2018年全国高中数学联合竞赛(B卷)

合集下载

2017年全国高中数学联赛一试(B卷)答案

2017年全国高中数学联赛一试(B卷)答案
x x 9. (本题满分 16 分)设不等式 2 a 5 2 对所有
成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则

2018年全国高中数学联合竞赛试题及解答.(A卷)

2018年全国高中数学联合竞赛试题及解答.(A卷)

{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。

2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。

2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。

进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

2018年全国高中数学联合竞赛试题(B卷)与答案

2018年全国高中数学联合竞赛试题(B卷)与答案

=
0

an+1
=

1 3
an,于是数列
{an}
是公比为
1 −3
的等比数列.
所以
a1a2a3a4a5
=
a53
=
(−2)5
=
−32.
5. 设 α, β
满足 tan
π α+
= −3, tan
π β−
= 5,则 tan(α − β) 的值为
3
6
.
解答
由于 − cot(α − β) = tan
π 2 + (α − β)
= tan
π
π
α+ 3

β− 6
tan
π α+
− tan
π β−
= 1 + tan
3 π
α+ 3
tan
6 π β− 6
= −3 − 5 = 4, 1−3·5 7
所以
cot(α

β)
=
4 −

tan(α

β)
=
−7.
7
4
6. 设抛物线 C : y2 = 2x 的准线与 x 轴交于点 A,过点 B(−1, 0) 作一直线 l 与
6!
10
4. 在平面直角坐标系 xOy 中,直线 l 通过原点, #n» = (3, 1) 是 l 的一个法向量.
已知数列 {an} 满足:对任意正整数 n,点 (an+1, an) 均在 l 上. 若 a2 = 6,则
a1a2a3a4a5 的值为
.
解答
依题意,直线
l
:
3x + y

2018全国高中数学联赛试题

2018全国高中数学联赛试题

2018全国高中数学联赛试题2018年全国高中数学联合竞赛一试试题(A卷)一、填空题:本大题共8小题,每小题8分,共64分。

1.设集合A={1,2,3,……,99},BC={2,4,6,……,198},则B={2x|x∈A},C={x^2|x∈A},则BC的元素个数为48,共24个元素。

2.设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与α所成角不小于30且不大于60,则这样的点Q所构成的区域的面积为8π。

解析:过点P作平面α的垂线,这垂足为O,则点Q的轨迹是以O为圆心,分别以ON=1和OM=3为半径的扇环,于是点Q所构成的区域的面积为S=S2-S1=9π-π=8π。

3.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为648/720=9/10.解析:(直接法)将1,2,3,4,5,6随机排成一行,共有A6^6=720种不同的排法,要使abc+def为偶数,abc为与def 同为偶数或abc与且def同为奇数。

(1)若a,b,c中一个偶数两个奇数且d,e,f中一个奇数两个偶数,共324种情形;(2)若a,b,c中一个奇数两个偶数且d,e,f中一个偶数两个奇数,共324种情形;共有648种情形。

综上所述,abc+def是偶数的概率为648/720=9/10.(间接法)“abc+def是偶数”的对立事件为“abc+def是奇数”,abc+def是偶数分成两种情况:“abc是偶数且def是奇数”或“abc是奇数且def是偶数”,每种情况有A3^3*A3^3=36种不同情形,共有72种不同情形,abc+def是偶数的概率为1-729/720=9/10.4.在平面直角坐标系xoy中,椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别是F1,F2,椭圆C的弦ST与UV 分别平行于x轴和y轴,且相交于点P。

已知线段PU、PS、PV、PT的长分别为1,2,3,6,则ΔPF1F2的面积为4√(2/3)。

2019年全国高中数学联合竞赛试题(B卷)

2019年全国高中数学联合竞赛试题(B卷)

2019 年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 已知实数集合{1, 2, 3, x} 的最大元素等于该集合的所有元素之和,则x 的值为.2. 若平面向量a = (2m , -1) 与b = (2m -1, 2m+1 ) 垂直,其中m 为实数,则a 的模为.3. 设a, b ∈ (0, p) ,cos a, cos b 是方程5x2 -3x -1= 0 的两根,则sin a s in b 的值为.4. 设三棱锥P - ABC 满足PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的体积的最大值为.5. 将5 个数2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个8 位数(首位不为0),则产生的不同的8 位数的个数为.6. 设整数n > 4,(1)nx+的展开式中x n-4 与xy 两项的系数相等,则n的值为.7. 在平面直角坐标系中,若以(r +1, 0) 为圆心、r 为半径的圆上存在一点(a, b) 满足b2 ≥ 4a ,则r 的最小值为.8. 设等差数列{an}的各项均为整数,首项a1= 2019 ,且对任意正整数n ,总存在正整数m ,使得a1+ a2++ an= am.这样的数列{an} 的个数为.⎨ n +1 n n +1 n 二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆 Γ 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.10. (本题满分 20 分)设 a , b , c 均大于 1,满足⎧⎪lg a + log b c = 3, ⎪⎩lg b + log a c= 4.求 lg a ⋅ lg c 的最大值.11. (本题满分 20 分)设复数数列{z n } 满足: z 1 = 1 ,且对任意正整数 n , 均有 4z 2 + 2z z + z 2 = 0 .证明:对任意正整数m ,均有 z 1 + z 2 ++ z m < . 32019 年全国高中数学联合竞赛加试(B 卷)一、(本题满分 40 分)设正实数 a 1, a 2 , , a 100 满足 a i ≥ a 101-i (i = 1, 2, , 50) . 记 111(1,2,,99)k k nka x k a a a +==⋅⋅⋅++⋅⋅⋅+.证明:29912991x x x ⋅⋅⋅≤.二、(本题满分 40 分)求满足以下条件的所有正整数 n :(1) n 至少有 4 个正约数;(2) 若 d 1 < d 2 < < d k 是 n 的所有正约数,则 d 2 - d 1, d 3 - d 2 , , d k - d k -1 构 成等比数列.三、(本题满分 50 分)如图,点 A , B , C , D , E 在一条直线上顺次排列,满足BC=CD P 在该直线外,满足PB = PD .点K, L 分别在线段PB, PD 上,满足KC 平分∠BKE ,LC 平分∠ALD .证明:A, K, L, E 四点共圆.(答题时请将图画在答卷纸上)四、(本题满分50 分)将一个凸2019 边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673 条.证明:可作这个凸2019 边形的2016 条在内部互不相交的对角线将其剖分成2017 个三角形,并将所作的每条对角线也染为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.。

高中数学联赛真题数列B辑(解析版)

高中数学联赛真题数列B辑(解析版)

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题10数列B辑历年联赛真题汇编1.【2020高中数学联赛A卷(第01试)】在等比数列{a n}中, a9=13,a3=1,则log a113的值为.【答案】13【解析】由等比数列的性质知a1a9=(a9a13)2, a1=a93a132=133.所以log a113=13.2.【2019高中数学联赛B卷(第01试)】设等差数列{a n}的各项均为整数,首项a1=2019,且对任意正整数n,总存在正整数m,使得a1+a2+⋯+a n=a m.这样的数列{a n}的个数为.【答案】5【解析】设{a n}的公差为d.由条件知a1+a2=a k(k是某个正整数),则2a1+d=a1+(k−1)d,即(k-2)d=a1,因此必有k≠2,且d=a1k−2.这样就有a n=a1+(n−1)d=a1+n−1k−2a1,而此时对任意正整数n,a1+a2+⋯+a n=a1n+n(n−1)2d=a1+(n−1)a1+n(n−1)2d=a1+((n−1)(k−2)+n(n−1)2)d,确实为{a n}中的一项.因此,仅需考虑使k−2|a1成立的正整数k的个数.注意到2019为两个素数3与673之积,易知k-2可取-1,1,3,673,2019这5个值,对应得到5个满足条件的等差数列.3.【2018高中数学联赛A卷(第01试)】设整数数列a1,a2,⋯,a10满足a10=3a1,a2+a8=2a5,且a i+1∈{1 +a i,2+a i},i=1,2,⋯,9,则这样的数列的个数为.【答案】80【解析】设b i=a i+1−a i∈{1,2}(i=1,2,⋯,9),则有2a1=a10−a1=b1+b2+⋯+b9①b2+b3+b4=a5−a2=a8−a5=b5+b6+b7②用t表示b2,b3,b4中值为2的项数.由②知,t也是b5,b6,b7中值为2的项数,其中t∈{0,1,2,3}.因此b2,b3,⋯,b7的取法数为(C30)2+(C31)2+(C32)2+(C33)2=20.取定b2,b3,⋯,b7后,任意指定b8,b9的值,有22=4种方式.最后由①知,应取b1∈{1,2}使得b1+b2+⋯+b9为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列b1,b2,⋯,b9唯一对应一个满足条件的数列a1,a2,⋯,a10.综上可知,满足条件的数列的个数为20×4=80.4.【2018高中数学联赛B卷(第01试)】在平面直角坐标系xOy中,直线l通过原点,n⃑=(3,1)是l的一个法向量.已知数列{a n}满足:对任意正整数n,点(a n+1,a n)均在l上.若a2=6,则a1a2a3a4a5的值为.【答案】−32【解析】易知直线l的方程是3x+y=0.因此对任意正整数n,有3a n+1+a n=0,即a n+1=−13a n,故{a n}是以−13为公比的等比数列于是a3=−13a2=−2.由等比数列的性质可得a1a2a3a4a5=a35=(−2)5=−32.5.【2017高中数学联赛A卷(第01试)】设两个严格递增的正整数数列{a n},{b n}满足:a10=b10<2017,对任意正整数n,有a n+2=a n+1+a n,b n+1=2b n,则a1+b1的所有可能值为.【答案】13、20【解析】由条件可知:a 1,a 2,b 1均为正整数,且a 1<a 2. 由于2017>b 10=29⋅b 1=512b 1,故b 1∈{1,2,3}.反复运用{a n }的递推关系知a 10=a 9+a 8=2a 8+a 7=3a 7+2a 6 =5a 6+3a 5=8a 5+5a 4=13a 4+8a 3=21a 3+13a 2=34a 2+21a 1, 因此21a 1≡a 10=b 10=512b 1≡2b 1( mod 34),而13×21=34×8+1,故有a 1≡13×21a 1≡13×2b 1=26b 1( mod 34) ①另一方面,注意到a 1<a 2,有55a 1<34a 2+21a 1=512b 1,故a 1<51255b 1②当b 1=1时,①、②分别化为a 1≡26( mod 34),a 1<51255,无解当b 1=2时,①、②分别化为a 1≡52( mod 34),a 1<102455,得到唯一的正整数a 1=18,此时a 1+b 1=20.当b 1=3时,①、②分别化为a 1≡78( mod 34),a 1<153655,得到唯一的正整数a 1=10,此时a 1+b 1=13.综上所述,a 1+b 1的所有可能值为13、20.6.【2017高中数学联赛B 卷(第01试)】在等比数列{a n }中,a 2=√2,a 3=√33,则a 1+a2011a 7+a2017的值为.【答案】89【解析】数列{a n }的公比为q =a 3a 2=√33√2,故a 1+a 2011a 7+a 201=a 1+a 2011q 6(a 1+a 2011)=1q 6=89.7.【2016高中数学联赛(第01试)】设a 1,a 2,a 3,a 4是1,2,…,100中的4个互不相同的数,满足(a 12+a 22+a 32)(a 22+a 32+a 42)=(a 1a 2+a 2a 3+a 3a 4)2,则这样的有序数组(a 1,a 2,a 3,a 4)的个数为.【答案】40【解析】由柯西不等式知,(a12+a22+a32)(a22+a32+a42)⩾(a1a2+a2a3+a3a4)2,等号成立的充分必要条件是a1a2=a2a3=a3a4,即a1,a2,a3,a4成等比数列.于是问题等价于计算满足{a1,a2,a3,a4}⊆{1,2,3,⋯,100}的等比数列a1,a2,a3,a4的个数.设等比数列的公比q≠1,且q为有理数.记q=nm,其中m、n为互素的正整数,且m≠n.先考虑n>m的情况:此时a4=a1⋅(nm )3=a1n3m3,注意到m3与n3互素,故l=a1m3为正整数.相应地,a1,a2,a3,a4分别等于m3l,m2nl,mn2l,n3l,它们均为正整数.这表明,对任意给定的q=nm>1,满足条件并以q为公比的等比数列a1,a2,a3,a4的个数,即为满足不等式n3l⩽100的正整数l的个数,即[100n3].由于53>100,故仅需考虑q=2,3,32,4,43,这些情况,相应的等比数列的个数为[100 8]+[10027]+[10027]+[10064]+[10064]=12+3+3+1+1=20.当n<m时,由对称性可知,亦有20个满足条件的等比数列a1,a2,a3,a4,综上可知,共有40个满足条件的有序数组(a1,a2,a3,a4).8.【2014高中数学联赛(第01试)】数列{a n}满足a1=2,a n+1=2(n+2)n+1a n(n∈N∗),则a2014a1+a2+⋯+a2013=.【答案】20152013【解析】由题设a n=2(n+1)n a n−1=2(n+1)n⋅2nn−1a n−2=⋯=2(n+1)n⋅2n n−1⋯⋅⋅2⋅32a 1=2n−1(n +1),记数列{a n }的前n 项和为S n ,则S n =2+2×3+22×4+⋯+2n−1(n +1), 所以2S n =2×2+22×3+23×4+⋯+2n (n +1),将上面两式相减, 得S n =2n (n +1)−(2n−1+2n−2+⋯+2+2)=2n (n +1)−2n =2n n ,故a 2014a 1+a 2+⋯+a 2013=22013×201522013×2013=20152013.9.【2013高中数学联赛(第01试)】已知数列{a n }共有9项,其中a 1=a 9=1,且对每个i ∈{1,2,⋯,8},均有a i+1a i∈{2,1,−12},则这样的数列的个数为.【答案】491【解析】令b i =a i+1a i(1⩽i ⩽8),则对每个符合条件的数列{a n },有∏b i8i=1=∏a i+1a i8i=1=a 9a 1=1,(b i ∈{2,1,−12},1⩽i ⩽8)①反之,由符合条件①的8项数列{b n }可唯一确定一个符合题设条件的9项数列{a n }.记符合条件①的数列{b n }的个数为N .显然b i (1≤i ≤8)中有偶数个−12,即2k 个−12;继而有2k 个2,8-4k 个1.当给定k 时,{b n }的取法有C 82k C 8−2k 2k 种,易知k 的可能值只有0,1,2,所以N =1+C 82C 62+C 84C 44=1+28×15+70×1=491.因此,根据对应原理,符合条件的数列{a n }的个数为491.10.【2011高中数学联赛(第01试)】已知a n =C 200n ⋅(√63)200−n⋅(√2)n(n =1,2,⋯,95),则数列{a n }中整数项的个数为 .【答案】15【解析】由题意知a n =C 200n ⋅3200−n3⋅2400−5n6,要使a n (1≤n ≤95)为整数,必有200−n 3,400−5n 6均为整数,从而6|n +4.当n =2,8,14,20,26,32,38,44,50,56,62,68,74,80时,200−n 3和400−5n6均为非负整数,所以a n 为整数,共有14个.当n =86时,a 86=C 20086⋅338⋅2−5, 在C 20086=200!86!⋅114!中,200!中因数2的个数为[2002]+[20022]+[20023]+[20024]+[20025]+[20026]+[20027]=197,同理可计算得86!中因数2的个数为82,114!中因数2的个数为110,所以C 20086中因数2的个数为197−82−110=5,故a 86是整数.当n =92时a 92=C 20092⋅336⋅2−10,在C 20092=200!92!⋅108!中,同样可求得92!中因数2的个数为88,108!中因数2的个数为105.故C 20086中因数2的个数为197−88−105=4,故a 92不是整数. 因此,整数项的个数为14+1=15.11.【2010高中数学联赛(第01试)】已知{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,且存在常数α,β使得对每一个正整数n 都有a n =log αb n +β,则α+β= .【答案】√33+3【解析】设{a n }的公差为d ,{b n }的公比为q ,则3+d =q①3(3+4d)=q 2②式①代入式②得9+12d =d 2+6d +9,求得d =6,q =9, 从而有3+6(n −1)=log α9n−1+β对一切正整数n 都成立, 即6n −3=(n −1)log α9+β对一切正整数n 都成立. 从而log α9=6,−3=−log α9+β,求得α=√33,β=3,α+β=√33+3.12.【2009高中数学联赛(第01试)】一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是(可以用指数表示)【答案】101×298 【解析】易知: (1)该数表共有100行;(2)每一行构成一个等差数列,且公差依次为d 1=1,d 2=2,d 3=22,⋯,d 99=298, (3)a 100为所求.设第n (n ≥2)行的第一个数为a n ,则a n =a n−1+(a n−1+2n−2)=2a n−1+2n−2=2[2a n−2+2n−3]+2n−2=22[2a n−3+2n−4]+2×2n−2=23a n−3+3×2n−2=⋯=2n−1a 1+(n −1)×2n−2=(n +1)2n−2. 故a 100=101×298.13.【2008高中数学联赛(第01试)】设数列{a n }的前n 项和S n 满足:S n +a n =n−1n(n+1),n =1,2,…,则通项an =. 【答案】12n−1n(n+1)【解析】因为a n+1=S n+1−S n =n (n+1)(n+2)−a n+1−n−1n(n+1)+a n ,即2a n+1=n+2−2(n+1)(n+2)−1n+1+1n(n+1)+a n =−2(n+1)(n+2)+a n +1n(n+1),由此得2(a n+1+1(n+1)(n+2))=a n +1n(n+1),令b n =a n +1n(n+1),因此b 1=a 1+12=12(a 1=0),b n+1=12b n ,故b n =12n,可得a n =12n−1n(n+1).14.【2007高中数学联赛(第01试)】已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d,b 1=d 2,且a 12+a 22+a 32b 1+b 2+b 3是正整数,则q 等于 .【答案】12【解析】因为a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q+b 1q 2=141+q+q 2,故由已知条件可知:1+q +q 2为14m,其中m 为正整数.令1+q +q 2=14m,则q =−12+√14+14m−1=−12+√56−3m 4m,由于q 是小于1的正有理数,所以1<14m<3,即5⩽m ⩽13且56−3m 4m是某个有理数的平方,由此可知q =12.15.【2005高中数学联赛(第01试)】将关于x 的多项式f(x)=1−x +x 2−x 3+⋯−x 19+x 20表示为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+⋯+a 19y 19+a 20y 20,其中y =x -4.则a 0+a 1+⋯+a 20=.【答案】521+16【解析】由题设知,f (x )和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得f(x)=(−x)21−1−x−1=x 21+1x+1,令x =y +4,得g(y)=(y+4)21+1y+5,取y =1,有a 0+a 1+a 2+⋯+a 20=g(1)=521+16.16.【2005高中数学联赛(第01试)】如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .【答案】52000【解析】因为方程x 1+x 2+⋯+x k =m 的非负整数解的个数为C m+k−1m,而使x 1⩾1,x i ⩾0 (i ⩾2)的整数解个数为C m+k−2m−1.现取m =7,可知,k 位“吉祥数”的个数为P(k)=C k+56.2005是形如2abc 的数中最小的一个“吉祥数”,且P(1)=C 66=1,P(2)=C 76=7,P(3)=C 86=28,对于四位“吉祥数”1abc ,其个数为满足a +b +c =6的非负整数解个数,即C 6+3−16=28个.因为2005是第1+7+28+28+1=65个“吉祥数”,即a 65=2005.从而n =65,5n =325,又P(4)=C 96=84,P(5)=C 106=210,而∑5k=1P(k)=330,所以从大到小最后6个五位“吉祥数”依次是70000,61000,60100,60010,60001,52000. 故第325个“吉祥数”是52000,即a 5n =52000.17.【2004高中数学联赛(第01试)】已知数列a 0,a 1,a 2,⋯,a n ,⋯满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则∑1a ini=0的值是 .【答案】13(2n+2−n −3)【解析】设b n =1a n(n =0,1,2,⋯),则(3−1b n+1)(6+1b n)=18,即3b n+1−6b n−1=0.所以b n+1=2b n +13,b n+1+13=2(b n +13),故数列{b n +13}是公比为2的等比数列.因此b n +13=2n (b 0+13)=2n (1a 0+13)=13×2n+1,所以b n =13(2n+1−1),则∑1a ini=0=∑b in i=0=∑13ni=0(2i+1−1)=13[2(2n+1−1)2−1−(n +1)]=13(2n+2−n −3).18.【2003高中数学联赛(第01试)】设M n ={(十进制)n 位纯小数0.a 1a 2⋯a n |a i 只取0或1(i =1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则limn→∞S nT n= .【答案】118【解析】因为M n 中的小数的小数点后均有n 位,而除最后一位上的数字必为1外,其余各位上的数字均有两种选择(0或1)方法,故T n =2n−1,又因在这2n−1个数中,小数点后第n 位上的数字全是1,而其余各位上数字是0或1,各有一半.故:S n =12⋅2n−1(110+1102+⋯+110n−1)+2n−1⋅110n =2n−2⋅110(1−110n−1)1−110+2n−1⋅110n=2n−2⋅19(1−110n−1)+2n−1⋅110n,故limS n T n=lim n→∞[118(1−110n−1)+110n]=118.19.【2000高中数学联赛(第01试)】设a n 是(3−√x)n 的展开式中x 项的系数(n =2,3,4,…),则lim n→∞(32a 2+33a 3+⋯+3n a n)= .【答案】18【解析】由题意,由二项式定理有a n =C n 23n−2, 所以3n a n=3n ×2n(n−1)=18(1n−1−1n),所以lim n→∞(32a 2+33a 3+⋯+3n a n)=lim n→∞18(1−12+12− 13+⋯+1n−1−1n)=lim n→∞18(1−1n)=18.20.【2000高中数学联赛(第01试)】等比数列a+log23,a+log43,a+log83的公比是.【答案】13【解析】由题意,不妨设公比为q,可知q=a+log43a+log23=a+log83a+log43,又根据比例的性质,有q=a+log43−(a+log83) a+log23−(a+log43)=log43−log83log23−log43=12log23−13log23log23−12log23=13.21.【1999高中数学联赛(第01试)】已知正整数n不超过2000,并且能表示成不少于60个连续正整数之和,那么,这样的n的个数是.【答案】6【解析】首项为a的连续k个正整数之和为S k=ka+k(k+1)2⩾k(k+1)2,由S k⩽2000可得60⩽k⩽62,当k=60时S k=60a+30×59,由S k⩽2000可得a⩽3,故S k=1830,1890,1950;当k=61时S k=61a+30×61,由S k⩽2000可得a≤2,故S k=1891,1952;当k=62时S k=62a+31×61,由S k⩽2000可得a≤1,故S k=1953.所以题中的n有6个.22.【1998高中数学联赛(第01试)】各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有项.【答案】8【解析】设a1,a2,⋯,a n是公差为4的等差数列,则a12+a2+a3+⋯+a n⩽100,等价于a12+(a1+4)+[a1+4(n−1)]2(n−1)⩽100,等价于a12+(n−1)a1+(2n2−2n−100)⩽0①当且仅当Δ=(n−1)2−4(2n2−2n−100)⩾0时,至少不存在一个实数a1满足不等式①.因为Δ⩾0等价于7n2−6n−401⩽0,等价于n1⩽n⩽n2②其中n1=3−√28167<0,8<n2=3+√28167<9,所以,满足不等式②的自然数n的最大值为8,即满足题设的数列至多有8项.23.【1994高中数学联赛(第01试)】已知95个数a1,a2,a3,⋯,a95,每个数都只能取+1或-1两个值之一,那么它们的两两之积的和a1a2+a1a3+⋯+a94a95的最小值是.【答案】13【解析】记N=a1a2+a1a3+⋯+a94a95①设a1,a2,⋯,a95中有m个+1,n个-1,则m+n=95②式①乘2,加上a12+a22+⋯+a952=95得(a1+a2+⋯+a95)2=2N+95.又a1+a2+⋯+a95=m−n,所以(m−n)2=2N+95.使上式成立的最小自然数N=13,此时(m−n)2=112,即m−n=±11③联立式②与③可求出m=53,n=42或m=42,n=53.据此可构造出N达到最小值的情况,故所求最小正值为13.24.【1992高中数学联赛(第01试)】设x,y,z是实数,3x,4y,5z成等比数列,且1x ,1y,1z成等差数列,则xz+zx的值是.【答案】3415【解析】由题意得{(4y)2=15xz①2y=1x+1z②,由式②得y =2xz x+z,以此代入式①有16(2xz x+z)2=15xz ,即(x+z)2xz=6415,故x z+z x=3415.25.【1992高中数学联赛(第01试)】设数列a 1,a 2,⋯,a n ,⋯满足a 1=a 2=1,a 3=2,且对任何自然数n ,都有a n a n+1a n+2≠1,又a n a n+1a n+2a n+3=a 1+a n+1+a n+2+a n+3,则a 1+a 2+⋯+a 100的值是 .【答案】200【解析】因为a 1=a 2=1,a 3=2,又a 1a 2a 3a 4=a 1+a 2+a 3+a 4,所以a 4=4. 又由条件得a n a n+1a n+2a n+3=a n +a n+1+a n+2+a n+3, a n+1a n+2a n+3a n+4=a n+1+a n+2+a n+3+a n+4.将上述两式相减,得a n+1a n+2a n+3(a n −a n+4)=a n −a n+4, 即(a n −a n+4)(a n+1a n+2a n+3−1)=0. 依已知条件a n+1a n+2a n+3≠1,故a n+4=a n . 从而∑a k 100i=1=1004(a 1+a 2+a 3+a 4)=200.26.【1988高中数学联赛(第01试)】(1)设x ≠y ,且两数列x,a 1,a 2,a 3,y 和b 1,x,b 2,b 3,y,b 4均为等差数列,那么b 4−b 3a 2−a 1= .(2)(√x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为.(3)在△ABC 中,已知∠A =a ,CD ,BE 分别是AB ,AC 上的高,则DE BC= .(4)甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛……直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程,那么所有可能出现的比赛过程的种数为.【答案】3432【解析】(1)设两个数列的公差分别为d,d',则y−x=4d=3d′,dd′=34.所以b4−b3a2−a1=2d′d=2×43=223.(2)设(√x+2)2n+1=f(x)+√xg(x),其中f(x),g(x)是x的多项式,那么所求的是f(1).而(2+√x)2n+1+(2−√x)2n+1=f(x)+√xg(x)+f(x)−√xg(x),所以f(1)=12[(2+√1)2n+1+(2−√1)2n+1]=12(32n+1+1).(3)因为∠BDC=∠BEC,所以B,D,E,C共圆.∠ADE=∠ACB,△AED∽△ABC,DE2BC2=SΔAEDSΔABC=AD⋅AEAB⋅AC=cos2a.所以DEBC=|cosa|.(4)设甲队队员为a1,a2,⋯,a7,乙队队员为b1,b2,⋯,b7,下标表示事先安排好的出场顺序,比赛过程可表示为这14个字母互相穿插地依次排列,其前后顺序就是先后被淘汰的顺序,但最后一定是胜队中不被淘汰的队员和可能未曾参赛的队员,所以比赛过程表示为14个位置中任取7个位置安排甲队员(当然,其余位置安排乙队队员),比赛过程的总数为C147=3432.优质模拟题强化训练1.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.【答案】√5−12<q<√5+12【解析】设三边按递增顺序排列为a,aq,aq2,其中a>0,q≥1.则a+aq>aq2,即q2−q−1<0.解得1−√52<q<1+√52.由q≥1 知q的取值范围是1≤q<1+√52.设三边按递减顺序排列为a,aq,aq2,其中a>0,0<q<1.则aq2+aq>a,即q2+q−1>0.解得√5−12<q<1.综上所述,1−√52<q<1+√52.2.在数列{a n}中,a1=2,a n+a n+1=1(n∈N+),设S n为数列{a n}的前n项和,则S2017−2S2018+S2019的值为____________ .【答案】3【解析】当n为偶数时,a1+a2=a3+a4=⋯=a n−1+a n=1,故S n=n2.当n奇数时,a1=2,a2+a3=a4+a5=⋯=a n−1+a n=1,故S n=2+n−12=n+32.故S2017−2S2018+S2019=1010−2018+1011=3.故答案为:3.3.已知集合A ={1,2,3,…,2019},对于集合A 的每一个非空子集的所有元素,计算它们乘积的倒数.则所有这些倒数的和为____________ . 【答案】2019 【解析】集合A 的22019-1个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2019,1×2,1×3…,2018×2019,…,1×2×…×2019,它们的倒数和为1+12+⋯+12019+11×2+11×3+⋯+12018×2019+⋯+11×2×⋯×2019=(1+1)(1+12)⋯(1+12019)−1=2×32×⋯×20202019−1=2019.故答案为:2019.4.已知数列{a n }满足:a n =[(2+√5)n +12n](n ∈N ∗),其中[x ]表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有∑1a k a k+2nk=1⩽C ,则C 的最小值是_____ .【答案】1288 【解析】记x 1=2+√5,x 2=2−√5,则a n =[x 1n+12n ]. 记T n =x 1n +x 2n,则T n+2=(x 1+x 2)T n+1−x 1x 2T n =4T n+1+T n ,而T 1=x 1+x 2=4,T 2=x 12+x 22=(x 1+x 2)2−2x 1x 2=18,因此,对任意的正整数n ,T n ∈Z .又注意到−12<2−√5<0,从而|x 2|<12,于是−1+12n ⩽−12n <x 2n<12n .因此,x 1n +x 2n −1<x 1n +12n −1<a n ⩽x 1n +12n =x 1n +(−1+12n )+1<x 1n +x 2n +1. 又注意到x 1n +x 2n −1,a n ,x 1n +x 2n +1均为整数,故a n =x 1n +x 2n. 于是a n+2=4a n+1+a n ,且a 1=4,a 2=18.又1ak a k+2=14⋅4a k+1a k a k+1a k+2=14⋅a k+2−a k a k a k+1a k+2=14(1a k a k+1−1a k+1a k+2),故∑1a k a k+2nk=1=14∑(1a k a k+1−1a k+1a k+2)nk=1=14(1a 1a 2−1a n+1a n+2)=1288−14a n+1a n+2.显然a n >0,于是a n+2>4a n+1,从而a n ⩾4n−2a 2(n ⩾2), 故limn→∞1a n+1a n+2=0.因此,∑1a k a k+2nk=1<1288,且lim n→∞(∑1a k a k+2nk=1)=1288.所以,常数C 的最小值为1288.故答案为:1288.5.等差数列{a n }中,a 2=5,a 6=21,记数列{1a n}的前n 项和为S n ,若S 2n+1−S n ⩽m15对任意的n ∈N +恒成立,则正整数m 的最小值为____________ . 【答案】5 【解析】由题意可得:{a 1+d =5a 1+5d =21,解得a 1=1,d =4,∴1a n=11+4(n−1)=14n−3,∵(S 2n+1−S n )−(S 2n+3−S n+1)=(1a n+1+1a n+2+⋯+1a2n+1)−(1a n+2+1a n+3+⋯+1a2n+3)=1a n+1−1a2n+2−1a2n+3=14n+1−18n+5−18n+9=(18n+2−18n+5)+(18n+2−18n+9)>0,∴数列{S2n+1−S n}(n∈N∗)是递减数列,数列{S2n+1−S n}(n∈N∗)的最大项为S3−S1=15+19=1445,∵1445⩽m15,∴m⩾143,又∵m是正整数,∴m的最小值为5.故答案为:5.6.公差为d,各项皆为正整数的等差数列{a n},若a1=1919,a m=1949,a n=2019,则正整数m+n的最小值是___ _________ .【答案】15【解析】1949=1919+(m−1)d,2019=1919+(n−1)d,显然有m>1,n>1,d=30m−1,以及d=100n−1,得去d得:10m−3n=7,其通解为{m=1+3tn=1+10t,为使m>1,n>1且d为正整数,则正整数t只能在{1,2,5,10}中取值(因(30,100)=10,t取值只能为10的正因数).当t=1时,m=4,n=11为最小,此时m+n=15.故答案为:15.7.数列{a n}满足:a0=√3,a n+1=[a n]+1{a n}(其中[a n]和{a n}分别表示实数a n的整数部分与小数部分),则a2019= ____________ .【答案】3029+√3−12【解析】a0=1+(√3−1),a1=1√3−1=2+√3−12,a2=2√3−1=3+√3=4+(√3−1),a3=4√3−1=5+√3−12,归纳易得,a2k=3k+1+(√3−1),a2k+1=3k+2+√3−12.因此a2019=3029+√3−12.故答案为:3029+√3−12.8.设等差数列{a n}的公差为d(d≠0),前n项和为S n.若数列{√8S n+2n}也是公差为d的等差数列,则数列{a n}的通项a n=________.【答案】4n−94【解析】设a n=a1+(n−1)d=dn+a,这里a=a1-d,于是S n=na1+n(n−1)2d=d2n2+(a1−d2)n=d2n2+(a+d2)n,所以√8S n+2n=√4dn2+(8a+4d+2)n,故√4dn2+(8a+4d+2)n=dn+b,这里b=√8a1+2−d.所以4dn2+(8a+4d+2)n=d2n2+2bdn+b2,于是4d=d2,8a+4d+2=2bd,b2=0,解得d=4,b=0,a=−94,故a n=4n−94.故答案为:4n−94.9.设数列{a n}满足:a1=1,4a n+1−a n+1a n+4a n=9,则a2018=______.【答案】53【解析】由4a n+1−a n+1a n+4a n=9可得(4−a n)(4−a n+1)=7.设b n=4−a n,则有b n b n+1=7.又b1=4−a1=3,故b2=73.一般地,有b2k−1=3,b2k=73,于是a2k−1=4−3=1,a2k=4−73=53,所以a2018=53.10.数列{a n}满足a1=1,a2=3,且a n+2=|a n+1|−a n(n∈N+),记{a n}的前n项和为S n.则S100=_________ _.【答案】89【解析】由已知得a k+9=a k,则S100=a1+11(a1+a2+⋯+a9)=8911.已知数列{a n}前n项和为S n,a1=15,且对任意正整数m、n,均有a m+n=a m a n若S n<a对任意的n∈Z+恒成立,则实数a的最小值为______.【答案】14【解析】由题意,取m =1得a n+1=a 1a n =15a n .又a 1=15,则{a n }是以为首项、为公比的等比数列,即a n =15n (n ∈Z +)故S n =a 1+a 2+⋯+a n =15+152+⋯+15n =15×1−15n 1−15=14(1−15n ) 由对任意的n ∈Z +,均有S n <a 1,知a =14.12.已知数列{a n }满足a 1=0,|a n+1|=|a n −2|.记数列{a n }的前2016项和为S .则S 的最大值为______.【答案】2016【解析】由|a k+1|=|a k −2|⇒a k+12=a k 2−4a k +4(k =1,2,⋅⋅⋅,2016).累加得a 20172=a 12−4S +4×2016≥0.因此,S ≤2016.当k 为奇数时,a k =0;当k 为偶数时,a k =2,此时可取等号. 13.已知数列{a n }满足a n+1=3n+1⋅a n a n +3n+1,a 1=3,则数列{a n }的通项公式是______. 【答案】a n =2⋅3n 3n −1【解析】 由a n+1=3n+1⋅a n an +3n+1可得1a n+1−1a n =13n+1,a 1=3, 则1a 2−1a 1=132,1a 3−1a 2=133,⋅⋅⋅,1a n −1a n−1=13n .以下用累加法得,1a n −1a 1=132+133+⋅⋅⋅+13n . 得到1a n =13+132+⋅⋅⋅+13n =13(1−13n )1−13=12(1−13n ),从而,a n =2⋅3n3n −1.14.在数列{a n }中,若a n 2−a n−12=p(n ≥2,n ∈N ∗,p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①数列{(−1)n }是等方差数列;②若{a n }是等方差数列,则{a n 2}是等差数列;③若{a n }是等方差数列,则{a kn }(k ∈N ∗,k 为常数)也是等方差数列; ④若{a n }既是等方差数列,又是等差数列,则该数列为常数列.其中正确的命题序号为________.(将所有正确的命题序号填在横线上)【答案】①②③④【解析】①因为[(−1)n ]2−[(−1)n−1]2=0,所以{(−1)n }符合“等方差数列”定义; ②根据定义,显然{a n 2}是等差数列;③a kn 2−a k(n−1)2=a kn 2−a kn−12+a kn−12−a kn−22+⋯+a kn−k+12−a k(n−1)2=kp 符合定义; ④数列{a n }满足a n 2−a n−12=p ,a n −a n−1=d (d 为常数).若d=0,显然{a n }为常数列; 若d≠0,则两式相除得a n +a n−1=p d ,所以a n =d 2+p 2d (常数),即{a n }为常数列.故答案为:①②③④15.设数列{a n }满足a 1=1 ,a n+1=5a n +1 (n =1,2,…),则 ∑2018n=1a n =________.【答案】5201916−807716【解析】由a n+1=5a n +1⇒a n+1+14=5(a n +14)⇒a n =5n 4−14,所以∑2018n=1a n =14(51+52+⋯+52018)−20184=516(52018−1)−20184=5201916−807716.16.已知数列{a n }满足a 1=1,a n+1=na n +2(n+1)2n+2,则数列{a n }的通项公式为__________. 【答案】16n(n +1)(n +2)【解析】由题设得(n +2)a n+1=na n +2(n +1)2⇒(n +1)(n +2)a n+1=n(n +1)a n +2(n +1)3. 令b n =n(n +1)a n ,则b 1=2,b n+1=b n +2(n +1)3.故b n =b 1+∑(b i+1−b i )n−1i=1=2(1+23+33+⋯+n 3)=12n 2(n +1)2.于是,数列{a n }的通项公式为a n =b n n(n+1)=12n(n +1). 因此,前n 项的和为S n =12(∑n k=1k 2+∑n k=1k) =12[n(n+1)(2n+1)6+n(n+1)2]=16n(n +1)(n +2).17.已知2015个正整数a 1,a 2,⋯,a 2015满足a 1=1,a 2=8,a n+1=3a n −2a n−1(n ≥2,且n ∈N).则a 2015−a 2014的所有正因子之和为_________。

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
A.M P NB.M N PC.P N MD.A、B、C都不成立
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.

A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩
证明:存在 x0 ∈[1, 9] ,使得 f (x0 ) ≥ 2 . 证法 1:只需证明存在 u, v ∈[1, 9] ,满足 f (u) − f (v) ≥ 4 ,进而由绝对值不
等式得
f (u) + f (v) ≥ f (u) − f (v) ≥ 4 ,
故 f (u) ≥ 2 与 f (v) ≥ 2 中至少有一个成立.
注意到 f (4 ) f ( 4) f () 1, f (2 6) f (2) 0 ,
所以
0 f (x) 1 f (2 6) f (x) f (4 ) ,
而 0 2 6 4 1 ,故原不等式组成立当且仅当 x [2 6, 4 ] .

4 7
,即
tan




2


4 7
,从而
tan(

)

cot




2



7 4

6. 设抛物线 C : y2 2x 的准线与 x 轴交于点 A ,过点 B (1, 0) 作一直线 l 与
抛物线 C 相切于点 K ,过点 A 作 l 的平行线,与抛物线 C 交于点 M , N ,则 KMN
…………………5 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
即 log3 a log3 b 2 ,因此 ab 32 9 .于是 abc 9c . 又
…………………10 分
0 f (c) 4 c 1,
…………………15 分
故 c (9, 16) .进而 abc 9c (81, 144) .

2019年全国高中数学联赛试题及答案详解(B卷)

2019年全国高中数学联赛试题及答案详解(B卷)

3 22 s-1
=
¥ k=s+1
3 22k-1
¥
=
k=s+1
z2k-1 + z2k


å å z1 + z2 ++ zm
£
æçççè
k
s =1
z2k-1 + z2k ÷ö÷÷ø+
z2 s+1
¥
<
k =1
z2k-1 + z2k
=
2
3 3

综上,结论获证.
…………………20 分
2019 年全国高中数学联合竞赛加试(B 卷) 参考答案及评分标准
3. 设 a, b Î (0, p) ,cosa, cosb 是方程 5x2 -3x -1= 0 的两根,则 sin asin b 的
值为

答案:
7 5

解:由条件知 cosa + cosb = 3 , cosa cos b = -1 ,从而
5
5
(sin a sin b)2 = (1-cos2a)(1- cos2 b) = 1- cos2a - cos2 b + cos2a cos2 b
=
(-1)n-32n(n -1)(n
- 2)

因此有
n(n
-1)(n 24
2)(n
-
3)
=
(-1)n-3
2n(n
-1)(n
-
2)
.注意到
n
>
4
,化简得
n -3 = (-1)n-3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51.

2018年全国高中数学联赛福建省预赛试题与解答

2018年全国高中数学联赛福建省预赛试题与解答
2018 年全国高中数学联赛(福建省赛区)预赛 暨 2018 年福建省高中数学竞赛试卷参考答案
一、填空题(共 10 小题,每小题 6 分,满分 60 分)
1 .将正偶数集合 2 ,4,6,L 从小到大按第 n 组有 3n 2 个数进行分组: 2 ,
4 ,6,8,10 , 12,14,16,18,20,22 ,24 ,…,则 2018 位于第
也不同 .
因此,可得 4 36 144 个直角顶点在矩形顶点的不同的直角三角形;
2
再算直角顶点不在矩形顶点: ( 1) 在 1 2 矩形中,有顶点不在矩形顶点, 边长分别为 2, 2,2 的直角三角形 2 个, 而 1 2 矩形横向、纵向各有 6 个,共 2 12=24 个; ( 2) 在 2 3 矩形中,有顶点不在矩形顶点,边长分别为 5,5, 10 的直角三角形 4 个,边长分别为 2, 2 2,10 的直角三角形 4 个,而 2 3 矩形横向、纵向各有 2 个,共( 4+4) 4=32 个;
依题意, r1 r2 4 , F1F2 8 .
由 G 、 I 分别为 △ F1PF2 的重心、内心, GI ∥x 轴 ,得 △F1PF2 内切圆半径 r
1 y0 . 3

S△ F1PF2
1 ( F1P
2
F1 F2
F2P ) r
1 ( r1
r2
8) 1 y0 .
2
3
又 S△F1PF2
1 F1 F2
2
y0
则由 △ PAC 、 △ ABC 都是边长为 6 的等边三角形,得
C
PD AC ,BD AC , PDB 为二面角 P AC B 的平面角,
B
PDB 120 .
A

2018年全国高中数学联合竞赛试题(A卷)与答案

2018年全国高中数学联合竞赛试题(A卷)与答案

⇒ bx(x − 2) = 02.
2
2

b
=
0
时,由
a2
+ b2
2
=
1

a
=
±1.
代入
1

a
=
1

x
无解,于是
a
=
−1
⇒ z = a + bi = −1;当 x = 0 时,代入 1√得 2 = 0 无解;


x
=
2
时,代入
1

a
=
1 −

b
=
±
15

z
=
a
+
bi
=
1 −
±
15 i.
4
4
44
所以满足条件的复数
3 的圆环区域. 其面积为 9π − π = 8π.
3. 将 1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d, e, f ,则 abc + def 是偶数的概率

.
解答
只有 abc 和 def 一奇一偶时,abc + def 是奇数,且仅当 a, b, c 均为奇数时,abc
所以 B C 的元素个数为 24. 2. 设点 P 到平面 α 的距离为 √3,点 Q 在平面 α 上,使得直线 P Q 与 α 所成角
不小于 30◦ 且不大于 60◦,则这样的点 Q 所构成的区域的面积为
.
解答
设 P O ⊥ 平面 α 于 O,则点 Q 的轨迹为平面 α 上以 O 为圆心,半径为 1 和
2018年全国高中数学联合竞赛试题 (A 卷)

2009-2018年全国高中数学联合竞赛一试试题(A卷)

2009-2018年全国高中数学联合竞赛一试试题(A卷)

60° ,则这样的点Q 所构成的区域的面积为.3.将1, 2, 3,4,5,6 随机排成一行,记为,,,,,,f e d c b a 则def abc +是偶数的概率为 .4.平面直角坐标系 xOy 中,椭圆C 的左、右焦点分别是 F 1、F 2,椭圆C 的弦ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已知线段 PT PV PS PU ,,, 的长分别为1,2,3,6 ,则△PF 1F 2 的面积为 .5.设)(x f 是定义在R 上的以2 为周期的偶函数,满足2)2(,1)(==ππf f ,且在区间[0,1]上严格递减,则不等式组⎩⎨⎧≤≤≤≤2)(121x f x 的解集为 .6.设复数 z 满足1||=z ,使得关于 x 的方程0222=++x z zx 有实根,则所有 z 的和为 .7.设O 为△ABC 的外心,若 AC AB AO 2+=,则ABC ∠sin 的值为 .8. 设整数数列10321,...,,,a a a a 满足5821102,3a a a a a =+=,且{},9,...,2,1,2,11=++∈+i a a a i i i 则这样的数列的个数为 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分 16 分)已知定义在R +上的函数 f (x ) 为⎪⎩⎪⎨⎧-≤-=9,490|,1log |)(3><x x x x x f .设a , b , c 是三个互不相同的实数,满足f (a ) = f (b ) = f (c ) ,求abc 的取值范围. 10.(本小题满分 20 分)已知实数列,...,,321a a a 满足:对任意正整数n ,有1)2(=-n n n a S a ,其中S n 表示数列的前n 项和.证明:对任意正整数n ,有①n a n 2<;②11<+n n a a . 11.(本小题满分 20 分)平面直角坐标系 xOy 中,AB 是抛物线24x y =的过 F (1, 0) 的弦,△AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平分∠APB ,求|PF|的所有可能值.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为平稳数.平稳数的个数是 .5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________. 7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC △的面积为3,则ANAM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b . 10.(本小题满分20分)设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最值. 11. (本小题满分20分)设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z . (1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值.一、填空题:本大题共8小题,每小题8分,共64分.1.设实数a 满足||1193a a a a <-<,则a 的取值范围是 .2.设复数w z ,满足3||=z ,i w z w z 47))((+=-+,则)2)(2(w z w z -+的模为 .3.正实数w v u ,,均不等于1,若5log log =+w vw v u ,3log log =+v u w v ,则u w log 的值为 .4.袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币.现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 . 5.设P 为一圆锥的顶点,A ,B ,C 是其底面圆周上的三点,满足ABC∠=90°,M 为AP 的中点.若AB =1,AC =2,2=AP ,则二面角M-BC-A 的大小为 . 6.设函数10cos 10sin )(44kxkx x f +=,其中k 是一个正整数.若对任意实数a ,均有}|)({}1|)({R x x f a x a x f ∈=+<<,则k 的最小值为 .7.双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F ,过点2F 作直线与双曲线C 的右半支交于点P ,Q ,使得PQ F 1∠=90°,则PQ F 1∆的内切圆半径是 .8.4321,,,a a a a 是1,2,…,100中满足2433221242322232211)())((a a a a a a a a a a a a ++=++++的4个互不相同的数,则这样的有序数组),,,(4321a a a a 的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)在ABC △中,已知CB CA BC BA AC AB ⋅=⋅+⋅32.求C sin 的最大值.10.(本小题满分20分)已知)(x f 是R 上的奇函数,1)1(=f ,且对任意0<x ,均有)()1(x xf x xf =-. 12.(本小题满分20分)如图所示,在平面直角坐标系xOy 中,F 是x轴正半轴上的一个动点.以F 为焦点,O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切线,且|PQ |=2.圆21,C C 均与直线OP 相切于点P ,且均与轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值.2015年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f = . 2.若实数α满足cos tan αα=,则41cos sin αα+的值为 . 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++=,其中i 为虚数单位,n z 表示nz 的共轭复数,则2015z 的值为 .4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ⋅的最小值为 .5.在正方体中随机取3条棱,它们两两异面的概率为 .6.在平面直角坐标系xOy 中,点集{}(,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为 .7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是 .8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为 .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)若实数,,a b c 满足242,424abcabc+=+=,求c 的最小值. 10.(本小题满分20分)设1234,,,a a a a 是4个有理数,使得{}311424,2,,,1,328ija ai j ⎧⎫≤<≤=----⎨⎬⎩⎭,求1234a a a a +++的值.11.(本小题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF的斜率依次成等差数列,求d 的取值范围.2014年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.若正数b a ,满足)log(log 3log 232b a b a +=+=+,则ba 11+的值为_________.2.设集合}21|3{≤≤≤+b a b a中的最大值与最小值分别为m M ,,则m M -=________.3.若函数|1|)(2-+=x a x x f 在),0[+∞上单调递增,则a 的取值范围为_______.4.数列}{n a 满足)(1)2(2,211⋅+∈++==N n a n n a a n n ,则2013212014...a a a a +++=_________. 5.已知正四棱锥ABCD P -中,侧面是边长为1的正三角形,N M ,分别是边BC AB ,的中点,则异面直线MN 与PC 之间的距离是_____________.6.设椭圆Γ的两个焦点是21,F F ,过点1F 的直线与Γ交于点Q P ,,若||||212F F PF =,且||4||311QF PF =,则椭圆Γ的短轴与长轴的比值为__________.7.设等边三角形ABC 的内切圆半径为2,圆心为I 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018全国高中数学联赛(B卷)
一、填空题:本大题共8小题,每小题8分,满分64分.
1.设集合A={2,0,1,8} ,B={2a|a^A},则AUB的所有元素之和是 ______________ .
2•已知圆锥的顶点为P,底面半径长为2,高为1.在圆锥底面上取一点Q,使得直线PQ与底面所成角不大于45。

,则满足条件的点Q所构成的区域的面积为_____________ .
3. ___________________________________________________________________________ 将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc + def是奇数的概率为_____________________________ .
4. __________________________________________________________ 在平面直角坐标系xOy中,直线l通过原点,n =(3,1)是丨的一个法向量.已知数列{a n}满足:对任意正整数n,点(a n+,a n)均在I上.若a2 =6,则a-ia2a3a4a5的值为 __________________________________________________ .
5. 设。

.戶满足tan(«+—) = -3,tan(0 —巴)=5,则tan(a -P、的值为
3 6
6. 设抛物线C: y2 =2x的准线与x轴交于点A,过点B(-1,0)作一直线l与抛物线C相切于点K,过点A
作丨的平行线,与抛物线C交于点M , N,则△KMN的面积为________ .
7.设f (x)是定义在R上的以2为周期的偶函数,在区间[1,2]上严格递减,且满足f (二)=1, f (2二)
=0,
0兰x兰1
则不等式组《一一'的解集为______________ .
[0 兰f(x)兰1
8.已知复数乙厶:满足| Z| AZ |=| Z31,|乙Z2 Z3 r,其中r是给定实数,则△•匕•生的实部
Z2 Z3 Z1
是______ (用含有r的式子表示).
二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.
9. (本题满分16分)已知数列{a n} : a1=7,勺」=a n• 2, n =1,2,3,….求满足耳-42018
a n
10. (本题满分20分)已知定义在R ■上的函数f (x)为
| Iog3x -1|,0 ::: X 乞9,
4 -、、x,x 9.
11. (本题满分20分)如图所示,在平面直角坐标系xOy中,A B与C、D分别是椭圆
2 2
x y
C:二2=1(a b 0的左、右顶点与上、下顶点.设P、Q是C上且位于第一象限的两点,满足
a b
OQ//AP , M是线段AP的中点,射线OM与椭圆交于点R.
证明:线段OQ、OR、BC能构成一个直角三角形.
ir
冬二f
” \ c—r
■X?
加试(B卷)
9
的最小正整数n.
f (x)二
设a,b, c是三个互不相同的实数,满足 f (a) = f (b) = f (c),求abc的取值范围
(本题满分40分)设a,b是实数,函数f (x^ ax b 9.
x 证明:存在汀[1,9],使得| f(x°)| — 2。

相关文档
最新文档