2016年秋季学期新版北师大版八年级数学上册4.2一次函数与正比例函数教案2
北师大版-数学-八年级上册-八年级数学上册:4.2 一次函数与正比例函数 教学设计

内容:
1。在函数(1) ,(2) ,(3) ,(4) ,
(5) (6) 中是一次函数的是,是正比例函数的是。
2。若函数 是一次函数,则 应满足的条件Байду номын сангаас;若是正比例函数,则 应满足的条件是。
3。当 =时,函数 是关于 的一次函数。
意图:对本节知识进行巩固练习。
效果:学生基本能交好的独立完成练习题,收到了较好的教学效果。
效果:学生基本能较好地独立完成练习题,收到了较好的教学效果。
第六环节:课堂小结
内容:
这节课我们学习了一类很有用的函数一次函数,只要解析式可以表示成 ( 为常数, ≠0)的形式的函数则称为一次函数。正比例函数是 一次函数当 时的特殊情形。(方式:师生互相交流总结。)
目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识。
(3)一棵树现在高50厘米,每个月长高2厘米, 个月后这棵树的高度为 (厘米),则 与 的关系。
答案:(1)由路程=速度×时间,得 , 是 的一次函数,也是 的正比例函数;
(2)由圆的面积公式,得 , 不是 的一次函数,也不是 的正比例函数;
(3)这棵树每月长高2厘米, 个月长高了 厘米,因而 , 是 的一次函数,但不是 的正比例函数。
(元)之间的关系式。
(2)某人月收入为1760元,他应该缴纳所得税多少元?
(3)如果某人本月缴所得税 元,那么此人本月工资、薪金是多少以元?
解:⑴ 当月收入大于1600元而小于2100元时,
;
⑵当 元时,
⑶设此人本月工资、薪金是 元,则
即此人本月工资、薪金是1984元。
意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力。
北师大版八年级上册数学 4.2 一次函数与正比例函数教案2

4.2 一次函数与正比例函数一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成1,1x y x y +=-=-等,培养学生良好的书写习惯.二、教学任务分析《一次函数》是义务教育课程标准北师大版实验教科书 八年级 (上) 第四章 《一次函数》的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力. 与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的.本节课教学目标分析是:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.(3)经历一般规律的探索过程,发展学生的抽象思维能力;(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.(6)在探索过程中体验成功的喜悦,树立学习的自信心.本节课教学重点是:理解一次函数和正比例函数的概念.本节课教学难点是:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.三、教学过程设计本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.第一环节:复习引入内容:复习上节课学习的函数,教师提出问题:(1)什么是函数?(2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.效果:问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善.通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标.若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s之间的关系是什么?②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?第二环节:新课讲述例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:(2)你能写出x与y之间的关系式吗?答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5y x=+.例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:(2)你能写出x与y之间的关系式吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案 (1) 100、91、82、73、64、46;(2) x与y之间的关系式为1000.18=-;y x(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km 耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.通过观察、探索、总结,归纳出一次函数与正比例函数的概念:一般地,若两个变量x,y间的关系式可以表示成y kx b=+(,k b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当0b=时,则y是x的正比例函数.意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力.主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义.第三环节:巩固练习内容:1.在函数(1)3y x =,(2)5y x =-,(3)4y x =-,(4)223y x x =-,(5)y =12y x =-中是一次函数的是 ,是正比例函数的是 .2.若函数(63)44y m x n =++-是一次函数,则,m n 应满足的条件是 ;若是正比例函数,则,m n 应满足的条件是 .3.当k = 时,函数28(3)5k y k x-=+-是关于x 的一次函数.意图:对本节知识进行巩固练习.效果:学生基本能交好的独立完成练习题,收到了较好的教学效果.在第3题中,学生易忘记3k +≠0的条件,而错误的将答案写成±3.第四环节:知识提高内容:例 3 写出下列各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y (厘米),则y 与x 的关系.答案: (1)由路程=速度×时间,得60y x =,y 是x 的一次函数,也是x 的正比例函数;(2)由圆的面积公式,得2y x p =,y 不是x 的一次函数,也不是x 的正比例函数;(3)这棵树每月长高2厘米,x 个月长高了2x 厘米,因而5020y x =+,y 是x 的一次函数,但不是x 的正比例函数.例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.(1)写出每月电话费y (元)与通话次数x (x >50)的函数关系式;(2)求出月通话150次的电话费;(3)如果某月通话费为53.6元,求该月通话的次数.分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费.答案: (1)根据题意得: 25(50)y x =+-×0.2,即0.215y x =+;(2)当150x =时,0.2y =×15015+45=;(3)因为53.6>25,可知通话次数大于50次,即当53.6y =时,求x 的值.53.60.215x =+,解得193x =.意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展.效果:根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分.在例4中的(1)中,易错解为250.2=+.应让学生仔细审题,找准等量关y x系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程. 第五环节:反馈练习内容:1.下列语句中,具有正比例函数关系的是( )(A) 长方形花坛的面积不变,长y与宽x之间的关系;(B) 正方形的周长不变,边长x与面积S之间的关系;(C) 三角形的一条边不变,这条边上的高h与面积S之间的关系;(D) 圆的面积为S,半径为r,S与r之间的关系.2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为(19601600-)×5%=18(元).(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税y(元)与月收入x(元)之间的关系式.(2)某人月收入为1760元,他应该缴纳所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元?意图:对本节知识进行巩固练习.效果:学生基本能较好地独立完成练习题,收到了较好的教学效果.在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题.第六环节: 课堂小结内容:这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成y kx b=+(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0b=时的特殊情形.(方式:师生互相交流总结.)目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识.实际效果:学生畅所欲言自己对本节课的感受与收获,都能准确的说出一次函数与正比例函数的概念.但学生容易忽略一次函数与实际生活的联系,教师应做适当补充.第七环节:布置作业1.根据下表写出,x y之间的一个关系式.2. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某手机用户这个月通话时间为152分,他应缴费多少元?(3)如果该手机用户本月预交了200元的话费,那么该用户本月可通话多长时间?3.某电信公司手机的B类收费标准如下:没有月租费,但每通话1分钟收费0.6元.按照此类收费标准,分别完成第2题中的各小题.4.根据上面第2,3题中的条件,完成下列各题:(1)若每月平均通话时间为300分,你选择哪类收费方式?(2)每月通话多长时间时,按A,B两类收费标准缴费,所交话费相等?四、教学设计反思1.本课时在初中数学学习中的重要性函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,本节从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图象》奠定基础,并形成用函数观点认识现实世界的能力与意识.2.怎样对学生进行引导本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对研究常量的计算问题已掌握了一定的方法,但对函数、变量的变化规律的学习刚刚开始,抽象概括概念的能力尚显不足,为此,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)借助探索,通过思维深入,领悟教学过程.3.注意改进的方面在讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
北师大版八年级上册数学 4.2 一次函数与正比例函数 优秀教案

4.2一次函数与正比例函数1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点)2.掌握正比例函数的概念.(重点)一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min;旋转两圈,表示时间过了2min……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y=-x-4; (2)y=5x2-6;(3)y=2πx; (4)y=-x2;(5)y=1x;(6)y=8x2+x(1-8x).解析:首先看每个函数的表达式能否变形转化为y=kx+b(k≠0,k、b是常数)的形式,如果x的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b=0,那么它是正比例函数.解:(1)是一次函数,(2)不是一次函数,(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数.(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,则这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.探究点二:一次函数关系式的确定某公司以每吨200元的价格购进某种矿石原料300吨,用以生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.三、板书设计一次函数⎩⎪⎨⎪⎧一次函数的概念正比例函数的概念函数关系式的确定经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到函数关系式这一过程,提升学生的数学应用能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.。
北师大版数学八年级上册2《一次函数与正比例函数》教学设计2

北师大版数学八年级上册2《一次函数与正比例函数》教学设计2一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2章的内容。
本节内容是在学生已经掌握了函数概念的基础上,进一步学习一次函数与正比例函数的定义、性质及应用。
一次函数与正比例函数是初中的重要内容,也是后续学习函数及其他数学知识的基础。
二. 学情分析学生在学习本节内容时,已经具备了初步的函数概念,能够理解变量之间的关系。
但是,对于一次函数与正比例函数的定义和性质,以及如何运用这些知识解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解函数的概念,通过实例让学生感受一次函数与正比例函数的应用。
三. 教学目标1.理解一次函数与正比例函数的定义及其性质。
2.能够运用一次函数与正比例函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一次函数与正比例函数的定义及其性质。
2.一次函数与正比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索、发现问题,培养学生的独立思考能力。
2.利用多媒体课件,直观展示一次函数与正比例函数的图象,帮助学生理解其性质。
3.通过实例分析,让学生感受一次函数与正比例函数在实际问题中的应用。
4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体课件。
2.相关实例资料。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实例,如购物时商品的价格变化,让学生观察并思考这些实例中变量之间的关系。
引导学生回顾已学的函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)介绍一次函数与正比例函数的定义,并通过多媒体课件展示其图象,让学生直观地感受一次函数与正比例函数的特点。
3.操练(10分钟)让学生分组讨论,分析实例中的一次函数与正比例函数,并尝试用数学语言描述其性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对一次函数与正比例函数的理解。
北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计

北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要介绍了正比例函数和一次函数的定义、性质和应用。
本节课的内容是学生进一步学习函数的基础,对于学生理解函数的概念、掌握函数的性质、提高解决问题的能力具有重要意义。
二. 学情分析学生在七年级时已经学习了比例和方程,对比例的概念和方程的解法有一定的了解。
但他们对函数的概念和性质还不够清晰,特别是对于函数图像的理解和应用。
因此,在教学过程中,需要引导学生将已有的知识与函数内容相结合,通过实例和练习让学生感受函数的意义和应用。
三. 教学目标1.知识与技能:使学生理解正比例函数和一次函数的定义,掌握它们的性质和图象特征,能运用一次函数和正比例函数解决实际问题。
2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神,使学生感受数学与生活的密切联系。
四. 教学重难点1.重点:正比例函数和一次函数的定义、性质和图象特征。
2.难点:一次函数和正比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生观察、分析和解决问题;通过案例教学,让学生感受数学与生活的联系;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和问题,以便在教学中进行案例分析和问题讨论。
2.准备一次函数和正比例函数的图象和性质的PPT,以便进行讲解和展示。
3.准备一些练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题引出函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?让学生思考和讨论,引导学生认识到函数是数学建模的基础。
2.呈现(10分钟)介绍正比例函数和一次函数的定义、性质和图象特征,通过PPT展示相关图象,让学生直观地感受函数的性质。
北师大版八年级数学上册:4.2《一次函数与正比例函数》说课稿

北师大版八年级数学上册:4.2《一次函数与正比例函数》说课稿一. 教材分析《一次函数与正比例函数》这一节的内容,主要出现在北师大版八年级数学上册第4章第2节。
本节课的主要内容是让学生了解一次函数与正比例函数的定义、性质及其应用。
在教材中,通过丰富的实例,引导学生从实际问题中抽象出一次函数与正比例函数的关系,进而探究其性质。
教材还提供了大量的练习题,以便学生巩固所学知识。
二. 学情分析在八年级的学生中,他们已经具备了一定的代数基础,对于图形的认识也有一定的了解。
但是,对于一次函数与正比例函数的定义、性质及其应用,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,引导他们从具体的问题中抽象出一次函数与正比例函数的关系,并通过大量的练习,使学生能够熟练地运用所学知识解决实际问题。
三. 说教学目标1.知识与技能:使学生了解一次函数与正比例函数的定义、性质,能够运用一次函数与正比例函数解决实际问题。
2.过程与方法:通过实例,引导学生从实际问题中抽象出一次函数与正比例函数的关系,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、积极向上的精神。
四. 说教学重难点1.教学重点:一次函数与正比例函数的定义、性质。
2.教学难点:一次函数与正比例函数的图像特征,以及如何从实际问题中抽象出一次函数与正比例函数的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过展示一些生活中的实例,如商品价格与数量的关系,引导学生思考如何用数学模型来描述这种关系。
2.新课导入:介绍一次函数与正比例函数的定义,并通过实例使学生理解一次函数与正比例函数的关系。
3.性质探究:引导学生通过观察、实验、总结等方法,探究一次函数与正比例函数的性质。
4.应用拓展:提供一些实际问题,让学生运用一次函数与正比例函数的知识解决问题。
北师大版八年级数学上册4.2一次函数与正比例函数(教案)

在小组讨论环节,学生们积极参与,提出了许多有创意的想法。我在这个过程中扮演了一个引导者的角色,适时地提出问题,引导他们进行深入思考。从成果分享来看,学生们对一次函数与正比例函数的理解有了明显提高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数与正比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:展示不同k值的正比例函数图像,说明k值对图像斜率的影响。
(3)一次函数与正比例函数在实际问题中的应用,如线性关系的数据分析、趋势预测等。
-举例:分析某商品销售额与时间的关系,利用一次函数进行趋势预测。
2.教学难点
(1)理解一次函数图像的斜率和截距的物理意义,以及如何从图像中读取这些信息。
-难点解析:学生可能难以将图像的几何特征与函数表达式中的参数联系起来,需要通过图示和实例来强化理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数与正比例函数的基本概念。一次函数是形如y=kx+b的函数,其中k为斜率,b为截距;而正比例函数是特殊的一次函数,形如y=kx,它通过原点。这两个概念在描述现实世界的线性关系方面具有重要意义。
北师大版八年级上册第4.2一次函数与正比例函数(教案)

最后,课后我会对今天的课堂教学进行总结,找出不足之处,不断优化教学方法,以提高教学效果。同时,我也会关注学生们的反馈,了解他们在学习过程中的需求和困难,以便更好地调整教学内容和进度。
5.情感与价值观:通过数学知识在实际生活中的应用,让学生体会数学的价值,增强学习数学的兴趣和信心,培养积极向上的学习态度。
三、教学难点与重点
1.教学重点
-函数概念的理解:强调一次函数y=kx+b(k≠0)中,k和b的含义及其对图像的影响,确保学生理解函数表达式中每个参数的核心作用。
-图像与性质的关联:通过分析一次函数的图像,让学生掌握斜率k的正负与图像走势的关系,以及截距b在图像上的表现。
-正比例函数的特殊性:明确正比例函数是一次函数的特殊情况,即b=0的情况,理解其图像始终通过原点的特点。
-函数应用能力的培养:通过实际问题的引入,让学生学会将现实问题抽象为一次函数模型,并运用函数性质解决问题。
举例:讲解一次函数的应用时,可以引用实际案例,如“小明骑自行车旅行,速度恒定,时间为t小时,行程为s公里,建立s与t的函数关系”。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子和直角坐标系,让学生们手动绘制一次函数的图像。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,我会通过案例和图像来帮助大家理解,比如斜率k如何影响图像的斜率和y值的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.2一次函数与正比例函数
一、教学目标
四、教学重点
根据所级信息确定一次函数的表达式。
五、教学过程
1、新课导入
在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题。
2、讲授新课
某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示。
(1)写出v与t之间的关系式?
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数图象,然后设函数解析式,再把已知的坐标代入解析式求出待定系数即可。
解:由题意可知v是t的正比例函数。
设v=kt
因为(2,5)在函数图象上,所以2k=5,k=2.5,v与t关系式为v=2.5t。
(2)求下滑3秒时物体的速度,就是求当t等于3时的v的值。
解:当t=3时,v=2.5×3==7.5(米/秒)
3、想一想
(1)确定正比例函数的表达式需要几个条件?(一个)
(2)确定一次函数的表达式呢?(两个)。
4、例题讲解
例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。
写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度。
分析:该题没有图象,当题中以告知是一次函数,因此我们可设y=kx+b,根据题意,得
15=k+b,①
16=3k+b,②
由①得b=15-k;
由②得b=16-3k;
所以15-k=16-3k,即k=0.5。
把k=0.5代入①,得k=14.5,所以在弹性限度内,y=0.5x+14.5,当x=4时,y=0.5×4+14.5=16.5(厘米),即物体的质量为4千克时,弹簧长度为16.5厘米。
5、小结:求一次函数表达式的步骤
(1)设函数表达式y=kx+b
(2)根据已知条件列出关于k,b的方程。
(3)解方程。
(4)把求出的k,b值代回到表达式中即可。
6、课堂练习
(1)P164,
(2)根据条件确定函数的表达式:y是x的正比例函数,当x=2时,y=6,求y与x 的关系式。
(3)若函数y=kx+b的图象经过点(-3,-2)和(1,6)求k,b及表达式。
六、课后小结
求函数表达式的一般步骤:
(1)活动与探究
某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y元是行李质量x(千克)的一次函数,其图象如下图所示:
①写出y与x之间的函数关系式;
②旅客最多可免费携带多少千克行李?
七、课后作业
P 169习题6.5
教后感:把实际问题抽象为数字问题,让学生认识数字与人类生活的密切联系及对人类历史发展的作用,根据函数的图象确定一次函数的表达式,并解决有关现实问题,培养学生的数形结合能力。