【例6】用科学计数法表示下列各数:300;1500;10 000 000;1 350 000 000【例7】下列用科学计数法表示的近似数,有几个有效数字:(1)31027.2⨯ (2)410289.4⨯ (3)610828.7⨯ (4)810234.2⨯【例8】下列近似数各精确到哪一位? (1)41023.1⨯(2)610468.7⨯(3)5100032.4⨯(4)910007.8⨯ (5)310005103.2⨯ 【练 习】1.下例四舍五入得到得近似数,各精确到哪一位,有哪几个有效数字?(1)43.8 (2)0.03086 (3)2.4万(4)2.50(5)0.0010(6)51030.22.以下问题中的近似数是哪些,准确数是哪些?(1)某厂1994年产值约2000万元,约是1988年的6.8倍。
科学记数法与近似数知识讲解
科学记数法与近似数知识讲解(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除科学记数法与近似数 知识讲解撰稿:孙景艳 审稿:赵炜【学习目标】1.理解科学记数法的意义,并会用科学记数法表示一个较大的数;2.了解近似数的概念,能按精确度的要求取近似数,能根据近似数的不同形式确定其精确度;3.体会近似数在生活中的实际应用.【要点梳理】要点一、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,l ≤|a |<10,n 是正整数),这种记数法叫做科学记数法,如42000000=74.210⨯.要点诠释:(1)负数也可以用科学记数法表示,“-”照写,其它与正数一样,如-3000=3310-⨯;(2)把一个数写成10n a ⨯形式时,若这个数是大于10的数,则n 比这个数的整数位数少1.要点二、近似数及精确度1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2. 精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.【典型例题】类型一、科学记数法1. 用科学记数法表示:(1)3870000000;(2)3000亿;(3)287.6-【答案与解析】(1)把3870000000写成10n a ⨯时, 3.87a =,它是将原数的小数点向左移动9位得到的,即把原数缩小到9110,所以93870000000 3.8710=⨯; (2)3000亿=300 000 000 000,把3000亿写成10n a ⨯时,3a =,n 的值应比 300 000 000 000的整数位少1,因此 11n =,所以3000亿=11310⨯;(3)287.6-写成10n a ⨯时,“-”照写,其它和正数一样,所以2287.6 2.87610-=-⨯.【总结升华】带有文字单位的数先变为原数,再写成10n a ⨯形式,n 的确定:n 比这个数的整数位数少1.举一反三:【变式】(宁波市)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为 ( )A .7.605 7×105人B .7.605 7×106人C .7.605 7×107人D . 0.760 57×107人【答案】B2. 把下列用科学记数法表示的数转化成原数.(1)33.1410⨯; (2)71.73210-⨯; (3)61.39210⨯千米【答案与解析】此题是对科学记数法的逆用(1)33.14103140⨯=;(2)71.7321017320000-⨯=-;(3)61.39210⨯千米=1392000千米【总结升华】将科学记数法表示的数转化为原数,方法简单:n 是几就将10n a ⨯中a 的小数点向右移动几位.类型二、近似数及精确度【高清课堂:科学记数法、近似数 356850 典型例题1】3. 用四舍五入法,按括号中的要求把下列各数取近似数.(1) (精确到;(2)(精确到千分位);(3) (精确到个位);(4)53(精确到); 【答案与解析】精确到哪一位,应观察它的下一位是进还是舍.(1)≈; (2)≈; (3)≈64;(4)53≈ 【总结升华】近似数末位的0不能随便去掉,去掉了就会改变它的精确度. 举一反三:【变式】用四舍五入法,按括号中的要求把下列各数取近似数(1)27.15万(精确到千位);(2)12 341 000(精确到万位).【答案】(1)27.15万=2715005272000 2.7210≈=⨯或表示为27.2万;(2)12 341 00012340000≈=71.23410⨯.4.下列由四舍五入得到的近似数,它们精确到哪一位.(1)1.20 (2)1.49亿; (3)50.3010-⨯【答案与解析】(1) 1.20精确到百分位;(2)1.49亿精确到百万位;(3)50.3010-⨯精确到千位.【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,例:1.20精确到百分位,则百分位就是精确度;若是汉字单位“万、千、百”类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为“个”位的数再确定其精确度;用形如10n a ⨯的数,其精确度看a 中最后一位数在原数中的数位.类型三、近似数与精确数【高清课堂:科学记数法、近似数 356850 典型例题4】5.测得某同学的身高约是米,那么意味着他身高的精确值x 所在范围是___________________.【答案】x ≤<1.655 1.665【解析】是由四舍五入得到的数,若通过“入”得到,则最小数应是,若通过“舍”得到,则最大数不存在,但能判断小于,所以x ≤<1.655 1.665.【总结升华】本类型题目的答案一般形式为:12a a a ≤<, “精确度”是用来说明结果与实际数误差大小的,如精确到0.01表示结果与实际数字相差不大于0.005.举一反三:【变式】近似数2.0的准确数a 的取值范围是_________________.【答案】1.95 2.05a ≤<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如: 204≈200
4927≈5000
7006≈7000
185≈200
674≈700
1198≈1200
1.珠穆朗玛峰高8848米,约为 ( )米。
2.一名导购人员的月工资为 980元,那么这名导购员一个 月大约赚( )元。
3.小明一分钟可以打92个字, 小明一分钟大约打( )个 字。
Hale Waihona Puke 一个数前面有“约”“大概”“可能” 等 词语时,一般情况下,这个数是近似数。
• 辛江小学师生总人数1517人,大约1500人。 • 海宁市长安镇总人口约70000人。
育英小学有1506人,约是1500人。
1506是育英小学实际人数,这样 的数叫准确数。
育英小学有1506人,约是1500人。
1500是育英小学大约的人数,它与准确数很接 近。像这样与准确数很接近的整千、整百数或整 十的数,称为近似数。
哪个更容易记住?
准确数 近似数
准确数 近似数
班级数 29
学生人数 教职工 1603 78
求出下列各数的近似数:
86 ≈ 90 4200 ≈ 4000
643≈ 600 291 ≈ 300
136 ≈ 100 51 ≈ 50 8690 ≈ 9000 971 ≈ 1000
一般情况下,两位数看成整十数; 三位数、四位数看成整百数、整千数
课堂检测
1、辨别准确数和近似数 ⑴飞云江大桥全长1700多米。 ⑵2004年瑞安市交通事故6344起。 ⑶瑞安市有911个村民委员会。 ⑷塘下镇小轿车有8000辆左右。 ⑸塘下镇中心小学花木大约有3550棵。 ⑹瑞安市实验小学有学生2165名。 说说哪些是准确数?哪些是近似数?
写出下面各数的近似数
980约是(1000); 102约是( 100 ); 999约是(1000); 2103约是( 2100 ); 4995约是(5000);7001约是(7000 );
4987
连一连 3950 5099 4102
约是5000
约是4000
600
1200
600
7000
填空,并读一读。
3000
你知道吗?
1. 我国大约有(13亿 )人口。 2. 四小区大约有2000家住户。
3. 会战道车流量每天大大约约是 1000辆。 4.电子音像馆大约有光盘1700盘。
4184估成整千数是 4000 估成整百数是 4200 估成整十数是 4180
妈妈买菜花去了大约10元钱, 妈妈可能花去了( )钱。
1、万以内数的大小比较方法:(1)位数相 同,从(高 )位依次进行比较;(2)位数 不同,位数多的数就(大 )。
2、把一个数改写成最接近的整十、整百或整 千的数称为(近似数 )。
3、寻找近似数的方法是(四舍五入法 ), 如:
保留整百、看十位、十位以上的数比5 大或等于5,就把后面的数改为0,并在百 位上加1,如果十位上的数比5小,就把十 位和个位直接舍去,改写成0,这种方法称 “四舍五入”法。
第一张表的数据 是准确的数据。
班级数 约30
学生人数 教职工 约1600 约80
第二张表的 数据是大概 的数,是不
准确的。
像第二张表中的大概 的数,在数学上我们 把它叫做近似数。
近似数都比较接近准确 数!
求近似数 四舍五入法
6250大约是几千?
6000
参加第十届全国人民代表大的代 表有2916人,大约是多少人?