常见压铸模具的失效形式与模具设计要点

合集下载

压铸模具的失效形式及提高其使用寿命的途径

压铸模具的失效形式及提高其使用寿命的途径

压铸模具的失效形式及提高其使用寿命的途径近年来压铸生产的迅速发展,为汽车、摩托车的大量零部件提供了一种经济、高效的生产方式。

如何提高压铸模的使用寿命,历来是人们所关心的问题。

压铸模寿命短不但增加产品的成本,而且严重影响生产,成为生产上急待解决的关键问题。

2 压铸压铸模的失效形式2.1 热疲劳裂纹热疲劳裂纹是压铸压铸模最常见的失效形式,占压铸模失效的60%~70%。

由于压铸过程中压铸模反复经受急冷、急热所造成的热应力,导致在压铸模型腔表面或内部热应力集中处逐渐产生微裂纹,其形貌多数呈现网状,又称龟裂,也有呈放射状。

这些在压铸模表面浅层中的微裂纹,一般可以修复掉,如果热疲劳裂纹深入基体内部,修模会导致压铸模尺寸超差,或者由于压铸过程中循环次数的增加,热应力使热疲劳裂纹继续扩展成宏观裂纹,从而导致压铸模的失效。

热疲劳裂纹是热循环应力、拉伸应力和塑性应变共同作用而产生的。

塑性应变促进裂纹的形成,拉伸应力促进裂纹的扩展与延伸。

因此降低温度循环幅、增加压铸模材料强韧性、形成表面压应力,均可推迟或延缓热疲劳裂纹的形成及扩展,从微观分析,热疲劳裂纹往往在晶界碳化物、夹杂物集中区萌生,因此钢质洁净、显微组织均匀的优质热作模具钢有较高的热疲劳抗力。

2.2 整体脆性开裂整体脆性开裂是由于偶然的机械过载或热过载而导致压铸模灾难性断裂。

材料断裂时所达到的应力值一般都远低于材料的理论强度,由于微裂纹的存在,受力后将引起应力集中,使裂纹尖端处的应力比平均应力高得多。

压铸模脆性开裂引起的原因很多,诸如压铸操作失常引起的机械过载、热冲击,压铸模设计不合理产生应力集中等等。

材料的塑韧性是与此现象相对应的最重要的力学性能。

模具钢中夹杂物的减少,韧性将明显提高。

在实际生产中,整体脆断的情况较少发生。

2.3 溶蚀或冲蚀熔融的金属液以高压、高速进入型腔,对压铸模成形零件的表面产生激烈的冲击和冲刷,造成型腔表面的机械冲蚀,高温使压铸模硬度下降,导致型腔软化,产生塑性变形和早期磨损。

压铸工艺及压铸模具设计要点

压铸工艺及压铸模具设计要点

压铸工艺及压铸模具设计要点压铸工艺及压铸模具设计要点压铸是一种利用压力将液态金属注入模具中,通过冷却凝固形成定形零件的制造方法。

压铸产品在重量、强度、尺寸方面都有非常高的准确性和稳定性,被广泛应用于汽车、摩托车、电子、通讯设备、家电等产业中,成为目前工业生产中不可或缺的一种制造技术。

下面将从压铸工艺及压铸模具设计要点两个方面进行阐述。

一、压铸工艺1. 材料准备:首先需要准备液态金属,一般使用的是微量合金钢、铝合金、镁合金、铜合金等牌号。

材料的纯度、质量直接影响产品的质量。

2. 模具设计:由于压铸的成形过程主要依靠模具的形状和大小,所以模具设计非常重要。

模具一般由流道、高压室、模腔等主要部分组成,需要用CAD 设计软件绘制出预想的产品三维模型,然后进行分析预测。

3. 夹具安装:很多压铸厂家采用自动化流水线作业,这样可以让夹具自动加载模具。

夹具的准确安装和保持最佳状态对产品稳定的尺寸和质量有着至关重要的作用。

4. 液态金属注入:注入过程需要注意金属温度的控制,因为如果注入过热的金属会造成热缩,也会加快金属与模具接触面损耗的速度。

注入金属的速度和压力也需要掌握恰当的水平。

5. 压力保持和冷却:完成注入后,需要将模具保持一定的压力,通常设置的保持时间在15-20秒之间,直到金属凝固成型,然后通过水冷却或空气冷却来加速金属的冷却,降低模腔温度,以便后续顺利脱模。

6. 脱模:经过强制冷却后,模具表面的金属固化成型,可以脱模取出。

如果模具内存在脱模困难的产品,则采用震动或喷水技术来辅助脱模。

二、压铸模具设计要点1. 模具材料:模具材料的决定因素是金属的特性和成本。

有些材料具有良好的抗磨损性和耐腐蚀能力,例如CrMoV 钢,有些材料则具有良好的导热性和导电性能,例如铝合金。

选用模具材料需要考虑两方面因素:一、材料的使用寿命;二、成本。

2. 模具结构:模具结构需要考虑到成品的尺寸、线条、强度和表面质量等因素。

通常情况下,模具结构应该是四侧对称的,以确保在生产过程中的稳定性和成品准确性。

压铸模具的常见问题以及处理方案

压铸模具的常见问题以及处理方案

压铸模具的常见问题以及处理方案1. 模具裂纹压铸模具在制作或使用过程中,可能会出现裂纹现象。

裂纹可能是由于材料选择不当、热处理不充分、加工工艺不合理等原因导致的。

在出现裂纹时,应立即停止使用模具,以免造成更大的损坏。

处理方案:选用合适的材料,如高韧性、高强度、高耐磨性的模具钢;进行充分的热处理,提高模具的强度和韧性;优化加工工艺,避免出现过大的应力集中。

2. 模具磨损压铸模具在使用过程中,由于金属液的冲刷和摩擦,容易导致模具表面的磨损。

磨损可能是由于高温氧化、硬度过低、耐磨性不足等原因导致的。

处理方案:采用高硬度、高耐磨性的模具材料;对易磨损部位进行特殊处理,如增加耐磨涂层;定期检查和维修模具,及时更换磨损严重的部件。

3. 模具堵塞压铸模具在使用过程中,可能会因为金属液中的杂质、涂料残留等原因导致堵塞。

堵塞会影响压铸生产的效率和产品质量。

处理方案:定期清理和清洗模具,保持模具的清洁度;加强原料的质量控制,减少杂质和涂料残留;设计合理的浇注系统,避免出现死角和滞留点。

4. 模具变形压铸模具在使用过程中,可能会因为冷却不均匀、热处理不当等原因导致变形。

变形会影响压铸产品的尺寸精度和外观质量。

处理方案:优化冷却系统,确保模具均匀冷却;进行充分的热处理,提高模具的稳定性和精度;定期检测和修正模具的变形情况,保持模具的精度和形状。

5. 模具脱模不良压铸模具在使用过程中,可能会出现脱模不良的现象。

脱模不良可能是由于模具材质问题、模具设计问题、加工工艺不合理等原因导致的。

处理方案:选用合适的模具材料,如高硬度、高耐磨性的材质;优化模具设计,提高脱模性能;加强加工工艺的控制,保证模具的加工精度和表面光洁度;使用合适的脱模剂,减少粘模现象。

6. 模具热疲劳压铸模具在使用过程中,可能会因为反复的热循环和冷热交替而产生热疲劳裂纹。

热疲劳会影响模具的使用寿命和压铸产品的质量。

处理方案:降低加热温度、延长保温时间,减少热循环的次数;优化冷却系统,提高模具的冷却效率;定期进行热处理,恢复模具的硬度和强度;选择合适的热传导材料,减少热损失。

压铸工艺流程中的模具设计要点

压铸工艺流程中的模具设计要点

压铸工艺流程中的模具设计要点压铸是一种常用的金属加工工艺,通过将熔融金属注入模具中,并在固化后取出成型件。

模具设计是整个压铸工艺中的关键环节,决定了成型件的质量和生产效率。

本文将从模具结构设计、材料选择和加工工艺三个方面讨论压铸工艺流程中的模具设计要点。

一、模具结构设计要点1. 合理选择模具结构模具结构的设计应根据产品的形状、尺寸和压铸工艺要求进行合理选择。

一般常见的模具结构包括单腔、多腔、合模和分模等。

对于形状复杂的产品,可以采用多腔结构来提高生产效率。

对于尺寸较大的产品,可以考虑采用合模结构来减少模具成本。

2. 考虑产品的冷却和顶针装置在模具设计中,需要考虑产品的冷却和顶针装置。

冷却系统的设计应能够有效地排除熔融金属的热量,以确保成型件的质量。

顶针装置的设计应满足产品的要求,并保证顶针在压铸过程中的精确位置。

3. 设计合理的浇口和溢流槽浇口和溢流槽是模具设计中的重要组成部分。

设计浇口时应考虑熔融金属的流动性和冷却速度,并确保浇口与产品的结合处处于合适的位置。

溢流槽的设计应考虑金属液体的顺利流动,以避免产生气体和杂质。

二、材料选择要点1. 选择耐磨耐热的材料模具在压铸过程中需要承受高温和高压的作用,因此材料的选择至关重要。

一般采用耐磨耐热的工具钢或合金钢作为模具材料,以保证模具的使用寿命和成型件的质量。

此外,还应考虑材料的加工性能和可靠性。

2. 考虑材料的强度和刚性模具的结构设计需要兼顾材料的强度和刚性。

材料的强度直接影响到模具的承载能力,而刚性则影响到模具的稳定性和精度。

因此,在模具设计中应根据产品的要求选择合适的材料,并进行合理的加工和热处理,以提高模具的性能。

三、加工工艺要点1. 精确计算和控制成型参数在压铸工艺中,成型参数的精确计算和控制是保证成型件质量和加工效率的关键。

成型参数包括注射速度、压力、温度和冷却时间等。

合理选择和控制这些参数,可以避免产生缺陷和变形,提高成型件的精度和表面质量。

压铸模知识-压铸模损坏分析

压铸模知识-压铸模损坏分析

铸模知识一:压一.模具损坏分 在压铸生产击都是产生应力之源,包括有机械应力和热应力,应力产生于:一.在模具加工1、毛坯锻造质 有些模具只晶体、夹杂碳化物、缩孔、气泡等疏松缺陷沿加工方法被延伸拉长,形成流线,这种流线对以后的最后的淬火变形、开裂、使用过程中的脆裂、失效倾向影响极大。

2、在车、铣、3、淬火钢磨削裂纹。

对H13钢在精磨后,可采取加热至510-570℃,以厚度每25mm保温一小时进行消除应力退火。

4、电火花加工有应力。

电火花加工时应采用高的频率,使白亮层减到最小,必须进行抛光方法去除,并进行回火处理,回火在***回火温度进行。

二.模具处理过 热处理不当次后会出现表面龟裂和开裂。

钢淬火时产固必须进行回火来消除应力。

三.在压铸生产1、模温 模具在生产力,使模具表面龟裂,甚至开裂。

在生产过程 应设置冷却2、充型 金属液以高属液、杂质、气体还会与模具表面产生复杂的化学作用,并加速腐蚀和裂纹的产生。

当金属液裹有气体时,会在型腔中低压区先膨胀,当气体压力升高时,产生内向爆破,扯拉出型腔表面的金属质点而造成损伤,因气蚀而产生裂纹。

3、开模 在抽芯、开4、生产过程 在每一个压膨胀和收缩,产生周期性热应力。

如浇注时模具表面因升温受到压应力,而开模顶出铸件后,模具表面因降温受到拉应力。

当这种交变应力反复循环时,使模具内部积累的应力越来越大,当应力超过材料的疲劳极限时,模具表面产生裂纹。

压铸模知识二:1.良好的铸件 铸件壁厚尽角,以避免模具上有尖角位导致应力产生。

2.合理的模具 1)模具中 2)浇注系 3)正确选 4)保持模3.规范热处理 通过热处理 正确的热处4.压铸生产过 1)温度控 2)合理的 3)调整机不均匀,引起变形。

4)对合金5.模具的维护 1)定期消 2)模具修压铸模知识三:上一篇:注射成一:压铸模损坏分析损坏分析铸生产中,模具损坏最常见的形式是裂纹、开裂。

应力是导致模具损坏的主要原因。

热、机械、化学、操作冲击都是产生应力之源,包括有机械应力和热应力,应力产生于:具加工制造过程中锻造质量问题模具只生产了几百件就出现裂纹,而且裂纹发展很快。

压铸模具失效形式以及如何提高寿命

压铸模具失效形式以及如何提高寿命

压铸模具失效形式以及如何提高寿命压铸模具是压铸生产中最重要的零部件之一,它承担着压铸工艺中的成型和冷却功能,是压铸产品质量和产量的关键因素之一。

然而,由于压铸模具在工作过程中受到高温高压的影响,加之工作频次高,很容易出现失效现象。

本文将探讨常见的压铸模具失效形式以及如何提高其寿命。

一、压铸模具失效形式1. 疲劳失效。

由于模具在压铸生产中的高频使用,反复受力反复工作,易产生疲劳失效。

疲劳失效分为低应力疲劳和高应力疲劳,低应力疲劳主要表现为模具表面开裂、裂纹扩展;高应力疲劳主要表现为模具出现断裂现象。

2. 磨损失效。

在模具定向移动过程中,会磨损模具表面,削减模具尺寸精度,造成松动和失效。

磨损失效分为粘着磨损、磨粒磨损、抛光磨损等。

3. 腐蚀失效。

模具在高温高压下与铝合金反应,会导致腐蚀失效。

大量的铝合金氧化物和废气产生,这些氧化物会在模具表面附着、腐蚀,严重影响模具的使用寿命。

4. 热疲劳失效。

在模具与铝合金摩擦过程中,会产生大量的热量,造成热膨胀和收缩,导致热疲劳失效。

热疲劳失效不可逆,一旦发生,模具寿命会大幅缩短。

二、提高压铸模具寿命的方法1. 优化模具设计。

在模具设计阶段,可以采用耐热合金、表面渗碳处理等技术和材料,以提高模具的耐热性、耐腐蚀性和耐磨损性。

2. 加强模具维护。

定期对模具进行清洁和润滑,对磨损严重的模具进行翻新和更新,是提高压铸模具寿命的必要手段。

维护模具还可以准确的检测模具工作情况,及时调整和修复模具。

3. 优化压铸工艺。

优化压铸工艺,可以减少模具的应力和疲劳程度。

通过优化压铸工艺可以选择合适的铝合金材料和合理的工艺参数,具有重要的提高模具使用寿命和生产效率的作用。

4. 加强模具管理。

科学的模具管理,可以提高压铸模具的使用效率和寿命。

包括模具存储、模具抽检、模具保养四个方面。

结论:压铸模具是压铸产品质量的关键环节,模具失效会影响生产效率和生产成本,甚至还会产生质量问题。

因此,提高压铸模具的寿命是非常重要的。

模具失效的基本概念及失效主要形式

模具失效的基本概念及失效主要形式

模具失效的基本概念及失效主要形式模具失效的基本概念:众所周知,模具在服役时,在其不同部位,承受着不同的作用力。

一个副模具在服役过程中,可能同时或先后出现多种损伤形式。

大多数模具出现损伤后不会立即丧失服役能力,仅在其中之一种损伤发展到足以妨碍模具的正常工作或是生产出废品时,此模具才停止服役。

因此,所谓失效形式,就是使模具丧失服役能力的某些损伤形式。

冷、热模具在服役中失效的基本形式有五种:塑性变形、磨损、疲劳、冷热疲劳、断裂及开裂。

东莞弘超研究表明,模具在工作过程中有可能同时出现多种损坏形式,各种损伤之间又相互渗透、相互促进、各自发展,而当某种损坏的发展导致模具失去正常功能,则模具失效。

其中除冷热疲劳主要出现在热作模具外,其他四种失效形式,在冷作或热作模具上,均可能出现。

失效分析的目的:失效分析是指分析失效原因,研究和采取补救措施和预防措施的技术与管理活动,再反馈于生产,因而是质量管理的一个重要环节(下图为压铸模具热龟裂的表现图)。

失效分析的目的是寻找材料及其构件失效的原因,从而避免和防止类似事故的发生,并提出预防或延迟失效的措施。

失效分析工作在材料的正确选择和使用,新材料、新工艺、新技术的发展,产品设、制造技术的改进,材料及零件质量检查、验收标准的制定、改进设备的操作与维护,促进设备监控技术的发展等方面均起重要作用。

金属材料失效分析涉及的学科和技术种类极为广泛。

学科包括金属材料、金属学、冶金学、金属工艺学、金属焊接、材料力学、断裂力学、金属物理、摩擦学、金属的腐蚀与保护等。

试验分析技术包括金相、化学成分、力学性能、电子显微断口、X射线相结构等。

失效形式一:塑性变形当模具承受的负荷超过模具钢材的屈服强度时,模具会产生塑性变形。

东莞市弘超模具科技有限公司根据实践总结,图例解读模具的塑性变形概念和原理。

例如:凹模在服役中出现的型腔、型孔胀大,棱角倒塌以及冲头在服役中出现冲头镦粗、纵向弯曲等,尤其是热模具,模具的工作面与高温的坯料接触,使型腔表面温度往往超过热作模具钢的回火温度,型槽内壁由于软化而被压塌或压堆,使型槽尺寸变样,失去其尺寸和形状的精度而失效。

第10章压铸模的失效形式和提高压铸模寿命的措施.

第10章压铸模的失效形式和提高压铸模寿命的措施.

• 归纳起来,导致压铸模失效的主要原因有三种: 1)在每次压铸作业过程中,因热交换面引起的热-机械交变 应力而使模具失效。 2)压铸作业时,金属液对模具材料的化学-物理作用而使模 具失效。 3)在脱模时所产生的局部应力使模具失效。
§2 提高压铸模寿命的措施
• 影响压铸模寿命的因素很多。
• 内部因素
本章 完
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
第十章 压铸模的失效形式和提高压 铸模寿命的措施
§1 压铸模的失效形式
• 压铸模的失效形式主要有:侵蚀,热疲劳,磨损,变形, 开裂。
• 锌合金的熔化温度较低,其压铸模的失效形式主要是:侵 蚀,磨损。
• 铝合金和铜合金的熔化温度较高,其压铸模的失效形式主 要是:热疲劳(龟裂)。
• 金属液填充型腔时,型腔表层首先达到高温面膨胀,但内 层模温较低,相对的膨胀较小,使表面层产生压应力。当 开模后型腔表面与空气接触,受到压缩空气及涂料的激冷 面产生拉应力。这种交变应力随着压铸次数的增加面增大, 当它超过模具材料的疲劳极限时,表面层即产生塑性变形, 并在晶界处产生裂纹。这种失效形式称为热疲劳失效。
压铸模的材质,设Leabharlann 制造方案和质量等• 外部因素
压铸模的工作环境
• 采取的措施: 1、精心设计压铸件、压铸模。
2、保证模具的加工质量。 3、采用优质钢材。
4、采用先进的毛坯锻造工艺。 5、采用合理的热处理规范。

压铸模具的失效分析

压铸模具的失效分析

压铸模具的失效分析随着铝合金压铸模具技术的日趋成熟,锌、铝、镁合金压铸越来越广泛应用于汽车、摩托车、柴油机、电子设备、家用电器等工业及民用产品配件的生产。

然而,压铸模具的早期失效一直是困扰模具生产和使用者的普遍问题,那么,该如何提高模具的使用寿命呢?一、压铸模具的失效压铸模的使用时急热急冷,条件极为恶劣。

以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。

在铝液注射时,型腔表面温度急剧上升,型腔表面承受极大的压应力。

开模顶件、喷涂脱模亮剂时,型腔表面温度急剧下降承受极大的拉应力。

由于交变温度影响模具型面压缩、拉伸的交变应力的反复作用从而使模具金属因热疲劳而产生龟裂缺陷。

开裂是由于模具的短时间的热应力或机械应力过载而引起的模具整体破损。

模具的侵蚀主要分为三种:1、腐蚀:金属熔液与铁互相扩散并形成金间化合物;2、冲蚀:金属熔液在型腔中流动时所产生的热机械磨损;3、粘著:金属熔液附着在模具型腔表面,顶出产品时带走型面表层金属。

而压陷是因为模具强度不足或金属碎屑附着在模具型面,受到锁模力作用使模具产生的塑性变形。

二、影响压铸模具使用寿命的因素1、钢材对模具寿命的影响因压铸模具恶劣的使用环境,所以要求模具钢材必须具有优良的淬透性、良好的抗高温强度、高的耐磨性、好的韧度、好的抗热裂能力和高的耐熔损性能等。

●化学成分压铸模具钢的应用广泛和具有优良的特性主要由钢中的C、Cr、Mo、Si、V 等化学成分决定的。

当然钢中杂质元素必须降低,有资料表明,当Rm在1550MPa 时,材料含硫量由0.03%降到0.003%,会使200℃左右时的冲击韧度提高约1-2倍。

北美压铸学会(NADCA 207-2003)标准就规定:优级(premium)H13钢含硫量小于0.005%,而超级(superior)的应小于0.003%S和0.015%P。

●退火状态均匀的球状珠光体无晶界碳化物●钢材的纯净度杂质是热龟裂发生的起源点杂质无强度,不能抵抗热疲劳、杂质降低钢材的延展性●钢材的均一性钢胚具备近似纵向(锻打延伸方向)、横向机械性质的力学差异各向同性。

压铸模知识点

压铸模知识点

铝合金压铸件的结构设计经验1。

考虑壁厚的问题,厚度的差距过大会对填充带来影响2。

考虑脱模问题,这点在压铸实际中非常重要,现实中往往回出现这样的问题,这比注塑脱模讨厌多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1到3度,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模也就1度,而内拔模要2~3度左右3。

设计时考虑到模具设计的问题,如果有多个位置的抽心位,尽量的放两边,最好不要放在下位抽心,这样时间长了下抽心会容易出问题4。

有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要时结构避开重要外观位置便于设置浇口溢流槽5。

在结构上尽量的避免出现导致模具结构复杂的结构出现,如,不得不使用多个抽心或螺旋抽心等6。

对于需进行表面加工的零件,注意,需要在零件设计时给适合的加工留量,不能太多,否则加工人员会骂你的,而且会把里面的气孔都暴露出来的,不能太少,否则粗精定位一加工,得,黑皮还没干掉,你就等再在模具上打火花了,那给多少呢,留量最好不要大于0。

8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。

7。

再有就是注意选料了,是用ADC12还是A380等,要看具体的要求了8。

铝合金没有弹性,要做扣位只有和塑料配合。

9。

一般不能做深孔!在开模具时只做点孔,然后在后加工!10。

如果是薄壁零件与不能太薄,而且一定要用加强肋,增加抗弯能力!由于铝铸件的温度要在800摄氏度左右!模具寿命一般比较短一般做如电机外壳的话只有80K左右就再见了!1.压铸件的设计与塑胶件的设计比较相似,塑胶件的一些设计常规也适用于压铸件。

2.对于铝合金,模具所受温度和压力比塑胶的大很多,对设计的正确性要求特严。

即使很好的模具材料,一旦有焊接,模具就几乎无寿命可言。

锌合金跟塑胶差不多,模具寿命较好。

3.不能有凹的尖角,避免模具崩角。

4.压铸件的精度虽然比较高,但比塑胶差,而且拔模力比塑胶大,通常结构不能太复杂,必要时应将复杂的零件分解成两件或多件。

常见模具失效形式及机理赏析

常见模具失效形式及机理赏析

磨损剥落
裂纹源扩展到表面或 与纵向裂纹相交
某些组织不均匀处由于 应力集中产生裂纹源
常见模具失效形式及机理赏析
▪ 影响疲劳磨损的因素
●材质 ●硬度 ●表面粗糙度
在无外加机械应力的条件下,由于外部温度的涨落使零件内部产 生循环应变,由此导致的裂纹和断裂叫做热疲劳失效。在热疲劳条 件下,有两种方式可使零件产生循环应变:
工件与模具表面相对运动时,由于表面凹凸不平,粘着的节点 发生剪切断裂,使模具表面材料转移到工件上或脱落的现象。
▪ 粘着磨损机理示意图
常见模具失效形式及机理赏析
▪ 粘着磨损分类
程磨 度损
严 重
轻微粘着磨损(氧化磨损)
严重粘着磨损
涂抹 擦伤
▪ 影响粘着磨损的因素
撕脱
●表面压力
咬死
●材料性质 ●材料硬度
▪ 冲蚀磨损机理
●强烈撞击造成局部材料断裂 ●速度不高的反复撞击产生疲劳裂纹,形成麻点和凹坑
常见模具失效形式及机理赏析
(五) 腐蚀磨损
▪ 什么叫腐蚀磨损?
在摩擦过程中,模具表面与周围介质发生化学或电化学反应, 再加上摩擦力机械作用,引起表层材料脱落的现象。
▪ 腐蚀磨损机理
模具表面与周围介质发生化学或电化学反应
按失效的形式及失效机理分类
过量弹性变形失效 过量变形失效 过量塑性变形失效,模具的塑性变形
蠕变超限

韧性断裂 蠕变断裂
效 断裂失效 脆性断裂 应力腐蚀断裂
模具局部 疲劳断裂
断裂示意 图
表面磨损失效
表面损伤失效 表面腐蚀失效
接触疲劳失效
常见模具失效形式生产中使用的模具种类繁多,工作状态差 别很大,失效的形式及机理各不相同。

压铸模具的常见问题以及处理方法

压铸模具的常见问题以及处理方法

1).冷纹:原因:熔汤前端的温度太低,相叠时有痕迹.改善方法:1.检查壁厚是否太薄(设计或制造) ,较薄的区域应直接充填.2.检查形状是否不易充填;距离太远、封闭区域(如鳍片(fin) 、凸起) 、被阻挡区域、圆角太小等均不易充填.并注意是否有肋点或冷点.3.缩短充填时间.缩短充填时间的方法:…4.改变充填模式.5.提高模温的方法:…6.提高熔汤温度.7.检查合金成分.8.加大逃气道可能有用.9.加真空装置可能有用.2).裂痕:原因:1.收缩应力.2.顶出或整缘时受力裂开.改善方式:1.加大圆角.2.检查是否有热点.3.增压时间改变(冷室机).4.增加或缩短合模时间.5.增加拔模角.6.增加顶出销.7.检查模具是否有错位、变形.8.检查合金成分.3).气孔:原因:1.空气夹杂在熔汤中.2.气体的来源:熔解时、在料管中、在模具中、离型剂.改善方法:1.适当的慢速.2.检查流道转弯是否圆滑,截面积是否渐减.3.检查逃气道面积是否够大,是否有被阻塞,位置是否位於最后充填的地方.4.检查离型剂是否喷太多,模温是否太低.5.使用真空.4).空蚀:原因:因压力突然减小,使熔汤中的气体忽然膨胀,冲击模具,造成模具损伤.改善方法:流道截面积勿急遽变化.5).缩孔:原因:当金属由液态凝固为固态时所占的空间变小,若无金属补充便会形成缩孔.通常发生在较慢凝固处.改善方法:1.增加压力.2.改变模具温度.局部冷却、喷离型剂、降低模温、.有时只是改变缩孔位置,而非消缩孔.6).脱皮:原因:1.充填模式不良,造成熔汤重叠.2.模具变形,造成熔汤重叠.3.夹杂氧化层.改善方法:1.提早切换为高速.2.缩短充填时间.3.改变充填模式,浇口位置,浇口速度.4.检查模具强度是否足够.5.检查销模装置是否良好.6.检查是否夹杂氧化层.7).波纹:原因:第一层熔汤在表面急遽冷却,第二层熔汤流过未能将第一层熔解,却又有足够的融合,造成组织不同.改善方法:1.改善充填模式.2.缩短充填时间.8).流动不良产生的孔:原因:熔汤流动太慢、或是太冷、或是充填模式不良,因此在凝固的金属接合处有孔.改善方法:1.同改善冷纹方法.2.检查熔汤温度是否稳定.3.检查模具温充是否稳定.9).在分模面的孔:原因:可能是缩孔或是气孔.改善方法:1.若是缩孔,减小浇口厚度或是溢流井进口厚度.2.冷却浇口.3.若是气孔,注意排气或卷气问题.10).毛边:原因:1.锁模力不足.2.模具合模不良.3.模具强度不足.4.熔汤温度太高.11).缩陷:原因:缩孔发生在压件表面下面.改善方法:1.同改善缩孔的方法.2.局部冷却.3.加热另一边.12).积碳:原因:离型剂或其他杂质积附在模具上.改善方法:1.减小离型剂喷洒量.2.升高模温.3.选择适合的离型剂.4.使用软水稀释离型剂.13).冒泡:原因:气体卷在铸件的表面下面.改善方式:1.减少卷气(同气孔).2.冷却或防低模温.14).粘模:原因:1.积附在模具表面.2.熔汤冲击模具,造成模面损坏.改善方法:1.降低模具温度.2.降低划面粗糙度.3.加大拔模角.4.镀膜.5.改变充填模式.6.降低浇口速度。

压铸工艺与模具设计 第10章 压铸模的失效形式

压铸工艺与模具设计 第10章 压铸模的失效形式
采用较大的内浇口截面和保持模具的热平衡,以利于提高模具 使用寿命;
对于截面尺寸很大的压铸模,宜采用镶拼组合结构形式来适应 热处理的要求;
合理选用模具的镶拼组合结构形式,避免锐角、尖劈,以适应 热处理的要求;
在模具易损部位,因受金属液的激烈冲击,容易产生裂纹或塌 陷,设计时宜采用局部镶拼法,以便对损坏部位更换,不致影 响整个型腔或型芯的使用寿命。
压铸件上应尽量避免窄而深的凹穴,以避免模具相应部位出现尖 劈,使散热或排气条件恶化,受到冲击易弯曲、断裂;
压铸件应有合理的脱模斜度,以避免开模抽芯脱模取件时擦伤模 具型壁。
提高压铸模寿命的措施之二
---- 精心设计压铸模
若压铸模设计不合理,在材料和工艺上无论进行何种改进,都 无法提高其寿命;
(3)在脱模时所产生的局部应力使模具失效。
铝合金压铸模的热疲劳失效制约模具寿命
压铸模的寿命与工作温度下的抗拉强度的8次方 成正比,与弹性模量和金属液与模具之间温度 差乘积的8次方成反比;
由此推算出300度下工作的模具寿命是400度时 的10倍;
结论:严格控制工作温度、尽量降低浇注温度 至关重要。
提高压铸模寿命的措施之一
---- 精心设计压铸件
在满足压铸件结构强度条件下,宜采用薄壁结构,这既减轻铸件 质量,又减少模具的热载荷(也必须满足流动、填充的需要);
压铸件壁厚应均匀,避免热节,以减少局部热量集中引起模具过 早地热疲劳失效;
压铸件所有转角处,应有适当的铸造圆角,以避免棱角处产生裂 纹和塌陷(也利于填充);
如何提高压铸模热疲劳失效的循环数
选择压铸模材料
(1)寻求弹性模量高的模具钢; (2)寻求裂纹敏感性不强的模具钢; (3)热膨胀系数应尽可能地小; (4)导热能力应尽可能地大; (5)在具有较高的持久强度的同时,还具有较高的热交变强度; (6)具有较高的阻尼能力; (7)在交变持久应力作用下,表面敏感性和腐蚀敏感性小。

压铸模设计注意事项

压铸模设计注意事项

压铸模设计注意事项一、加工工艺流程1. 设计造型品本体模具分型面时,必须保证分型面平直且与主分型面平行。

2. 确定型腔深度,即抽芯距,应按照产品图样给定的技术要求来确认。

3. 根据模具大小或复杂程度确定其他辅助加工工序,如预埋、镗孔、沉孔、凸包、斜顶、油缸等辅助工序,合理分布型腔面的垂直度和同轴度。

4. 成形镶块的结构应考虑排料、出件及拆模方便性。

5. 成形镶块定位方式应考虑其安装固定形式,务必做到分型面打开后镶块不能移动。

一般采用燕尾槽形式或圆柱销钉固定,并要做到重复定位精度在0.01mm以内。

二、成形镶块选择1. 拼镶成形镶块应考虑材料容易得到,且机械加工量不大的结构,如采用整体式结构,便于集中加工,缩短加工周期,同时降低模具制造成本。

2. 拼镶成形镶块应考虑分型面容易制造和加工,如采用平分镶块,可以简化分型面制造和加工过程。

3. 拼镶成形镶块应考虑尽可能统一标准件,这样既可节省模具的辅助加工时间,又可降低加工成本。

4. 成形镶块与模板的拼接应尽量做到对称分布,并有利于模具的装配、更换及零件的加工和检验。

5. 成形镶块的组合及块数应考虑尽量减少加工后模板的拼接缝隙,有利于保证模具的分型面及模板的强度。

三、热处理方式选择1. 模具材料选择:根据不同的应用场合选择合适的材料,如压铸模的模座采用锻造模座,要求具有高的强度、硬度、耐磨性和韧性等性能。

2. 热处理工艺:采用合适的热处理工艺来消除内应力、提高材料硬度,并增加模具的韧性。

同时注意避免在热处理过程中产生裂纹等缺陷。

3. 表面处理:采用表面热处理工艺提高模具表面的耐磨性和抗腐蚀性,如氮化处理、渗碳处理等。

四、表面热处理方式1. 常用表面热处理方式包括浸淬、渗透、氧化等,应根据产品图样中的技术要求选择合适的热处理方式。

2. 热处理前应对零件进行机械加工消除内应力,防止零件变形。

3. 对于渗碳或碳氮共渗处理,应控制渗碳深度和渗碳浓度,并采用低温回火来减少残留奥氏体,提高模具的硬度、强度和耐磨性。

压铸模具常见失效

压铸模具常见失效

1 压铸模具常见失效形式下面结合工厂实际情况分析了压铸模具的失效形式和失效机理。

1.1热裂热裂是模具最常见的失效形式,如图1所示。

热裂纹通常形成于模具型腔表面或内部热应力集中处,当裂纹形成后,应力重新分布,裂纹发展到一定长度时,由于塑性应变而产生应力松弛使裂纹停止扩展。

随着循环次数的增加,裂纹尖端附近出现一些小孔洞并逐渐形成微裂纹,与开始形成的主裂纹合并,裂纹继续扩展,最后裂纹间相互连接而导致模具失效。

1.2整体脆断整体脆断是由于偶然的机械过载或热过载导致模具灾难性断裂。

材料的塑韧性是与此现象相对应的最重要的力学性能。

材料中有严重缺陷或操作不当,会引起整体脆断,如图2所示。

1.3侵蚀或冲刷这是由于机械和化学腐蚀综合作用的结果,熔融铝合金高速射入型腔,造成型腔表面的机械磨蚀。

同时,金属铝与模具材料生成脆性的铁铝化合物,成为热裂纹新的萌生源。

此外,铝充填到裂纹之中与裂纹壁产生机械作用,并与热应力叠加,加剧裂纹尖端的拉应力,从而加快了裂纹的扩展。

提高材料的高温强度和化学稳定性有利于增强材料的抗腐蚀能力。

2 压铸模具常见失效分析方法为了延长模具的使用寿命,节约成本,提高生产效率,就必须研究模具的失效形式和导致模具失效的原因以及模具失效的内部机理。

由于压铸模具失效的原因比较复杂,要从模具的设计、材料选择、工作状态等很多方面来进行分析。

图3为压铸模具常见失效分析图。

图 3 压铸模具常见失效分析方法2.1裂纹的表面形状及裂纹扩展形貌分析失效模具型腔表面主要是冲蚀坑,大小比较均匀,冒口所对部位有明显的冲蚀坑外,表面明显具有一定方向的划痕,划痕上分布有大小不等的铝合金块状物。

由于正对浇口部位直接受金属液的冲刷,该部位具有明显的冲刷犁沟,同时可观察到划痕间有裂纹。

裂纹从裂纹源出发,并向西周扩展。

裂纹内有大量的夹杂物,裂纹边缘有二次裂纹。

由于模具使用时间短,一般部位表面主要是冲蚀坑和焊合,而浇口所对部位主要为液态金属冲刷形成的犁沟和热疲劳裂纹。

压铸模具设计的注意事项

压铸模具设计的注意事项

压铸模具设计的注意事项压铸模具是用来生产高性能零件的关键工具。

正确的设计和制造对于生产高质量,可靠的零件至关重要。

以下是压铸模具设计的注意事项:1. 理解产品需求:在设计压铸模具之前,首先要充分了解产品的需求和要求。

这包括产品的尺寸,形状,材料,表面要求等。

只有了解了产品需求,才能够设计出合适的模具。

2. 材料选择:压铸模具通常由工具钢或合金钢制成。

选择合适的材料对模具的使用寿命和性能至关重要。

需要考虑到模具的强度,耐磨性,热稳定性等因素。

3. 冷却系统设计:在设计模具时,要考虑到合理的冷却系统。

冷却系统的设计直接影响到产品的质量和生产效率。

要保证材料能够均匀快速地凝固,避免产生气孔和缩孔。

4. 浇口和浇注系统设计:浇口和浇注系统的设计对产品的性能和外观有很大影响。

要设计合适的浇口位置和形状,确保熔体能够均匀地充满模腔,并尽量减少气体的混入。

5. 模具结构设计:模具的结构设计要考虑到产品的形状,尺寸和结构特点。

要保证模具能够承受高温高压的工作环境,同时尽量减小产品的缩孔和变形。

6. 表面处理:模具的表面处理对于产品的表面质量和寿命有很大影响。

需要选择合适的表面处理工艺,比如镀铬,喷砂,热处理等,提高模具的耐磨性和抗腐蚀性。

7. 垫块和冷却通道设计:在模具设计中,要考虑到合理的垫块和冷却通道设计。

垫块的设计直接影响到产品的尺寸和形状精度,而冷却通道的设计则直接影响到模具的冷却效果。

8. 模具制造工艺:在设计模具时,要考虑到模具的制造工艺。

要选择合适的加工工艺和设备,确保模具的精度和质量。

在压铸模具设计中,需要考虑到以上的注意事项,充分了解产品的需求,选择合适的材料和工艺,设计合理的结构和系统,才能够生产出高质量的产品。

压铸模具的设计是一个复杂的工程,需要各个方面的专业知识和经验的积累。

只有通过不断的学习和实践,才能够设计出更加优秀的压铸模具。

07压铸模失效分析

07压铸模失效分析

2. 摩擦力大
・在铝铸造中温度变化使得铝收缩,发生粘附 力,导致摩擦力变大 ・由于在相对于产品拔出的方向出现凹凸,使 得摩擦力变大
什么是收缩?
如左图所示,当产品温度 变低时发生收缩现象
Point
从整个产品来看, 朝向产品的中心发生收缩。 因此,如下图所示。取出产品时, 在与中心相反的方向产生力
中心线
15% 15%
烧 结 和 热 熔 粘 连 的 原 因
①在模具温度超过250°的情况下发生 水蒸气妨碍脱 脱模剂 模剂涂抹
水蒸气
原因 当模具温度达到150° 后,水溶性脱模剂发 生莱顿弗罗斯特现象, 导致脱模剂的附着量 减少










4
5
0
°
铝产品
还处于450°以上的 高温状态
摩擦力 10kgf以上
留下钻头的形状
温度差产生抗拉热应力
抗拉热应力集中,加快 了裂纹和漏水的出现
发生裂纹
裂纹变大后发生破裂 和漏水现象
外侧多料 冷却孔
铸 造 中 发 生 在 模 芯 上 的 原 因 1.
2. 3. 4. 5. 模 具 温 度 高 摩 铝 热 折 擦 渣 力 粘 大
这四个因素之间关系紧密
附 裂 断
缩短铸造循环时间使得模具温 度升高
pin G
针对收缩采取对策
④在锪孔上加上衬套...... Point
衬套
・ 以衬套与模芯松配合为宜 ・ 衬套的内径套管30mm以下 ・ 顶杆和衬套的法兰 部位的根 部R最好大于R1 ・ 衬套产品形状部位的倾角在 3°以上
相对于拔模方向的摩擦力
要求减小顶出产品瞬间的最大静摩擦 力 Point ・ 表面要均匀浸湿 ・ 不要相对于拔模方向设置会产生阻 力的台阶 参考信息: 铸造机的顶推力 125 t ⇒ 80kn 250 t ⇒ 125kn 350 t ⇒ 193kn 500 t ⇒ 251kn 1200 t ⇒ 586kn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见压铸模具的失效形式与模具设计要点引导语:在压铸模具的生产压铸零件过程中,经常出现不同形式的模具失效,这是压铸模具在生产过程中不可避免的过程。

本文对压铸模具的失效形式与对压铸模具失效的影响因素等进行阐述,并重点对压铸模具的技术设计要点与制造工艺等等进行了详细地说明,它对于提高压铸模具使用寿命与改善压铸模具的综合性能、大幅度降低成本、充分发挥传统压铸模具具的潜力,具有十分重要的意义。

下面就来跟着一起去看一看吧!
一、压铸零件生产与压铸模具关系
压铸模具是压铸生产三大要素之一,结构正确合理的压铸模具是压铸零件生产能否顺利进行的先决条件,并在保证铸件质量方面(下机合格率)起着重要的作用。

由于压铸工艺的特点,正确选用各工艺参数是获得优质铸件的决定因素,而模具又是能够正确选择和调整各工艺参数的前提,模具设计实质上就是对压铸生产中可能出现的各种因素预计的综合反映。

如若模具设计合理,则在实际生产中遇到的问题少,铸件下机合格率高。

反之,压铸模具设计不合理,诸如:压铸零件设计时动定模的包裹力基本相同,而浇注系统大多在定模,且放在压射后冲头不能送料的压铸机上生产,无法正常生产,压铸零件一直粘在定模上。

尽管定模型腔的光洁度打得很光,因型腔较深,仍出现粘在定模上的现象。

所以在模具设计时,必须全面分析铸件的结构,熟悉压铸机的操作过程,要了解压铸机及工艺参数得以调整的可能性,掌握在不同情况下的充填特性,并考虑压铸模具加工的方法、
钻眼和固定的形式后,才能设计出切合实际、满足生产要求的模具。

刚开始时已讲过,金属液的充型时间极短,金属液的比压和流速很高,这对压铸模具来说工作条件极其恶劣,再加上激冷激热的交变应力的冲击作用,都对压铸模具的使用寿命有很大影响。

压铸模具的使用寿命通常是指通过精心的设计和制造,在正常使用的条件下,结合良好的维护保养下出现的自然损坏,在不能再修复而报废前,所压铸的模数(包括压铸生产中的废品数)。

二、压铸模具的主要失效形式分析与技术设计
实际生产中,压铸模具的失效主要有三种形式:
1)热疲劳龟裂损坏失效;
2)碎裂失效;
3)溶蚀失效。

致使压铸模具失效的因素很多,既有外因(例浇铸温度高低、模具是否经预热、水剂涂料喷涂量的多少、压铸机吨位大小是否匹配、压铸压力过高、内浇口速度过快、冷却水开启未与压铸生产同步、压铸件材料的种类及成分Fe的高低、铸件尺寸形状、壁厚大小、涂料类型等等)。

也有内因(例压铸模具本身材质的冶金质量、坯料的锻制工艺、压铸模具结构设计的合理性、浇注系统设计的合理性、模具机(电加工)加工时产生的内应力、压铸模具的热处理工艺、包括各种配合精度和光洁度要求等)。

压铸模具若出现早期失效,则需找出是哪些内因或外因,以便今后改进。

1)压铸模具热疲劳龟裂失效在压铸生产时,压铸模具反复受激冷激热的作用,成型表面与其内部产生变形,相互牵扯而出现反复循环的热应力,导致组织结构二损伤和丧失韧性,引发微裂纹的出现,并继续扩展,一旦裂纹扩大,还有熔融的金属液挤入,加上反复的机械应力都使裂纹加速扩展。

为此,一方面压铸起始时模具必须充分预热。

另外,在压铸生产过程中压铸模具必须保持在一定的工作温度范围中,以免出现早期龟裂失效。

同时,要确保压铸模具投产前和制造中的内因不发生问题。

因实际生产中,多数的压铸模具失效是热疲劳龟裂失效。

2)碎裂失效在压射力的作用下,压铸模具会在最薄弱处萌生裂纹,尤其是压铸模具成型面上的划线痕迹或电加工痕迹未被打磨光,或是成型的清角处均会最先出现细微裂纹,当晶界存在脆性相或晶粒粗大时,即容易断裂。

而脆性断裂时裂纹的扩展很快,这对压铸模具的碎裂失效是很危险的因素。

为此,一方面凡模具面上的划痕、电加工痕迹等必须打磨光,即使它在浇注系统部位,也必须打光。

另外要求所使用的压铸模具材料的强度高、塑性好、冲击韧性和断裂韧性均好。

3)熔融失效前面已讲过,常用的压铸合金有锌合金、铝合金、镁合金和铜合金,也有纯铝压铸的,Zn、Al、Mg是较活泼的金属元素,它们与压铸模具材料有较好的亲和力,特别是Al易咬模。

当压铸模具硬度较高时,则抗蚀性较好,而成型表面若有软点,则对抗蚀性不利。

但在实际生产中,溶蚀仅是压铸模具的局部地方,例内浇口
直接冲刷的部位(型芯、型腔)易出现溶蚀现象,以及硬度偏软处易出现铝合金的粘模。

压铸生产中压铸模具经常存在的问题注意点:
1、浇注系统、排溢系统
(1)对于冷室卧式压铸机上模具直浇道的要求:
①压室内径尺寸应根据所需的比压与压室充满度来选定,同时,浇口套的内径偏差应比压室内径的偏差适当放大几丝,从而可避免因浇口套与压室内径不同轴而造成冲头卡死或磨损严重的问题,且浇口套的壁厚不能太薄。

浇口套的长度一般应小于压射冲头的送出引程,以便涂料从压室中脱出。

②压室与浇口套的内孔,在热处理后应精磨,再沿轴线方向进行研磨,其表面粗糙≤Ra0.2μm。

③分流器与形成涂料的凹腔,其凹入深度等于横浇道深度,其直径配浇口套内径,沿脱模方向有5°斜度。

当采用涂导入式直浇道时,因缩短了压室有效长度的容积,可提高压室的充满度。

(2)对于压铸模具横浇道的要求
①冷卧式模具横浇道的入口处一般应位于压室上部内径2/3以上部位,以免压室中金属液在重力作用下过早进入横浇道,提前开始凝固。

②横浇道的截面积从直浇道起至内浇口应逐渐减小,为出现截面扩大,则金属液流经时会出现负压,易吸入分型面上的气体,增加金属液流动中的涡流裹气。

一般出口处截面比进口处小10-30%。

③横浇道应有一定的长度和深度。

保持一定长度的目的是起稳流和导向的作用。

若深度不够,则金属液降温快,深度过深,则因冷凝过慢,既影响生产率又增加回炉料用量。

④横浇道的截面积应大于内浇口的截面积,以保证金属液入型的速度。

主横浇道的截面积应大于各分支横浇道的截面积。

⑤横浇道的底部两侧应做成圆角,以免出现早期裂纹,二侧面可做出5°左右的斜度。

横浇道部位的表面粗糙度≤Ra0.4μm
(3)内浇口
①金属液入型后不应立即封闭分型面,溢流槽和排气槽不宜正面冲击型芯。

金属液入型后的流向尽可能沿铸入的肋筋和散热片,由厚壁处想薄壁处填充等。

②选择内浇口位置时,尽可能使金属液流程最短。

采用多股内浇口时,要防止入型后几股金属液汇合、相互冲击,从而产生涡流包气和氧化夹杂等缺陷。

③薄壁件的内浇口厚件要适当小些,以保证必要的填充速度,内浇口的设置应便于切除,且不使铸件本体有缺损(吃肉)。

(4)溢流槽
①溢流槽要便于从铸件上去除,并尽量不损伤铸件本体。

②溢流槽上开设排气槽时,需注意溢流口的位置,避免过早阻塞排气槽,使排气槽不起作用。

③不应在同一个溢流槽上开设几个溢流口或开设一个很宽很厚的溢流口,以免金属液中的冷液、渣、气、涂料等从溢流槽中返回型腔,造成铸件缺陷。

2、铸造圆角(包括转角)压铸件图上往往注明未注圆角R2等要求,我们在开制压铸模具时切忌忽视这些未注明圆角的作用,决不可做成清角或过小的圆角。

铸造圆角可使金属液填充顺畅,使腔内气体顺序排出,并可减少应力集中,延长压铸模具使用寿命。

(压铸件也不易在该处出现裂纹或因填充不顺而出现各种缺陷)。

例标准油盘模上清角处较多,相对来说,目前兄弟油盘模开的最好,重机油盘的也较多。

3、脱模斜度在脱模方向严禁有人为造成的侧凹(往往是试模时铸件粘在模内,用不正确的方法处理时,例钻、硬凿等使局部凹入)。

4、表面粗糙度成型部位、浇注系统均应按要求认真打光,应顺着脱模方向打光。

由于金属液由压室进入浇注系统并填满型腔的整个过程仅0.01-0.2秒的时间。

为了减少金属液流动的阻力,尽可能使压力损失少,都需要流过表面的光洁度高。

同时,浇注系统部位的受热和受冲蚀的条件较恶劣,光洁度越差则模具该处越易损伤。

5、压铸模具成型部位的硬度铝合金:HRC46°左右铜:HRC38°左右加工时,模具应尽量留有修复的余量,做尺寸的上限,避免焊接。

三、压铸模具装配的技术要求
1、压铸模具分型面与模板平面平行度的要求;
2、导柱、导套与模板垂直度的要求;
3、分型面上动、定模镶块平面与动定模套板高出0.1-0.05mm;
4、推板、复位杆与分型面平齐,一般推杆凹入0.1mm或根据用户要求;
5、模具上所有活动部位活动可靠,无呆滞现象pin无串动;
6、滑块定位可靠,型芯抽出时与铸件保持距离,滑块与块合模后配合部位2/3以上;
7、浇道粗糙度光滑,无缝;
8、合模时镶块分型面局部间隙<0.05mm;
9、冷却水道畅通,进出口标志;
10、成型表面粗糙度Rs=0.04,无微伤。

四、结束语
上述一些压铸模具在实际生产过程中经常出现的压铸模具失效
形式,并对各种类型压
铸模具的失效形式进行一定的技术分析,同时,也对压铸模具
的技术设计的一些相关问题进行一些论述,。

相关文档
最新文档