九年级上学期期中数学测试

合集下载

陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

2023~2024学年度第一学期期中学习评价九年级数学纸笔测试第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若关于x 的一元二次方程20x x m --=的一个根是3x =,则m 的值是()A.6- B.3- C.3D.62.用配方法解方程2620x x --=,配方后的方程是()A.()232x -= B.()239x -= C.()239x += D.()2311x -=3.若菱形两条对角线的长度是方程2680x x -+=的两根,则该菱形的边长为()B.4C.5D.254.如图,直线123l l l ,直线AC 分别交1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交1l 、2l 、3l 于点D 、E 、F ,已知23BC AC =,若3DE =,则DF 的长是()A.94B.92C.9D.65.阳光明媚的一天,身高为1.6m 的小颖想测量校内一棵大树的高度.如图,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 3.2m BC =,0.8m CA =,于是计算出树的高度应为()A.8mB.6.4mC.4.8mD.10m6.如图,在菱形ABCD 中,84BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则CDF ∠的度数是()A.42︒B.48︒C.54︒D.60︒7.如图,在下列方格纸中的四个三角形,是相似三角形的是()A.①和②B.①和③C.②和③D.②和④8.如图,在ABC △中,BD AC ⊥于点D ,E 为BC 的中点,DE DC =,81A ∠=︒,则ABC ∠的度数是()A.31︒B.39︒C.41︒D.49︒9.阅览室有十本名著,小红和小燕都想借阅,于是她们通过摸球游戏决定谁先看,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,先由小红从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小燕从口袋中摸出1个乒乓球,记下颜色.若二人摸到乒乓球的颜色相同,则小红先看,否则小燕先看.则小燕先看的概率是()A.13 B.12C.49 D.5910.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP 、EF .给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③EF 的最小值为2;④AP EF =;⑤AP EF ⊥.其中正确的结论有()A.5个B.4个C.3个D.2个第二部分(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.如图,AB CD ,AC 与BD 相交于点E ,已知1AE=,2CE =,3DE =,则BD 的长为________.12.一个口袋中有若干个白球,小明想用学过的概率知识估计口袋中白球的个数,于是将4个黑球放入口袋中搅匀(黑球与口袋中的白球除颜色外其余都相同),从口袋中随机摸出一球,记下其颜色,再把它放回口袋并摇匀,不断重复上述过程,共摸了300次,其中有48次摸到黑球,估计口袋中大约有________个白球.13.若a 、b 是一元二次方程2290x x +-=的两个根,则223a a ab ++的值为________.14.如图,在矩形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将ADE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为________.15.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为________.三、解答题(共9小题,计75分.解答应写出过程)16.(本小题6分)如图,在ABC △中,AB AC =,请用尺规作图法在BC 上求作一点D ,使得DAB ABC △△.17.(本小题8分)解方程:(1)()()2333x x x +=+(2)()()32514x x -+=-18.(本小题8分)已知532a b c ==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.19.(本小题8分)如图,在菱形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE BF =.求证:(1)ADE CDF ≅△△;(2)DEFDFE ∠=∠.20.(本小题8分)某校九年级1班为准备学校元旦演讲比赛,通过班级预赛共评选出两位男生和三位女生共5名推荐人选.(1)若该班随机选一名同学参加比赛,求选中男生的概率;(2)若该班随机选出两名同学组成一组选手参加比赛,求恰好选中一男一女的概率(用列表或树状图的方法求解).21.(本小题9分)已知关于x 的一元二次方程()22210x k x k +-+=有实数解.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,若()()125114x x --=,求k 的值.22.(本小题9分)某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?23.(本小题9分)如图,在四边形ABCD 中,AB CD ,90D ∠=︒,ABC ∠的平分线BE 交CD 于点E ,F 是AB 的中点,连接AE 、EF ,且AE BE ⊥.求证:(1)四边形BCEF 是菱形;(2)2BE AEAD EF ⋅=⋅.24.(本小题10分)如图,在Rt ABC △中,90B ∠=︒,8cm AB =,6cm BC =.点P 从A 点出发沿AC 向C 点运动,速度为每秒2cm ,同时点Q 从C 点出发沿CB 向B 点运动,速度为每秒1cm ,当点P 到达顶点C 时,P 、Q 同时停止运动,设P 点运动时间为秒.(1)当为何值时,PQC △是以C ∠为顶角的等腰三角形?(2)当为何值时,PQC △的面积为25cm (3)当为何值时,PQC △与ABC △相似?2023~2024学年度第一学期期中学习评价九年级数学纸笔测试参考答案及评分标准一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.D2.D3.A4.C5.A6.C7.B8.B9.C 10.B二、填空题(共5小题,每小题3分,计15分)11.9212.2113.18-14.10315.68三、解答题(共9小题,计75分,解答应写出过程)16.解:作图(略)……………………………………………………………………(5分)则点D 即为所求.…………………………………………………………………………(6分)17.解:(1)原方程可化为()()23330x x x +-+=.……………………………………(1分)即()()3230x x +-=,……………………………………………………………………(2分)∴30x +=或230x -=,………………………………………………………………(3分)∴13x =-,232x =.……………………………………………………………………(4分)(2)原方程可化为22561514x x x +--=-,即2210x x --=,……………………………………………………………………(1分)这里2a =,1b =-,1c =-.∵()()224142190b ac -=--⨯⨯-=>,………………………………………………(2分)∴()113224x --±==⨯,……………………………………………………………………(3分)∴11x =,212x =-.…………………………………………………………………………(4分)18.解:(1)∵532a b c==,∴532a b c +=+,……………………………………………………………………………………(2分)∴842a b c +==.………………………………………………………………………………(3分)(2)∵532a b c ==,∴532252a b c a +-⨯=+-,…………………………………………………………………………(5分)∴459a=.……………………………………………………………………………………(6分)∵532a b c==,∴25325429a b c a ⨯-+==-+,……………………………………………………………………(7分)∴8124a b c -+=.…………………………………………………………………………(8分)19.证明:(1)∵四边形ABCD 是菱形,∴AD CD AB BC ===,A C ∠=∠,………………………………………………(2分)∵BE BF =,∴AE CF =.……………………………………………………………………(3分)在ADE △与CDF △中,,,,AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CDF ≅△△.(2)∵ADE CDF ≅△△,∴DE DF =,∴DEFDFE ∠=∠.20.解:(1)随机选一名同学参加比赛有5种等可能结果数,而选中男生的结果有2种,∴选中男生的概率为:25P =.………………………………………………………………(3分)(2)5名推荐人选中,两位男生分别记为A ,B ,三位女生分别记为c ,d ,e 列表为:A Bc d eA ABAc Ad Ae BBABc Bd BeccA cB cdceddA dB dcdee eAeBeced…………………………………………………………………………(6分)共有20种等可能的结果数,其中恰好选中一男一女的结果数为12种.所以恰好选中一男一女的概率为:123205P ==.………………………………………………(8分)21.解:(1)∵关于x 的方程()22210x k x k +-+=有实数根,∴()22242141b ac k k ∆=-=--⨯⨯……………………………………………………(2分)410k =-+≥,………………………………………………………………………………(3分)∴14k ≤.……………………………………………………………………………………(4分)(2)∵方程()22210x k x k +-+=的两个实数根分别为1x ,2x .∴()1221x x k +=--,212x x k =.……………………………………………………(5分)由()()125114x x --=,∴()1212514x x x x -++=,………………………………………………………………(6分)∴()252114k k +-+=,即24850k k +-=,…………………………………………(7分)∴152k =-,212k =(舍去),…………………………………………………………(8分)∴52k =-.……………………………………………………………………(9分)22.解:(1)若该商品降价5元,平均每天销售数量是405250+⨯=(件).………………(3分)(2)设每件商品应降价x 元,则每件盈利为:()50x -元,日销售量为:()402x +件,…………(5分)根据题意得:()()504022400x x -+=,……………………………………………………(7分)解这个方程得:110x =,220x =.…………………………………………………………(8分)由于每件盈利不少于35元,那么每件应降价10元.………………………………………………(9分)23.证明:(1)∵AE BE ⊥,F 是AB 的中点.∴EFBF AF ==,∴FEB FBE ∠=∠.……………………………………………………………………………………(1分)∵BE 是ABC ∠的平分线,∴FBE CBE ∠=∠,∴FEB CBE ∠=∠,……………………………………………………………………(2分)∴EFBC ,………………………………………………………………………………(3分)∵AB CD ,∴四边形BCEF 是平行四边形.………………………………………………………………(4分)∵EFBF =,∴四边形BCEF 是菱形.……………………………………………………………………(5分)(2)∵AB CD ,∴DEA EAB ∠=∠.……………………………………………………………………(6分)∵90D AEB ∠=∠=︒,∴ADE BEA △△,………………………………………………………………(7分)∴AE ABAD BE=,…………………………………………………………………………(8分)∴BE AEAD AB ⋅=⋅,即2BE AE AD EF ⋅=⋅.………………………………………………………………(9分)24.解:(1)∵8cm AB =,6cm BC =,∴10cm AC =.由题意2AP t =,102PC t =-,CQ t =,()05t <≤………………………………(1分)∵PQC △是以C ∠为顶角的等腰三角形,∴PC CQ =,……………………………………………………………………(2分)∴102t t -=,解得103t =.……………………………………………………………………………………(3分)(2)过点P 作PD BC ⊥于点D ,∴PD PC AB AC=,………………………………………………………………………………(4分)∴()()810285105t t AB PC PD AC --⋅===,…………………………………………(5分)∴()85115225PQC t S CQ PD t -=⋅=⋅=△,解得:1252t t ==.……………………………………………………………………(6分)(3)当11PQ C ABC △△时,11CP AC CQ BC=,…………………………………………(7分)∴102106t t -=,解得:3011t =.…………………………………………………………………………(8分)当22P Q C BAC △△时,22CP BCCQ AC=,…………………………………………(9分)∴102610t t -=,解得:5013t =.综上所述3011t =或5013t =时,PQC △与ABC △相似.…………………………(10分)11。

江苏省南京市秦淮区2024-2025学年九年级上学期数学期中试卷

江苏省南京市秦淮区2024-2025学年九年级上学期数学期中试卷

江苏省南京市秦淮区2024-2025学年九年级上学期数学期中试卷一、单选题1.下列方程中,是一元二次方程的是()A .2240x +=B .240x -+=C .2120x x -+=D .2220x y +=2.下列解方程2241x x -=-的步骤中,依据是“平方根的意义”的是()A .第一步:两边都除以2,得2122x x -=-B .第二步:配方,得212112x x -+=-+,即()2112x -=C .第三步:开平方,得12x -=D .第四步:移项,得212x =±,即112x =+,212x =-3.已知一组数据1,2,3,4,5的平均数是1x ,方差是21s ,另一组数据2,3,4,5,6的平均数是2x ,方差是22s ,则下列说法正确的是()A .12x x =,2212s s =B .12x x ≠,2212s s =C .12x x =,2212s s ≠D .12x x ≠,2212s s ≠4.已知方程22520x x +-=有两个不相等的实数根m ,n ,则下列方程中,两个根分别是m -,n -的是()A .22520x x +-=B .22520x x -+=C .22520x x ++=D .22520x x --=5.如图,O 是四边形ABCD 的内切圆,若该四边形的周长是24,面积是36,则O 的半径是()A .1.5B .3C .4D .66.如图,在正八边形ABCDEFGH 中,连接AD ,EH ,AE ,DH ,AE 与DH 交于点O .下列结论:①222BC EH AE +=;②2AD AH=③135AOD ∠=︒;④4ABCDEFGH ABCD S S =八边形四边形,其中正确结论的序号是()A .①②③B .①②④C .①③④D .②③④二、填空题7.方程x 2=4的解是.8.数据3,0,2,1--,4的极差是.9.O 的半径是5cm ,同一平面内,若点P 到点O 的距离是6cm ,则点P 在O .(填“内”“外”或“上”)10.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩/分727090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.11.如图,A ,B ,C 是O 上的三个点,若 AB 为100︒,AC OB ∥,则A ∠的度数为︒.12.如图,PA 、PB 是O 的切线,切点分别是A 、B ,C 在AB 上,过C 的切线分别交PA 、PB 于点D 、E .若10PB =,则PDE △的周长为.13.如图,ABC V 是一个圆锥的主视图,若5AB AC ==,6BC =,则该圆锥的侧面展开图的圆心角的度数为︒.14.如图,以正方形ABCD 的顶点C 为圆心,BC 长为半径画¼BmD ,再以边CD 为直径画 CnD,则¼BmD 的长 CnD的长.(填“>”“<”或“=”)15.如图,矩形()ABCD AB BC >绕点C 顺时针旋转90︒得到矩形EFCG ,P 是线段DF 上一点,若APE V 为直角三角形,则满足条件的点P 的个数是.16.已知代数式22ax ax c ++(a ,c 是常数)中,x 与该代数式的部分对应值如下表:x2.76- 2.75- 2.74- 2.73- 2.72-22ax ax c ++0.1952-0.125-0.0552-0.01420.0832根据表中数据,可知关于x 的方程220ax ax c ++=的一个根约为,另一个根约为.(都精确到0.1)三、解答题17.解方程:2x 4x 2-=.18.解方程:()()2330x x x ---=.19.已知214y x =-,22y x =-.求当x 为何值时,1y 与2y 互为相反数.20.下图是南京市2023年、2024年8月上旬日最高气温的折线统计图.阅读统计图并回答以下问题.(1)根据统计图中的信息,填写下表:南京市2023年、2024年8月上旬日最高气温的统计表年份平均数/℃中位数/℃众数/℃方差/2℃202333.634 1.44202439.139 1.09(2)结合统计图、统计表中的信息,从两个不同的角度比较南京市2023年、2024年8月上旬的日最高气温.21.如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .已知2AD =,4BD =.设CD 长为x .(1)根据勾股定理,得2AC =,2BC =.(都用含x 的代数式表示)(2)求x 的值.22.如图,ABC V 内接于O ,过点C 作射线CD ,使ACD ABC ∠=∠.求证:CD 与O 相切.23.如图,AB ,CD 是一个圆的两条弦,它们的延长线相交于点P ,且=PB PD .(1)用直尺和圆规作出该圆的圆心O ;(保留作图痕迹,不写作法)(2)求证.PA PC =.24.某商店销售一批数学实验用具,零售价每件240元.如果一次购买超过10件,那么每多购1件,购买的所有实验用具的单价均降低6元,但单价不能低于150元.小明和几位同学购买这种实验用具支付了3600元,他们共买了多少件?25.某同学在证明命题“在同一个圆中,两条平行的弦所夹的弧相等”时,画出了下图,并写出了如下证明过程:已知:如图,AB ,CD 是O 的两条弦,AB CD ∥.求证 AC BD=.证明:如图,连接OA ,OB ,OC ,OD ,过点O 作EF AB ∥,交O 于点E ,F .∵AB CD ∥,∴EF CD ∥.∴OCD COE ∠=∠,EOA OAB ∠=∠.∵COA COE AOE ∠=∠+∠,∴COA OCD OAB ∠=∠+∠.同理,DOB ODC OBA ∠=∠+∠.∵OA OB =,∴OAB OBA ∠=∠.同理,OCD ODC ∠=∠.(该同学画的图)∴COA DOB ∠=∠.∴ AC BD=.(1)数学老师认为该证法有问题,请指出问题;(2)完善该命题的证明.26.一元二次方程的根有3种情况,分别是有两个不相等的实数根,有两个相等的实数根以及没有实数根.基于上述认识,我们继续探索“0M N ⋅=”型的方程(M ,N 都是只含x 的整式)的根的情况.(1)当223M x x =+-,1N x =-时,该类型方程的根的情况是()A .有三个实数根,它们各不相等B .有三个实数根,有且只有两个根相等C .有三个实数根,它们都相等D .没有实数根(2)下列“0M N ⋅=”型的方程:①()()22212420x x x x -+-+=;②()()2244690x x x x -+-+=;③()()22440x x x x +-=;④()()22328150x x x x ++++=;⑤()()223612360x x x --+=.至少有两个相等的实数根的方程是(填序号).(3)当23M x x c =++,23N x x c =-+(c 是常数)时,请写出该类型方程的根的情况及对应的c 的取值范围.27.图(1)是一把“U 形”尺,图(2)是该尺内侧的示意图,已知边AB BC ⊥,边CD BC ⊥,6cm AB CD ==,4cm BC =.算一算将该尺摆放在一些圆上,测量并计算圆的半径r .(1)如图(3),点A ,B ,C ,D 恰好都在圆上,则r =cm .(2)如图(4),该尺的AB 边与圆相切于点P ,且点P 在该尺上的读数为1cm ,点D 在圆上,则r =cm .(3)如图(5),该尺的AB 边与圆有两个公共点P ,Q ,它们在该尺上的读数分别为5cm ,1cm ,CD 边与圆也有两个公共点,其中一个公共点R 在该尺上的读数为2cm ,求r 的值.想一想(4)若将该尺摆放在一个圆上(尺子只摆放一次,圆的圆心未标注),一定可以通过测量并计算出该圆的半径r 吗?如果可以,说明理由;如果不一定可以,请直接写出可计算出的r 的最小值和最大值.。

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

山西省太原市晋源区两校2024-2025学年上学期期中测试九年级数学试卷

山西省太原市晋源区两校2024-2025学年上学期期中测试九年级数学试卷

山西省太原市晋源区两校2024-2025学年上学期期中测试九年级数学试卷一、单选题1.下列方程中,是关于x 的一元二次方程的是()A .20ax bx c ++=B .221x x =+C .20x +=D .2(1)1x x +=+2.五个大小相同的正方体塔成的几何体如图所示,其左视图是()A .B .C .D .3.已知反比例函数y =k x(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为()A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)4.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则AC 的长为()A .2B .4C .6D .85.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A .14B .13C .12D .236.若关于x 的一元二次方程260x x c ++=有两个相等的实数根,则c 的值是()A .36B .9C .6D .9-7.如图,在正方形网格中,ABC V 与DEF 位似,则下列说法正确的是()A .位似中心是点BB .位似中心是点DC .位似比为2:1D .位似比为1:28.如图,在平面直角坐标系中,反比例函数()0k y k x=>的图象经过点()2A m ,、()6B n ,,AC x ⊥轴于点C ,BD y ⊥轴于点D ,AC 交BD 于点E .若2BE AE =,则k 的值为()A .2B .4C .6D .89.如图,在ABC V 中,26BC =,且BD CE ,分别是AC AB ,上的高,F G ,分别是BC DE ,的中点,若10ED =,则FG 的长为()A .10B .12C .13D .1410.如图,在矩形ABCD 中,1AB =,2BC =,连接AC ,以对角线AC 为边,按逆时针方向作矩形11ACC B ,使矩形11ACC B ∽矩形ADCB ;再连接1AC ,以对角线1AC 为边,按逆时针方向作矩形122AC C B ,使矩形122AC C B ∽矩形11ACC B ,,按照此规律作下去,则边2023AC的长为()A 2023⎝⎭B .20222⨯⎝⎭C 20232D 2022⎝⎭二、填空题11.如图,在矩形ABCD 中,对角线AC BD 、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件,使矩形ABCD 是正方形.12.点()()123,,5,A y B y 在反比例函数21k y x +=图象上,则1y 2y (填“<”或“>”号).13.关于x 的一元二次方程()2238150m x x m m -++-+=的常数项是0,则m 的值为.14.如图,在菱形ABCD 中,12AB =,60D ∠=︒.点P 为边CD 上一点,且不与点C ,D 重合,连接BP ,过点A 作EF BP ∥,且EF BP =,连接BE ,PF ,则四边形BEFP 的面积为.15.已知在Rt ABC 中,90,3,5ACB AC AB ∠=︒==,点D 是边AB 上的一个动点,且45BCD ∠<︒,连接CD ,作ABC V 关于CD 所在直线的对称图形,得到A B C ''△,且A B ''交边BC 于点E .若BDE V 为直角三角形,则BD =.三、解答题16.阅读材料,并回答问题:佳佳解一元二次方程2640x x +-=的过程如下:解:2640x x +-=264x x +=L 第一步2694x x ++=L 第二步2(3)4x +=L 第三步32+=±x L 第四步3232x x +=+=-,1215x x ==-,.问题:(1)上述解答过程中,从第_____步开始出现了错误,发生错误的原因是_______________;(2)请写出正确的解答过程.17.《笠翁对韵》是明末清初著名戏曲家李渔的作品,是学习写作近体诗、词,用来熟悉对仗、用韵、组织词语的启蒙读物,“天对地,雨对风.大陆对长空.山花对海树,赤日对苍穹……”就是其中的句子.现将“A .天”,“B .地”,“C .雨”,“D .风”,“E .大陆”,“F 长空”分别书写在材质、大小完全相同的6张卡片上,洗匀后背面朝上.(1)第一次抽取时先抽取了一张,翻开后是“A .天”,那么在剩下的五张卡片中恰好抽取得到卡片“B .地”,使得对仗工整的概率是______;(2)若第一次已经把“A .天”、“B .地”两张卡片抽走,第二次在剩下的四张卡片中随机抽取两张,请用列表或画树状图的方法求出能够对仗工整的概率.18.矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD 、BC 上,顶点F ,H 在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,4FH=,求菱形ABCD的周长.19.某绘画艺人第一天的收入为875元,第三天的收入为1260元(每天收入的增长率相同).(1)求绘画艺人每天平均收入的增长率是多少?(2)绘画艺人想制作一幅长30分米,宽20分米的一幅画,其中有一横一竖宽度相同的彩条(阴影部分为彩条无费用),其余空白处进行作画,如图所示,作画区域的费用为每平方分米3元,经预算作画区域的总费用恰好是第四天的收入,求彩条的宽度是多少分米.20.为了开展趣味学习活动,张教师带领学生们在操场上利用所学的知识测量一棵树的高度.如图,某一时刻树AB在太阳光照下,一部分影子NP落在了墙MN上,另一部分树影BN 落在了地面上,张老师在树另一侧的地面C点放置一平面镜,在平面镜左侧点S处竖直放置了一根木杆,秦飞同学在平面镜右侧的点T处刚好可从平面镜中观察到木杆的顶端.与此同时,秦飞发现木杆影子的顶端恰好落在平面镜C点处.现测得木杆高2米,秦飞的眼睛距地面为1米,ST长为9米,树影NP为5米,BN为21米,求树AB的高.(平面镜大小忽略不计)21.如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.22.如图,在ABC V 中,20cm 30cm BA BC AC ,===,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿着CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)x 为何值时,PQ BC ∥;(2)是否存在某一时刻,使APQ CQB ∽,若存在,求出此时AP 的长;若不存在,请说明理由.23.综合与实践综合与实践课上,数学研究小组以“手拉手图形”为主题开展数学活动两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)操作判断已知点C 为ABC V 和CDE 的公共顶点,将CDE 绕点C 顺时针旋转()0360a α︒<<︒,连接BD ,AE ,如图1,若ABC V 和CDE 均为等边三角形,请完成如下判断:①线段BD 与线段AE 的数量关系是________;②直线BD 与直线AE 相交所夹锐角的度数是________;(2)迁移探究如图2,若90ABC EDC ∠=∠=︒,30BAC DEC ∠=∠=︒,其他条件不变,则(1)中的结论是否都成立?请说明理由;(3)拓展应用:如图3,若90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==点B ,D ,E 三点共线时,请直接写出BD 的长.。

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。

江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

溧阳市2024~2025学年度第一学期期中质量调研测试九年级数学试题 2024.11一、选择题(本题共8小题,每小题2分,共16分每小题给出的四个选项中只有一个选项正确)1.以下方程中,一定是关于x 的一元二次方程的是A. x +1=0B.x 2-x =1C. x 3-x -1=0D. x 2-+1=02.方程x 2-6x =0的解是A. x 1=x 2=6B. x 1=x 2=60C. x 1=6,x 2 =0D.x 1=-6,x 2 =03.一元二次方程x 2+x -3=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在△ABC 中,∠A=50°,若点O 为ABC 的外心,则∠BOC 等于A. 40°B.50°C.100°D.110°5.下列说法中,正确的是A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形6.如图,已知 PA 切⊙O 于点 A ,⊙O 的半径为3,OP=5,则切线长 PA 为A.B.8C. 4D.2 第6题图7.若关于x 的一元二次方程ax 2-bx =c (ac ≠0)的一个实数根为 2024,则关于x 的一元二次方程cx 2+bx =a (ac ≠0)一定有实数根A.-2024B.2024C.D.8.如图,正方形 ABCD 和CEFG 的边长分别是a 、b (b >2a ),将正方形ABCD 绕点C 旋转,在旋转过程中,△AEG 的面积S 的取值范围是A. B. C.D. 第8题图二、填空题(本大题共10小题。

每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.将一元二次方程2x 2=5x -化成一般形式为___________________________________。

21x13420241-2024122bS a ≤≤222121b S a ≤≤ab b S ab b +≤≤-222121ab b S ab b +≤≤-2210.若关于x 的一元二次方程x 2+nx -1=0的一个根为-1,则另一个根为___________________。

2024-2025学年上学期期中质量检测九年级数学试卷

2024-2025学年上学期期中质量检测九年级数学试卷

2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。

2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。

3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。

4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。

5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。

6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。

7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024-2025学年九年级上学期期中考试数学试题 (含答案)

河北省邯郸市鸡泽县2024~2025学年九年级上学期期中考试数学试题(冀教版)一、选择题(共16题;共42分)1.(3分)一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数B.中位数C.平均数D.方差2.(3分)方程x2﹣2x﹣3=0经过配方法化为(x+a)2=b的形式,正确的是( )A.(x﹣1)2=4B.(x+1)2=4C.(x﹣1)2=16D.(x+1)2=163.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )A.16(1﹣x)2=9B.16(1﹣x2)=9C.9(1﹣x)2=16D.9(1+x2)=164.(3分)若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠05.(3分)在平行四边形ABCD中AN=13NB,则S△ADM:S四边形CMNB为( )A.5:9B.5:19C.4:19D.4:96.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,不能判定△ABC∽△ADE的是( )A.∠C=∠E B.∠B=∠ADE C.ABAD =ACAED.ABAD=BCDE7.(3分)凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB 的距离之比为5:4,则物体被缩小到原来的( )A .45B .25C .49D .598.(3分)如图,在△ABC 中,AB =AC ,E 为BC 边上的一点,BE :CE =1:2,D 为AE 的中点,连接BD 并延长交AC 于F ,则CF :AF 的值为( )A .1:2B .1:3C .3:2D .3:19.(3分)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sin α米C .30tan α米D .30cos α米10.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A .34B .43C .35D .4511.(2分)如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x和 y 2=4x 的图象交于点A 和点B .若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A.1B.2C.3D.412.(2分)如图,已知点A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是( )A.2∠C B.4∠B C.4∠A D.∠B+∠C13.(2分)如图,ΔABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为( )A.4π―8B.2πC.4πD.8π―814.(2分)如图,在平面直角坐标系中,以坐标原点O为位似中心,在y轴右侧作△ABO放大2倍后的位似图形△CDO,若点B的坐标为(―1,―2),则点B的对应点D的坐标为( )A.(2,4)B.(3,4)C.(3,5)D.(4,3)15.(2分)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为( )米.A.5B.4C.3D.216.(2分)某品牌自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是( )A.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水B.水温下降过程中,y与x的函数关系式是y=400xC.水温从20℃加热到100℃,需要7minD.水温不低于30℃的时间为77min3二、填空题(共3题;共8分)17.(2分)一元二次方程x2=2x的根是 .18.(2分)如图是一边长为6的菱形纸片ABCD,将纸片沿EF折叠,使点D落在边BC上,点A,D的对应点分别为点G,H,GH交AB于点J.若AE=1.4,CF=2,则EJ的长是 19.(4分)如图1 是一款重型订书机,其结构示意图如图2 所示.其主体部分为矩形EFGH,由支撑杆CD 垂直固定于底座AB 上,且可以绕点 D 旋转.压杆MN 与伸缩片PG 连接,点M 在HG 上,MN 可绕点M 旋转,PG⊥HG ,DF=8 cm,GF=2cm,不使用时,EF∥AB,G 是PF 中点,且点 D 在NM 的延长线上,则MG= cm,使用时如图3,按压MN 使得MN∥AB,此时点F 落在AB 上,若CD=2 cm,则压杆MN 到底座AB 的距离为 cm三、解答题(共7题;共70分)20.(9分)4月,某校初2021级800名学生进行了一次政治测试(满分:50分).测试完成后,在甲乙两班各抽取了20名学生的测试成绩,对数据进行整理分析,并给出了下列信息:甲班20名同学的测试成绩统计如下:41,47,43,45,50,49,48,50,50,49,48,47,44,50,43,50,50,50,49,47.乙班20名同学的测试成绩统计如下:组别40<x≤4242<x≤4444<x≤4646<x≤4848<x≤50频数11a69其中,乙班20名同学的测试成绩高于46,但不超过48分的成绩如下:47,48,48,47,48,48.甲乙两班抽取的学生的测试成绩的平均数、中位数、众数如表所示:班级平均数中位数众数甲班47.548.5c乙班47.5b49(1)(3分)根据以上信息可以求出:a=_____,b=_____,c=_____;(2)(3分)你认为甲乙两个班哪个班的学生政治测试成绩较好,请说明理由(理由写出一条即可);(3)(3分)若规定49分及以上为优秀,请估计该校初2021级参加此次测试的学生中优秀的学生有多少人?21.(9分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF与⊙O相切.(1)(5分)求证:EF =EC ;(2)(4分)若D 是OA 的中点,AB =4,求BF 的长.22.(9分)火灾是最常见、最多发的威胁公众安全和社会发展的主要灾害之一,消防车是消防救援的主要装备.图1是某种消防车云梯,图2是其侧面示意图,点D ,B ,O 在同一直线上,DO 可绕着点O 旋转,AB 为云梯的液压杆,点O ,A ,C 在同一水平线上,其中BD 可伸缩,套管OB 的长度不变,在某种工作状态下测得液压杆AB =3m ,∠BAC =53°,∠DOC =37°.(1)(5分)求BO 的长.(2)(4分)消防人员在云梯末端点D 高空作业时,将BD 伸长到最大长度6m ,云梯DO 绕着点O 顺时针旋转一定的角度,消防人员发现铅直高度升高了3m ,求云梯OD 旋转了多少度.(参考数据:sin 37°≈35,tan37°≈34,sin53°≈45,tan53°≈43,sin64°≈0.90,cos64°≈0.44)23.(9分)某水渠的横断面是以AC 为直径的半圆O ,图1表示水渠正好盛满了水,点D 是水面上只能上下移动的浮漂,AB 是垂直水面线的发光物体且从点B 发出光线,测得∠BDA 、∠BCA 分别为60°,30°,已知AD =1m .(1)(5分)求AC 的长;πm,求DN (2)(4分)如图2,把水渠中的水放掉一部分,得到水面线为MN,若AM的长为940);的长(tan27°=1224.(10分)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)(4分)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)(3分)求出图中a的值;(3)(3分)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.(11分)如图1,已知∠ABC=60°,点O在射线BC上,且OB=4.以点O为圆心,r(r>0)为半径作⊙O,交直线BC于点D,E.(1)(2分)当⊙O与∠ABC只有两个交点时,r的取值范围是________.(2)(9分)当r=22时,将射线BA绕点B按顺时针方向旋转α(0°<α<180°).①若BA与⊙O相切,求α的度数为多少;②如图2,射线BA与⊙O交于M,N两点,若MN=OB,求阴影部分的面积.26.(13分)如图1,将Rt△ABC的顶点C放在⊙O上,边BC与⊙O相切于点C,边AC与⊙O交于点D.已知∠BCA=60°,∠B=90°,BC=6,⊙O的直径为8.(1)(4分)如图1,过点O作OM⊥CD于点M,求CM的长度;(2)(9分)从图1的位置开始,将△ABC绕点C顺时针旋转,设旋转角为α(0°≤α≤360°).①如图2,当α=20°时,边BC与⊙O的另一交点为E,求CE的长度;②如图3,当AC经过圆心O时,试判断AB与⊙O之间的位置关系,并说明理由;③在旋转过程中,直接写出点O到边AB的距离h的取值范围.答案1.D2.A3.A4.C5.C6.D7.A8.D9.C10.D11.A12.A13.A14.A15.C16.D17.x1=0,x2=218.2.819.4;15+2220.(1)3,48,50(2)甲班的成绩较好,理由:甲乙两班的平均数相等、甲班的中位数、众数都比乙班的大(3)估计该校初2021级参加此次测试的学生中优秀的学生有380人21.(1)证明:连接OF,则OF=OB,∵EF与⊙O相切于点F,∴EF⊥OF,∴∠OFE =90°,∴∠EFC +∠OFB =180°―∠OFE =90°,∵CD ⊥AB ,∴∠CDB =90°,∴∠C +∠B =90°,∵∠OFB =∠B ,∴∠EFC =∠C ,∴EF =EC .(2)解:连接AF ,∵AB 是⊙O 的直径,∴∠AFB =∠CDB =90°,∴∠B =∠B ,∴△AFB ∽△CDB ,∴BF BD =AB CB,∵D 是OA 的中点,AB =4,∴OA =OB =12AB =2,OD =AD =12OA =1,∴BD =OB +OD =2+1=3,∵CD =AB =4,∴CB =BD 2+CD 2=32+42=5,∴BF =AB ⋅BD CB =4×35=125,∴BF 的长是125.22.(1)解:如图,过点B 作BE ⊥OC 于点E ,在Rt △ABE 中,∠BAC =53°,AB =3m ,∴BE =AB ⋅sin∠BAE =3×sin 53°≈3×45=125,在Rt △BOE 中,∠BOE =37°,BE =125,∵sin∠BOE =BE OB ,∴OB =BE sin ∠BOE=12535=4.答:OB =4m .(2)解:如图,过点D 作DF ⊥OC 于点F ,旋转后点D 的对应点为D ′,过点D ′作D ′G ⊥OC 于点G ,过点D 作DH ⊥D ′G 于点H ,在Rt △FOD 中,OD =OB +BD =4+6=10,∠DOF =37°,∴DF =OD ⋅sin 37°≈10×35=6m ,∴D ′G =D ′H +HG =3+6=9m ,在Rt △D ′OG 中,O D ′=10m ,D ′G =9m ,∴sin ∠D ′OG =D ′G D ′O =910,∴∠D ′OG ≈64°,∴∠D ′OD =64°―37°=27°,即云梯OD 大约旋转了27°.23.(1)解:∵∠BAD=90°,AD=1,∠BDA=60°,∴∴AB=AD•tan60°=1×3=3, ∴AC =AB tan30°=3(2)解:连接OM ,设∠AOM=n°∵AM =n ×π×32180=940π∴∠AOM=n°=27°∵AC ∥MN ,∴∠AOM=∠OMN=27°过点O 作OE ⊥MN 于E 点,∴ME=EN ,∵tan∠OMN =OE ME =12,∴ME=2OE ∵O M 2=O E 2+M E 2, ∴OE =3105,ME =355过D 作DD '⊥AC 于点D ',∴DD '∥OE ,∵AC ∥MN ,∴四边形DD 'OE 是平行四边形, ∴DE =D ′O =12, ∴DN =355+1224.(1)当0≤x≤8时,y =10x+20;当8<x≤a 时,y =800x;(2)a =40;(3)李老师要在7:38到7:50之间接水25.(1)0<r ≤23或r >4(2)①15°或105°;②2π―426.(1)解:连接OC ,∵边BC 与⊙O 相切于点C ,∴∠OCB =90°,又∵∠BCA =60°,∴∠OCM =30°,∴OM =12OC =12×4=2,∴CM =OC 2―OM 2=42―22=23,(2)解:①如图,连接OC 、OE ,α=20°时,∠OCB =70°,∵OE =OC ,∴∠OEC =∠OCB =70°,∴∠EOC =180°―∠OEC ―∠OCB =40°,∴CE 的长度为40π×4180=8π9;②AB 与⊙O 相切,理由为:过点O 作OF ⊥AB 于点F ,∵∠BCA =60°,∠B =90°,∴∠A =30°,∴AC =2BC =2×6=12,∴AO =8,∴OF =12AO =12×8=4=OC ,∴AB 与⊙O 相切;③h 的取值范围为2≤ℎ≤10。

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

重庆市江津区12校2024届九年级上学期期中考试数学试卷(含答案)

2023-2024学年度上期期中测试数学题卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束,监考人员将试题卷和答题卡一并收回。

4.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题(每小题4分,共40分)1.下列方程一定是一元二次方程的是()A .212023x x -=B .30y x -=C .2350x x -=D .3210x x ++=2.将抛物线y =x 2﹣1向上平移3个单位,再向右平移1个单位后,得到的抛物线所对应的函数表达式为()A .y =(x ﹣1)2﹣1B .y =(x ﹣1)2+2C .y =(x +1)2+2D .y =(x +1)2﹣13.下列方程中,没有实数根的是()A. B.C.D.4.下列关于抛物线()2314y x =+-的结论,正确的是()A .开口方向向下B .对称轴为直线x =-1C .顶点坐标是(1,-4)D .当x =-1时,函数有最大值为-45.一元二次方程x 2-6x +5=0配方可变形为()A.(x -3)2=14B.(x -3)2=4C.(x +3)2=14D.(x +3)2=46.点()()()11223331P y P y P y -,、,、2,均在二次函数244y x x =--的图象上,则y 1,y 2,y 3的大小关系是()A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>7.已知二次函数y =ax 2+bx +c 的图象如图所示,根据图中提供的信息,可求得使y ≥1成立的x 的取值范围是()A .-1≤x ≤3B .x ≥3C .x ≤-1D .x ≤-1或x ≥38.关于x 的一元二次方程()22210x a a x a +-+-=两个实数根互为相反数,则a 的值为()A.2B.0C.1D.2或09.已知二次函数2y ax bx c =++的图象如图所示,顶点为(﹣1,0),则下列结论:①0abc <;②240b ac -=;③20a b -=;④2a >;⑤420a b c -+<.其中正确结论的个数是()A .2个B .3个C .4个D .5个10.对于实数a 、b ,定义新运算()()22*a ab a b a b b ab a b ⎧-≥⎪=⎨-<⎪⎩ ,若二次函数()2*1y x x =-,则下列结论正确的有()①方程()2*10x x -=的解为x =0或x =−1;②关于x 的方程()2*1x x m-=有三个解,则102m ≤<;③当x <−1时,y 随x 增大而增大;④当x >−1时,函数()2*1y x x =-有最大值0.A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.一元二次方程的解是.12.抛物线21252y x x =-+-的顶点坐标是.13.有一个人患了新冠病毒,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了个人.14.若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是.15.已知m 、n 是一元二次方程2250x x +-=的两个实数根,则m 2+mn +2m 的值为.第7题图第9题图16.如图,已知二次函数223y x x =-的图象与正比例函数1y x =的图象在第一象限交于点,与轴正半轴交于点,若,则的取值范围是.17.使得关于x 的不等式组6101131282x a x x -≥-⎧⎪⎨-+<-+⎪⎩有且只有4个整数解,且关于x 的方程()25410a x x -++=有实数根的所有整数a 的值之和为.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”。

山西省长治市屯留区多校2024-2025学年上学期期中测试九年级数学试卷

山西省长治市屯留区多校2024-2025学年上学期期中测试九年级数学试卷

山西省长治市屯留区多校2024-2025学年上学期期中测试九年级数学试卷一、单选题1.化简(2-的结果为()A B .2C .4D .4-2.若13a b =,则a b a b -+的值为()A .12B .12-C .2-D .33.点()20,25P -关于y 轴对称的点的坐标是()A .()20,25B .()20,25-C .()20,25--D .()25,20-4.若将一元二次方程223x x -=-化成一般式220x bx c ++=,则b c -的值为()A .2-B .2C .4-D .45.《孙子算经》是中国古代的数学著作,其中记载了利用影长测量物体高度的方法,若操场上的旗杆在太阳下的影长为8米,同时身高1.6米的小亮的影长为0.8米,则旗杆的高度为()A .4米B .8米C .12米D .16米6.下列式子的运算结果为有理数的是()ABC D +7.如图,在ABC V 中,DE AB ∥,若35CD CA =,9CE =,则BE 的长为()A .6B .9C .12D .158.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是()A .1a ≥B .1a ≤C .1a ≤且0a ≠D .1a ≥且0a ≠9.如图,下列网格中各个小正方形的边长均为1个单位长度,阴影部分的图形分别记作甲、乙、丙、丁,其中是相似图形的为()A .甲和乙B .甲和丙C .甲和丁D .乙和丙10.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,BC 的长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 的长为半径画弧交AB 于点E ,则BEAE的值为()A .12B C D 二、填空题11x 的取值范围是.12.若关于x 的一元二次方程240x x k -+=的一个根为1x =-,则k =.13.在如图所示的正方形网格中有ABC V 和DEF ,已知ABC DEF △△∽,则A E ∠+∠=︒.14.为了方便游客拍照打卡,某地计划在如图所示的长为60米,宽为40米的矩形空地中修建小道(阴影部分),余下部分种植牡丹花,其中每条小道的宽都是x 米(每段小道均与边缘平行),要使牡丹花的种植面积为2128平方米,则x 的值为.15.图1是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为可伸缩支撑杆,已知15cm AB =,20cm BC =,50cm AD =.如图2,当活动杆AD 绕点A 由水平状态按逆时针方向旋转α,AD '与CD 相交于点P ,当DCD α'∠=,且24cm PD '=时,则PD 的长度为cm .三、解答题16.(1;(2)解方程:()2122x x -=-.17.如图,在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =.(1)尺规作图:利用尺规过点B 作边AC 的垂线BD ,垂足为D ;(2)在(1)的条件下,求AD 的长.18.如图,在平面直角坐标系xOy 中,ABC V 的顶点分别是()1,1A ,()2,3B ,()3,2C .(1)以原点O 为位似中心,在y 轴的左侧画出111A B C △,使111A B C △与ABC V 位似,且相似比为2:1;(2)直接写出1A ,1B ,1C 三点的坐标;(3)求111A B C △的面积.19.如图,这是小夏家的花草地,可将其看作由两个正方形、一个长方形和一个直角三角形构成的五边形ABCDE ,两个正方形的面积分别为250m 和232m ,求五边形ABCDE 的周长.20.阅读与思考请仔细阅读下面的内容,并完成相应任务.任务:(1)填空:2=______;(2)①判断ABC V的大小.21.研学实践:“秋风楼”位于后土祠正殿后(位于古河东郡汾阴县,即今山西省万荣县西南),因楼上藏有汉武帝刘彻《秋风辞》碑而得名.因黄河淹没,曾于清代康熙、同治年间重修,现存建筑于同治九年(公元1870年)重建.某校组织研学活动,同学们来到秋风楼的所在地,利用测量工具等采集了秋风楼的相关数据.数据采集:如图,A 是秋风楼顶部的一点,AB 的长表示点A 到地面CD 的距离,小康把长为2米的标杆垂直立于地面点H 处,当秋风楼顶部A 和标杆的端点G 确定的直线交直线CD 于点M 时,3HM =米;将标杆沿着DC 的方向平移到点F 处,当秋风楼顶部A 和标杆的顶端E 确定的直线交直线CD 于点C 时,测得4CF =米,15FH =米.数据应用:已知图中各点都在同一平面内,根据上述数据,计算秋风楼顶部A 到地面CD 的距离AB .22.综合与实践问题情境:数学活动课上,老师要求同学们以探究“购买、销售葡萄的方法”为主题,展开学习.某超市准备从A 市场和B 市场购买葡萄.A 市场的优惠方式:葡萄的售价为18元/千克,无论购买多少千克均不打折.B 市场的优惠方式:葡萄的售价为20元/千克,若一次购买5千克以上,超过5千克的部分打折销售.在B 市场购买葡萄的部分小票统计如下.(精确到1千克)购买量/千克12345678…付款金额/元20406080100118136154…(1)若该超市在B 市场一次购买5千克以上的葡萄,超过5千克的部分打几折?(2)当超市需要购买20千克葡萄时,请通过计算说明,选择哪个市场比较划算?(3)该超市决定从A 市场购进葡萄,如果超市以28元/千克销售,平均每天可以售出100千克,为了尽快减少库存,超市决定降价销售,根据近期销售情况发现,销售单价每降低1元,销售量会增加10千克.问该超市降价多少元时,每天的销售利润为840元?23.综合与探究问题情境:如图1,在ABC V 中,点D ,E ,F 分别在AB ,AC ,BC 上,已知DE BC ∥,AF 交DE 于点G ,F 是BC 的中点.猜想证明:(1)试判断DG 与EG 之间的数量关系,并说明理由;深入探究:(2)如图2,在(1)的条件下,连接CD ,CG .若CG DE ⊥,12AE CD =,试猜想ADE S 与ABC S 之间的数量关系,并证明你的猜想;拓展应用:(3)如图3,在平行四边形ABCD 中,135BAD ∠=︒,对角线AC 与BD 交于点O ,H 为AB 上一点,HG BD ∥交AC 于点E ,交AD 于点G ,EF HG ⊥,EF 交BC 于点F ,连接FG .若2FG =,BH =BF 的长.。

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)

2024—2025学年度第一学期期中九年级数学(满分120分,练习时间120分钟)第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.是同类二次根式的是( )2.已知关于x 的一元二次方程,若,则下列各数中是该方程的根的是( )A.1B.C.2D.03.在数学史上,有很多著名的几何图形用来验证数学知识的产生过程.如图所示的图案,是由一连串公共顶点为O 的直角三角形拼接而成,若,则图中直角三角形之间存在的变换关系是( )A.图形的平移B.图形的旋转C.图形的全等D.图形的相似4.利用配方法解方程时,将该方程化为的形式,然后利用直接开平方法求解,这个过程体现的数学思想是( )A.数形结合思想B.转化思想C.整体思想D.公理化思想5.如果,那么下列比例式正确的是( )A. B. C. D.6.若等腰三角形一条边的长为3,另两条边的长分别是关于x 的一元二次方程的两个根,则k 的值是( )A.27B.36C.27或36D.187.我国古代数学《九章算术》中有一道“井深几何”的问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺等于10寸),问井深几何?”根据题意画出如图示意图,则并深为( )20x bx c ++=10b c ++=1-30AOB BOC COD LOM ∠=∠=∠==∠=︒ 2680x x ++=()231x +=:5:3a b =35a b a -=32b a b =+14a b a b -=+223a b=2120x x k -+=A.56.5尺B.57.5尺C.6.25尺D.1.25尺8.如图,在中,点D 是上一点,且,若,,则与的面积比为( )A. B. C. D.9.对于实数a ,b ,定义运算“( )”:若,例如:.已知关于x 的一元二次方程有实数根,则m 的取值范围为( )A. B. C. D.10.如图,在中,,,点D ,E 分别是,边上的动点,连结,F ,M 分别是,的中点,则的最小值为( )A.12B.10C.9.6D.4.8第II 卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.的结果是________.ABC △AC ABD C ∠=∠2AD =3AB =ABD △BCD△4:54:92:32:1()*a b a a b =-()2*32232=-=-211*(2)724x m m m -=-13m ≥-13m ≤-16m ≤-16m ≥-ABC △10AB BC ==12AC =AB BC DE AD DE FM12.如图,直线,若,,,那么的长为________.13.某种小家电在两年内提价两次后每个的价格比两年前增加了44%,则平均每次提价的百分率为________.14.如图,小明在A 时测得某树的影长为3m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为________m.15.如图,在中,,,,点D 是边上的一点,过点D 作,交于点F ,作的平分线交于点E ,连接.若的面积是2,则的值是________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题5分,共10分)(1(2)解方程:17.(本题10分)图①、图②、图③都是的网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A ,B ,C 均在格点上.在图①、图②、图③给定的网格中,仅用无刻度的直尺,按下列要求完成作图,并保留作图痕迹.AB CD EF ∥∥12AD =4DF =15BE =CE Rt ABC △90C ∠=︒3AC =4BC =AC DF AB ∥BC BAC ∠DF BE ABE △DE EF221)(2)--+-()()325211x x x -+=+66⨯图① 图② 图③(1)在图①中,以点C 为位似中心,将放大到原来的2倍;(2)在图②中,在线段上作点D ,使得;(3)在图③中,作,且相似比为.18.(本题8分)玉米俗称玉米棒子、苞米,是我国第一大粮食作物,也是全世界公认的“黄金作物”.政府鼓励农民种植玉米,一亩地每年补贴300元.经调查:我省玉米实验田平均亩产量约1300千克,市场销售价为每千克1.2元,除购买种子、播种、施肥、浇水、收割等成本费用外(随种植亩数的变化而变化),种植一亩玉米的净利润达到1360元.(1)求种植一亩玉米的成本需要多少元;(2)某农场现有15亩实验田,计划种植玉米和蔬菜,根据经验调查发现:按2023年种植一亩玉米的成本来计算,以后每多种植1亩,平均每亩的成本会减少20元,2024年农场计划投入3200元的成本种植玉米,问:该农场计划种植几亩玉米?19.(本题7分)如图,在中,点D 在边上,,点E 在边上,.(1)求证:.(2)若,,求的长.20.(本题8分)项目化学习项目主题:测量树的高度.分析探究:树的高度不能直接测量,需要借助一些工具,比如小镜子,标杆,皮尺,小木棒,自制的直角三角形硬纸板,确定方案后,还要画出测量示意图,并实地进行测量,得到具体数据,从而计算出树的高ABC △BC 3CD BD =BEF BAC △∽△3:4ABC △BC DAC B ∠=∠AD CD CE =ABD CAE △△∽9AB =6AC BD ==AE度.成果展示:下面是某小组进行交流展示时的部分测量方案及测量数据:测量工具标杆,皮尺测量方案选一名同学作为观测者,在观测者与树之间的地面直立一根标杆,使树的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上.这时再测出观测者的脚到树底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段表示树,标杆,观测者的眼睛到地面的距离,观测者的脚到树底端的距离,观测者的脚到标杆底端的距离.……请同学们继续完善上述成果展示:任务一:根据测量数据,求出树的高度;任务二:写出求树的高度时所利用的数学知识________________________________________.(写出一个即可)21.(本题8分)阅读下列材料,并按要求完成相应的任务.两千多年前,古希腊数学家欧多克索斯(Eudoxus ,约前400-前347)发现:如图1,将一条线段分割成长、短两条线段,,若较短线段与较长线段的比等于较长线段与原线段的比,即(此时线段叫做线段,的比例中项)比值为黄金比,P 为线段的黄金分割点. 图1采用如下方法可以得到黄金分割点:如图2,设是已知线段,经过点B 作,且,连接,在上截取,在上截取,则C 就是线段的黄金分割点.任务:AB 3.2m EF = 1.7m CD =14m DB =2m DF =AB AB AP BP BP AP AP AB =AP BP AB AB AB BD AB ⊥12BD AB =AD AD DE DB =AB AC AE =AB图2(1)求证:C 是线段的黄金分割点.(2)若,则的长为________.22.(本题12分)综合与实践(1)如图①,在中,,,点D 在边上,点E 在边上.若,求证:.图①(2)如图②,在矩形中,,,点E 在边上,连接,过点E 作,交于点F .图②i )若,求的长;ii )若点F 恰好与点D 重合,求的长.23.(本题12分)综合与探究如图1,在矩形中,,,点E 是对角线上任意一点,交于点G ,交于点F .(1)当点E 为的中点时,________. 图1(2)如图2,将四边形绕点B 逆时针旋转,连结,.在旋转过程中,是否发生变化,若不变化,求出的值,若发生变化,请说明理由.AB 1BD =BC Rt ABC △90ACB ∠=︒AC BC =AB BC 45CDE ∠=︒ACD BDE △∽△ABCD 4cm AB =10cm BC =BC AE EF AE ⊥CD :1:9BE EC =CF BE ABCD 6cm AB =4cm AD =BD EG CD ∥BC EF AD ∥AB BD DE CG=BFEG CG DE DE CG DE CG图2(3)如图3,将四边形绕点B 逆时针旋转,连结,.请直接写出旋转过程中的值. 图3BFEG AF DE DE AF九年级数学答案一、1、C2、A3、D4、B5、C6、B7、B8、A9、D10、D二、11、412、13、20%1415、三、16、解:(1(2),,,,,.17、(1)如图,即为所求(2)如图,点D 即为所求(3)如图,即为所求18、(1)设种植一亩玉米的成本需要x 元,154372211111)(2)(21)21444---+-=--+=-+-+=-2315210211x x x x +--=+238110x x --=14∆==81423x ±=⨯1113x =21x =-11A B C △BEF △依题意得:,解得.答:种植一亩玉米的成本最高需要500元.(2)设该农场计划种植y 亩玉米,则每亩的成本为依题意得:,整理得:,解得:,(不合题意,舍去)。

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版九年级上册。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是21.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是,坝高BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .508.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .1210.如图,直线y kx =与双曲线my x =相交于点A 和B ,已知点A 的坐标为()4,1,则不等式m kx x³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .612.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .513.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .914.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为 .三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.21.(本小题满分9分)某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.班级平均数众数中位数方差九(1)班7.6——8 3.84九(2)班8.410—— 3.84请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.23.(本小题满分10分)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)25.(本小题满分12分)如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.26.(本小题满分13分)在ABC V 中,45A Ð=°,AC =D 为AB 边上一动点,45CDF Ð=°,DF 交BC 边于F .探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期中数学测试
(满分:120分,考试时间:120分钟)
一.精心选一选,相信你一定能选对! 1.下列计算正确的是( )
A . a
a a 31211=+ B . a 6÷a 2=a 3 C . (a -3)2=(a 3)2 D . (a •
b )-3=a -3b -
3 2.纳米是一种长度单位,1纳米=10-9
米,已知某种植物的直径约为35000纳米,那么用科学记数
法表示该花粉的直径为( )
A . 3.5ⅹ104米
B . 3.5ⅹ10
-4
米 C . 3.5ⅹ10-5
米 D . 3.5ⅹ10
-9

3.解方程(x +5)2-3(x +5)=0,较简便的方法是( )
A . 直接开平方法
B . 因式分解法
C . 配方法
D . 公式法
4.若a 为锐角,且sina 是方程2x 2+3x -2=0的一个根,由cosa 等于( )
A .
21
B . 2
3
C . 22
D . 2
3或21
5.⊙O 的半径是b ,⊙O 的一条弦A B 长为36,以3为半径的同心圆与A B 的位置关系是( )
A . 相切
B . 相交
C . 相离
D . 相交或相切
6.在△A BC 中,A B =3,A C =4,∠A =900,把Rt △A BC 绕直线A C 旋转一周得到一个圆锥,其表面积为S 1,把Rt △A BC 绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,则S 1∶S 2=( ) A . 2∶3 B . 3∶4 C . 4∶9 D . 39∶56
7.某博物馆中有一个圆形展厅,在它的墙壁上安装若干电子监测仪,使展览厅的每个角落都可监视到,若每只监视仪的最大视角为300,则至少要安装( ) A . 12个 B . 6个 C . 8个 D . 4个 二.精心填一填,相信你填得又快又对! 8.若方程
x
x
x --=+-21321有增根,那么增根是____________. 9.如果方程x 2-(|m |-6)x +m -5=0的两个根互为相反数,那么m =_______. 10.一点和⊙O 上的点的最近距离为4cm ,最远距离为10cm ,则这个圆的半径是____cm . 11.已知半径为1的圆的圆心在坐标原点,半径为3的圆的圆心坐标是(1,3--),则这两圆的位置关系是______.
12.设三角形三边长分别为4、5、6,以三角形的三个顶点为圆心作三个两两外切的圆,则这三个圆中最小圆的直径是__________.
三.解答下列各题,展示你的计算能力.(第13题5分,第14题5分,第15题6分) 13. 计算)2(121y x x
y x y x x --+⋅+- 14. 解方程 (3x +5)2-5(3x +5)+4=0
15. 已知的值求)
)((2))((2,12a c b a bc c a b a ab b a --+--+=
四.精心选一选,千万别漏选(每小题4分,共8分,错选一项零分,漏项酌情给分) 16.下面是王丹同学在一次测验中解答的填空题,其中错误的是( ) A . 若x 2=4,则x =2 B . 方程x (2x -1)=2x -1的解是x =1 C . 若关于x 的方程x 2+2
x +k =0的两根的倒数和为4,则k =-
2
1
D . 若分式1
2++a a
a 的值为零,则a =0或a =-1
17.如图,P A 、PB 是⊙O 的切线,A 、B 为切点,A C 是⊙O 的直径,连结PO 交A B 于D ,连结BC ,下列说法正确的是 ( ) A . ∠B A C =2
1
∠A PB B . BC ∥OP C . S △A OD =
2
1
S △A BC D . △A BC ∽△P A O 五.用心做一做,你一定能行
18.说明不论m取何值,关于x的方程(x-1)(x-2)=m2总有两个不相等的实根.(8分)
19.如图,⊙I为△A BC的内切圆,A B=4,BC=8,C A=10,
点D、E分别为A B、A C上的点,且DE为⊙I的切线
(1)求△CDE的周长;(4分)
(2)△A BC的面积能否等于442,试说明理由.(6分)
20.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元,有24名家庭困难学生免费供应,经核算,这24套演出服的成本正好是原定生产这批演出服的利润,问这批演出服共生产了多少套?(10分)
21.现有一块长67cm,宽20cm的铁板,需要从中切割
下半径为10cm和5cm的两种圆形零件,且一个半径为
10cm的零件与三个半径为5cm的零件为一组.
(1)想想看,最多可切几组?试画出图形;(4分)
(2)通过计算,说明你的设计理由.(6分)
比例尺为1∶10 22.如图,已知⊙O1与⊙O2相交于A、B,过点
B作CD⊥A B,分别交⊙O1和⊙O2于C、D,过
点B任作一直线分别交⊙O1和⊙O2于E、F,试
说明
(1)
AD
AF
AC
AE
;(6分)
(2)试比较EF、CD大小.(4分)
23.如图,A B为⊙O直径,r为⊙O半径,∠ECB=∠A (1)求证:CE是⊙O的切线;(6分)
(2)若∠A=300,BC是方程x2-2(r-2)x+r2-4=0 的根,求扇形COB的面积.(6分)。

相关文档
最新文档