初中八年级数学正比例函数专题练习
正比例函数、反比例函数测试题(经典)
初二数学练习班级 姓名一、填空1、已知正比例函数图像上一点到x 轴距离与到y 轴距离之比为1︰2,则此函数解析式是2、23(2)my m x -=-是正比例函数,则m=3、已知正比例函数x a y )21(-=,如果y 的值随着x 的值增大而减小,则a 的取值范围是4、如果正比例函数y=kx (k ≠0)的自变量增加5,函数值减少2,那么当x=3时, y=5、若反比例函数232k x k y --=)(,则k = ,图象经过 象限 6、已知反比例函数xky =的图像经过点)4,5(-A 、)5,(a B ,则a = 7、函数21a y x+=(x>0),当x 逐渐增大时,y 也随着增大,则a 的范围 。
8、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2•;(填“>”, “<”或“=”)9、直线 x 21=y 与双曲线 xy 2= 的交点是 10、已知函数xx x f 22)(-=,则=)2(f11、若函数12,1121-=-=x y x y ,则函数y =y 1+y 2中,自变量x 的 取值范围是12、如图:A 、B 是函数xy 1=图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,则△ABC 的面积是 .二、选择13、下列语句不正确的是 ( )(A)1+x 是x 的函数 (B )速度一定,路程是时间的函数(C )圆的周长一定,圆的面积是圆的半径的函数(D )直角三角形中,两个锐角分别是x 、y ,y 是x 的函数14、已知点P(a,b)在正比例函数y=kx(k≠0)的图像上,那么在这个图像上的点还有()(A)(a ,-b) (B) (-a ,b) (C) (-a ,-b) (D) (0 ,0)15、函数,ky kx y==-在同一直角坐标平面大致的图像可以是()A、C、D、16、若),(121A y-、),(21B y-、),(31C y三点都在函数xky=)0(>k的图像上,则1y、2y、3y的大小关系是()(A)213yyy>>;(B)312yyy>>;(C)132yyy>>;(D)123yyy>>.三、简答题17、已知正比例函数的图像过点A (-2 ,21) , B (6 ,m )求:(1)这个函数解析式;(2)B点的坐标;(3)如果y > 1,x的取值范围是什么?18、已知函数y=kx(k≠0)的图像经过P(1,2),Q 两点,并且P、Q两点间的距离是5,求Q点的坐标19、已知y 与2x 成反比例,x 与41z 成正比例,y 与z 之间成正比例还是反比例关系,为什么?四、解答题20、已知1232y y y =-,且1y 与2x +成正比例,2y 与x 成反比例,()y f x =的图象经过点(2,4)-及(2,12)和点(4,)b , 求:(1)y 与x 之间的函数关系式;(2)求b 的值;21、是否存在实数m ,使过点P (3,-2)、点Q (m +1,-m+1)的直线为正比例函数的图像?若存在,求出实数m ,若不存在,说明理由22、在反比例函数xk y =(k ≠0)的图像上有一点A ,它的横坐标n 使方程01x 2=-+-n nx 有两个相等的实数根,点A 与点B (0,0)和点C (3,0)围成的三角形面积等于6,求反比例函数的解析式23如图,在直角坐标平面内,函数y =xm(x >0,m 是常数)的图象经过A (1,4)、 B (a ,b ),其中a >1.过点B 作y 轴垂线,垂足为C ,连结AC 、AB 、CB ,若 △ABC 的面积为4,(1)求点B 的坐标;(2)求直线OB 的函数解析式。
正比例函数练习题初二
正比例函数练习题初二正比例函数是数学中的重要概念,它描述了两个变量之间存在着一种比例关系。
初二阶段学习正比例函数时,我们需要通过练习题来巩固理解和应用。
练习1:苹果的价格与购买数量成正比,单个苹果的价格为2元。
如果购买10个苹果,需要支付多少金额?解析:给定单个苹果的价格为2元,购买数量为10个。
根据正比例函数的定义,我们可以列出等式:价格 = 单价 ×数量代入已知条件,可得:价格 = 2 × 10 = 20元练习2:一辆汽车以每小时60公里的速度行驶,行驶了5小时,计算汽车行驶的总距离。
解析:汽车的速度为60公里/小时,行驶时间为5小时。
根据正比例函数的定义,我们可以列出等式:距离 = 速度 ×时间代入已知条件,可得:距离 = 60 × 5 = 300公里练习3:某商场举行打折促销活动,假设打折的比率为0.8,某商品原价100元,打折后的价格是多少?解析:商品原价为100元,打折比率为0.8。
根据正比例函数的定义,我们可以列出等式:打折后价格 = 原价 ×打折比率代入已知条件,可得:打折后价格 = 100 × 0.8 = 80元练习4:小明乘坐自行车骑行2小时,行驶的距离是40公里。
如果骑行的时间增加到5小时,预计行驶的总距离是多少?解析:小明骑行的速度为每小时40公里,骑行时间为2小时。
根据正比例函数的定义,我们可以列出等式:距离 = 速度 ×时间代入已知条件,可得:40 = 速度 × 2,解得速度为20公里/小时。
当骑行时间为5小时时,总距离可由等式计算:距离 = 20 × 5 = 100公里练习5:某商品的原价为200元,商场举行打折活动,折扣比率为0.6。
小明使用优惠券后,再获得额外的8折折扣。
请计算小明最终需要支付的金额。
解析:商品原价为200元,商场打折比率为0.6。
小明使用优惠券后,再获得额外的8折折扣,即打折比率为0.8。
八年级数学-正比例函数练习题(含解析)
八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
初二正比例函数基础练习题
初二正比例函数基础练习题1. 已知 y 与 x 成正比例关系,且当 x = 3 时,y = 5。
求当 x = 9 时,y 的值。
解析:根据正比例关系,可设 y = kx,其中 k 为比例常数。
已知当x = 3 时,y = 5,代入可得 5 = k * 3,解得 k = 5/3。
因此,当 x = 9 时,y = (5/3) * 9 = 15。
答案:当 x = 9 时,y 的值为 15。
2. 某小店的柠檬汁售价与所购买的数量成正比。
当买 4 杯柠檬汁时,需要支付 16 元。
若要购买 10 杯柠檬汁,需要支付多少元?解析:设柠檬汁售价为 y 元/杯,购买数量为 x 杯。
根据正比例关系,可得 y = kx,其中 k 为比例常数。
已知当 x = 4 时,y = 16,代入可得16 = 4k,解得 k = 4。
因此,当 x = 10 时,y = 4 * 10 = 40。
答案:购买 10 杯柠檬汁需要支付 40 元。
3. 一架飞机以每小时 800 公里的速度飞行,已经飞行了 3 小时。
根据速度与时间的正比例关系,求此时飞机已经飞行了多少公里?解析:设飞机已飞行的距离为 y 公里,飞行时间为 x 小时。
根据正比例关系,可得 y = kx,其中 k 为比例常数。
已知当 x = 3 时,y = 800 * 3 = 2400。
因此,飞机已经飞行了 2400 公里。
答案:飞机已经飞行了 2400 公里。
4. 一种药物按剂量与体重成正比,已知一个 50 公斤的人需要服用200 毫克的该药物。
若一个 60 公斤的人需要服用多少毫克的该药物?解析:设药物剂量为 y 毫克,体重为 x 公斤。
根据正比例关系,可得 y = kx,其中 k 为比例常数。
已知当 x = 50 时,y = 200,代入可得200 = 50k,解得 k = 4。
因此,当 x = 60 时,y = 4 * 60 = 240。
答案:一个 60 公斤的人需要服用 240 毫克的该药物。
正比例函数习题
《正比例函数》习题(含答案)一、单选题1.下列函数中,正比例函数有( ).(1)2y x =-(2)y =3)1yx =-(4)v =5)213y x =-(6)2y r π=(7)22y x =A .1个B .2个C .3个D .4个 2.一个正比例函数的图象经过点(2,4)-,它的表达式为 ( )A .2y x =-B .2y x =C .12y x =-D .12y x = 3.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <12D .m >12 4.若y 关于x 的函数(2)y a x b =-+是正比例函数,则a ,b 应满足的条件是( ) A .2a ≠ B .0b = C .2a =且0b = D .2a ≠且0b = 5.邮购一种图书,每册定价20元,另加书价的5%作邮资,购书x 册,需付款y (元)与x (册)的函数关系式为( )A .205%y x x =+B .20.5y x =C .20(15%)y x =+D .19.95y x = 6.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( ) A .12 B .12- C .2 D .-2 7.下列四组点中,可以在同一个正比例函数图象上的一组点是( ). A .(2,3),(4,6)- B .(2,3),(4,6)- C .(2,3),(4,6)-- D .(2,3),(4,6)- 8.如果正比例函数y =(a ﹣1)x (a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a <0B .a >0C .a <1D .a >1 9.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限 10.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.形如_________的函数叫做正比例函数.其中_______叫做比例系数.12.下列正比例函数中,y 的值随着x 值的增大而减小的有______.(1)8y x =;(2)0.6y x =-;(3)y =;(4)y x =. 13.按下列要求写出解析式:(1)若正方形的周长为p ,边长为a ,那么边长a 与周长p 之间的关系式为_________; (2)一辆汽车的速度为60km/h ,则行使路程()km s 与行使时间()h t 之间的关系式为___________;(3)圆的半径为r ,则圆的周长c 与半径r 之间的关系式为__________.14.正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .15.正比例函数()35y m x =+,当m ______时,y 随x 的增大而增大.16.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28kg ,你呢?”小丽思考了一会儿说:“我来考考你. 图(1)、图(2)分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了______kg.”三、解答题17.已知y 是x 的正比例函数,当x=﹣3时,y=12.(1)求y 关于x 的函数解析式;(2)当12x =-时的函数值.18.如图所示,正比例函数图象经过点A ,求这个正比例函数的解析式.19.已知正比例函数()y k 2x =-. (1)若y 的值随着x 值的增大而减小,则k 的范围是什么?(2)点()23-,在它的图象上,求这个函数的表达式. (3)在()2的结论下,若x 的取值范围是2x 4-≤≤,求y 的取值范围.参考答案1.C2.A3.D4.D5.C6.D7.C8.D9.A10.C11.y kx =(k 是常数,0k ≠) k 12.(2)(4)13.4p a = 60s t = 2c r π= 14.23y x =或2-3y x = 15.53>- 16.2017.(1)由题意可设y=kx (k ≠0).则 12=﹣3k ,解得,k=﹣4,所以y 关于x 的函数解析式是y=﹣4x ; (2)由(1)知,y=﹣4x ,当x=﹣12时,y=﹣4×(﹣12)=2. 即当12x =-时的函数值是2.18.解:设该正比例函数的解析式为y =kx (k ≠0), 由图象可知,该函数图象过点A (1,3), ∴k =3,∴该正比例函数的解析式为y =3x . 19.解:()1y 的值随着x 的值增大而减小, ∴ k 20-<,解得2k <.()2将点()23-,代入函数解析式可得()32k 2-=-, 解得12k =, ∴这个函数的表达式为3y x 2=-. ()3当x 2=-时,()3y 232=-⨯-=, 当x 4=时,3y 462=-⨯=-, 302-<,∴ y 随x 的增大而减小, ∴ 当2x 4-≤≤时,6y 3-≤≤.。
人教版数学八年级下册19.2.1《正比例函数》同步练习(含答案)
15.已知正比例函数的图像经过点 M(-2, 1)、A(x1,y1)、B(x2,y2),如果 x1<x2,那么 y1________y2.(填 “>”、“=”、“<”)
三、解答题
16.已知正比例函数 y=(m﹣1) x5m2 的图象在第二、四象限,求 m 的值.
17.在同一平面直角坐标系中画出函数 y=2x,y=- 1 x,y=-0.6x 的图象 3
人教版数学八年级下册 19.2.1《正比例函数》同步练习
一、选择题
1.对于正比例函数 y=-2x,当自变量 x 的值增加 1 时,函数 y 的值增加( )
A.0.5
B.-0.5
C.2
D.-2
2.若函数 y=(k﹣1)x+b+2 是正比例函数,则( )
A.k≠﹣1,b=﹣2 B.k≠1,b=﹣2 C.k=1,b=﹣2 D.k≠1,b=2
3.设正比例函数 y=mx 的图象经过点 A(m,4),且 y 的值随 x 值的增大而减小,则 m=( )
A.2
B.-2
C.4
D.-4
4.经过以下一组点可以画出函数 y=2x 图象的是( )
A.(0,0)和(2,1) B.(1,2)和(-1,-2) C.(1,2)和(2,1) D.(-1,2)和(1,2)
18.已知 y+3 与 x+2 成正比例,且当 x=3 时,y=7. (1)写出 y 与 x 之间的函数关系式; (2)当 x=﹣1 时,求 y 的值.
2/5
19.已知正比例函数 y=(m-1)x 的图象上有两点 A(x1,y1)、B(x2,y2),当 x1<x2 时,有 y1>y2. (1)求 m 的取值范围; (2)当 m 取最大整数时,画出该函数图象.
初中八年级数学正比例函数专题练习
八年级数学:正比例函数专题练习知识点: 1.形如___________(k 是常数,k ≠0)的函数是正比例函数,其中k 叫 ,正比例函数都是常数与自变量的乘积的形式2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx . 当k>0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________;当k<0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________.3.正比例函数的图像是经过坐标 点和定点__ __两点的一条 。
根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象. 例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.例2:根据下列条件求函数的解析式①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.选择题1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高 2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C ..3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 一 根据正比例函数解析式的特点求值若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k 的值为?如果y=x-2a+1是正比例函数,则a 的值为?若y =(n-2)x ︳n ︳-1 ,是正比例函数,则n 的值为?已知y=(k+1)x+k-5是正比例函数求k 的值.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )已知函数y=(2m+1)x+m -3 若函数图象经过原点,求m 的值?二 求正比例函数的解析式点A (2,4)在正比例函数图象上,则这个正比例函数的解析式?正比例函数图象过(-2,3),则这个正比例函数的解析式?已知y 与x 成正比例,且x=2时y=-6,则y=9时x 的值是多少?.三 正比例函数图象的性质函数y=-7x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而 .函数y=4x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而 .正比例函数y=(m -1)x 的图象经过一、三象限,则m 的取值范围是若正比例函数图像又y=(3k-6)x 的图像经过点A (x1,x2)和B (y1,y2),当x1<x2时, y1>y2,则k 的取值范围是点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1与 y 2 的大小关系是?已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是()正比例函数y=(3m-1)x 的图像经过点A (x1,x2)和B (y1,y2),且该图像经过第二、四象限. (1)求m 的取值范围(2)当x1>x2时,比较 y1与y2的大小,并说明理由.探究题在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).如图,三个正比例函数的图像分别对应的解析式是 ①y=ax ② y=bx ③ y=cx,则a 、b 、c 的大小关系是( )A.a>b>cB.c>b>aC.b>a>cD.b>c>a巩固练习:1.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .y=-5xD .y=x2.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 3.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-34.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .以上都有可能5、已知正比例函数(12)y a x =-如果y 的值随x 的值增大而减小,那么a 的取值范圆是 。
正比例函数的练习题
正比例函数的练习题正比例函数是数学中一种重要的函数类型,它表示两个变量之间的关系成正比。
在本篇文章中,我们将介绍一些与正比例函数相关的练习题,帮助读者更好地理解和应用正比例函数。
练习题一:已知正比例函数y与x的关系式为y=kx(其中k为比例常数),且当x=2时,y=8。
求解该正比例函数的比例常数k,并在此基础上求出当x=5时,y的值。
解答:根据已知条件,我们可以得到下面的等式:8 = k * 2通过简单的计算,我们可以求得k的值:k = 8 / 2 = 4接下来,代入求得的k值计算y的值:y = 4 * 5 = 20因此,当x=5时,y的值为20。
练习题二:设某公司用电量与所生产产品数量成正比,已知当生产100个产品时,用电量为800度。
求解该正比例函数的表达式,并根据该表达式回答以下问题:1) 生产200个产品所需要的电量是多少度?2) 电量为1200度时,可以生产多少个产品?解答:根据已知条件,我们可以得到等式:800 = k * 100通过简单计算,我们可以求得k的值:k = 800 / 100 = 8因此,该正比例函数的表达式为y=8x。
接下来,我们可以根据表达式回答问题:1) 当生产200个产品时,所需电量可以通过代入x=200计算得出:y = 8 * 200 = 1600度因此,生产200个产品所需要的电量为1600度。
2) 当电量为1200度时,可以通过代入y=1200计算得出:1200 = 8x解方程可得:x = 1200 / 8 = 150因此,电量为1200度时,可以生产150个产品。
练习题三:某自行车商店售卖的自行车和销售数量呈正比。
已知当销售15辆自行车时,利润为3000元。
求解该正比例函数的比例常数,进而求解当销售20辆自行车时的利润。
解答:根据已知条件,我们可以得到等式:3000 = k * 15通过简单计算,我们可以求得k的值:k = 3000 / 15 = 200因此,该正比例函数的表达式为y=200x。
八年级数学(下)《正比例函数》检测题(含答案)
八年级数学(下)《正比例函数》检测题(含答案)一、选择题(每小题4分,共12分)1.正比例函数y=2x的图象所过的象限是( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.函数y=2x,y=-3x,y=-x的共同特点是( )A.图象位于同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图象都过原点3.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是( )A.k<1B.k>1C.k≤1D.k≥1二、填空题(每小题4分,共12分)4.(2013·钦州中考)请写出一个图象经过第一、三象限的正比例函数的解析式.5.(2012·上海中考)已知正比例函数y=kx(k≠0),点(2,-3)在函数图象上,则y随x的增大而(增大或减小).6.在正比例函数y=(m-8)x中,如果y随自变量x的增大而减小,那么正比例函数y=(8-m)x的图象在第象限.三、解答题(共26分)7.(8分)已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤,且y随x的减小而减小,求k的值.8.(8分)已知函数y=(m-1)x|m|-2,当m为何值时,正比例函数y随x的增大而增大?【拓展延伸】9.(10分)正比例函数y=2x的图象如图所示,点A的坐标为(2,0),y=2x的函数图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.答案解析1.【解析】选A.∵正比例函数y=2x中,k=2>0,∴此函数的图象经过第一、三象限.2.【解析】选D.三个函数都是正比例函数,图象都是过原点的直线,而y=2x与其他两个函数的比例系数的符号不同,所以它们经过的象限及增减性有所不同.3.【解析】选B.∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.4.【解析】设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过第一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).答案:y=x(答案不唯一)5.【解析】∵点(2,-3)在正比例函数y=kx(k≠0)的图象上,∴2k=-3, 解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小.答案:减小6.【解析】因为在正比例函数y=(m-8)x中,y的值随自变量x的增大而减小,所以m-8<0,所以8-m>0,所以函数y=(8-m)x的图象在第一、三象限.答案:一、三7.【解析】∵y随x的减小而减小,∴k>0,则有x=-3时,y=-1;x=1时,y=,所以点(-3,-1),(1,)在函数y=kx(k是常数,k≠0)的图象上,所以-1=k·(-3),所以k=.8.【解析】因为此函数是正比例函数,所以|m|-2=1,所以m=±3,因为正比例函数y随x的增大而增大,所以m-1>0,所以m=-3不合题意,应舍去.所以m=3时,正比例函数y随x的增大而增大.9.【解析】因为点A的坐标为(2,0),所以OA=2, 设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n,y=m=4代入y=2x,得4=2n, 所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n,y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4),综上所述,存在点P的坐标为(2,4)或(-2,-4).。
完整版)正比例函数练习题及答案
完整版)正比例函数练习题及答案XXX正比例函数题姓名:____________________ 家长签字:____________________ 得分:____________________ 一.选择题(每小题3分,共30分。
)1.下列函数表达式中,y是x的正比例函数的是()A。
y=﹣2x2B。
y=1/xC。
y=x+2D。
y=x﹣22.若y=x+2b是正比例函数,则b的值是()A。
0B。
﹣2C。
2D。
1/23.若函数y=mx是关于x的正比例函数,则常数m的值等于()A。
±2B。
﹣2C。
0.5D。
24.下列说法正确的是()A。
圆面积公式S=πr2中,S与r成正比例关系B。
三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C。
y=x2中,y与x成反比例关系D。
y=x+1中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A。
正方形周长y(厘米)和它的边长x(厘米)的关系B。
圆的面积y(平方厘米)与半径x(厘米)的关系C。
如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D。
一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)|x|﹣2是正比例函数,则m值为()A。
3B。
﹣3C。
±3D。
不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A。
k=2B。
k≠2C。
k=﹣2D。
k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A。
1B。
2C。
3D。
49.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A。
k1<k2<k3<k4B。
k2<k1<k4<k3C。
k1<k2<k4<k3D。
k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A。
正比例函数练习题
正比例函数练习题正比例函数是数学中一个非常重要的概念,它描述了两个变量之间的线性关系,其中自变量的增加会导致因变量以相同的比例增加。
正比例函数的一般形式是 y = kx,其中 k 是一个常数,称为比例常数,x 是自变量,y 是因变量。
下面是一些正比例函数的练习题,这些练习题将帮助你更好地理解和应用正比例函数的概念。
练习题1:确定函数 y = 3x 是否为正比例函数,并说明理由。
练习题2:如果一个正比例函数的图象经过点 (2,6),求出这个函数的解析式。
练习题3:已知正比例函数 y = kx,当 x = 5 时,y = 10。
求出比例常数 k 的值。
练习题4:一个物体从静止开始,以匀速直线运动,经过 4 秒后,移动了 20 米。
求出物体的速度,并用正比例函数表示物体的位移与时间的关系。
练习题5:一个正比例函数的图象经过点 (-1, -2),求出这个函数的解析式。
练习题6:如果一个正比例函数的图象与坐标轴围成的三角形面积为6,且图象经过原点,求出比例常数 k 的值。
练习题7:已知一个正比例函数的图象经过点 (-3, 6),求出这个函数的解析式,并判断该图象是否经过原点。
练习题8:一个正比例函数的图象经过点 (1, -2) 和 (-2, 4),求出比例常数 k 的值,并写出函数的解析式。
练习题9:已知一个正比例函数的图象经过点 (3, 9) 和 (-1, -3),求出比例常数 k 的值。
练习题10:一个正比例函数的图象经过点 (1, 2) 和 (2, 4),求出这个函数的解析式。
练习题11:已知一个正比例函数的图象与 x 轴的交点为 (4, 0),求出比例常数 k 的值。
练习题12:一个正比例函数的图象与 y 轴的交点为 (0, -3),求出比例常数 k 的值,并写出函数的解析式。
练习题13:已知一个正比例函数的图象经过点 (2, 8) 和 (-2, -8),求出这个函数的解析式。
练习题14:一个正比例函数的图象与 x 轴的交点为 (-5, 0),求出比例常数 k 的值。
人教版数学八年级下册19.2.1《正比例函数》精选练习 (含答案)
19.2.1《正比例函数》精选练习一、选择题1.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高2.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.53.已知是正比例函数,则m的值是( )A.8B.4C.±3D.34.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-125.下列式子中,表示y是x的正比例函数的是()A.y=x2B.C.D.y2=3x6.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是()A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限7.正比例函数y=kx(k>0)的图象大致是()A. B. C. D.8.正比例函数y=kx的图象如图所示,则k的值为( )A. B. C. D.9.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A. B. C. D.10.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线D.它的图象经过第一、三象限11.在正比例函数y=–3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在y=(k+1)x+k 2-1中,若y 是x 的正比例函数,则k 值为( )A.1B.-1C.±1D.无法确定二、填空题13.已知函数y=(m ﹣1)x+m 2﹣1是正比例函数,则m=_____.14.若是正比例函数,则(a-b)2020的值是________.15.已知y 与x 成正比例,并且x=-3时,y=6,则y 与x 的函数关系式为________.16.若k>0,x>0,则关于函数y=kx 的结论:①y 随x 的增大而增大;②y 随x 的增大而减小;③y 恒为正值;④y 恒为负值.正确的是________.(直接写出正确结论的序号)17.已知正比例函数y=kx(k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤31,且y 随x 的减小而减小,则k 的值为________.18.已知正比例函数的图像经过点M(-2,1)、A(x 1,y 1)、B(x 2,y 2),如果x 1<x 2,那么y 1____y 2.(填“>”、“=”、“<”)三、解答题19.已知y 与x 成正比例函数,当x=1时,y=2.求:(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)如果当y 的取值范围是0≤y ≤5,求x 的取值范围.20.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a ,8),求点A 的坐标.21.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.23.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.24.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.参考答案1.答案为:C2.答案为:C3.答案为:D4.答案为:B5.答案为:C6.答案为:A7.答案为:D8.答案为:B9.答案为:C10.答案为:B11.答案为:B12.答案为:A13.答案为﹣1.14.答案为:1.15.答案为:y=-2x.16.答案为:①③.17.答案为:18.答案为:>.19.解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=-1时,y=2×(-1)=-2;(3)∵0≤y≤5,∴0≤x≤5,解得:0≤x≤2.5;20.解:(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).21.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则-2k=4或-2k=-4,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.22.解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.23.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.24.解:(1)正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA+1,OD=3∴C(3,2),将C(3,2)代入y=kx中,得3k=2,解得.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,.将代入y=kx中,得,解得,∴k值不会发生变化.。
【初中数学】人教版八年级下册第1课时 正比例函数的概念(练习题)
人教版八年级下册第1课时正比例函数的概念(356) 1.已知z=m+y,m是常数,y是x的正比例函数.当x=2时,z=1;当x=3时,z=−1,求z与x之间的函数解析式2.若y=x+2−b是正比例函数,则b的值是()A.0B.−2C.2D.−0.53.已知y=(m+1)x m2,若y是x的正比例函数,则m的值为()A.1B.−1C.1,−1D.04.已知函数y=(3m+9)x2+(2−m)x是关于x的正比例函数,求m的值5.若y与x成正比例,x与z成正比例,试证:y与z也成正比例.6.已知y=(k−3)x+k−9是关于x的正比例函数.求当x=−4时,y的值7.下列四个实际问题中的两个变量之间的关系,属于正比例函数关系的是()A.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系B.某梯形的下底长为5cm,高为3cm,上底长为xcm(0<x<5),则梯形的面积S与上底长x之间的函数关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一场电影票价(元/张)一定时,该场电影票房收入m(元)与出售票数n(张)之间的关系8.高新开发区某企业生产的产品每件出厂价为50元,成本价为25元,另外在生产过程中,平均每生产一件产品有0.5m3污水排出,为了绿色环保达到排污标准,工厂将污水排到污水厂统一处理,每处理1m3污水的费用为14元,设工厂每月生产x件产品,每月利润为y元,y与x成正比例吗?如果成正比例,那么求出这个比例系数9.下列函数关系中,属于正比例函数关系的是()A.圆的面积S与它的半径rB.面积是常数S时,长方形的长y与宽xC.路程是常数s时,行驶的速度v与时间tD.三角形的底边长是常数a时,它的面积S与这条边上的高ℎ10.下列关系式中,表示y是x的正比例函数的是()A.y=6x B.y=x6C.y=x+1D.y=2x2参考答案1.【答案】:解:设y =kx ,则z =m +kx ,根据题意,得{m +2k =1,m +3k =−1,解得{k =−2,m =5,所以z 与x 之间的函数解析式为z =−2x +5.2.【答案】:C【解析】:当2−b =0时,y =x +2−b 是正比例函数,此时b 的值是2.3.【答案】:A【解析】:y =(m +1)x m 2中,若y 是x 的正比例函数,则m 2=1,且m +1≠0,∴m =1.4.【答案】:解:∵函数y =(3m +9)x 2+(2−m)x 是关于x 的正比例函数, ∴3m +9=0,2−m ≠0,解得m =−3.5.【答案】:证明:∵y 与x 成正比例,∴设y =k 1x ,∵x 与z 成正比例,∴设x =k 2z ,∴y =k 1k 2z ,即y 与z 成正比例.6.【答案】:解:当k −9=0,且k −3≠0时,y 是x 的正比例函数, 故k =9时,y 是x 的正比例函数,∴y =6x ,当x =−4时,y =6×(−4)=−247.【答案】:D8.【答案】:解:y与x成正比例,y=50x−25x−0.5×14x=18x,比例系数为18.9.【答案】:D10.【答案】:B。
八年级数学(下)第十九章《正比例函数》同步练习题(含答案)
八年级数学(下)第十九章《正比例函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数y=(k-1)2k x为正比例函数,则A.k≠±1B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1,故选C.2.若y=x+2-b是正比例函数,则b的值是A.0 B.-2 C.2 D.-0.5【答案】C【解析】因为y=x+2-b是正比例函数,所以2-b=0,所以b=2,故选C.3.下列问题中,两个变量成正比例的是A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长【答案】D【解析】A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确,故选D.4.关于函数y=2x,下列结论中正确的是A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图象不经过(2,1),故错误;B:k=2>0,∴函数图象经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误,故选C.5.正比例函数y=(k-3)x的图象经过一、三象限,那么k的取值范围是A.k>0 B.k>3 C.k<0 D.k<3【答案】B【解析】由正比例函数y=(k-3)x的图象经过第一、三象限,可得:k-3>0,则k>3,故选B.6.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随x的增大而增大,∴-3m>0,解得m<0,∴P(m,5)在第二象限,故选B.7.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y=kx(k≠0)中得,k=2>0,∴函数图象经过原点,且经过第一、三象限,故选C.8.如图,三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】首先根据图象经过的象限,得a>0,b>0,c<0,再根据直线越陡,|k|越大,则b>a>c.故选C.二、填空题:请将答案填在题中横线上.9.已知正比例函数y =(4m +6)x ,当m __________时,函数图象经过第二、四象限.【答案】<-1.5【解析】∵函数经过第二、四象限,∴4m +6<0,即m <-1.5,故答案为:m <-1.5.10.已知直线y =(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是__________.【答案】m >23【解析】∵直线y =(2-3m )x 经过点A (11x y ,)、B (22x y ,),当12x x <时,有12y y >,∴此函数是减函数,∴2-3m <0,解得m >23,故答案为:m >23. 三、解答题:解答应写出文字说明、证明过程或演算步骤.11.已知y =(k -3)x +2k -9是关于x 的正比例函数,求当x =-4时,y 的值.【解析】当290k -=且30k -≠时,y 是x 的正比例函数,故当k =-3时,y 是x 的正比例函数,∴6y x =-,当x =-4时,y =-6×(-4)=24.12.已知4y +3m 与2x -5n 成正比例,证明:y 是x 的一次函数.【解析】由题意,设4y +3m =k (2x -5n )(k ≠0), ∴1(35)24k y x m kn =⋅-+. ∵k 是不为0的常数.∴2k ,1(35)4m kn -+为常数,且02k ≠, ∴y 是x 的一次函数.13.已知正比例函数y =(2m +4)x ,求:(1)m 为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【解析】(1)∵函数图象经过第一、三象限,∴2m +4>0,∴m >-2.(2)∵y 随x 的增大而减小,∴2m +4<0,∴m <-2.(3)依题意得(2m+4)×1=3,解得12m=-.14.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【解析】(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为-2,点A的坐标为(3,-2),∵正比例函数y=kx经过点A,∴3k=-2解得k=-23,∴正比例函数的解析式是y=-23 x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5,∴点P的坐标为(5,0)或(-5,0).。
【初中数学】人教版八年级下册第1课时 正比例函数的概念(练习题)
人教版八年级下册第1课时正比例函数的概念(179)1.某衡器厂生产的RGZ−120型体重天平,最大称重120kg,在体检时可看到显示盘.已知指针顺时针旋转角度x(度)与体重y(kg)有如下关系:(1)若y与x之间是正比例函数关系,求函数解析式并指出自变量的取值范围;(2)当指针旋转到158.4度的位置时,显示盘上体重读数看不清,请用函数解析式求出此时的体重.2.三角形的一边长为6,该边上的高为x,则三角形的面积S与x之间的函数解析式为.3.已知y与x成正比例,且x=2时y=−6.(1)求y与x之间的函数解析式;(2)求x=−23时y的值;(3)求x为何值时y=9.4.下列说法中不正确的是()A.在y=3x−1中,y+1与x成正比例B.在y=−x2中,y与x成正比例C.在y=2(x+1)中,y与x+1成正比例D.在y=x+3中,y与x成正比例5.如果关于x的函数y=(m−2)x+m2−4是正比例函数,那么m的值是()A.2B.−2C.±2D.任意实数6.下列关系中,是正比例函数关系的是()A.矩形的面积一定,长和宽的关系B.正方形的面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度一定时,路程和时间的关系7.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+128.如果y=x+2a−1是正比例函数,那么a的值是()A.12B.0 C.−12D.−29.下列函数中,哪些是正比例函数?并指出正比例函数的比例系数.①y=2x;②y=3x ;③y=−2x3;④y=(√5−1)x;⑤y=−x2+1;⑥y=−(a2+4)x−6.参考答案1(1)【答案】y =2572x ,自变量的取值范围为0≤x ≤345.6【解析】:用待定系数法求正比例函数解析式,由题意可知,最大称重为120kg ,当y =120时,x =345.6,则自变量的取值范围为0≤x ≤345.6.(2)【答案】当x =158.4时,y =2572×158.4=55.即当指针旋转到158.4度的位置时,体重为55kg .【解析】:将x =158.4带入(1)中解析式,求出对应函数值.2.【答案】:S =3x【解析】:由三角形的面积公式可得S =12×6x ,即S =3x3(1)【答案】y =−3x【解析】:设正比例函数为y =kx ,当x =2时y =−6,则k =−3.(2)【答案】当x =−23时,y =−3×(−23)=2(3)【答案】当y =9时,−3x =9,所以x =−34.【答案】:D【解析】:根据正比例函数的定义,形如y =kx(k ≠0)的函数是正比例函数. y =3x −1可转化为y +1=3x ,把y +1看成一个整体,则y +1与x 成正比例; y =−x 2中,k =−12,所以y 与x 成正比例; 在y =2(x +1)中,把x +1看作一个整体时k =2,所以y 与x +1成正比例; 在y =x +3中,把x +3看作一个整体时k =1,所以y 与x +3成正比例. 综上可知D 项的说法不正确.故选 D5.【答案】:B【解析】:根据正比例函数的定义,知m 2−4=0且m −2≠0,所以m =−2.故选B6.【答案】:D【解析】:路程=速度×时间,速度一定时,路程是时间的正比例函数.故选 D7.【答案】:C【解析】:根据正比例函数的定义可知C项正确.8.【答案】:A【解析】:∵y=x+2a−1是正比例函数,.∴2a−1=0,解得a=12故选 A9.【答案】:①是正比例函数,比例系数是2;②不是正比例函数;③是正比例;④是正比例函数,比例系数为√5−1;⑤不是正比例函函数,比例系数是−23数;⑥不是正比例函数.【解析】:考查正比例函数的定义.。
正比例函数练习题
正比例函数练习题一、选择题1. 正比例函数的一般形式是()A. y = kx + bB. y = kxC. y = k/xD. y = x^k2. 如果正比例函数y = 2x,当x增加1时,y的值将()A. 增加2B. 减少2C. 不变D. 增加13. 正比例函数的图象是一条()A. 垂直线B. 水平线C. 抛物线D. 直线4. 当k > 0时,正比例函数y = kx的图象在坐标平面的()A. 第一象限和第二象限B. 第一象限和第三象限C. 第二象限和第四象限D. 第三象限和第四象限5. 下列哪个选项不是正比例函数?A. y = 3xB. y = -5xC. y = x^2D. y = 2/x二、填空题6. 正比例函数y = kx中,k的值决定了图象的_________。
7. 如果正比例函数y = kx的图象经过点(1,3),则k的值为_______。
8. 当k < 0时,正比例函数y = kx的图象将经过坐标平面的_______象限。
三、解答题9. 已知正比例函数y = 4x,求当x = 5时,y的值。
10. 假设正比例函数y = kx的图象经过点(-2,6),求k的值,并描述该函数的增减性。
11. 给定正比例函数y = kx,如果图象经过原点,说明k的值是多少?12. 某物体在直线运动中,其速度v与时间t成正比,即v = kt。
若物体在前2秒内移动了4米,求速度v与时间t的比例系数k。
四、应用题13. 某工厂生产产品,每件产品的成本是固定的,设为c元。
如果生产n件产品,总成本为C元。
请写出总成本与产品数量之间的函数关系,并解释该函数的性质。
14. 某公司销售产品,每件产品的利润是固定的,设为p元。
如果销售m件产品,总利润为P元。
请根据正比例函数的性质,解释为什么在不考虑其他因素的情况下,增加销售量可以增加总利润。
15. 已知正比例函数y = kx的图象经过点(3,-6),求k的值,并根据k的值判断该函数的增减性。
八年级数学:正比例函数练习(含解析)
八年级数学:正比例函数练习(含解析)1.下列函数中,是正比例函数的是( A )①y =-x 6;②y =3x;③y =1+5x ;④y =x 2-5x ;⑤y =2x . A .①⑤B .①②C .③⑤D .②④ 解析:②中y =3x关于自变量x 的式子不是整式;③中y =1+5x 不符合y =kx (k 是常数,k ≠0)的形式;④中y =x 2-5x 关于自变量x 的式子不是一次单项式,所以②③④都不是正比例函数,而①⑤符合正比例函数y =kx (k 是常数,k ≠0)的定义条件,是正比例函数.故选A.2.下列问题中,两个变量成正比例的是( B )A .圆的面积S 与它的半径rB .正方形的周长C 与它的边长aC .三角形面积S 一定时,它的底边a 和底边上的高hD .路程s 不变时,匀速通过全程所需要的时间t 与运动的速度v解析:A.圆的面积S =πr 2,S 与r 不成正比例.故本选项错误;B.正方形的周长C =4a ,C 与a 成正比例,故本选项正确;C.三角形面积S 一定时,它的底边a 和底边上的高h 的关系为S =12ah ,即a =2S h,a 与h 不成正比例,故本选项错误;D.路程为s ,则依题意得s =vt ,则v 与t 的关系为v =s t ,t 与v 不成正比例,故本选项错误.故选B.3.函数y =-32x 的比例系数是-32,当y =75时,x =-50. 解析:函数y =-32x 的比例系数是-32, 当y =75时,75=-32x ,解得x =-50. 4.梯形的上底是3 cm,下底是5 cm,则梯形的面积y (cm 2)与高x (cm)之间的函数关系式是y =4x ,自变量x 的取值范围是x >0.解析:y =12×(3+5)x =4x .5.如图,一个矩形推拉窗,窗高1.5 m,则活动窗扇的通风面积A (m 2)与拉开长度b (m)的关系式是A =1.5b .6.邮购某种图书,每册定价为20元,另加图书总价的5%作邮费,当购书x 册时,需付款y 元,则y 与x 之间的函数关系式为y =21x ,当购书5册时,需付款105元.解析:y =20x ·(1+5%)=21x .当x =5时,y =105.7.已知关于x 的函数y =(3-k )x -2k 2+18为正比例函数,求k 的值.解:因为这个函数是正比例函数,所以⎩⎨⎧ 18-2k 2=0,3-k ≠0.解得k =-3,所以k 的值为-3.8.已知y -3与x 成正比例,且x =2时,y =7.(1)写出y 与x 之间的函数关系式;(2)当x =4时,求y 的值;(3)当y =4时,求x 的值.解:(1)因为y -3与x 成正比例,所以设y 与x 之间的函数关系式为y -3=kx ,把x =2,y =7代入y -3=kx 中,得7-3=2k ,所以k =2,所以y 与x 之间的函数关系式为y -3=2x ,即y =2x +3.(2)当x =4时,y =2×4+3=11.(3)当y =4时,y =2x +3=4,x =12.9.一个小球由静止开始沿如图所示的斜坡向下滚动,其滚动速度每秒增加310m,到达坡底时,小球的速度达到6 m/s.(1)求小球的速度v(m/s)与时间t(s)之间的函数关系式,如果这个函数是正比例函数,指出比例系数;(2)求t的取值范围;(3)求当t=4时小球的速度.解:(1)v=310t,这个函数是正比例函数,比例系数为310.(2)∵6 310=20,∴t的取值范围是0≤t≤20.(3)当t=4时,小球的速度为310×4=1.2(m/s).10.设有三个变量x,y,z,且y是x的正比例函数,x是z的正比例函数,若x=5时,y=7.5,z =4.(1)求y与z之间的函数表达式,并判断是否为正比例函数;(2)当z=8时,求y的值.解:(1)设y=k1x,把x=5,y=7.5代入,得7.5=5k1,解得k1=32,∴y=32x.设x=k2z,把x=5,z=4代入,得5=4k2,解得k2=54,∴x=54z,∴y与z之间的函数表达式为y=32×⎝⎛⎭⎪⎫54z=158z,y是z的正比例函数.(2)当z=8时,y=158×8=15.。
八年级数学:正比例函数练习(含解析)
八年级数学:正比例函数练习(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a ,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,Q 当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,Q 当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,Q 当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,Q 当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误. 故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx ,得:1=−2k , ∴k=﹣12, ∴y=﹣12x , 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限, ∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx ,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx ,将点(-2,1)代入y=kx 中,得:1=-2k ,解得:k=-12, ∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)Q 正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。
八年级数学正比例函数测试题
八年级数学《正比例函数》测试题班级姓名一、填空题(每小题2分,共20分)1、已知正比例函数y=2x,当x=3时,函数值y=。
2、已知正比例函数,当y=-3时,自变量x的值是。
3、已知正比例函数y=kx,当自变量x的值为-4时,函数值y=20,则比例系数k=。
4、大连市区与庄河两地之间的距离是160km,若汽车以每小时80km的速度匀速从庄河开往大连,则汽车距庄河的路程s(km)与行驶的时间t(h)之间的函数关系式为.5、已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式是。
6、函数y=2x-1x-1中自变量x的取值范围是。
7如果函数y=2mx+3-m是正比例函数,则m=。
8、已知正比例函数y=(1-2a)x如果y的值随x的值增大而减小,那么a的取值范圆是。
9、结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是。
10、若x,y是变量,且函数y=(k+1)x k2是正比例函数,则k=。
二、选择题(每小题3分,共18分)11、下列函数中,y是x的正比例函数的是()2x中y与x成正比例;2D、以上都不可能A.y=4x+1B.y=2x2C.y=-x D.y=12、已知函数y=-9x,则下列说法错误的是()A.函数图像经过第二,四象限。
B.y的值随x的增大而增大。
C.原点在函数的图像上。
D.y的值随x的增大而减小13、下列说法不成立的是()A、在y=3x-1中y+1与x成正比例B、在y=-1C、在y=2(x+1)中y与x+1成正比例;D、在y=x+3中y与x成正比例;14、若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A、m=-3B、m=1C、m=3D、m>-315、已知(x,y)和(x,y)是直线y=-3x上的两点,且x>x,则y与y的大小关系是()11221212A、y>yB、y<yC、y=y1212116.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高三、解答题(共62分)17、(6分)写出下列各题中x与y的关系式,并判断y是否是x的正比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学:正比例函数专题练习
知识点: 1.形如___________(k 是常数,k ≠0)的函数是正比例函数,其中k 叫 ,正比例函数都是常数与自变量的乘积的形式
2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx . 当k>0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________;
当k<0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________.
3.正比例函数的图像是经过坐标 点和定点__ __两点的一条 。
根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象. 例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.
例2:根据下列条件求函数的解析式
①y 与x 2成正比例,且x=-2时y=12.
②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.
选择题
1.下列关系中的两个量成正比例的是( )
A .从甲地到乙地,所用的时间和速度;
B .正方形的面积与边长
C .买同样的作业本所要的钱数和作业本的数量;
D .人的体重与身高 2.下列函数中,y 是x 的正比例函数的是( )
A .y=4x+1
B .y=2x 2
C .
.
3.下列说法中不成立的是( )
A .在y=3x-1中y+1与x 成正比例;
B .在y=-
2
x
中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 一 根据正比例函数解析式的特点求值
若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k 的值为?
如果y=x-2a+1是正比例函数,则a 的值为?
若y =(n-2)x ︳n ︳-1 ,是正比例函数,则n 的值为?
已知y=(k+1)x+k-5是正比例函数求k 的值.
若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )
已知函数y=(2m+1)x+m -3 若函数图象经过原点,求m 的值?
二 求正比例函数的解析式
点A (2,4)在正比例函数图象上,则这个正比例函数的解析式?
正比例函数图象过(-2,3),则这个正比例函数的解析式?
已知y 与x 成正比例,且x=2时y=-6,则y=9时x 的值是多少?.
三 正比例函数图象的性质
函数y=-7x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而 .
函数y=4x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而 .
正比例函数y=(m -1)x 的图象经过一、三象限,则m 的取值范围是
若正比例函数图像又y=(3k-6)x 的图像经过点A (x1,x2)和B (y1,y2),当x1<x2时, y1>y2,则k 的取值范围是
点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1与 y 2 的大小关系是?
已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是()
正比例函数y=(3m-1)x 的图像经过点A (x1,x2)和B (y1,y2),且该图像经过第二、四象限. (1)求m 的取值范围
(2)当x1>x2时,比较 y1与y2的大小,并说明理由.
探究题
在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).
如图,三个正比例函数的图像分别对应的解析式是 ①y=ax ② y=bx ③ y=cx,则a 、b 、c 的大小关系是
( )
A.a>b>c
B.c>b>a
C.b>a>c
D.b>c>a
巩固练习:1.下列函数中,y 是x 的正比例函数的是( )
A .y=4x+1
B .y=2x 2
C .y=-5x
D .y=x
2.下列说法中不成立的是( )
A .在y=3x-1中y+1与x 成正比例;
B .在y=-
2
x
中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 3.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-3
4.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .以上都有可能
5、已知正比例函数(12)y a x =-如果y 的值随x 的值增大而减小,那么a 的取值范圆是 。
6、结合正比例函数4y x =的图像回答:当1x >时,y 的取值范围是 。
7、若x ,y 是变量,且函数2
(1)k y k x =+是正比例函数,则k = 。
8、已知11(,)x y 和22(,)x y 是直线3y x =-上的两点,且12x x >,则1y 与2y 的大小关系是( ) A 、1y >2y B 、1y <2y C 、1y =2y D 、以上都不可能
9、在函数3y x =-的图像上取一点P ,过P 点作PA ⊥x 轴A 为垂足,己知P 点的横坐标为- 2,求ΔPOA 的面积(O 为坐标原点)。
10、为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y
(元)的关系如图所示。
(1)根据图像,请求出当050x ≤≤时,y 与x 的函数关系式。
(2)请回答:
当每月用电量不超过50kW ·h 时,收费标准是多少? 当每月用电量超过50kW ·h 时,收费标准是多少?
11.已知y+3和2x-1成正比例,且x=2时,y=1。
(1)写出y 与x 的函数解析式。
(2)当0≤x ≤3 时,y 的最大值和最小值分别是多少?
12.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.
(1)小明要买20个练习本,到哪个商店购买较省钱?
(2)写出甲、乙两个商店中,收款y (元)关于购买本数x (本)(x>10)的关系式,它们都是正比例函数吗?
(3)小明现有24元钱,最多可买多少个本子?
.
①
② ③。