江苏省南京市联合体2015届中考一模数学试题(含答案)
2015年中考江宁数学一模(含答案)

三、解答题(共 88 分) 1 - 17. (5 分)计算:|-2|+( ) 2+(-1)2011. 3
18.(5 分)解分式方程:
3 x 1. x 9 3 x
2
1 O 的直线 EF 与 AB、CD
的延长线分别交于点 E、F. (1)求证:△BOE≌△DOF; (2)当 EF⊥AC 时,四边形 AECF 是怎样的特殊四边形?证明你的结论.
20.(8 分)小晗家客厅里装有一种三位单极开关,分别控制着 A(楼梯)、B(客厅)、C(走 廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两 盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况. (1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少? (2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概 率是多少?请用树状图法或列表法加以说明.
„„„„„„„„„„„„„„„„„„„„„„4 分 (2)根据题意得:0.9x+10=0.95x+2.5,解得:x=150, ∴当 x=150 时,小红在甲、乙两商场的实际花费相同„„„„6 分 (3)根据题意得:0.9x+10<0.95x+2.5,解得:x>150, 0.9x+10>0.95x+2.5,解得:x<150,
2 , 3 4 当 y2-y1=10,即-30x+90-(-60x+120)=10,解得 x= , 3
当甲走到 C 地,而乙距离 C 地 10km 时,-30x+90=10,解得 x=
8 ; 3
综上所知当 x=
2 4 8 h,或 x= h,或 x= h 乙距甲 10km. 3 3 3
„„„„„„„8 分
; 13.36° ;
江苏省南京联合体2015届九年级上期中学情样题数学试题及答案课件

(满分:120分 考试时间:120分钟)(参考公式:方差公式:s 2= 1n [ (x 1-x )2+(x 2-x )2+…+(x n -x )2] )一、选择题(共6小题,每小题2分,共12分) 1.下列方程中,属于一元二次....方程的是( ) A .x +2y =5B .x 2+y =3C .3x =12x 2-4D .x +1y=32.某校书法决赛共设置6个获奖名额,进入决赛的11名选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名选手决赛得分的( ) A .平均数B .众数C .方差D .中位数3.某班学生每周课外阅读时间的统计结果如下表:则这些学生每周课外阅读的平均时间为( ) A .4.5小时B .5小时C .5.4小时D .5.5小时4.某单位在两个月内将开支从24000元降到18000元.如果设每月降低开支的百分率均为x (x >0),则由题意列出的方程应是( )A .()180001240002=+x B .()240001180002=+xC .()180001240002=-x D .()240001180002=-x5.如图,长方形纸板ABCD 中,AB =2,BC =1,向纸板投掷飞镖,则飞镖落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π86.用一张圆心角为45°的扇形纸板和一张圆形纸板按如图方式分别剪得一个边长都为1的正方形,则原扇形和圆形纸板的面积比是( ) A .5:4B .5:2C .5:2D .5:2(第5题) (第6题)二、填空题(共10小题,每小题2分,共20分) 7.方程x 2-3x =0的根为 .8. 把方程03122=--x x 化为()n m x =+2(其中m 、n 为常数)的形式后为 .9. 已知x 1,x 2是方程x 2-2x -4=0的两个根,则x 1+x 2-x 1x10.写一个你喜欢的整数..m 的值 ,使关于x 的一元二次方程x 2-x +m =0有两个不相等...的实数根. 11.某仪仗队队员的身高(单位:厘米)如下:178,177,179,178,177,178,177,179,178,179. 则该队队员身高的平均数为 厘米.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是 13,则黄球的个数为 个.13.一个圆锥的母线长为6,底面圆的半径为2,则该圆锥的侧面积为 (结果保留π).14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若半径r =2cm ,∠BCD =22°30′,则弦AB = cm .15.如图, AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,过点C 的切线交AB 于点D .若AD =2BD ,CD =1,则⊙O 的半径为 .16.如图,已知过A 、C 、D 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =57º,那么∠ABC = °.FEDCBA(第14题) (第15题) (第16题)三、解答题(共11小题,共88分)17.(12分)解方程:(1)(x +3)2-4=0 (2)2x 2-3x +1=0 (3)2(x -3)2=x (x -3)OD CBA18.(7分)已知关于x 的一元二次方程12+++n mx x =0的一根为2. (1)用含m 的代数式表示n ;(2)试说明:关于y 的一元二次方程02=++n my y 总有两个不相等的实数根.19.(7分)某单位院内有一块长30 m ,宽20 m 的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修两条纵向平行和横向弯折的小道(如图),剩余的地方种植花草.要使种植花草的面积为532 m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)20.(7分)在一次即兴演讲比赛中,每个参赛选手都从两个分别标有“A ”、“B ”标签的选题中,随机抽取一个作为自己的演讲内容,某校有甲、乙、丙三个选手参加这次演讲比赛,请求出这三个选手中有两个抽中内容“A ”、一个抽中内容“B ”的概率.21.(8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单⑵请你从平均数和方差的角度分析,谁将被选中.22.(8分)某学校为了解学生体能情况,规定参加测试的每名学生从“1.立定跳远、2.耐久跑、3.掷实心球、4.引体向上”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”、“耐久跑”两项的概率是多少?(2)据统计,初三二班共12名男生参加了“立定跳远”的测试,他们的成绩如下:95 100 90 82 90 65 89 74 75 93 92 85② 这组数据的众数是,中位数是;②若将不低于90分(含90分)的成绩评为优秀,请你估计初三年级选“立定跳远”的180名男生中成绩为优秀的学生约为多少人.23.(7分)如图,在△ABC中,∠B=60°,∠C=70°.(1)尺规作图:作△ABC的内切圆圆O;(2)若圆O分别与边BC、AB、AC交于点D、E、F,求∠EDF的度数.24.(7分)如图,在四边形ABCD中,AD∥BC,AD=2,AB=22,以A为圆心,AD为半径的圆与BC 相切于点E,交AB于点F,若扇形AFD是一个圆锥的侧面,求这个圆锥底面圆的半径.FE DCBAC BA25.(8分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AB =2BC ,点D 在⊙O 上,∠DAO =30°. (1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 半径为2,求图中阴影部分的面积(结果保留π).O DCBA26.(8分)如图,四边形OBCD 中的三个顶点在⊙O 上,点A 是优弧BD 上的一个动点(不与点B 、D 重合).(1)当圆心O 在∠BAD 内部,∠ABO +∠ADO =60°时,∠BOD = °; (2)当圆心O 在∠BAD 内部,四边形OBCD 为平行四边形时,求∠A 的度数;(3)当圆心O 在∠BAD 外部,四边形OBCD 为平行四边形时,请直接写出∠ABO 与∠ADO 的数量关系.ODBAODB27.(9分)已知到直线l 的距离等于a 的所有点的集合是与直线l 平行且距离为a 的两条直线l 1、l 2(如图①). (1)在图②的平面直角坐标系中,画出到直线y =x +22的距离为1的所有点的集合的图形.并写出该图形与y 轴交点的坐标.(2)试探讨在以坐标原点O 为圆心,r 为半径的圆上,到直线y = x + 22的距离为1的点的个数与r 的关系.(3)如图③,若以坐标原点O 为圆心,2为半径的圆上只.有两个点到直线y = x + b 的距离为1,则b 的取值范围为 .图① 图② 图③选择题第6题6.用一张圆心角为45°的扇形纸板和一张圆形纸板按如图方式分别剪得一个边长都为1的正方形,则原扇形和圆形纸板的面积比是( ) A .5:4B .5:2C .5:2D .5:2l 22014-2015学年第一学期期中学情分析样题九年级数学参考答案一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分) 7.0或3; 8. 39)6(2=-x ; 9. 6; 10.-1(41<m 都可以); 11.178; 12.24; 13.12π; 14.22; 15.3; 16.22.注:14定理、15长定理虽为打“*”内容,但市里建议放入常规考查之中,只考其直接应用,不做过多变化或综合。
2015年南京市中考数学试卷及答案

2015年江苏省南京市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,满分12分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(2015江苏省南京市,1,2分)计算53-+的结果是 A .-2 B .2 C .-8 D .8 【答案】B【解析】5322-+=-=2. (2015江苏省南京市,2,2分)计算32()xy -的结果是A .26x y B .26x y - C .29x y D .29x y - 【答案】A【解析】由积的乘方公式可得3. (2015江苏省南京市,3,2分)如图,在△ABC 中,DE ∥BC ,12AD DB =,则下列结论中正确的是 A .12AE AC = B .12DE BC = C .13ADE =ABC ∆∆的周长的周长 D .13ADE =ABC ∆∆的面积的面积【答案】C【解析】由周长比等于相似比4. (2015江苏省南京市,4,2分)某市2013年底机动车的数量是6210⨯辆,2014年新增5310⨯辆,用科学记数法表示该市2014年底机动车的数量是A .52310.⨯ B .53.210⨯ C .62310.⨯ D .63.210⨯ 【答案】C【解析】656210310 2.310⨯+⨯=⨯5. (2015江苏省南京市,5,2介于 A .0.4与0.5之间 B .0.5与0.6之间 C .0.6与0.7之间 D .0.7与0.8之间 【答案】C2.236≈0.618≈6. (2015江苏省南京市,6,2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为A .133B .92 CD.【答案】A【解析】由勾股定理得:设GM=x ,222(3)4(3)x x +=+-解得,43x =,所以DM =133.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填在答题卡相应位置.......上) 7. (2015江苏省南京市,7,2分)4的平方根是 ▲ ;4的算术平方根是 ▲ . 【答案】2±;2【解析】2=±2=8. jscm (2015江苏省南京市,8,2分)x 的取值范围是 ▲ . 【答案】1x ≥- 【解析】10,1x x +≥≥9. jscm (2015江苏省南京市,9,2分)的结果是 ▲ . 【答案】55== 10. jscm (2015江苏省南京市,10,2分)分解因式()(4)a b a b ab --+的结果是 ▲ . 【答案】2(2)a b -【解析】22222()(4)4444(2)a b a b ab a ab ab b ab a ab b a b --+=--++=-+=-11.(2015江苏省市,11,2分)不等式211213x x +>-⎧⎨+<⎩的解集是 ▲ .【答案】11x -<<【解析】211,22,1x x x +>->->-213,22,1x x x +<<< 11x -<<12. (2015省市,12,分)已知方程230x mx ++=的一个根是1,则它的另一个根是 ▲ ,m 的值是 ▲ . 【答案】3;-4【解析】130,4m m ++==-2430(1)(3)01,3x x x x x x -+=--===13. (2015江苏省南京市,13,2分)在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点得到点A’,再作点A’关于y 轴的对称点,得到点A’’,则点A’’的坐标是( ▲ , ▲ ). 【答案】-2;3 【解析】(2,-3)关于x 轴对称(2,3),关于y 轴对称(-2,3)14. (2015江苏省南京市,14,2分)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工,瓦工各1名.与调整前相比,该工程队员工月工资的方差 ▲(填“变小”,“不变”或“变大”). 【答案】变大【解析】电工的工资高于瓦工工资。
2015年江苏省南京市中考数学试卷及答案解析

2015年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算:|﹣5+3|的结果是( ) A .﹣2B .2C .﹣8D .82.(2分)计算(﹣xy 3)2的结果是( ) A .x 2y 6B .﹣x 2y 6C .x 2y 9D .﹣x 2y 93.(2分)如图,在△ABC 中,DE ∥BC ,AD DB=12,则下列结论中正确的是( )A .AE AC=12B .DE BC=12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=134.(2分)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( ) A .2.3×105辆 B .3.2×105辆C .2.3×106辆D .3.2×106辆5.(2分)估计√5−12介于( ) A .0.4与0.5之间 B .0.5与0.6之间 C .0.6与0.7之间D .0.7与0.8之间6.(2分)如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .133B .92C .43√13D .2√5二、填空题(本大题共10小题,每小题2分,共20分) 7.(2分)4的平方根是 ;4的算术平方根是 .8.(2分)若式子√x +1在实数范围内有意义,则x 的取值范围是 . 9.(2分)计算√5×√15√3的结果是 . 10.(2分)分解因式(a ﹣b )(a ﹣4b )+ab 的结果是 . 11.(2分)不等式组{2x +1>−12x +1<3的解集是 .12.(2分)已知方程x 2+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 13.(2分)在平面直角坐标系中,点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是( , ).14.(2分)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种 人数 每人每月工资/元电工 5 7000 木工 4 6000 瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差 (填“变小”、“不变”或“变大”).15.(2分)如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E = °.16.(2分)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=1x,则y2与x的函数表达式是.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.18.(7分)解方程:2x−3=3x.19.(7分)计算:(2a2−b2−1a2−ab)÷aa+b.20.(8分)如图,△ABC中,CD是边AB上的高,且ADCD=CDBD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.27.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x (单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?2015年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算:|﹣5+3|的结果是( ) A .﹣2B .2C .﹣8D .8【解答】解:原式=|﹣2| =2. 故选:B .2.(2分)计算(﹣xy 3)2的结果是( ) A .x 2y 6B .﹣x 2y 6C .x 2y 9D .﹣x 2y 9【解答】解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A .3.(2分)如图,在△ABC 中,DE ∥BC ,AD DB=12,则下列结论中正确的是( )A .AE AC=12B .DE BC=12C .△ADE 的周长△ABC 的周长=13D .△ADE 的面积△ABC 的面积=13【解答】解:∵DE ∥BC , ∴△ADE ∽△ABC ,∴AD AB =AE AC =DE BC,∵AD DB =12, ∵AD AB=AE AC=DE BC=13,故A 、B 选项均错误; ∵△ADE ∽△ABC , ∴△ADE 的周长△ABC 的周长=AD AB=13,△ADE 的面积△ABC 的面积=(AD AB)2=19,故C 选项正确,D 选项错误. 故选:C .4.(2分)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( ) A .2.3×105辆B .3.2×105辆C .2.3×106辆D .3.2×106辆【解答】解:2014年底机动车的数量为:3×105+2×106=2.3×106. 故选:C . 5.(2分)估计√5−12介于( ) A .0.4与0.5之间 B .0.5与0.6之间 C .0.6与0.7之间D .0.7与0.8之间【解答】解:∵2.22=4.84,2.32=5.29, ∴2.2<√5<2.3, ∵2.2−12=0.6,2.3−12=0.65,∴0.6<√5−12<0.65.所以√5−12介于0.6与0.7之间. 故选:C .6.(2分)如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .133B .92C .43√13D .2√5【解答】解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A =∠B =90°,CD =AB =4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO =∠AFO =∠OFB =∠BGO =90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF =BF =AE =BG =2, ∴DE =3,∵DM 是⊙O 的切线, ∴DN =DE =3,MN =MG , ∴CM =5﹣2﹣MN =3﹣MN , 在Rt △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42, ∴NM =43, ∴DM =3+43=133, 故选:A .二、填空题(本大题共10小题,每小题2分,共20分) 7.(2分)4的平方根是 ±2 ;4的算术平方根是 2 . 【解答】解:4的平方根是±2;4的算术平方根是2. 故答案为:±2;2.8.(2分)若式子√x +1在实数范围内有意义,则x 的取值范围是 x ≥﹣1 . 【解答】解:根据题意得:x +1≥0, 解得x ≥﹣1, 故答案为:x ≥﹣1. 9.(2分)计算√5×√15√3的结果是 5 . 【解答】解:√5×√15√3=√5×√5=5.故答案为:5.10.(2分)分解因式(a ﹣b )(a ﹣4b )+ab 的结果是 (a ﹣2b )2 . 【解答】解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab +4b 2+ab =a 2﹣4ab +4b 2 =(a ﹣2b )2. 故答案为:(a ﹣2b )2. 11.(2分)不等式组{2x +1>−12x +1<3的解集是 ﹣1<x <1 .【解答】解:{2x +1>−1①2x +1<3②,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1.12.(2分)已知方程x 2+mx +3=0的一个根是1,则它的另一个根是 3 ,m 的值是 ﹣4 . 【解答】解:设方程的另一个解是a ,则1+a =﹣m ,1×a =3, 解得:m =﹣4,a =3. 故答案是:3,﹣4.13.(2分)在平面直角坐标系中,点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是( ﹣2 , 3 ).【解答】解:∵点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.14.(2分)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差变大(填“变小”、“不变”或“变大”).【解答】解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.15.(2分)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=215°.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.16.(2分)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=1x,则y2与x的函数表达式是y2=4x.【解答】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=1x上,∴设A(a,1a ),∴OC=a,AC=1 a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴ACBD =OCOD=OAOB,∵A为OB的中点,∴ACBD =OCOD=OAOB=12,∴BD=2AC=2a,OD=2OC=2a,∴B(2a,2a ),设y2=k x,∴k=2a•2a=4,∴y2与x的函数表达式是:y2=4 x.故答案为:y2=4 x.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【解答】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:18.(7分)解方程:2x−3=3x.【解答】解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.19.(7分)计算:(2a2−b2−1a2−ab)÷aa+b.【解答】解:(2a2−b2−1a2−ab)÷aa+b=[2(a+b)(a−b)−1a(a−b)]×a+ba=[2aa(a+b)(a−b)−a+ba(a+b)(a−b)]×a+ba=2a−(a+b)a(a+b)(a−b)×a+b a=1a 2. 20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CD BD .(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.【解答】(1)证明:∵CD 是边AB 上的高,∴∠ADC =∠CDB =90°,∵AD CD =CD BD .∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD ,∴∠A =∠BCD ,在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°,∴∠BCD +∠ACD =90°,即∠ACB =90°.21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共 10000 名,其中小学生 4500 名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为36000名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.【解答】解:(1)100000×10%=10000(名),10000×45%=4500(名).故答案为:10000,4500;(2)100000×40%×90%=36000(名).故答案为:36000;(3)例如:与2010年相比,2014年该地区大学生50米跑成绩合格率下降了5%(答案不唯一).22.(8分)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.【解答】解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=1 3;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为2 3.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=CO AO,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=DO BO,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=36×0.1+4.5tan58°−1≈36×0.1+4.51.60−1=13.5.因此,B处距离码头O大约13.5km.24.(8分)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.【解答】(1)证明:∵EH平分∠BEF,∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠GEF=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH、∠GME=∠FQH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【解答】解:满足条件的所有图形如图所示:共5个.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.【解答】证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.27.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x (单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解答】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y 1=k 1x +b 1,∵y 1=k 1x +b 1的图象过点(0,60)与(90,42),∴{b 1=6090k 1+b 1=42∴{k 1=−0.2b 1=60, ∴这个一次函数的表达式为;y 1=﹣0.2x +60(0≤x ≤90);(3)设y 2与x 之间的函数关系式为y =k 2x +b 2,∵经过点(0,120)与(130,42),∴{b 2=120130k 2+b 2=42, 解得:{k 2=−0.6b 2=120, ∴这个一次函数的表达式为y 2=﹣0.6x +120(0≤x ≤130),设产量为xkg 时,获得的利润为W 元,当0≤x ≤90时,W =x [(﹣0.6x +120)﹣(﹣0.2x +60)]=﹣0.4(x ﹣75)2+2250, ∴当x =75时,W 的值最大,最大值为2250;当90≤x ≤130时,W =x [(﹣0.6x +120)﹣42]=﹣0.6(x ﹣65)2+2535,由﹣0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160, ∴当x =90时,W =﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.。
2015年江苏省南京市中考数学试卷含答案

2015年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.计算:|﹣5+3|的结果是()A.﹣2 B.2 C.﹣8 D.82.计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=4.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.8.若式子在实数范围内有意义,则x的取值范围是.9.计算的结果是.10.分解因式(a﹣b)(a﹣4b)+ab的结果是.11.不等式组的解集是.12.已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.13.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(,).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”“不变”或“变大”).15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.16.如图,过原点O的直线与反比例函数y1,y2的图像在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.18.(7分)解方程:.19.(7分)计算:(﹣)÷.20.(8分)如图,在△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD.(2)求∠ACB的大小.21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h,经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形.(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.27.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x (单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y1与x之间的函数表达式.(3)当该产品的产量为多少时,获得的利润最大?最大利润是多少?2015年江苏省南京市中考数学试卷参考答案与解析一、1.B 解析:原式=|﹣2|=2.故选B.点评:此题考查了有理数的加法以及绝对值的求法,负数的绝对值等于它的相反数.2.A 解析:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选A.点评:此题考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键要明确:①(a m)n=a mn (m,n是正整数);②(ab)n=a n b n(n是正整数).3.C 解析:∵DE∥BC,∴△ADE∽△ABC,∴.∵=,∴=,故A,B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.C 解析:2014年底机动车的数量为3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C 解析:∵2.22=4.84,2.32=5.29,∴2.2<<2.3.∵=0.6,=0.65,∴0.6<<0.65.∴介于0.6与0.7之间.故选C.点评:此题考查了估算无理数的大小,解决此题的关键是估算的大小.6.A 解析:连接OE,OF,ON,OG.在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2.∴DE=3.∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN.在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=.故选A.点评:此题考查了切线的性质、勾股定理、正方形的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.±2 2 解析:4的平方根是±2;4的算术平方根是2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.x≥﹣1 解析:根据题意,得x+1≥0,解得x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.5 解析:=×=5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题的关键.10.(a﹣2b)2 解析:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题的关键.11.﹣1<x<1 解析:.解不等式①,得x>﹣1.解不等式②,得x<1.所以不等式组的解集是﹣1<x<1.点评:此题考查的是一元一次不等式组的解集,解此类题目常常要结合数轴来判断.还可以观察不等式的解集,如果x大于较小的数且小于较大的数,那么不等式组的解集为x介于这两数之间.12.3 ﹣4 解析:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得m=﹣4,a=3.点评:此题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.﹣2 3 解析:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴点A′的坐标为(2,3).∵点A′关于y轴的对称点为A″,∴点A″的坐标是:(﹣2,3).点评:此题主要考查了关于x轴、y轴对称的点的坐标特征.(1)关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.变大解析:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题的关键.15.215 解析:如图,连接CE.∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°.∵∠CED=∠CAD=35°,∴∠B+∠AED=180°+35°=215°.点评:此题考查了圆内接四边形的性质、圆周角的性质,熟记圆的有关性质并作辅助线构造出圆内接四边形是解题的关键.16.y2=解析:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=.∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD.∴.∵A为OB的中点,∴=,∴BD=2AC=,OD=2OC=2a,∴B(2a,).设y2=,∴k=2a•=4.∴y2与x的函数表达式是y2=.点评:此题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用.三、17.解:去括号,得2x+2﹣1≥3x+2.移项,得2x﹣3x≥2﹣2+1.合并同类项,得﹣x≥1.系数化为1,得x≤﹣1.这个不等式的解集在数轴上表示为:点评:此题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”“≤”要用实心圆点表示;“<”“>”要用空心圆圈表示.18.解:方程两边同乘x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:此题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题的关键.20.(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°.∵=.∴△ACD∽△CBD.(2)解:∵△ACD∽△CBD,∴∠A=∠BCD.在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.点评:此题考查了相似三角形的判定与性质,解题的关键:熟记相似三角形的判定定理与性质定理.21.解:(1)10000 4500.100000×10%=10000(名),10000×45%═4500(名).(2)36 000.100 000×40%×90%=36 000(名).(3)例如:与2010年相比,2014年该地区大学生50米跑成绩合格率下降了5%(答案不唯一).点评:此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率是.(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:此题考查了列表法与画树状图法:利用列表法和树状图法展示所有可能的结果求出n,再求符合事件A或B的结果数目m,求出概率.23.解:设B处距离码头O x km.在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x.在Rt△DBO中,∠DBO=58°.∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°.∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.点评:此题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°.∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°.同理可得:∠EGF=90°.∵EG平分∠AEF,∴∠GEF=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A,E,B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)解:答案不唯一.由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH,∠GME=∠FQH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题的关键.25.解:满足条件的所有图形如图.点评:此题主要考查了作图——应用与设计作图,关键是掌握等腰三角形的判定方法.26.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°.∵∠DCE+∠BCD=180°,∴∠A=∠DCE.∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB.(2)∵∠A=∠AEB,∴△ABE是等腰三角形.∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线.∴ED=EC.∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.点评:此题主要考查了等边三角形的判定和性质以及圆内接四边形的性质,关键是掌握圆内接四边形的对角互补.27.解:(1)点D的横坐标、纵坐标的实际意义:当产量为130 kg时,该产品每千克生产成本与销售价相等,都为42元.(2)设线段AB所表示的y1与x之间的函数关系式为y1=k1x+b1.∵y1=k1x+b1的图像过点(0,60)与(90,42),∴,∴,∴这个一次函数的表达式为y1=﹣0.2x+60(0≤x≤90).(3)设y2与x之间的函数关系式为y2·=k2x+b2.∵经过点(0,120),(130,42),∴,解得.∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130).设产量为x kg时,获得的利润为W元.当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535.由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160.因此当该产品的产量为75 kg时,获得的利润最大,最大利润为2250元.点评:此题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
江苏省南京市2015年中考数学试题(WORD版,含答案)

第6题图F 南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 82.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积 = 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆 5.估计 5 -12介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D.2 5 二. 填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.18.(7分)解方程2x -3 = 3x19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD . (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.第15题图y 1=1B 第17题图–1–2–31230第20题图A21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB ∥CD,点E、F分别在AB、CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形.(2)小明在完成(1)的证明后继续进行了探索.过G作MN ∥EF,分别交AB、CD于点M、N,过H东北OBA作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?小明的证明思路 第24题图B C 第25题图A(第26题)y /江苏省历年考试真题第11 页共11 页。
2015年南京市联合体数学一模试卷及答案

▲
. ▲ . ▲ .
10.南京地铁三号线全长为 44830 米,将 44830 用科学记数法表示为
11.已知关于 x 的方程 x2-m x+m-2=0 的两个根为 x1、x2,则 x1+ x2-x1x2=
12.某校九年级(1)班 40 名同学中,14 岁的有 1 人,15 岁的有 21 人,16 岁的有 16 人,17 岁的有 2 人, 则这个班同学年龄的中位数是 ▲ 岁. 13.如图,正六边形 ABCDEF 的边长为 2,则对角线 AC= ▲ . 14.某体育馆的圆弧形屋顶如图所示,最高点 C 到弦 AB 的距离是 20 m,圆弧形屋顶的跨度 AB 是 80 m,则 该圆弧所在圆的半径为_____▲_____m. B A F A C D
A
C
B
专做在校名师辅导
24. (8 分)水池中有水 20 m ,12:00 时同时打开两个每分钟出水量相等且不变的出水口,12:06 时王师 傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14 时再关闭另一个出水口,12:20 3 3 时水池中有水 56 m ,王师傅的具体记录如下表.设从 12:00 时起经过 t min 池中有水 y m ,右图中折线 ABCD 表示 y 关于 t 的函数图像. y/m3
( 第6题 )
C
专做在校名师辅导
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡 ... 相应位置 上) .... 1 -1 ) = 4 ▲
7.计算 (-1)3+( 2 8.计算 + 3
▲
.
1 = 3
.
9.方程
1 3x-4 = 的解为 x= x-2 2-x
2015年江苏省南京市中考数学试卷附详细答案(原版+解析版)

2015年江苏省南京市中考数学试卷一.选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 82.计算(-xy ³)²的结果是() A. x ²y 6B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()第3题图A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆5.估计5 -12介于() A.0.4与0.5之间 B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为()第6题图F A. 133B. 92C. 4313D.2 5二.填空题(本大题共10小题,每小题2分,共20分) 7.4的平方根是;4的算术平方根是.8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎪⎨⎪⎧2x +1>-12x +1 < 3 的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 .13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ). 14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”). 15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.y 第第15题图y 2y 1=xBOBA16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .y 1=1三.解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.第17题图–1–2–312318.(7分)解方程2x -3= 3x19.(7分)计算⎝ ⎛⎭⎪⎫2a ²-b ² - 1a ² - ab ÷ a a +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CDBD .(1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.第20题图A21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远? (参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H . (1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.第24题图BC小明的证明思路25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)第25题图A26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.(第26题)27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?/kgy /(第27题)2015年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.计算︱-5+3︱的结果是( )A. -2B. 2C. -8D. 8【考点】有理数的加法;绝对值..【分析】先计算﹣5+3,再求绝对值即可.【解答】解:原式=|﹣2|=2.故选B.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.2.计算(-xy³)²的结果是( )A. x²y6B. -x²y6C. x²y9D. -x²y9【考点】幂的乘方与积的乘方..【分析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.【解答】解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.【点评】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).3.如图,在△ABC中,DE ∥BC,ADDB=12,则下列结论中正确的是( )第3题图A. AEEC=12B.DEBC=12C.△ADE的周长△ABC的周长=13D.△ADE的面积△ABC的面积=13【考点】相似三角形的判定与性质..【分析】由DE∥BC,可得△ADE∽△ABC ,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.【解答】解:∵DE∥BC,∴△ADE∽△ABC ,∴,∵=,∵=,故A、B选项均错误;∵△ADE ∽△ABC ,∴==,=()2=,故C选项正确,D选项错误.故选C.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆【考点】科学记数法—表示较大的数..【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:2014年底机动车的数量为:3×105+2×106=2.3×106. 故选C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.估计 5 -12介于( ) A.0.4与0.5之间 B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间【考点】估算无理数的大小.. 【分析】先估算的范围,再进一步估算,即可解答.【解答】解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C .【点评】本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为()第6题图F A. 133B. 92C. 4313D.2 5【考点】切线的性质;矩形的性质..【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.【考点】算术平方根;平方根..【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.【点评】此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.【考点】二次根式有意义的条件..【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.【考点】二次根式的乘除法..【分析】直接利用二次根式的性质化简求出即可.【解答】解:=×=5.故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.10.分解因式(a-b)(a-4b)+ab的结果是.【考点】因式分解-运用公式法..【分析】首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.【解答】解:(a ﹣b )(a ﹣4b )+ab=a 2﹣5ab+4b 2+ab=a 2﹣4ab+4b 2=(a ﹣2b )2.故答案为:(a ﹣2b )2.【点评】此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎪⎨⎪⎧2x +1>-12x +1 < 3 的解集是 .【考点】解一元一次不等式组..【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x >﹣1,解不等式②得:x <1,所以不等式组的解集是﹣1<x <1.故答案为:﹣1<x <1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 .【考点】根与系数的关系;一元二次方程的解..【分析】利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( ,).【考点】关于x轴、y轴对称的点的坐标..【分析】分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.【解答】解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.【点评】此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差(填“变小”,“不变”或“变大”).【考点】方差..【分析】利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.【解答】解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.【点评】此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.y第第15题图y2y1=1xBOB A【考点】圆内接四边形的性质..【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .y 1=1【考点】反比例函数与一次函数的交点问题..【分析】过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果.【解答】解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数y 1=上,∴设A (a ,),∴OC=a ,AC=,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴,∵A 为OB 的中点,∴=,∴BD=2AC=,OD=2OC=2a ,∴B (2a ,),设y 2=,∴k=2a•=4,∴y 2与x 的函数表达式是:y=.故答案为:y=.【点评】本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k 的几何意义要注意数形结合思想的运用.三、解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来. 第17题图–1–2–31230【考点】解一元一次不等式;在数轴上表示不等式的解集..【分析】不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:去括号,得2x+2﹣1≥3x+2,移项,得2x ﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:【点评】本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(7分)解方程2x -3= 3x 【考点】解分式方程..【专题】计算题.【分析】观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3).解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0.所以x=9是原方程的根.【点评】本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝ ⎛⎭⎪⎫2a ²-b ² - 1a ² - ab ÷ a a +b 【考点】分式的混合运算..【分析】首先将括号里面通分运算,进而利用分式的性质化简求出即可.【解答】解:(﹣)÷ =[﹣]× =[﹣]×=×=.【点评】此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD .(3) 求证:△ACD ∽ △CBD ;(4) 求∠ACB 的大小.第20题图A【考点】相似三角形的判定与性质..【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°,∵=. ∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD ,∴∠A=∠BCD ,在△ACD 中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(4)本次检测抽取了大、中、小学生共名,其中小学生名;(5)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(6)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.【考点】条形统计图;用样本估计总体;扇形统计图..【分析】(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.【解答】解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(3)求取出纸币的总额是30元的概率;(4)求取出纸币的总额可购买一件51元的商品的概率.【考点】列表法与树状图法..【专题】计算题.【分析】(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.【解答】解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B 处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【考点】解直角三角形的应用..【分析】设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO ﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.【点评】本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥CD,点E、F分别在AB、CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(3)求证:四边形EGFH是矩形.(4)小明在完成(1)的证明后继续进行了探索.过G作MN ∥EF,分别交AB、CD于点M、N,过H作PQ ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.第24题图B C【考点】菱形的判定;全等三角形的判定与性质;矩形的判定..【分析】(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.【解答】(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,∴∠EFH=∠DFE ,∵AB ∥CD ,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE )=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH )=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG 平分∠AEF ,∴∠EFG=∠AEF ,∵EH 平分∠BEF ,∴∠FEH=∠BEF ,小明的证明思路∵点A 、E 、B 在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF )=×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形;(2)解:答案不唯一:由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形,要证▱MNQP 是菱形,只要证MN=NQ ,由已知条件:FG 平分∠CFE ,MN ∥EF , 故只要证GM=FQ ,即证△MGE ≌△QFH ,易证 GE=FH 、∠GME=∠FGH .故只要证∠MGE=∠QFH ,易证∠MGE=∠GEF ,∠QFH=∠EFH ,∠GEF=∠EFH ,即可得证.【点评】此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3) 第25题图A【考点】作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质..【分析】①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C 为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A 与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.【解答】解:满足条件的所有图形如图所示:【点评】此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(3)求证:∠A=∠AEB.(4)连接OE,交CD于点F,OE ⊥CD.求证:△ABE是等边三角形.(第26题)【考点】圆内接四边形的性质;等边三角形的判定与性质;圆周角定理..【分析】(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB;(2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.【解答】证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.【点评】此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?/kg y /(第27题)【考点】二次函数的应用..【分析】(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x 的二次函数,求得最值即可.【解答】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y=k 1x+b 1,∵y=k 1x+b 1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y 2与x 之间的函数关系式为y=k 2x+b 2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若水果超市售完购进的 1000 千克苹果,请解决以下问题: ① 当 x 为何值时,所获利润最大? ② 若所获利润为 3385 元,求 x 的值.
-7-
27. (10 分) 【回归课本】我们曾学习过一个基本事实: 两条直线被一组平行线所截,所得的对应线段成比例. 【初步体验】 (1)如图①,在△ABC 中,点 D、F 在 AB 上,E、G 在 AC 上,DE∥FC∥BC. F FB B 若 AD=2,AE=1,DF=6,则 EG= ▲ , = ▲ . GC 图① D A E
C
C
B
E
O
(第 14 题)
15.如图,将边长为 6 的正方形 ABCD 绕点 C 顺时针旋转 30° 得到正方形 A′B′CD′,则点 A 的旋转路径长 为 ▲ . (结果保留 π) k 图像上关于原点 O 对称的两点,BC⊥x 轴,垂足为 C,连线 AC 过点 x ▲ .
16.如图,A、B 是反比例函数 y=
-3-
21. (8 分) 国家环保局统一规定, 空气质量分为 5 级. 当空气污染指数达 0—50 时为 1 级, 质量为优; 51—100 时为 2 级,质量为良;101—200 时为 3 级,轻度污染;201—300 时为 4 级,中度污染;300 以上时为 5 级,重度污染.某城市随机抽取了 2015 年某些天的空气质量检测结果,并整理绘制成如下两幅不完 整的统计图.请根据图中信息,解答下列各题: (1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图; (3)扇形统计图中 3 级空气质量所对应的圆心角为____▲____° ; (4)如果空气污染达到中度污染或者以上 ,将不适宜进行户外活动,根据目前的统计,请你估计 2015 ........ 年该城市有多少天不适宜开展户外活动. (2015 年共 365 天) 空气质量等级天数统计图 空气质量等级天数占所抽取天数 百分比统计图
x 1 有意义的 x 的取值范围是 2
A.x>1 B.x≥1
3.计算(2a 2) 3 的结果是 A.2a 5 4.如图所示几何体的俯视图是
A.
B.
C.
D.
5.在□ABCD 中,AB=3,BC=4,当□ABCD 的面积最大时,下列结论正确的有 ( ▲ ) ①AC=5; ②∠A+∠C=180°; ③AC⊥BD; ④AC=BD. A.①②③ B.①②④ C.②③④ D.①③④
∴AD=BC,∠DAF=∠BCE, ∴AD∥BC, ∴四边形 ABCD 是平行四边形. ………………………………………………4 分 (2)∵AC 平分∠BAD, ∴∠DAC=∠BAC.…………………………………………………………………5 分 ∵四边形 ABCD 是平行四边形, ∴CD∥AB,
-9-
∴∠DCA=∠BAC. ∴∠DCA=∠DAC, ………………………………………………………………6 分 ∴AD=DC,…………………………………………………………………………7 分 ∴□ABCD 为菱形. ………………………………………………………………8 分
2015 年中考数学模拟试题(一)
注意事项: 1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在答题卡上,答在本试卷上 无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、 准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他 答案. 答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合 题目要求的,请将正确选项前的字母代号填涂在答题卡 相应位置 上) ... .... 1. 2 等于 A.2 2.使 B.-2 C.±2 ( ▲ ) C.x<1 D.x≤1 ( ▲ ) B.2a6 C.6a 6 D.8a 6 ( ▲ ) ( ▲ ) 1 D.± 2
G C
(2)如图②,在△ABC 中,点 D、F 在 AB 上,E、G 在 AC 上,且 DE∥BC∥FG.以 AD、DF、FB 为边构造△ADM(即 AM=BF,MD=DF) ;以 AE、EG、GC A 为边构造△AEN(即 AN=GC,NE=EG) . 求证:∠M=∠N. D F B
图②
M E
N
G C
13.如图,正六边形 ABCDEF 的边长为 2,则对角线 AC=
14.某体育馆的圆弧形屋顶如图所示,最高点 C 到弦 AB 的距离是 20 m,圆弧形屋顶的跨度 AB 是 80 m, 则该圆弧所在圆的半径为_____▲_____m. B A F A C D
( 第 13 题 ) y A' A D D' A B' (第 16 题) B C (第 15 题) O D B x
-4-
22. (8 分)已知 P(-5,m)和 Q(3,m)是二次函数 y=2x2+b x+1 图像上的两点. (1)求 b 的值; (2)将二次函数 y=2x2+b x+1 的图像沿 y 轴向上平移 k(k>0)个单位,使平移后的图像与 x 轴无 交点,求 k 的取值范围.
23. (8 分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端 的距离 OA=75 厘米.展开小桌板使桌面保持水平,此时 CB⊥AO,∠AOB=∠ACB=37° ,且支架长 OB 与桌面宽 BC 的长度之和等于 OA 的长度.求小桌板桌面的宽度 BC. (参考数据 sin37° ≈0.6, cos37° ≈0.8,tan37° ≈0.75)
-1-
B
( 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡 ... 相应位置 上) .... 7.计算 (-1)3+( 8.计算 9.方程 2 + 3 1 -1 ) = 4 ▲ ▲ . . ▲ . ▲ . ▲ .
1 = 3
3x-4 1 = 的解为 x= x-2 2-x
D(0,-1.5) ,若△ABC 的面积为 7,则点 B 的坐标为
三、解答题(本大题共 11 小题,共 88 分.请在答题卡指定区域 内作答,解答时应写出文字说明、证明过 ....... 程或演算步骤) 17.(6 分)化简: x-1 3 ÷ ( -1) . x+2 x+2
-2-
x+1 1- 3 ≥0, 18. (6 分)解不等式组: 3+4(x-1)>1.
56 D
时间 12:00 12:04 12:06 12:14 12:20
池中有水(m ) 20 12 a b 56
20 12 a O (第 24 题) 4 6 A b
3
C
B 14 20 t/min
(1)每个出水口每分钟出水
▲
m3,表格中 a=
▲
;
(2)求进水口每分钟的进水量和 b 的值; (3)在整个过程中 t 为何值时,水池有水 16 m3 ?
=-1
18.解:解不等式①,得 x≤2. „„„„„„„„„„„„„„„„„„„„„„„„„„„„2 分 1 解不等式②,得 x> .„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 2 1 所以,不等式组的解集是 <x≤2. …………………………………………………………6 分 2 19.证明:(1)∵DF∥BE, ∴∠AFD=∠CEB, ……………………………………………………………1 分 ∵AE=CF,∴AF=CE. ∵AF=CE,DF=BE,…………………………………………………………2 分 ∴△ADF≌△CBE. ……………………………………………………3 分
A
C
B O
-5-
24. (8 分)水池中有水 20 m3,12:00 时同时打开两个每分钟出水量相等且不变的出水口,12:06 时王师 傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14 时再关闭另一个出水口,12:20 时水池中有水 56 m3,王师傅的具体记录如下表.设从 12:00 时起经过 t min 池中有水 y m3,右图中折线 ABCD 表示 y 关于 t 的函数图像. y/m3
【深入探究】 上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题: (3)如图③,已知△ABC 和线段 a,请用直尺与圆规作△A′B′C′. 满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段 a 的长度. (保留作图痕迹,并写出作图步骤)
A B C 图③
a
-8-
参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的 精神给分. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 题号 答案 1 A 2 B 3 D 4 C 5 B 6 D
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7. 3 12. 15 8. 3 9. 1 10. 4.483× 104 15. 2π 11. 2
-6-
⌒,DE⊥BC,垂足为 E. 25. (9 分)如图,四边形 ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD= AD (1)求证:CD 平分∠ACE; (2)判断直线 ED 与⊙O 的位置关系,并说明理由; (3)若 CE=1,AC=4,求阴影部分的面积.
(第 25 题)
26. (9 分)某水果超市以 8 元/千克的单价购进 1000 千克的苹果,为提高利润和便于销售,将苹果按大小 分两种规格出售,计划大、小号苹果都为 500 千克,大号苹果单价定为 16 元/千克,小号苹果单价定 为 10 元/千克,若大号苹果比计划每增加 1 千克,则大苹果单价减少 0.03 元,小号苹果比计划每减少 1 千克,则小苹果单价增加 0.02 元.设大号苹果比计划增加 x 千克. (1) 大号苹果的单价为 ▲ 元/千克; 小号苹果的单价为 ▲ 元/千克; (用含 x 的代数式表示)