31.整式的乘除与因式分解全章复习与巩固(提高)知识讲解
整式的乘除与因式分解知识点复习
整式的乘除与因式分解知识点复习乘除与因式分解是数学中非常重要的知识点,广泛应用于各个领域。
在高中阶段,学习乘除与因式分解是为了更好地理解并解决数学问题,为后续学习提供基础。
本文将对乘除与因式分解的相关知识进行复习,以期加深对这一知识点的理解。
1.整式的乘法整式是由常数项和各种变量及其指数的积或和的形式构成的代数式。
整式的乘法是指两个整式之间的乘法运算。
在整式的乘法中,需要注意以下几个知识点:(1)同底数幂的乘法:当两个幂的底数相同时,可以将底数保持不变,指数相加。
例如,5^2*5^3=5^(2+3)=5^5(2)不同底数幂的乘法:当两个幂的底数不同时,将两个底数乘在一起,指数保持不变。
例如,2^3*3^2=2^3*3^2=6^2(3)乘法分配律:乘法分配律是指整式乘法中,对于两个整式a、b和一个整式c,有(a+b)*c=a*c+b*c例如,(2x+3)(4x+5)=2x*4x+2x*5+3*4x+3*5=8x^2+10x+12x+15=8x^2+22x+152.整式的除法整式的除法是指将一个整式除以另一个整式,得到商和余数的运算过程。
在整式的除法中,需要注意以下几个知识点:(1)除法算法:整式的除法运算过程与约分的思想类似。
首先找出被除式中最高次项和除式中最高次项的幂次差,然后将被除式中的每一项与除式的最高次项相乘得到临时商,再将临时商乘以除式,得到临时商与被除式的差,重复之前的步骤,直到无法再继续相除为止。
例如,(2x^3+3x^2-5x+7)/(x-2)=2x^2+7x+9余数为23(2)因式定理:如果整式f(x)除以(x-a)的余数为0,则x-a是f(x)的一个因式。
例如,f(x)=x^2-3x+2,将f(x)除以(x-2),得到(x^2-3x+2)/(x-2)=x-1余数为0,所以x-2是f(x)的一个因式。
3.因式分解因式分解是将一个整式分解成几个乘积的形式,其中每个乘积因式都尽可能简单。
人教版数学八上第22讲整式的乘除与因式分解全章复习与巩固(提高)知识讲解
整式的乘除与因式分解全章复习与巩固(提高)【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解. 【知识网络】【要点梳理】要点一、幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (mn ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, mn ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁. 要点二、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++ 要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字; 四项以上想分组,分组分得要合适; 几种方法反复试,最后须是连乘式; 因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、已知25mx=,求6155m x -的值.【思路点拨】由于已知2mx 的值,所以逆用幂的乘方把6mx变为23()m x ,再代入计算.【答案与解析】 解:∵25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
(全册系列精选)华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(基础)
《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+ 661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅ 6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值.【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =. ∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===. (3)由已知23m =,得3227m =.由已知24n =,得2216n =. ∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-= (2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦. 【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22=+++++[(3)3][(3)5]1x x x x222(3)8(3)16=++++x x x x22x x=++.(34)【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a2+b2)2﹣4a2b2(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【答案】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.。
初中数学整式的乘除与因式分解知识点考点梳理
初中数学整式的乘除与因式分解知识点考点梳理一、整式的乘法整式的乘法是指对两个或多个整式进行乘法运算。
整式乘法主要包括常数与整式相乘、整式与整式相乘和整式与多项式相乘。
1.常数与整式相乘:用一个常数乘以一个整式,只要将该整式的每一项乘以该常数即可。
2.整式与整式相乘:对于两个整式相乘,可以使用分配律和合并同类项的方法来进行乘法。
3.整式与多项式相乘:整式与多项式相乘时,要将整式中的每一项分别与多项式相乘,然后将所得的乘积合并同类项。
二、整式的除法整式的除法是指对一个整式除以另一个整式的操作。
整式的除法主要涉及到多项式的除法和多项式的带余除法。
1.多项式的除法:多项式的除法要求被除式和除式都是多项式。
多项式的除法可以使用长除法的方法,将被除式从左到右每一项与除式进行相除,然后将所得商依次写下。
2.多项式的带余除法:多项式的带余除法是对多项式进行除法运算时同时求出商和余数。
在多项式的带余除法中,我们要先根据需要进行合并同类项或补零操作,然后按正常的多项式除法进行运算。
三、因式分解的基本概念因式分解是将一个整式写成多个整式的乘积的过程,这些被乘积的整式称为因式。
因式分解是整式运算中的重要部分,它在解决实际问题和简化计算中起到了重要的作用。
四、因式分解的常用方法1.提取公因式:提取公因式是指将多项式中多个项的公共因子提取出来。
提取公因式的方法是将多项式中每一项的各个因子进行相应的整理,找出它们的最大公因式。
2.公式法:公式法是指将一些特定的整式的乘积进行因式分解。
例如,平方差公式、差平方公式和完全平方公式等,都是常用的公式法。
3.组合因式法:组合因式法是根据多项式的特点,将多项式进行适当的组合,然后找出其因式。
组合因式法是一个灵活运用的方法,可以根据需要进行不同形式的组合。
五、因式分解的应用因式分解在数学中有广泛的应用。
它可以帮助我们解决实际问题、简化计算和求解方程等。
1.解决实际问题:通过因式分解,我们可以将实际问题转化为求解因式的问题,从而帮助我们更好地理解和解决实际问题。
苏教版七年级下册数学[《整式的乘除与因式分解》全章复习与巩固(提高)知识点整理及重点题型梳理]
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《整式的乘除与因式分解》全章复习与巩固(提高)【学习目标】1. 掌握整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算,为正整数);同底数幂相乘,底数不变,指数相加.1.同底数幂的乘法:(m n,为正整数);幂的乘方,底数不变,指数相乘.2.幂的乘方: (m n3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a-=(0a ≠,n 为正整数).任何不等于0的数的-n 次幂,等于这个数的n 次幂的倒数.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算 1、已知25m x =,求6155m x -的值. 【思路点拨】由于已知2m x的值,所以逆用幂的乘方把6m x 变为23()m x ,再代入计算. 【答案与解析】解:∵25m x=, ∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【 整式的乘除与因式分解单元复习 例1】【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
初中数学整式的乘除与分解因式知识点
初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。
将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。
例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。
2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。
将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。
然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。
例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。
然后将乘积减去被除式,得到0。
所以结果为2x + 3。
3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。
例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。
这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。
整式的乘除与因式分解全章复习(提高)PPT课件..
教师擂台
• 要求:
1.在规定的时间内答出 此题 2.解题步骤:答案及思 路、考察知识点、总结 奖励:按照题目的挑战 分加上相关的分数
我的收获
想一想
*这节课你学了什么? *你有什么收获呢?
课后统计、返校要求
下周必带物品:1.作业单
2.错题本 3.语文,英语笔记本 4.数学学案导学 请认真完成作业单上的作业。
一、组内讨论经典例题、提交问题
要求: 1、组长带着大家把正确答案统一。有问题的用红色笔做标 记;(90秒钟) 2、结帮扶对子,解决有疑问的问题。 3、提交有争议或不会做的题目(题号写在小黑板上),先 小组内解决,解决不了的提交老师。 4、每位同学总结出经典例题部分有几种类型?
经典例题——类型题
提交组内解决不了的问题?
组长检查学案。 下列项目中完成的项目在“学案导学一览表”中打“√”,并对红 色字体完成的同学进行双倍积分的奖励
课前准备
涂红项目小组中所有组员某一项目全部完成奖励3个积分。
准时到的个人 2分 要点梳理 2分 带学案的个人 2分 知识回顾 1分 带草稿的个人 1分 色笔区分 3分 错题本 2分 测评系统 2分 高清课堂 2分 典型例题 13分 英语,语文笔记整理 2分 靠旁白 3分 家长签字 2分 带三色笔的个人 2分 点评及收获 3分
红 色 部 分 重 点 加 分
!
整式的乘除与因 式分解全章复习
遵义分校梁连艳老师
课前就位
•小组全员到齐 小组+1分
•小组成员全都提前10分钟到 场。小组+2分
• 1、优秀学案奖励3个积分 • 2、进步学员奖励2个积分
被推选最优秀的个人奖励1个积分
网上任务完成情况展示
整式的乘除与因 式分解全章复习
整式的乘除与因式分解单元复习与巩固
整式的乘除与因式分解单元复习与巩固撰稿:徐长明审稿:赵云洁责编:孙景艳目标认知知识网络学习目标1、经历探索整式运算法则和因式分解方法的过程,体会数学知识之间的内在联系.2、了解整数指数幂的意义和整数指数幂的运算性质;了解因式分解的意义及其与整式乘法之间的关系,体会事物之间可以相互转化的思想.3、会进行简单的整式乘除运算;会用提公因式法、公式法进行因式分解.4、会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2;了解公式的几何背景,并能利用公式进行简单的计算及其逆向变形.5、使学生理解因式分解的意义并感受分解因式与整式乘法是相反方向的变形,让学生掌握什么是公因式,掌握提公因式(字母的指数是数字)和运用公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
重点:1.整式的乘除法;2.因式分解的两种基本方法.难点:1.乘法公式的灵活运用;2.因式分解方法的综合应用。
知识要点梳理知识点一:幂的运算性质:1、同底数幂的乘法:a m·a n=a m+n(m,n为正整数);注:此性质可以逆用,即a m+n=a m×a n。
如:已知2a=5,2b=7,则2a+b=2a2b=5×7=35。
另外三个或三个以上同底数幂相乘时,也具有这一性质,即a m·a n·a p=a m+n+p(m、n、p都是正整数)2、幂的乘方:(a m)n=a mn(m,n为正整数);注:注意不要把幂的乘方与同底数幂的乘法混淆,前者是指数相乘,后者是指数相加。
3、积的乘方:(ab)n=a n·b n(n为正整数);注:在积的乘方运算中很容易将底数中某一项或几项不乘方而出现错误,所以在进行积的乘方运算时应先确定底数有几项,然后将这几项全都乘方,再将结果相乘。
4、同底数幂的除法:a m÷a n=a m-n(a≠0, m,n为正整数,并且m>n).注:根据同底数幂除法的运算性质a m÷a n=a m-n(a≠0, m,n为正整数,并且m>n),当指数相同时,则有a n÷a n=a n-n=a0=1,从而诠释了“任何不等于0的数的0次幂都等于1”的道理,同时,又将同底数幂除法的运算性质中m>n的条件扩大为m≥n;而当m<n 时,仍然使用a m÷a n=a m-n,则m-n<0,便出现了负指数幂a-p=( a≠0, p为正整数);至此,同底数幂除法的运算性质a m÷a n=a m-n的适用范围已不必再过分的强调m、n之间的大小关系,m、n的值也由正整数扩大到全体整数了.知识点二:整式乘法主要指两种运算:1、单项式乘以单项式;注:先确定符号,再计算绝对值.这时容易出现的错误是将系数相乘与指数相加混淆,如2a3·3a2=6a5,而不要认为是6a6或5a5.另外单项式乘法法则对于三个以上的单项式相乘同样适用.2、多项式乘以单项式.注:①运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.②在多项式乘法中,通过实例得出了:含有一个相同字母的两个一次二项式相乘,得到的积是同一个字母的二次三项式. 如果用a,b分别表示含有一个系数是1的相同字母的两个一次二项式中的常数项,则有公式:(x+a)(x+b)=x2+(a+b)x+ab。
华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(基础)
《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+ 661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值. 【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =. ∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===. (3)由已知23m =,得3227m =.由已知24n =,得2216n =. ∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-=(2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦. 【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1 =(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.。
《整式的乘除》全章复习与巩固(基础)知识讲解
乐博思
《整式的乘除》全章复习与巩固(基础)
责编:张强
【学习目标】
1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、
多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;
2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行
乘法运算;
3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法
公式简化运算;
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:
(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).
同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a
-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.
要点二、整式的乘法和除法
1.单项式乘以单项式
单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有。
初中数学复习《整式乘除和因式分解》精讲课件
本章知识结构:
一、整式的有关概念
1、代数式 4、多项式
2、单项式 3、单项式的系数及次数 5、多项式的项、次数 6、整式
二、整式的运算
(一)整式的加减法
(二)整式的乘法
1、同底数幂的乘法 3、积的乘方 5、单项式乘以单项式 7、多项式乘以多项式 9、完全平方公式
2、幂的乘方 4、同底数的幂相除 6、单项式乘以多项式 8、平方差公式
(1)指数:加减 (2)指数:乘法
转化 转化
乘除 幂的乘方
(3)底数:不同底数 转化 同底数
例:比较大小:3555,4444,5333
解:3555=(35)111=243111 4444=(44)111=256111 5333=(53)111=125111 256﹥243﹥125 4444﹥3555﹥5333
(2022·宁波中考)若x+y=3,xy=1,则x2+y2=_____. 【解析】因为x+y=3, 所以x2+2xy+y2=9. 因为xy=1,所以x2+y2=7. 答案:7
教你读题 1.注意到两个关键字“先”与“再”,指明不能直接代入求 值. 2.掌握完全平方公式、单项式乘多项式法则,是正确解 答本题的关键.
5 .多项式与多项式相乘: ( a+b)(m+n) = a(m+n)+b(m+n) =am+an+bm+bn
(a+b)( m+n)=am+an+bm+bn
• 法则: 多项式与多项式相乘,先用一个多项式的每 一项乘另一个多项式的每一项,再把所得的积相加.
6.乘法公式:
整式的乘除与因式分解知识点归纳
整式的乘除与因式分解知识点归纳整式是由常数、变量及它们的积和和差经过有限次加、减、乘运算得到的式子。
整式有不同的运算法则,包括乘法、除法和因式分解。
以下是整式的乘除与因式分解的知识点归纳:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
在整式相乘时,需注意以下几点:-两个或多个常数相乘,结果仍是常数;-两个或多个同类项相乘,结果是它们的系数相乘,指数相加的同类项;-不同类项相乘时,按照乘法交换律和乘法结合律可以调整次序、合并同类项;-乘法运算中可以运用分配率,将一个整式乘以一个括号内的整式,再将结果分别与括号内的各项相乘,最后合并同类项得出结果。
2.整式的除法:整式的除法是指将一个整式除以另一个整式的运算。
在整式相除时,需要注意以下几点:-除法的定义:对于两个整式f(x)和g(x),若存在整式q(x)和r(x),使得f(x)=q(x)·g(x)+r(x),且r(x)是0或次数低于g(x)的整式,则称g(x)是f(x)的除式,q(x)是商式,r(x)是余式;-除法的步骤:进行长除法运算,从被除式中选择一个最高次项与除式的最高次项相除,得到商式的最高次项;-对除式乘以商式后减去得到的结果,继续进行除法计算,重复以上步骤;-最后得到的商式即为整式的商,最后得到的余式即为整式的余式。
3.整式的因式分解:因式分解是指将一个整式拆分成多个整式的乘积。
在进行因式分解时,需要注意以下几点:-提取公因式:当一个整式的各个项都有相同的因子时,可以提取出该因子作为公因式;-分解差的平方:对于形如a^2-b^2的差的平方,可以分解成(a+b)(a-b)的乘积;-分解一些特殊形式的整式,如完全平方差、完全立方和差、完全立方和等;-假设原式可分解成两个较简单的整式,然后根据求解思路进行分解。
整式的乘除运算和因式分解是数学中重要的操作,有广泛的应用。
在代数方程求解、多项式计算、消元法等多个数学领域中,都需要运用到整式的乘除与因式分解的知识。
31.整式的乘除与因式分解全章复习与巩固(提高)知识讲解
整式的乘除与因式分解全章复习与巩固(提高)撰稿:康红梅 责编:吴婷婷【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】【高清课堂 整式的乘除与因式分解单元复习 知识要点】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算 1、已知25m x =,求6155m x -的值. 【思路点拨】由于已知2m x的值,所以逆用幂的乘方把6m x 变为23()m x ,再代入计算. 【答案与解析】解:∵25m x=, ∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【高清课堂 整式的乘除与因式分解单元复习 例1】【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
整式的乘除与因式分解知识点全面
整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
乘法的结果称为“积”。
-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。
除法的结果称为“商”和“余数”。
-除法的除数不能为0,即被除式不能为0。
-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。
次数为0的项称为常数项,次数最高的项称为最高次项。
4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。
-除法规则:除法运算时,可以通过因式分解的方法进行计算。
5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。
-两个正整数相乘,结果为正数。
-两个负整数相乘,结果为正数。
-一个正整数与一个负整数相乘,结果为负数。
二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。
可以通过提取公因式、配方法等方式进行因式分解。
2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。
3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。
4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。
例如:a^2-b^2=(a+b)(a-b)。
5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。
例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。
7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。
整式的乘除与因式分解基础知识详解
整式的乘除与因式分解目录一、幂的运算二、整式的乘法三、整式的除法四、乘法公式五、提公因数法六、平方差公式七、完全平方式八、十字相乘法及分组分解法九、《整式的乘除与因式分解》全章复习与巩固一、幂的运算基础知识讲解【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即(都是正整数).要点二、幂的乘方法则(其中都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广: (,均为正整数) (2)逆用公式: ,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.+⋅=m n m n a a a ,m n m n p m n p a a a a ++⋅⋅=,,m n p m n m n a a a +=⋅,m n ()=m n mn a a ,m n (())=m n p mnp a a0≠a ,,m n p ()()n m mn m n a a a ==()=⋅n n n ab a b n要点诠释:(1)公式的推广: (为正整数). (2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如: 要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯. 二、整式的乘法基础知识讲解【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则()=⋅⋅n n n nabc a b c n ()nn n a b ab =1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭()m a b c ma mb mc ++=++多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:.三、整式的除法基础知识讲解【学习目标】1. 会用同底数幂的除法性质进行计算.2. 会进行单项式除以单项式的计算.3. 会进行多项式除以单项式的计算.【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即(≠0,都是正整数,并且)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即(≠0)要点诠释:底数不能为0,无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点四、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++m n m n a a a -÷=a m n 、m n >01a =a a 00()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++四、乘法公式基础知识讲解【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.【要点梳理】要点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如要点二、完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+添括号是否正确.要点四、补充公式;;;.五、提公因式法基础知识讲解【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.六、平方差公式基础知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±m 33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++m m2. 会综合运用提公因式法和平方差公式把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.七、完全平方式基础知识讲解【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; ()()22a b a b a b -=+-a b a b ()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.八、十字相乘法及分组分解法基础知识讲解【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则 要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即. 要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.pq x q p x +++)(22x bx c ++pq c p q b =⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.九、《整式的乘除与因式分解》全章复习与巩固【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.m n ,m n ,n a m n ,m n >()010.a a =≠mc mb ma c b a m ++=++)(c b a m ,,,()()a b m n am an bm bn ++=+++要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次. ()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,()2222a b a ab b +=++2222)(b ab a b a +-=-。
【推荐】华东师大初中数学八年级上册《整式的乘除》全章复习与巩固--知识讲解(基础).doc
《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=-要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方; 四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅ 6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n axy x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值.【答案】 解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =.∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===.(3)由已知23m =,得3227m =.由已知24n =,得2216n =.∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-= (2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦.【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a 2+b 2)2﹣4a 2b 2=(a 2+b 2+2ab )(a 2+b 2﹣2ab )=(a+b )2(a ﹣b )2;(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1=(x ﹣y )2﹣2(x ﹣y )+1=(x ﹣y ﹣1)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除与因式分解全章复习与巩固(提高)
【学习目标】
1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;
2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;
3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;
4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:
(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m
n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1.
要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.
要点二、整式的乘法和除法
1.单项式乘以单项式
单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
2.单项式乘以多项式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).
3.多项式乘以多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.
要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2
x a x b x a b x ab ++=+++. 4.单项式相除
把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.
5.多项式除以单项式
先把这个多项式的每一项分别除以单项式,再把所得的商相加.
即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++
要点三、乘法公式
1.平方差公式:22()()a b a b a b +-=-
两个数的和与这两个数的差的积,等于这两个数的平方差.
要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.
平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”
的平方减去“相反项”的平方.
2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-
两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.
要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.
要点四、因式分解
把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.
要点诠释:落实好方法的综合运用:
首先提取公因式,然后考虑用公式;
两项平方或立方,三项完全或十字;
四项以上想分组,分组分得要合适;
几种方法反复试,最后须是连乘式;
因式分解要彻底,一次一次又一次.
【典型例题】
类型一、幂的运算
1、已知25m x =,求6155
m x -的值. 【思路点拨】由于已知2m x
的值,所以逆用幂的乘方把6m x 变为23()m x ,再代入计算. 【答案与解析】
解:∵25m x
=, ∴62331115()55520555
m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.
举一反三:
【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.
(2)比较3020103,9,27大小。
【答案】
解:(1)<<b a c ; (2)301020
3279=<
提示:(1)转化为同指数不同底数的情况进行比较,指数转化为12;
(2)转化成比较同底数不同指数,底数转化为3.
类型二、整式的乘除法运算
2、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )
A.0
B.1
C.2
D.3
【答案】D ;
【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.
【总结升华】代数式中不含某项,就是指这一项的系数为0.
举一反三:
【变式】若()13x m x ⎛
⎫++ ⎪⎝⎭
的乘积中不含x 的一次项,则m 等于______.
【答案】13
-; 类型三、乘法公式
3、计算:(1)()()a b c d a b c d -+---+;(2)()()231235x y x y ----+.
【思路点拨】(1)中可以将两因式变成a b -与c d -的和差.(2)中可将两因式变成23y -与23x -的和差.
【答案与解析】
解:(1)原式22[()()][()()]()()a b c d a b c d a b c d =-+----=---
222222a ab b c cd d =-+-+-.
(2)原式[(23)(23)][(23)(23)]y x y x =-+----
()()22
2323y x =---
229412125y x y x =--+-.
【总结升华】(1)在乘法计算中,经常同时应用平方差公式和完全平方公式.(2)当两个因式中的项非常接近时,有时通过拆项用平方差公式会达到意想不到的效果.
举一反三:
【变式】计算:2483(21)(21)(21)1++++.
【答案】
解:24822483(21)(21)(21)1(21)(21)(21)(21)1++++=-++++ 448(21)(21)(21)1=-+++
881616(21)(21)12112=-++=-+=.
4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.
【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .
【答案与解析】
解:222
246140x y z x y z ++-+-+= ()()()222
1230x y z -+++-= 所以1,2,3x y z ==-=
所以20122012()00x y z --==.
【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.
举一反三:
【变式】配方2222
14a b a b ab +++=,求a b +=________.
【答案】
解:原式=()()22222221210a b ab a ab b ab a b -++-+=-+-= 所以,1a b ab ==,解得1a b ==±
所以±
2a b +=.
5、求证:无论x y ,为何有理数,多项式222616x y x y +-++的值恒为正数.
【答案与解析】
解:原式=()()22
1360x y -+++>
所以多项式的值恒为正数.
【总结升华】通过配方,将原式变成非负数+正数的形式,这样可以判断多项式的正负. 举一反三: 【变式】证明:不论,a b 为何值 , 多项式22
22354
a b a b ab -----的值一定小于0. 【答案】 证明:22
22354
a b a b ab ----- = 22
22[(1)(2)4]4
a b ab a b ab -++++++ =()22(
1)42
ab a b -+-+- ∵ 0)12
(2≥+ab ,()02≥+b a ∴2(1)02ab -+≤, ()20a b -+≤ ∴ 原式一定小于0.
类型四、因式分解
6、分解因式:(1)()()222222x x ----
(2)()2224420x x
x x +--- (3)2244634a ab b a b -+-+-
【答案与解析】
解:(1)原式()()()()()()2222212211x x x x x x =---+=+-+-
(2)原式=()()()222224(4)204544x x x x x x x x +-+-=+-++
()()()2512x x x =+-+
(3)原式=()()()()223242421a b a b a b a b ----=---+
【总结升华】做题之前要仔细观察,注意从整体的角度看待问题.。