云南省昆明市金诺学校2020-2021学年八年级(上)期中数学考试模拟试卷含答案
2020-2021昆明市云大附中八年级数学上期中第一次模拟试卷(带答案)

2020-2021昆明市云大附中八年级数学上期中第一次模拟试卷(带答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°3.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个 4.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124° 5.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 6.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠ 7.如图,ABC 是等腰直角三角形,BC 是斜边,将ABP 绕点A 逆时针旋转后,能与ACP '重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .33 8.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C9.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 10.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠ 11.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=- B .()ab ac d a b c d ++=++C .()2293x x -=- D .22()a b ab ab a b -=- 12.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.在代数式11,,52x x x +中,分式有_________________个. 16.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.17.当x =_____时,分式22x x -+的值为零. 18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.19.若11x y+=2,则22353x xy y x xy y -+++=_____ 20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-. 22.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 23.已知 a m =2,a n =4,a k =32(a≠0).(1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.24.先化简,再求值:21a a -+÷(a ﹣1﹣31a +),其中a =3﹣2. 25.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a ,h .求作:△ABC ,使AB=AC ,且∠BAC=∠α,高AD=h .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】先根据BC的垂直平分线交BD于点E证明△BFE≌△CFE(SAS),根据全等三角形的性∠=∠=∠,再根据三角形内角和定理即可得到质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:∵BC的垂直平分线交BD于点E,∴BF=CF,∠BFE=∠CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.3.C解析:C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.故选:B .【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 7.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:'=PP A .8.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A 中∠A+∠B=∠C ,即2∠C=180°,∠C=90°,为直角三角形,同理,B ,C 均为直角三角形, D 选项中∠A=2∠B=3∠C ,即3∠C +32∠C +∠C =180°,∠C =036011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.9.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.10.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字 解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】 解:15x +是整式,1x 是分式,2x 是整式,即分式个数为1, 故答案为:1【点睛】 本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母.16.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.17.2【解析】由题意得:解得:x=2故答案为2 解析:2【解析】由题意得:20{20xx-=+≠,解得:x=2. 故答案为218.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3 解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.19.【解析】【分析】由=2得x+y=2xy整体代入所求的式子化简即可【详解】=2得x+y=2xy则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想解析:3 11【解析】【分析】由11x y+=2,得x+y=2xy,整体代入所求的式子化简即可.【详解】11x y+=2,得x+y=2xy则22353x xy yx xy y-+++=22325xy xyxy xy⋅-⋅+=331111xyxy=,故答案为311. 【点睛】 本题考查了分式的基本性质,解题关键是用到了整体代入的思想.20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.11x +,2. 【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷- =2(1)(1)(1)(1)x x x x x x +-⋅-+ =11x +,当1x =时,原式=2. 考点:分式的化简求值.22.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)4(2)0【解析】【分析】(1)根据已知条件可得a 3m =23,a 2n =24,a k =25,再逆用同底数幂的乘除法法则计算即可; (2)由已知条件计算出a k-3m-n 的值,继而求得k-3m-n 的值.【详解】(1)∵a 3m =23,a 2n =42=24,a k =32=25,∴a 3m+2n-k=a 3m •a 2n ÷a k=23•24÷25=23+4-5=22=4;(2)∵a k-3m-n =25÷23÷22=20=1=a 0, ∴k-3m-n=0,即k-3m-n 的值是0.【点睛】本题考查同底数幂的乘除法,幂的乘方的性质,熟练掌握性质并灵活运用是解题的关键.24.原式=12a +=33. 【解析】【分析】 先计算括号内的运算,再计算分式的乘除,将a 的值代入即可.【详解】解:原式=()()113211a a a a a +---÷++ =22a 411a a a --÷++ =()()2a+11a+2a-2a a -⨯+ =1a+2, 当a =3﹣2时,原式=3=33-2+2 【点睛】 本题考查了分式的混合运算,掌握分式的运算法则是解题的关键.25.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
云南初二初中数学期中考试带答案解析

云南初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列说法错误的是()A.全等三角形的对应边相等B.全等三角形的角相等C.全等三角形的周长相等D.全等三角形的面积相等2.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cmB.2cm,3cm,5cmC.2cm,5cm,10cmD.8cm,4cm,4cm3.如图,已知△ABC与△DEF是全等三角形,则∠B=()A.∠F B.∠D C.∠DEF D.∠A4.如图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB的度数为()A.144°B.120°C.108°D.100°5.如图,在△ABC中,AB=AC,D、E两点在BC上,且有AD=AE,BD=CE.若∠BAD=30°,∠DAE=50°,则∠BAC的度数为()A.130° B.120° C.110° D.100°6.下列多边形中,内角和与外角和相等的是()A.四边形B.三角形C.五边形D.六边形7.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′8.等腰三角形的周长为16,其中一边长为6,则另两边长为()A.6和4B.5和5C.6和6D.6和4或5和5二、填空题1.从八边形的一个顶点出发可以引条对角线,八边形的对角线有条,八边形的内角和为.2.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.3.如图,PM=PN,∠BOC=30°,则∠AOB= .4.在△ABC中,∠A+∠B=90°,且∠A:∠B=1:2,则∠A= °.5.如图,将长方形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处,若△AFD的周长为9,△FCE的周长为3,则长方形ABCD的周长为.6.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.三、解答题1.求出下列图中x的值.2.按要求画图,用尺规画图,保留痕迹.(1)已知∠AOB,画∠A′O′C′=∠AOB;(2)画出∠AOB的角平分线OC.3.如图,已知AD、BC相交于点O,OA=OC,OB=OD.求证:∠A=∠C.4.如图,AD=CB,AF=BE,CF=DE,求证:△ADF≌△BCE.5.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.6.如图,在△ABC中,∠A=60°,DE∥BC且BD平分∠ABC,CD平分∠ACB,∠EDB=20°,求∠ABC和∠ACB 的度数.7.如图,在Rt△ABC中,∠C=90°,DE⊥AB垂足为点D,BC=BD,求证:DE=CE.(提示:连接BE)8.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.9.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.云南初二初中数学期中考试答案及解析一、选择题1.下列说法错误的是()A.全等三角形的对应边相等B.全等三角形的角相等C.全等三角形的周长相等D.全等三角形的面积相等【答案】B【解析】根据全等三角形的性质对各选项分析判断利用排除法求解.解:A、全等三角形的对应边相等,正确,故本选项错误;B、应为全等三角形的对应角相等,故本选项正确;C、全等三角形的周长相等,正确,故本选项错误;D、全等三角形的面积相等,正确,故本选项错误.故选B.【考点】全等图形.2.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cmB.2cm,3cm,5cmC.2cm,5cm,10cmD.8cm,4cm,4cm【答案】A【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.解:根据三角形任意两边的和大于第三边,可知A、2+3>4,能组成三角形,故A正确;B、2+3=5,不能组成三角形,故B错误;C、2+5<10,不能够组成三角形,故C错误;D、4+4=8,不能组成三角形,故D错误;故选A.【考点】三角形三边关系.3.如图,已知△ABC与△DEF是全等三角形,则∠B=()A.∠F B.∠D C.∠DEF D.∠A【答案】C【解析】根据全等三角形的对应角相等进行解答即可.解:∵△ABC≌△DEF,∴∠B=∠DEF,故选:C.【考点】全等三角形的性质.4.如图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB的度数为()A.144°B.120°C.108°D.100°【答案】C【解析】根据三角形内角和定理知,∠AMC==72°,再根据三角形的一个外角与它相邻的内互补,求∠AMB的度数.解:∵∠A=36°,∠C=∠AMC,∴∠AMC==72°,∴∠AMB=180°﹣72°=108°.故选C.【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.5.如图,在△ABC中,AB=AC,D、E两点在BC上,且有AD=AE,BD=CE.若∠BAD=30°,∠DAE=50°,则∠BAC的度数为()A.130° B.120° C.110° D.100°【答案】C【解析】根据题意可证△ABD≌△ACE(SSS),证得∠BAD=∠CAE=30°,即可求∠BAC的度数.解:∵△ABC中,AB=AC,AD=AE,BD=CE,∴△ABD≌△ACE,∴∠BAD=∠CAE=30°∴∠BAC=∠BAD+∠DAE+∠CAE=30°+50°+30°=110°故选C.【考点】全等三角形的判定与性质.6.下列多边形中,内角和与外角和相等的是()A.四边形B.三角形C.五边形D.六边形【答案】A【解析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选A.【考点】多边形内角与外角.7.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【答案】C【解析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选C.【考点】全等三角形的判定.8.等腰三角形的周长为16,其中一边长为6,则另两边长为()A.6和4B.5和5C.6和6D.6和4或5和5【答案】D【解析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.解:当腰长是6时,另外两边分别是6,4,因为符合三角形三边关系,故此时另两边是6,4;当底边是6时,另外两边是5c,5,因为符合三角形三边关系,故此时另两边是5,5.故选D.【考点】等腰三角形的性质;三角形三边关系.二、填空题1.从八边形的一个顶点出发可以引条对角线,八边形的对角线有条,八边形的内角和为.【答案】5,20,1080°.【解析】n边形的内角和是(n﹣2)•180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和;任何多边形的外角和是360度,与多边形的边数无关.n边形从一个顶点出发可引出(n﹣3)条对角线,n边形对角线的总条数为n(n﹣3).解:八边形的内角和为(8﹣2)•180°=1080°;外角和为360°.从八边形一个顶点出发可以画8﹣3=5条对角线,八边形共有×8×5=20条.故答案为:5,20,1080°.【考点】多边形的对角线;多边形内角与外角.2.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.【答案】2(b﹣c)【解析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)3.如图,PM=PN,∠BOC=30°,则∠AOB= .【答案】60°.【解析】根据角平分线性质的判定得出∠AOC=∠BOC,即可求出答案.解:∵PM⊥OA,PN⊥OB,PM=PN,∴∠AOC=∠BOC=30°,∴∠AOB=60°,故答案为:60°.【考点】角平分线的性质.4.在△ABC中,∠A+∠B=90°,且∠A:∠B=1:2,则∠A= °.【答案】30【解析】根据三角形的内角和定理列式计算即可得解.解:设∠A为x,∠B为2x,可得:x+2x=90°,解得:x=30°,故答案为:30【考点】三角形内角和定理.5.如图,将长方形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处,若△AFD的周长为9,△FCE的周长为3,则长方形ABCD的周长为.【答案】12.【解析】折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解:由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为9+3=12.故矩形ABCD的周长为12.故答案为:12.【考点】翻折变换(折叠问题).6.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.【答案】4<BC<20,2<AD<10.【解析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD 至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.三、解答题1.求出下列图中x的值.【答案】(1)x=100°;(2)x=70°.【解析】(1)根据四边形内角和定理,即可解答;(2)根据三角形内角和定理,即可解答.解:(1)如图为四边形,根据四边形内角和为360°可得x+x+10+90°+60°=360°,解得x=100°;(2)如图为三角形,根据三角形内角和为180°,可得:x+x+40°=180°解得:x=70°.【考点】多边形内角与外角;三角形内角和定理.2.按要求画图,用尺规画图,保留痕迹.(1)已知∠AOB,画∠A′O′C′=∠AOB;(2)画出∠AOB的角平分线OC.【答案】画图见解析【解析】(1)利用基本作图(作一个角等于已知角)画出∠A′O′C′;(2)利用基本作图(作已知角的平分线)画∠AOB的平分线即可得到OC.解:(1)如图(1),∠A′O′C′为所作;(2)如图(2),OC为所作.【考点】作图—基本作图.3.如图,已知AD、BC相交于点O,OA=OC,OB=OD.求证:∠A=∠C.【答案】证明见解析【解析】利用SAS证得△ABO≌△CDO,根据全等三角形的性质可得出结论.证明:在△ABO和△CDO中,∴△ABO≌△CDO(SAS),∴∠A=∠C.【考点】全等三角形的判定与性质.4.如图,AD=CB,AF=BE,CF=DE,求证:△ADF≌△BCE.【答案】证明见解析【解析】求出CE=DF,根据全等三角形的判定定理SSS推出即可.证明:∵CF=DE,∴CF+EF=DE+EF,∴CE=DF,在△ADF和△BCE中∴△ADF≌△BCE(SSS).【考点】全等三角形的判定.5.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】18°.【解析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.【考点】三角形内角和定理.6.如图,在△ABC中,∠A=60°,DE∥BC且BD平分∠ABC,CD平分∠ACB,∠EDB=20°,求∠ABC和∠ACB的度数.【答案】∠ABC=40°;80°.【解析】根据平行线的性质得到∠1=∠EDB=20°,由于BD平分∠ABC,于是得到∠ABC=2∠1=40°,然后根据三角形的内角和即可得到结论.解:∵DE∥BC,∴∠1=∠EDB=20°,∵BD平分∠ABC,∴∠ABC=2∠1=40°,∵∠A=60°,∴∠ACB=80°.【考点】等腰三角形的判定与性质;平行线的性质.7.如图,在Rt△ABC中,∠C=90°,DE⊥AB垂足为点D,BC=BD,求证:DE=CE.(提示:连接BE)【答案】证明见解析【解析】连结BE,则可利用“HL”证明Rt△BDE≌Rt△BCE,从而得到DE=CE.证明:连结BE,如图,∵DE⊥AB,∴∠BDE=90°,在Rt△BDE和△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴DE=CE.【考点】全等三角形的判定与性质.8.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.【答案】DE=2cm.【解析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S=AB•DE+AC•DF=28,△ABC即×20×DE+×8×DF=28,解得DE=2cm.【考点】全等三角形的判定与性质;三角形的面积;角平分线的性质.9.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.【答案】证明见解析【解析】求出∠BED=∠CFD=90°,根据AAS推出△BED≌△CFD,根据全等三角形的性质得出DE=DF,根据角平分线性质得出即可.证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴∠BAD=∠CAD.【考点】全等三角形的判定与性质;角平分线的性质.。
2020-2021八年级数学上期中模拟试卷(及答案)

2020-2021八年级数学上期中模拟试卷(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =13.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 4.计算()2x y xy x xy--÷的结果为( ) A .1yB .2x yC .2x y -D .xy - 5.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .26.如图,在△ABC 中,过点A 作射线AD ∥BC ,点D 不与点A 重合,且AD≠BC ,连结BD 交AC 于点O ,连结CD ,设△ABO 、△ADO 、△CDO 和△BCO 的面积分别为和,则下列说法不正确的是( )A .B .C .D .7.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠-D .a 1>且a 2≠ 8.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-9.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .610.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 11.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.当x =_____时,分式293x x -+的值为零. 14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 18.若226m n -=-,且3m n -=-,则m n + =____.19.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.三、解答题21.如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?22.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?23.已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)24.计算:(1)332111x x x x ⎛⎫-⋅ ⎪-⎝⎭. (2)224244x x x x x ---++. 25.解方程:214111x x x ++=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D 项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x ,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3.B解析:B【解析】【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B . 4.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===x yxy x xyxy x y x x y xy x x y x yx y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.5.A解析:A【解析】 试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A . 6.D解析:D【解析】【分析】根据同底等高判断△ABD 和△ACD 的面积相等,即可得到,即,同理可得△ABC 和△BCD 的面积相等,即. 【详解】∵△ABD 和△ACD 同底等高,,, 即△ABC 和△DBC 同底等高, ∴∴故A,B,C 正确,D 错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键. 7.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.8.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键.9.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.10.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480x -480+20x =4 故答案为:C .【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.11.A解析:A【解析】【分析】根据∠B =60°,AB =AC ,即可判定△ABC 为等边三角形,由BC =3,即可求出△ABC 的周长.【详解】在△ABC 中,∵∠B =60°,AB =AC ,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.12.B解析:B【解析】【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【详解】∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形,故选B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【解析】【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x的值.【详解】∵分式293xx-+的值为零,∴x2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.22【解析】【分析】底边可能是4也可能是9分类讨论去掉不合条件的然后可求周长【详解】试题解析:①当腰是4cm 底边是9cm 时:不满足三角形的三边关系因此舍去②当底边是4cm 腰长是9cm 时能构成三角形则解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。
2020-2021学年八年级数学上学期期中测试卷01(人教版)(含解析)

16.(2020·树德中学都江堰外国语实验学校期中)如图,AD 是△ABC 的角平分线,DE⊥ AC,垂足为 E,BF∥AC 交 ED 的延长线于点 F,若 BC 恰好平分∠ABF,AE=2BF.给出 下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是_____.
1
1
1
1
1
∴∠BA5C= ∠BA4C= ∠BA3C= ∠BA2C= ∠BA1C= ∠BAC=96°÷32=3°.
2
4
8
16
32
故选 A. 7.(2020·山西襄汾期末)把边长相等的正五边形 ABCDE 和正方形 ABFG,按照如图所示的 方式叠合在一起,连结 AD,则∠DAG=( )
A.18°
B.20°
10
D. 24
【解析】
∵∠BA1C+∠A1BC=∠A1CD,2∠A1CD=∠ACD=∠BAC+∠ABC, ∴2(∠BA1C+∠A1BC)=∠BAC+∠ABC,2∠BA1C+2∠A1BC=∠BAC+∠ABC. ∵2∠A1BC=∠ABC, ∴2∠BA1C=∠BAC. 同理,可得 2∠BA2C=∠BA1C,2∠BA3C=∠BA2C,2∠BA4C=∠BA3C,2∠BA5C=∠ BA4C,
()
A. 30
B. 45
C. 55
D. 60
11.(2020·山东沂水期末)如图,四边形 ABCD 中,AB=AD,点 B 关于 AC 的对称点 B′ 恰
好落在 CD 上,若∠BAD=110°,则∠ACB 的度数为(
)
A.40°
B.35°
C.60°
D.70°
12.(2019·山东临朐期末)如图,△ABC 中,AD 垂直 BC 于点 D,且 AD=BC,BC 上方有
2020~2021学年度第一学期八年级数学期中联考试题含答案

2020~2021学年度第一学期期中联考八年级数学试题满分:150分考试时间:120分钟一、选择题(本大题共10小题,每小题4分,共40分)1.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.以下列各组线段的长为边,能组成三角形的是()A.1cm、2cm、3cm B.1dm、5cm、6cmC.1dm、3cm、3cm D.2cm、4cm、7cm3.下列语句不是命题的是()A.两点之间线段最短B.不平行的两条直线有一个交点C.同位角相等D.如果x与y互为相反数,那么x与y的和等于0吗4.已知点A ( x ,4)与点B (3,y )关于y 轴对称,那么x + y 的值是()A.1 B.﹣7 C.7 D.-15.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.6.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()7.两条直线y =k 1x +b 1和y =k 2x +b 2相交于点A (-2,3),则方程组⎩⎨⎧=+-=+-002211b y x k b y x k 的解是( )A. ⎩⎪⎨⎪⎧x =2y =3B .⎩⎪⎨⎪⎧x =3y =2C.⎩⎪⎨⎪⎧x =-2y =3D.⎩⎪⎨⎪⎧x =3y =-2 8.如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 中点,过点E 作垂线交BC 于点F ,已知BC =10,△ABD 的面积为12,则EF 的长为( ) A .1.2B .2.4C .3.6D .4.8A 2(第8题图) (第9题图)9. 如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2,…,∠A 6BC 与∠A 6CD 的平分线相交于点A 7,得∠A 7,则∠A 7=_______( ) A .α32B .α64C .α128D .α25610.在一次函数y=-x+3的图像上取点P ,作PA ⊥x 轴,垂足为A ;作PB ⊥y 轴,垂足为B ;且矩形OAPB 的面积为2,则这样的点P 共有_______个.A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分)11.等腰三角形的一边长为 4cm ,一边长为 8cm ,则其周长是 . 12.若函数y =x +3x -2有意义,则x 的取值范围是 . 13.“直角三角形有两个角是锐角”这个命题的逆命题是____________________,它是一个________命题(填“真”或“假”).14.已知三角形的三个顶点都在以下表格的交点上,其中A (3,3),B (3,5),请在表格中确定C 点的位置,使S △ABC =1.写出符合点C的坐标。
云南省昆明市八年级上学期数学期中考试试卷

云南省昆明市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)今年9月4日至5日我国成功举办了G20杭州峰会,下列图形是部分成员国国旗,其中是轴对称图形的是()A .B .C .D .2. (2分)等腰三角形一边长是3cm,另一边长是8cm,则等腰三角形的周长是()A . 14cm或19cmB . 19cmC . 13cmD . 以上都不对3. (2分)小刚准备用自己节省的零花钱购买一台MP5来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x个月后小刚至少有280元,则可列计算月数的不等式为()A . 30x+50>280B . 30x-50≥280C . 30x-50≤280D . 30x+50≥2804. (2分)若关于x的不等式组的解集表示在数轴上如图所示,则这个不等式组的解集是()A . x≤2B . x>1C . 1≤x<2D . 1<x≤25. (2分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A .B .C .D .6. (2分)(2017·宿州模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C顺时针旋转得△A1B1C1 ,且点A1落在边AB边上,取BB1的中点D,连接CD,则CD的长为()A .B .C . 2D . 37. (2分)如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD 于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤S△BEC:S△BGC=.其中正确的结论是()A . ①②③B . ①④⑤C . ①②⑤D . ②④⑤8. (2分)以下可以用来说明命题“任何奇数都是3的倍数”是假命题的反例是()A . 9B . 7C . 8D . 159. (2分)如图,点A所表示的数是()A . 1.5B .C . 2D .二、填空题 (共5题;共5分)10. (1分) (2017七下·嵊州期中) 如图,请添加一个条件:________,使DE∥BC.11. (1分)某商品进价200元,标价300元,商场规定可以打折销售,但其利润不能低于5%,该商品最多可以________ 折.12. (1分)对于任意不相等的两个实数a,b,定义运算※如下:a※b= ,如2※1= .那么8※12=________.13. (1分) (2016八上·余姚期中) 等腰三角形的一腰上的高与另一腰的夹角是46°,则它的顶角是________14. (1分)(2020·松滋模拟) 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC =12,BC=13,则⊙O的半径是________.三、解答题 (共8题;共92分)15. (5分)(2017·新疆模拟) 解不等式组:.16. (6分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①,且∠α=65°,则∠1+∠2=________;(2)若点P在斜边AB上运动,如图②,探索∠α、∠1、∠2之间的关系,并说明理由.17. (15分) (2019八上·右玉期中) 已知△ABC为等边三角形,D为直线AC上一点,延长BC至E,使CE=AD,联结BD,DE.(1)如图(a),当D为边AC的中点时,求证:△BDE为等腰三角形.(2)如图(b),当点D在边AC上,但不是边AC的中点时,△BDE还是等腰三角形吗?如果是,请给予证明;如果不是,说明理由.(3)当点D在边AC的延长线上时,在图(c)中画出相应的图形,△BD E还是等腰三角形吗?请直接写出结论,不必证明.18. (15分) (2016八上·县月考) 为支持地方,大庆市萨尔图区、让胡路区、红岗区三地现分别有物资100吨、100吨、80吨,需全部运往肇东和肇源两地,根据需要情况,这批物资运往肇东的数量比运往肇源的数量的2倍少20吨。
2020-2021学年云南省昆明市十县区八年级(上)期中数学试卷 解析版

2020-2021学年云南省昆明市十县区八年级(上)期中数学试卷一、填空题(每小题3分,满分18分)1.点P(﹣2,3)关于x轴的对称点的坐标是.2.如图,为了使木门不变形,木工师傅在木门上加钉了一根木条,这样是利用三角形的.3.一个多边形的内角和是720°,这个多边形的边数是.4.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,使△ABC≌△DBE.(只需添加一个即可)5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.6.如图,在△ABC中,BC=9,AC=4,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为.二、选择题(每小题4分,满分32分)7.(4分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生8.(4分)以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4B.4,6,8C.5,6,12D.2,3,59.(4分)如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠OBC=∠OCB 10.(4分)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°11.(4分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点12.(4分)如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高13.(4分)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1B.C.2D.14.(4分)具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:4三、解答题(本大题共9小题,满分70分)15.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.已知:如图,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.解:∵BC∥EF(已知)∴∠ABC=()在△ABC与△DEF中AB=DE∴△ABC≌△DEF().∴∠C=∠F().16.(7分)一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.17.(6分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:AC∥DE.18.(7分)(1)已知:如图1,在△ABC中,请你按下列要求画图(“作图”不要求写作法,但要保留作图痕迹).①作∠CBA的角平分线BE,交AC于点E;②作BC边上的高AD,垂足为点D.(2)如图2,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在网格的格点上,请在网格中作△ABC关于直线l对称的△A1B1C1,并标注相应的字母.19.(8分)如图,在△ABC中,已知AD是△ABC的角平分线,DE是△ADC的高,∠B=60°,∠C=40°,求∠ADB和∠ADE的度数.20.(7分)如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B处的北偏东60°,求∠ACB是多少度?21.(10分)如图,已知:AB⊥BD,ED⊥BD,AB=CD,AC=CE.(1)AC与CE有什么位置关系?(2)请证明你的结论.22.(9分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.23.(10分)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值.2020-2021学年云南省昆明市十县区八年级(上)期中数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).2.如图,为了使木门不变形,木工师傅在木门上加钉了一根木条,这样是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.故答案为:稳定性.3.一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.4.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC或BE=BC或∠ACB=∠DEB,使△ABC≌△DBE.(只需添加一个即可)【分析】根据∠ABD=∠CBE可以证明得到∠ABC=∠DBE,然后根据利用的证明方法,“角边角”“边角边”“角角边”分别写出第三个条件即可.【解答】解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DEB.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)5.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为10°.【分析】根据直角三角形两锐角互余求出∠B,根据翻折变换的性质可得∠CA′D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵折叠后点A落在边CB上A′处,∴∠CA′D=∠A=50°,由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°.故答案为:10°.6.如图,在△ABC中,BC=9,AC=4,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为13.【分析】根据作图过程可得,MN是AB的垂直平分线,所以得AD=BD,进而可得△ACD 的周长.【解答】解:根据作图过程可知:MN是AB的垂直平分线,∴AD=BD,∴△ACD的周长=AD+DC+AC=BD+DC+AC=BC+AC=9+4=13.故答案为:13.二、选择题(每小题4分,满分32分)7.(4分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.8.(4分)以下列各组线段为边(单位:cm),能组成三角形的是()A.1,2,4B.4,6,8C.5,6,12D.2,3,5【分析】根据三角形两边之和大于第三边进行判断即可.【解答】解:在A选项中,1+2<4,不符合三角形的三边关系,故A不能;在B选项中,4+6>8,符合三角形的三边关系,故B能;在C选项中,5+6<12,不符合三角形的三边关系,故C不能;在D选项中,2+3=5,不符合三角形的三边关系,故D不能;故选:B.9.(4分)如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠OBC=∠OCB 【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项符合题意;B、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项不符合题意;C、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项不符号题意;D、∠OBC=∠OCB,即∠DBC=∠ACB,BC=CB,∠ABC=∠DCB,符合ASA定理,能推出△ABC≌△DCB,故本选项不符合题意;故选:A.10.(4分)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【分析】先根据平角求出∠ACE,再根据平行线的性质得出∠A=∠ACE,代入求出即可.【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.11.(4分)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【分析】直接根据角平分线的性质即可得出结论.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴要使凉亭到草坪三条边的距离相等,凉亭的位置应选在△ABC三条角平分线的交点.故选:C.12.(4分)如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、∵AE=DE,∴BE是△ABD的中线,正确;B、∵BD平分∠EBC,∴BD是△EBC的角平分线,正确;C、∵BD是△EBC的角平分线,∴∠EBD=∠CBD,∵BE是中线,∴∠EBD≠∠ABE,∴∠1=∠2=∠3不正确,符合题意;D、∵∠C=90°,∴BC是△ABE的高,正确.故选:C.13.(4分)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1B.C.2D.【分析】利用基本作图得到AG平分∠BAC,利用角平分线的性质得到G点到AC的距离为1,然后根据三角形面积公式计算△ACG的面积.【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.14.(4分)具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:4【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【解答】解:A、由∠A+∠B=∠C,可以推出∠C=90°,本选项不符合题意.B、由∠A=∠B=∠C,可以推出∠C=90°,本选项不符合题意.C、由∠A=2∠B=3∠C,推出∠A=()°,△ABC是钝角三角形,本选项符合题意.D、由∠A:∠B:∠C=1:3:4,可以推出∠C=90°,本选项不符合题意,故选:C.三、解答题(本大题共9小题,满分70分)15.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.已知:如图,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.解:∵BC∥EF(已知)∴∠ABC=∠DEF(两直线平行,同位角相等)在△ABC与△DEF中AB=DE∠ABC=∠DEFBC=EF∴△ABC≌△DEF(SAS).∴∠C=∠F(全等三角形的对应角相等).【分析】由于BC∥EF,所以∠ABC=∠DEF的根据是两直线平行,同位角相等,然后再根据已知条件,判定三角形全等,利用全等三角形的性质,求出∠C=∠F.【解答】解:∵BC∥EF(已知),∴∠ABC=∠DEF(两直线平行,同位角相等),在△ABC与△DEF中,AB=DE,∠ABC=∠E,BC=EF,∴△ABC≌△DEF(SAS),∴∠C=∠F(全等三角形的对应角相等).16.(7分)一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.【分析】(1)任意多边形的外角和均为360°,然后依据多边形的内角和公式列方程求解即可;(2)多边形的对角线公式为:.【解答】解:(1)设这个多边形的边数为n.根据题意得:180°×(n﹣2)=360°×3﹣180°,解得:n=7;(2)==14.答:(1)该多边形为七边形;(2)七边形共有14条对角线.17.(6分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:AC∥DE.【分析】证明△ABC≌△DFE(SAS),得出∠ACB=∠DEF即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DFE中,,∴△ABC≌△DFE(SAS),∴∠ACB=∠DEF,∴AC∥DE.18.(7分)(1)已知:如图1,在△ABC中,请你按下列要求画图(“作图”不要求写作法,但要保留作图痕迹).①作∠CBA的角平分线BE,交AC于点E;②作BC边上的高AD,垂足为点D.(2)如图2,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在网格的格点上,请在网格中作△ABC关于直线l对称的△A1B1C1,并标注相应的字母.【分析】(1)①利用尺规作出∠ABC的角平分线即可.②利用尺规作AD⊥CB于D即可.(2)分别作出A,B,C的对应点A1,B1,C1即可.【解答】解:(1)①如图1中,射线BE即为所求.②如图1中,线段AD即为所求.(2)如图2中,△A1B1C1即为所求.19.(8分)如图,在△ABC中,已知AD是△ABC的角平分线,DE是△ADC的高,∠B=60°,∠C=40°,求∠ADB和∠ADE的度数.【分析】在△ABC中,已知AD是△ABC的角平分线,DE是△ADC的高,∠B=60°,∠C=40°,求∠ADB和∠ADE的度数.【解答】解:∵在△ABC中,∠B=60°,∠C=40°,∴∠BAC=80°,∵AD是△ABC角平分线,∴∠BAD=∠DAC=∠BAC=40°,∴∠ADB=80°,∵DE是△ADC的高线,∴∠DEA=90°,∴∠ADE=50°.20.(7分)如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B处的北偏东60°,求∠ACB是多少度?【分析】先根据题意得出∠BAC的度数,由AE∥DB可得出∠DBA的度数,进而可得出∠ABC的度数,最后根据三角形内角和定理即可求出∠ACB的度数.【解答】解:根据题意,得∠BAE=45°,∠CAE=30°,∠DBC=60°,∴∠BAC=∠BAE+∠CAE=45°+30°=75°.∵AE∥DB,∴∠DBA=∠BAE=45°,∴∠ABC=∠DBC﹣∠DBA=60°﹣45°=15°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣15°﹣75°=90°.故∠ACB为:90°.21.(10分)如图,已知:AB⊥BD,ED⊥BD,AB=CD,AC=CE.(1)AC与CE有什么位置关系?(2)请证明你的结论.【分析】(1)根据题意写出结论即可.(2)由条件可证明Rt△ABC≌Rt△CDE,得到∠ECD=∠A,进一步可得∠ECA=90°,可证得结论.【解答】解:(1)AC⊥CE.(2)证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL),∴∠A=∠ECD,∵∠A+∠ACB=90°,∴∠ECD+∠ACB=90°,∴∠ACE=90°,∴AC⊥CE.22.(9分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【解答】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.23.(10分)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=12厘米;②BP=4t厘米;③CP=(16﹣4t)厘米;④CQ=at厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值.【分析】(1)根据速度与时间可得路程BP和CQ,根据边长和中点定义可得BD和CP 的长;(2)根据∠B=∠C,可知:分两种情况:①若△DBP≌△QCP,②若△DBP≌△PCQ,根据全等三角形对应边相等列方程组可得结论.【解答】解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴.,综上所述,a的值为6、t的值为2或a的值为4、t的值为1.故答案为:12,4t,(16﹣4t),at.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有
.(填序号)
A.6
B.12
C.16
D.32
12.如图,在等边△ABC 中,BD 平分∠ABC 交 AC 于点 D,点 E、F 分别是线段 BD,BC 上的动点,则 CE+EF 的最
小值等于(
)
A.BD
第1页共3页
B.CD
C.CE
D.AC
13.如图,在△OAB 和△OCD 中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接 AC,BD 交于点 M, 16.(7 分)如图,在△ABC 中,∠B=40°,∠C=60°,点 D,E 分别在边 BC,AC 上,且 DE∥AB.若∠CAD=
3.【答案】B 【解答】解:∵∠AOB=∠COD=40°, ∴∠AOB+∠AOD=∠COD+∠AOD, 即∠AOC=∠BOD,
在△AOC 和△BOD 中,
,
∴△AOC≌△BOD(SAS), ∴∠OCA=∠ODB,AC=BD,①正确; ∴∠OAC=∠OBD, 由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD, ∴∠AMB=∠AOB=40°,②正确; 作 OG⊥MC 于 G,OH⊥MB 于 H,如图 2 所示: 则∠OGC=∠OHD=90°,
形的底边长为(
)
A.7
B.7 或 11
C.11
D.7 或 10
9.下列运算正确的(
)
A.3m3﹣2m2=m
C.(﹣2a﹣b)(2a+b)=4a2﹣b2
B.2m2•m3=2m5 D.(﹣2x2y3)2=4x4y5
10.如图,七边形 ABCDEFG 中,AB、ED 的延长线交于点 O,若∠1、∠2、∠3、∠4 对应的邻补角和等于 225°,
第2页共3页
18.(7 分)如图所示,D 为△ABC 的边 AB 的延长线上一点,过 D 作 DF⊥AC,垂足为 F,交 BC 于 E,且 BD=BE, 求证:△ABC 是等腰三角形.
19.(12 分)如图,△ABC 是边长为 6cm 的等边三角形,动点 P、Q 同时从 A、B 两点出发,分别沿 AB、BC 方向 匀速移动. (1)当点 P 的运动速度是 1cm/s,点 Q 的运动速度是 2cm/s,当 Q 到达点 C 时,P、Q 两点都停止运动,设运动 时间为 t(s),当 t=2 时,判断△BPQ 的形状,并说明理由;
A4B4=8B1A2=4,
A5B5=16B1A2=8,
…
9.【答案】B 【解答】解:∵3m3 和 2m2 不能合并,故选项 A 错误; ∵2m2•m3=2m5,故选项 B 正确; ∵(﹣2a﹣b)(2a+b)=﹣4a2﹣4ab﹣b2,故选项 C 错误; ∵(﹣2x2y3)2=4x4y6,故选项 D 错误;
12.【答案】A 【解答】解:如图,在 BA 上截取 BF'=BF, ∵△ABC 为等边三角形,BD 平分∠ABC, ∴EF=EF'. ∴CE+EF=CE+EF'≥CF'.
第 3页 共 8页
◎
第 4页 共 8页
当 CF'⊥AB 时,即 CF'=CH 时,CF'取最小值,此时 CF'=CH=BD. 即 CE+EF=CH=BD.
则∠BOD 的度数为(
)
4.顶角为锐角的等腰三角形一腰上的高与另一腰的夹角为 50°,则该三角形的底角为
.
5.在 Rt△ABC 中,∠ACB=90°,∠CAB=36°,在直线 AC 或 BC 上取点 M,使得△MAB 为等腰三角形,符合条
件的 M 点有
个.
A.35°
B.40°
C.45°
D.50°
11.如图,已知:∠MON=30°,点 A1、A2、A3…在射线 ON 上,点 B1、B2、B3…在射线 OM 上,△A1B1A2、△A2B2A3、
在△COM 和△BOM 中,
,
∴△COM≌△BOM(ASA), ∴OB=OC, ∵OA=OB ∴OA=OC 与 OA>OC 矛盾, ∴③错误; 正确的个数有 3 个;
第 5页 共 8页
三.解答题(共 7 小题,满分 48 分) 14.【答案】解:原式=﹣3a6+3a2+9a6=6a6+3a2,
【解答】解:原式=
(2)当它们的速度都是 1cm/s,当点 P 到达点 B 时,P、Q 两点停止运动,设点 P 的运动时间为 t(s),则当 t 为何 值时,△PBQ 是直角三角形?
第3页共3页
数学试卷-答案
一.填空题(共 6 小题,满分 24 分,每小题 4 分) 1. 【解答】解:∵BD 是△ABC 的中线,
∴AD=CD, ∵△ABD 的周长为 15,AB=7,BC=3, ∴△BCD 的周长是 15﹣(7﹣3)=11, 故答案为:11
∵△ABC 是边长为 6cm 的等边三角形, ∴AB=6cm,∠B=60°,
=
.
15. 【解答】证明:∵∠1=∠2,
∵∠DAC+∠1=∠2+∠DAC
∴∠BAC=∠DAE,
在△ABC 和△ADE 中,
,
∴△ADE≌△ABC(ASA) ∴BC=DE, 16.【答案】40°. 【解答】解:在△ABC 中,∠BAC+∠B+∠C=180°. ∵∠B=40°,∠C=60°, ∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°, ∵∠BAD=∠BAC﹣∠CAD,∠CAD=40°, ∴∠BAD=80°﹣40°=40°,
◎
第 6页 共 8页
∵DE∥AB, ∴∠ADE=∠BAD, ∴∠ADE=40°. 17.【答案】(1)如图,△A'B'C'即为所求;
(2)3; (3)点 P 即为所求. 【解答】解:(1)如图,△A'B'C'即为所求;
(2)△ABC 的面积为: 3×2=3; (3)因为点 A 关于 MN 的对称点为 A′,连接 A′C 交直线 MN 于点 P,此时△PAC 周长最小. 所以点 P 即为所求. 18. 【解答】证明:∵BD=BE,
②当 AC+ AC=12,解得 AC=8, 所以底边长=15﹣ ×8=11. 所以底边长等于 7 或 11.
∵∠4=∠12=60°, ∴A1B1∥A2B2∥A3B3,B1A2∥B2A3, ∴∠1=ห้องสมุดไป่ตู้6=∠7=30°,∠5=∠8=90°, ∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=2,
又∵∠3=60°,
C.是轴对称图形且有 4 条对称轴,故本选项符合题意;
∴∠5=180°﹣60°﹣30°=90°,
D.不是轴对称图形,故本选项不合题意.
∵∠MON=∠1=30°,
8.【答案】B 【解答】解:根据题意, ①当 AC+ AC=15,解得 AC=10, 所以底边长=12﹣ ×10=7;
∴OA1=A1B1= , ∴A2B1= , ∵△A2B2A3、△A3B3A4 是等边三角形, ∴∠11=∠10=60°,∠13=60°,
2. 【解答】解:∵a﹣b=5,ab=1, ∴a2b﹣ab2=ab(a﹣b)=5×1=5, 故答案为:5.
3. 【解答】解:∵∠1=∠2, ∴∠2+∠PAB=∠1+∠PAB=∠BAC=60°, ∴∠APB=180°﹣(∠2+∠PAB)=120°, 故答案为 120.
4.【解答】解:如图 1, ∵△ABC 是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°, ∴在直角△ABD 中,∠A=90°﹣50°=40°,
∴∠C=∠ABC=
=70°.
故答案为:70°.
6. 【解答】解:∵AD 平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠EAD=∠ABC,∠CAD=∠ACB, ∴∠ABC=∠ACB,故①正确; ∵AD,CD 分别平分∠EAC,∠ACF, ∴可得∠ADC=90°﹣ ∠ABC,
∴∠ADC+ ∠ABC=90°,
△A3B3A4…均为等边三角形,若
,则△A6B6A7 的边长为(
)
6.如图,△ABC 中,AD、BD、CD 分别平分△ABC 的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:
①∠ ABC = ∠ACB ; ②∠ADC+ ∠ABD =90°; ③BD 平分 ∠ ADC ;④2∠BDC = ∠BAC .其 中正 确的 结论
连接 OM.下列结论:①AC=BD;②∠AMB=40°;③OM 平分∠BOC;④MO 平分∠BMC.其中正确的个数为( )
40°.求∠ADE 的度数.
A.4
B.3
C.2
D.1
三.解答题(共 7 小题,满分 48 分) 14.计算:(8 分) (1)﹣3a3•a3﹣(﹣3a2)+[﹣3a•(﹣a)2]2.
∴∠D=∠BED, ∵∠BED=∠CEF, ∴∠D=∠CEF, ∵DF⊥AC, ∴∠A+∠D=90°,∠CEF+∠C=90°, ∴∠A=∠C, ∴AB=BC, ∴△ABC 是等腰三角形. 9. 【解答】
解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,
当 t=2 时,AP=2cm,BQ=4cm,
∴∠ADC+∠ABD=90°,故②正确; ∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC, ∴△ABD≌△BCD(ASA), ∴AB=CB,与题目条件矛盾,故③错误, ∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC, ∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC, ∴2∠BDC=∠BAC,故④正确, 故答案为:①②④.
第 1页 共 8页
◎
第 2页 共 8页