反比例函数基础知识表格

合集下载

(完整版)初中数学反比例函数知识点及经典例

(完整版)初中数学反比例函数知识点及经典例
似。
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。

1.y随着x的增加而减小,或随着x的减小而增加。

2.当x=0时,函数y无定义。

3.曲线y=k/x在第一象限中,以坐标轴为渐近线。

二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。

第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。

这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。

三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。

2.反比例函数的图像关于y轴对称。

3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。

4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。

六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。

2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。

3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。

4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。

总结:反比例函数是一类常见的函数关系,具有重要的应用价值。

对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。

同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。

在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。

反比例函数-ppt课件

反比例函数-ppt课件

读 范围.
27.1 反比例函数
归纳总结


由于反比例函数表达式中只有一个待定系数 k,因此求

单 反比例函数的表达式只需一组对应值或一个条件即可.


27.1 反比例函数
对点典例剖析


典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4

单 .


(1)求 y 与 x 之间的函数表达式;


题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.


27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型

例 2 某公司将特色农副产品运往邻市市场进行销售,

型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶

破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=


时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=


清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与



读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+


.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。

例如,当 k = 5 时,反比例函数为 y = 5/x。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。

2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。

3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。

三、反比例函数的图像反比例函数的图像是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。

四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。

2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。

3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。

五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。

六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。

数学反比例函数知识点大全

数学反比例函数知识点大全

数学反比例函数知识点大全反比例函数知识点反比例函数定义一般地,如果两个变量某、y之间的关系可以表示成y=k/某(k为常数,k≠0)的形式,那么称y是某的反比例函数。

因为y=k/某是一个分式,所以自变量某的取值范围是某≠0。

而y=k/某有时也被写成某y=k或y=k·某^(-1)。

反比例函数图像性质反比例函数的图像为双曲线。

1.当k>0时,反比例函数图像经过一,三象限,每一象限内,从左往右,y随某的增大而减小。

2.当k<0时,反比例函数图像经过二,四象限,每一象限内,从左往右,y随某的增大而增大。

反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=某和y=-某;反比例函数图像上的点关于坐标原点对称。

知识点1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/某,若在分母上加减任意一个实数m(即y=k/某(某±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。

(加一个数时向左平移,减一个数时向右平移)反比例性质1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于某轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与某轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。

求出k(此时不用具体求出点坐标)。

4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点处的几何意义都相同的思想转化出面积问题。

5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。

反比例函数(基础)知识讲解

反比例函数(基础)知识讲解

反比例函数(基础)【学习目标】1. 1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例即xy k =,或表示为kyx =,其中k 是不等于零的常数是不等于零的常数.. 一般地,一般地,形如形如ky x=(k 为常数,0k ¹)的函数称为反比例函数,的函数称为反比例函数,其中其中x 是自变量,y 是函数,定义域是不等于零的一切实数是函数,定义域是不等于零的一切实数. .要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ¹.故函数图象与x 轴、y 轴无交点;轴无交点;(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件这一条件. .(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式,从而得到反比例函数的解析式. .要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,的对应值或图象上的一个点的坐标,即可求出即可求出k 的值,从而确定其解析式从而确定其解析式. .用待定系数法求反比例函数关系式的一般步骤是:用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:k y x=(0k ¹);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程; (3)解方程求出待定系数k 的值;的值; (4)把求得的k 值代回所设的函数关系式ky x= 中. 要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴标轴. .要点诠释:(1)若点)若点((a b ,)在反比例函数ky x=的图象上,则点的图象上,则点((a b --,)也在此图象上,所以反比例函数的图象关于原点对称;上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ¹) ) 中,由于中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.轴.2、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、双曲线的两个分支分别位于第一、三象限,三象限,在每个象限内,y 值随x 值的增大而减小;值的增大而减小;(2)如图2,当0k <时,时,双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、四象限,四象限,四象限,在每个象限内,在每个象限内,y 值随x 值的增大而增大;值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;的符号决定的;反过来,反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号的符号. . 要点四、反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ¹) ) 上任意一点作上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线xk y =(0k ¹) ) 上任意一点作一坐标轴的垂线,上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的的垂线和两坐标轴围成的面积始终是不变的. . 【典型例题】类型一、反比例函数的定义1、在下列函数关系式中,哪些函数表示y 是x 的反比例函数?的反比例函数?(1)5xy =; ((2)3y x =; ((3)23y x =; ((4)12xy =; ((5)21y x =-; (6)2y x=-; ((7)12y x -=; ((8)5a y x -=(5a ¹,a 是常数)是常数)【答案与解析】 解:根据反比例函数(0)k y k x=¹的形式及其关系式xy k =,1y kx -=,可知反比例函数有:有:(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)..【总结升华】根据反比例函数的概念,必须是形如k y x=(k 为常数,0k ¹)的函数,才是反比例函数.如(2)(3)(6)(8)(2)(3)(6)(8)均符合这一概念的要求,均符合这一概念的要求,所以它们都是反比例函数.但还要注意ky x=(k 为常数,0k ¹)常见的变化形式,如xy k =,1y kx -=等,所以(4)(7)(4)(7)也是反比例函数.在也是反比例函数.在也是反比例函数.在(5)(5)(5)中,中,y 是()1x -的反比例函数,而不是x 的反比例函数.例函数.(1)(1)(1)中中y 是x 的正比例函数.的正比例函数.类型二、确定反比例函数的解析式2、已知正比例函数y kx =和反比例函数3y x=的图象都过点A(m ,1) 1) .求此正比.求此正比例函数的关系式及另一个交点的坐标.例函数的关系式及另一个交点的坐标. 【答案与解析】解:解: 因为3y x=的图象经过点A(m ,1)1),则,则31m =,所以m =3.把A(3A(3,,1)1)代入代入y kx =中,得13k =,所以13k =. 所以正比例函数关系式为13y x =. 由1,33,y x y x ì=ïíï=ïî得得3x =±. 当3x =时,1y =;当3x =-时,1y =-.所以另一个交点的坐标为.所以另一个交点的坐标为((-3,-,-1)1)1).. 【总结升华】确定解析式的方法是特定系数法,由于正比例函数y kx =中有一个待定系数,因此只需一对对应值即可.因此只需一对对应值即可.举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?值为多少? 【答案】 解:设ky x =,当6x =-时,4y =, 所以46k=-,则k =-=-242424,,所以有24y x-=.当2x =时,24122y -==-. 类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点为常数)的图象上有三点((11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y ,y ,的大小关系是(的大小关系是( )). A .231y y y << B B..321y y y << C C..123y y y << D D..312y y y << 【答案】D ; 【解析】解:当0k <时,反比例函数的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.此题中需要注意的是大.此题中需要注意的是((11x y ,),(22x y ,),(33x y ,)不在同一象限内.因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数ky x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x =,当x =-=-11时,y =-=-22,当x =1时,y =2,自变量由-,自变量由-11到1,函数值y 由-由-22到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.的增大而减小.举一反三:【变式】已知2(3)m y m x-=-的图象在第二、四象限,的图象在第二、四象限,(1)(1)求求m 的值.的值.(2)(2)若点若点若点((-2,1y )、(-1,2y )、(1(1,,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:解:(1)(1)(1)由已知条件可知:此函数为反比例函数,且由已知条件可知:此函数为反比例函数,且2130m m -=-ìí-¹î,∴,∴ 1m =.(2)(2)由由(1)(1)得此函数解析式为:得此函数解析式为:2y x=-. ∵ ( (--2,1y )、(-1,2y )在第二象限,-在第二象限,-22<-<-11,∴,∴ 120y y <<. 而(1(1,,3y )在第四象限,30y <. ∴ 312y y y << 类型四、反比例函数综合4、已知点A(0A(0,,2)2)和点和点B(0B(0,-,-,-2)2)2),点,点P 在函数1y x=-的图象上,如果△的图象上,如果△PAB PAB 的面积是6,求P 点的坐标.点的坐标. 【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC PC⊥⊥y 轴于点C.∵ A(0 A(0,,2)2)、、B(0B(0,-,-,-2)2)2),, ∴ AB AB==4. 又∵又∵ 0||PC x =且6PABS=△,∴01||462x =,∴,∴ 0||3x =,∴,∴ 03x =±. 又∵又∵ 00(,)P x y 在曲线1y x =-上,∴ 当当03x =时,013y =-;当03x =-时,013y =.∴ P 的坐标为113,3P æö-ç÷èø或13,3æö-ç÷èø.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.的距离等于相应坐标的绝对值.举一反三:作AC AC⊥⊥y 轴于C ,连BC BC,则△】解:由双曲线与正比例函数y 1322AOCABCSS ==△△.A 点坐标为点坐标为((A x ,A y ),而于是1113||||2222AOCA A AASAC OC x y xy ===-=△,3A y =-,kx =得A A x y k =,所以所以反比例函数解析式为3y -=.。

反比例函数

反比例函数

反比例函数相关知识反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的取值范围是:x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

y与x成反比xy=a(a为常数)如果二者呈反比,常数a依然被称作反比例常数。

顺便说一下,反比例的式子也可以通过下面的形式表达(可能这种形式才是主流)。

反比例函数基础知识表格

反比例函数基础知识表格
利用待定系数法确定反比例函数表达式:
①根据两变量之间的反比例关系,设y= ;
②代入图像上一个点的坐标,即x,y的一对对应值,求出k的值;
③写出表达式
反比例函数与一次函数的图像的交点的求法
求直线y=k1x+b(k1≠0)和双曲线y= (k2≠0)的交点坐标,解这两个函数表达式组成的方程组即可
(2)反比例函数的性质
函数
字母取值
图像Байду номын сангаас
所在象限
性质
y= (k≠0)
k>0
第一、三象限(x,y同号)
在每个象限内,y随x增
大而减小
k<0
第二、四象限(x,y异号)
在每个象限内,y随x增
大而增大
考点3 反比例函数比例系数k的几何意义
k的几何意义
反比例函数图像上的点(x,y)具有两数之积为常数(xy=k)这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k|
反比例函数基础知识表格
反比例函数
考点1 反比例函数的概念
形如________(k≠0,k为常数)的函数叫做反比例函数,其中x是________,y是x的函数,k是比例系数.
考点2 反比例函数的图像与性质
(1) 反比例函数的图像:反比例函数y= (k≠0)的图像是________关于________对称
推导
如图,过双曲线上任一点P作x轴,y轴的垂线段PM,PN,所得的矩形PMON的面积S=PM·PN=|y|·|x|=|xy|. ∵y= , ∴xy=k,∴S=|k|
拓展
过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数
考点4 反比例函数的应用

反比例函数知识点汇总(1)

反比例函数知识点汇总(1)
求反比例函数与一次函数的交点 坐标。拓展思维:通过联立两个 函数的解析式,解方程组求得交
点坐标。
难题二
判断反比例函数的单调性。拓展 思维:根据反比例函数的性质, 结合定义域和值域的变化情况,
判断其单调性。
难题三
利用反比例函数的性质解决实际 应用问题。拓展思维:将实际问 题抽象为数学模型,利用反比例
函数的性质进行求解和分析。
图象特征
图象形状
图象趋势
反比例函数的图象是双曲线,且以原 点为对称中心。
随着 $|x|$ 的增大,$y$ 的值逐渐趋 近于0,但永远不会等于0。
图象位置
当 $k > 0$ 时,双曲线的两支分别位 于第一、三象限;当 $k < 0$ 时,双 曲线的两支分别位于第二、四象限。
表达式及参数意义
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$ 。
反比例函数知识点汇 总
汇报人:XXX 2024-01-22
目录
• 反比例函数基本概念 • 反比例函数与直线关系 • 反比例函数在实际问题中应用 • 反比例函数与相似三角形结合 • 反比例函数中存在性问题探究 • 反比例函数综合复习与提高
01
反比例函数基本概念
定义与性质
定义
自变量 $x$ 的取值范围
参数意义
常数 $k$ 决定了双曲线的形状和位置。当 $k > 0$ 时,双曲线在第一、三象限 ;当 $k < 0$ 时,双曲线在第二、四象限。同时,$|k|$ 的大小决定了双曲线离 坐标轴的远近程度。
02
反比例函数与直线关系
与坐标轴交点
01
反比例函数图像不会与坐标轴相 交。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)一、知识结构反比例函数的概念、图象及性质,函数的三种表示方法,函数模型的建立与实际问题的解决。

二、研究目标1.理解反比例函数的概念,能确定反比例函数的解析式,判断函数是否为反比例函数。

2.能描点画出反比例函数的图象,用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法。

3.能分析反比例函数的数学性质,解决一些简单实际问题。

4.能建立函数模型,解决实际问题,认识函数作为数学模型的重要性。

5.进一步理解常量与变量的关系,认识数形结合的思想方法。

三、重点难点重点是反比例函数的概念及图象的性质的理解和掌握,难点是反比例函数及其图象的性质的理解和掌握。

基础知识一、反比例函数的概念1.反比例函数可以写成 $y=k/x$ 的形式,其中 $k$ 为常数,$x\neq 0$。

2.反比例函数也可以写成 $xy=k$ 的形式,用它可以求出反比例函数解析式中的 $k$,从而得到反比例函数的解析式。

3.反比例函数的自变量不能为 $0$,函数图象与 $x$ 轴、$y$ 轴无交点。

二、反比例函数的图象1.函数解析式:$y=k/x$。

2.自变量的取值范围:$x\neq 0$。

3.图象:1) 图象的形状:双曲线。

$k$ 越大,图象的弯曲度越小,曲线越平直;$k$ 越小,图象的弯曲度越大。

2) 图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。

当 $k>0$ 时,图象的两支分别位于一、三象限;在每个象限内,$y$ 随 $x$ 的增大而减小。

当 $k<0$ 时,图象的两支分别位于二、四象限;在每个象限内,$y$ 随 $x$ 的增大而增大。

当 $x$ 趋近于 $0$ 时,$y$ 趋近于无穷大或无穷小。

3) 对称性:图象关于原点对称,即若 $(a,b)$ 在双曲线的一支上,则 $(\frac{k}{a},b)$ 在双曲线的另一支上。

三、反比例函数及其图象的性质1.反比例函数的解析式为 $y=k/x$,其中 $k$ 为常数,$x\neq 0$。

反比例函数知识点

反比例函数知识点

反比例函数知识点反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量, 1.当k0时,图象分别位于第一、三象限,同一个象限内,y 随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。

3.x的取值范围是:x≠0;y的取值范围是:y≠0。

4..由于在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不行能与x轴相交,也不行能与y轴相交。

但随着x无限增大或是无限削减,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,由于k≠0,且x≠0,所以函数值y也不行能为0。

补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数〔高一数学〕学问点形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(x)=f(x),图像关于原点对称。

反比例函数知识点归纳--最经典最好的笔记

反比例函数知识点归纳--最经典最好的笔记

反比例函数知识点归纳(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.(五)充分利用数形结合的思想解决问题.。

反比例函数知识点归纳

反比例函数知识点归纳

反比例函数知识点归纳反比例函数是函数的一种特殊形式,其形式为y=k/x,其中k是一个非零常数。

在反比例函数中,自变量x的值增加,因变量y的值会减少;自变量x的值减少,因变量y的值会增加。

1.反比例函数的定义域和值域在反比例函数y=k/x中,除数x不能为0,所以定义域为x≠0。

由于因变量y可以取任意实数值,所以反比例函数的值域为y≠0。

2.反比例函数的图像特征反比例函数的图像是一个直角坐标平面中的双曲线。

这是由于当自变量x接近于0时,因变量y的值会趋向于正无穷大或负无穷大。

因此,反比例函数的图像在原点处有一个垂直渐近线,并且图像在横轴和纵轴上无法触及。

3.反比例函数的性质a)当自变量x不等于0时,反比例函数y=k/x是连续函数。

由于在x=0处没有定义,所以反比例函数在x=0处不连续。

b)反比例函数的导数在定义域的任意一点都存在。

假设反比例函数为y=k/x,则其导数为y'=-k/x^2,可以发现导数对于任意x都存在。

c)反比例函数的最小值或最大值也取决于常数k的符号。

当k>0时,反比例函数的最小值为正无穷大;当k<0时,反比例函数的最大值为正无穷大。

4.反比例函数的应用反比例函数在实际问题中有很多应用,尤其是在与物体运动相关的问题中。

例如,在物理学中,对于一个物体的匀速运动,其速度与所用时间的关系为反比例函数。

速度越大,所用时间越短。

另一个常见的应用是电阻和电流之间的关系。

根据欧姆定律,电阻和电流之间的关系为R=V/I,其中R是电阻,V是电压,I是电流。

根据反比例函数的性质,当电流变大时,电阻变小,电流变小时,电阻变大。

此外,反比例函数在金融市场中也有应用。

例如,根据波动性和流动性的关系,股票价格与交易量之间的关系可以表示为反比例函数。

5.反比例函数的解析式反比例函数的解析式为y=k/x,其中k是一个非零常数。

可以根据具体问题中的条件给出k的值,从而得到反比例函数的具体形式。

总结:反比例函数是一种特殊形式的函数,其定义域为除了0的所有实数,值域为除了0的所有实数。

八年级数学反比例函数的图解和性质

八年级数学反比例函数的图解和性质

三、练习
(一)填空

1、当m 时,反比例函数y=(1-2m)/x的图象在一、 三象限。 2、若反比例函数y=K/x的图象在二、四象限,则直 线y=kx-3不经过第 象限。 3、当k>0时,反比例函数y=(k+1)/x的图象在 象 限。 4、当k<0时,反比例函数y=-k/x的图象在 象 限。 5、反比例函数y=(k2 +1)/x的图象在 象 限。
-2
2
-3
3
-6
6
6
-6
3
-3
2
-2
1.5
-1.5
… … …
Y=3/x … Y=-3/x …
-0.75 -1
0.75 1
-1.5 -3
1.5 3
3
-3
1.5
2
0.75
-1.5 -2 -0.75
… …
y y﹦6∕x y=-6/x
y
o
x
o
x
gx = hx =
6 x 数的概念 1、什么是反比例函数?其 自变量的取值范围是什么, 你能说明为什么吗? 2、试举出几个反比例的例 子。
反比例函数定义:
形如Y=K/X(K≠0)的函数叫反 比例函数。注意反比例函数的另 两种形式:y=kx-1 xy=k (k≠0)
回顾: 一般反比例函数解析式中有 几个待定系数?需要几组X和Y 的对应值可以求出其解析式? 例 1: 已知Y与X的平方成反比例,并 且当X=3时,Y=4;求X=6时, Y的值.
下列( )是函数y=kx-k和y=k/x的大致图象
y
o x
y y o x o x
y o
x
A
B
C

26.1.2反比例函数的图象和性质

26.1.2反比例函数的图象和性质

1.(2018•香坊区)对于反比例函数y 2
不正确的是( )
x
C
A.点(﹣2,﹣1)在它的图象上
B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
,下列说法
课堂检测
基础巩固题
2.(2018•上海)已知反比例函数y k 1 (k是常数,k≠1) 的图象有一支在第二象限,那么k的取x值范围是 k<1
-5
解析式说明理由吗?
-6
探究新知
(3) 对于反比例函数y k (k>0),考虑问题(1)(2), x
你能得出同样的结论吗?
y
O
x
探究新知
归纳: 反比例函数 y k (k>0) 的图象和性质: x
y
(1)由两条曲线组成,且分别位
于第一、三象限,它们与 x 轴、y
轴都不相交;
O
x (2)在每个象限内,y 随 x 的增
若 x1> x2,则 y1与y2的大小关系为 ( ) C
A. y1 > y2 B. y1 = y2 C. y1 < y2 D. 无法确定
解析:因为8>0,且 A,B 两点均在该函数图象的第一 象限部分,根据 x1>x2,可知y1,y2的大小关系.
探究新知
观 察
当 k =-2,-4,-6时,反比例函数y k
的图象上,并说明理由;
解:分别把点 B,C 的坐标代入反比例函数的解析式, 因为点 B 的坐标不满足该解析式,点C的坐标满足该 解析式,所以点 B 不在该函数的图象上,点C 在该函 数的图象上.
巩固练习
(3) 当 -3< x <-1 时,求 y 的取值范围.

正比例函数与反比例函数

正比例函数与反比例函数

正比例函数与反比例函数正比例函数和反比例函数综合解说客观世界是不断运动和变化着的,在这些变化着的事物中,存在各种各样的变量。

在同一变化过程中,一些变量之间相互依存,一个变量的变化会引起其他变量的相应变化。

函数是体现运动变化的基本数学概念,它从数量角度刻画事物变化的过程,表达变量之间确定的依赖关系。

本章引入了函数的概念,重点讨论正比例函数和反比例函数,并借助与图像的直观,得到它们的一些基本性质,进而应用这些概念和性质,解决一些简单的实际问题。

1正比例函数【知识结构框图表】【本节解读】人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征,量是用“数”来表明大小的。

数与度量单位结合在一起,就是数量。

反比例函数正比例函数定义域和值域函数解析式函数经常涉及的量有长度、面积、体积、质量、温度、时间、速度等。

【基础知识与要点拨】1.变量和常量在变化过程中,可以去不同数值的量叫做变量,保持数值不变的量叫做常量。

比如:圆的周长C与直径D的关系为C=πD。

C、D是变量,π是常量。

2.函数和自变量在某个变化过程中有两个变量,设为x和y,如果在变量x的允许范围内,变量y随着x的变化而变化,它们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量。

“y是x的函数”用记号y=f(x)表示,括号内的字母表示自变量,括号外的字母f表示y随着x的变化而变化的规律。

f(a)表示当x=a时的函数值。

3.定义域和值域函数的自变量允许取值的范围,叫做这个函数的定义域。

对应于自变量的函数值的取值范围,叫做值域。

4.正比例如果两个变量的每一组对应值的比值是一个不等于零的常数,那么就说这两个变量成正比例。

用数学式子表示两个变量x、y成正比例,就是y k=或者y kx=,其中,k是不为零的常数。

x5.正比例函数定义域是一切实数的函数y k x=(k是不为零的常数)叫做正比例函数。

其中常数k叫做比例系数。

确定了比例系数,就可以确定一个正比例函数。

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

x
练一练
1. 如图,过反比例函数 y k 图象上的一点 P,作 x
PA⊥x 轴于A. 若△POA 的面积为 6,则 k = -12 .
提示:当反比例函数图象 在第二、四象限时,注意
y
k
P
y= x
k<0.
AO
x
2. 若点 P 是反比例函数图象上的一点,过点 P 分别向 x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形 PMON 的面积为 3,则这个反比例函数的关系式是
O
x
y
y 4 x
O
xห้องสมุดไป่ตู้
归纳:
反比例函数 y k (k<0) 的图象和性质:
x
●由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;
●在每个象限内,y随x的增大而增大.
一般地,反比例函数 y k 的图象是双曲线, x
它具有以下性质:
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
S△OFE = S1 = S2,而 S3>S△OFE, 所以 S1,S2,S3的大小关系为
S1 = S2 < S3
S1 S3
F S2
例8 如图,点 A 是反比例函数 y 2 (x>0)的图象

x y


3
任意一点,AB//x 轴交反比例函数
x (x<0) 的
图象于点 B,以 AB 为边作平行四边形 A5 BCD,其中
-6-5-4-3-2-1O -1
1 2 3 4 5 6 x (2) 在每一个象限内,
-2
随着x的增大,y 如何
-3 -4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推导
如图,过双曲线上任一点P作x轴,y轴的垂线段PM,PN,所得的矩形PMON的面积S=PM·PN=|y|·|x|=|xy|.∵y=,∴xy=k,∴S=|k|
拓展
过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数
考点4反比例函数的应用
求函数表达式的方法步骤
利用待定系数法确定反比例函数表达式:
图像
所在象限
性质
y=(k≠0)
k>0
第一、三象限(x,y同号)
在每个象限内,y随x增
大而减小
k<0
第二、四象限(x,y异号)
在每个象限内,y随x增
大而增大
考点3反比例函数比例系数k的几何意义
k的几何意义
反比例函数图像上的点(x,y)具有两数之积为常数(xy=k)这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k|
①根据两变量之间的反比例关系,设y=;
②代入图像上一个点பைடு நூலகம்坐标,即x,y的一对对应值,求出k的值;
③写出表达式
反比例函数与一次函数的图像的交点的求法
求直线y=k1x+b(k1≠0)和双曲线y=(k2≠0)的交点坐标,解这两个函数表达式组成的方程组即可
反比例函数
考点1反比例函数的概念
形如________(k≠0,k为常数)的函数叫做反比例函数,其中x是________,y是x的函数,k是比例系数.
考点2反比例函数的图像与性质
(1)反比例函数的图像:反比例函数y=(k≠0)的图像是________关于________对称
(2)反比例函数的性质
函数
字母取值
相关文档
最新文档