2018石景山初三数学二模试题打印版
2018-2019学年北京市石景山初三数学二模试卷及答案
石景山区2019年初三综合练习数 学 试 卷第1-8题均有四个选项,符合题意的选项只有..一个. 1.如图所示,在△ABC 中,AB 边上的高线画法正确的是 (A ) (B ) (C ) (D )2.下列各式计算正确的是(A ) 235x x x ⋅= (B )22434x x x += (C )824x x x ÷= (D )2242(3)6x y x y =(C ) (D )5.如图,在ABCD 中,AC =8,BD=6 ,AD=5,则ABCD 的面积为(A )6(B )12(C )24(D )486.如图,AB 是⊙O 的弦,直径CD 交AB 于点E ,若AE =EB =3,∠C =15°,则OE 的HC BA ABC HHCBAODCB A长为(A(B )4 (C ) 6(D)7.为了迎接2022年的冬奥会,中小学都积极开展冰上运动.小乙和小丁进行500米短设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差依次为2s 乙,2s 丁,则下列判断中正确的是(A )x 乙=x 丁 ,2s 乙<2s 丁(B )x 乙=x 丁 ,2s 乙>2s 丁 (C )x 乙>x 丁 ,2s 乙>2s 丁(D )x 乙<x 丁 ,2s 乙<2s 丁8.某农科所在相同条件下做某作物种子发芽率的实验,结果如下表所示:下面有四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891; ②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率; ④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg 种子中大约有100kg的种子不能发芽.其中合理的是(A )①②(B )③④(C )②③(D )②④C二、填空题(本题共16分,每小题2分) 9.若代数式21x x -+有意义,则x 的取值范围是 . 10.因式分解:3269a a a -+= .11.圆心角为80º,半径为3的扇形的面积为 .12.请添加一个条件,使得菱形ABCD 为正方形,则此条件可以为 . 13.一冰箱生产厂家对某地区两个经销本厂家冰箱的大型商场进行调查,产品的销售量占这两个大商场同类产品销售量的45%,由此在广告中宣传,他们的产品销售量在 国内同类产品销售量中占45%.请你根据所学的统计知识,判断这个宣传数据是否 可靠: (填是或否),理由是 . 14.如图,正方形ABCD ,E 是边AD 上一点,AE =13AD =1,CF ⊥BE 于F ,则BF 的长为 . 15.如图,在喷水池的中心A 处竖直安装一根水管AB ,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为 ,水管AB 的长为 m. 16.北京世界园艺博览会(简称“世园会”)园区4月29日正式开园,门票价格如下:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期; 注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上在线上购买世园会门票,票价可打九折,但仅限于普通票.某大家庭计划在6月1日集体入园参观游览,通过计算发现:若提前两天线上购票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买FEDCBA优惠票的有 人.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27, 28题,每小题7分)解答应写出文字说明,演算步骤或证明过程. 17.下面是小华设计的“作一个角等于已知角的2倍”的尺规作图过程.已知:∠AOB .求作:∠APC ,使得∠APC =2∠AOB . 作法:如图,①在射线OB 上任取一点C ; ②作线段OC 的垂直平分线, 交OA 于点P ,交OB 于点D ; ③连接PC ;所以∠APC 即为所求作的角.根据小华设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹); (2)完成下面的证明(说明:括号里填写推理的依据). 证明:∵DP 是线段OC 的垂直平分线,∴OP = ( ).∴∠O=∠PCO .∵∠APC=∠O +∠PCO ( ). ∴∠APC =2∠AOB .18()2602-︒-+19.已知2210y xy --=,求代数式22(2)()()3x y x y x y y ---+-的值.20.已知关于x 的一元二次方程()22310m x x -+-=有两个不相等的实数根.ABO(1)求m 的取值范围;(2)若方程的两个根都是有理数,请选择一个合适的m ,并求出此方程的根.21.如图,AB 平分∠CAD ,∠ACB +∠ADB =180º, (1)求证:BC =BD ; (2)若BD =10,cos ∠ADB =25,求AD -AC 的值.22.如图,在Rt △ABC 中,∠C =90º,点O 在边AC 上,⊙O 与边AC 相交于点D 、与 边AB 相切于点E ,过点D 作DP ∥BC 交AB 于点P . (1)求证:PD=PE ;(2)连接CP ,若点E 是AP 的中点,OD : DC =2:1,CP =13,求⊙O 的半径.23.在平面直角坐标系xOy 中,A (-3,2),B (0,1),将线段AB 沿x 轴的正方向平BA移n (n >0)个单位,得到线段A B '',且点A B '',恰好都落在反比例函数()0my m x=≠的图象上.(1)用含n 的代数式表示点A B '',的坐标; (2)求n 的值和反比例函数()0my m x=≠的表达式; (3)点C 为反比例函数()0my m x=≠图象上的一个动点,直线CA '与x 轴交于点 D ,若2CD A D '=,请直接写出点C 的坐标.24.如图,P 是矩形ABCD 内部的一定点,M 是AB 边上一动点,连接MP 并延长与矩形ABCD 的一边交于点N ,连接AN .已知6AB =cm ,设A ,M 两点间的距离为 x cm ,M ,N 两点间的距离为1y cm ,A ,N 两点间的距离为2y cm .小欣根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小欣的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组(2()1,x y y(3)结合函数图象,解决问题:当△AMN 为等腰三角形时,AM 的长度约为 cm .25.为了响应全民阅读的号召,某社区开展了为期一年的“读书伴我行”阅读活动.在阅读活动开展之初,随机抽取若干名社区居民,对其年阅读量(单位:本)进行了调查统计与分析,结果如下:经过一年的“读书伴我行”阅读活动,某社区再次对这部分居民的年阅读量进行调查,并对收集的数据进行了整理、描述和分析.下面给出了部分信息. a .居民的年阅读量统计表如下:2ybc根据以上信息,回答下列问题: (1)样本容量为 ;(2)m= ;p= ;q= ;(3)根据社区开展“读书伴我行”阅读活动前、后随机抽取的部分居民年阅读量的两组调查结果,请至少从两个方面对社区开展阅读活动的效果进行评价.26.在平面直角坐标系xOy 中,已知抛物线2221y x mx m =-+-.(1)求抛物线的对称轴(用含m 的式子去表示);(2)若点(m -2, y 1),(m , y 2),(m +3,y 3)都在抛物线2221y x mx m =-+-上,则y 1, y 2 ,y 3的大小关系为 ; (3)直线y x b =-+与x 轴交于点A (3,0),与y 轴交于点B ,过点B 作垂直于y轴的直线l 与抛物线2221y x mx m =-+-有两个交点,在抛物线对称轴右侧的点记为P ,当△OAP 为钝角三角形时,求m 的取值范围.27.如图,在△ABC 中,∠ACB =90°,AC=BC ,E 为外角∠BCD 平分线上一动点(不与点C 重合),点E 关于直线BC 的对称点为F ,连接BE ,连接AF 并延长交直线BE 于点G .(1)求证:AF =BE ;(2)用等式表示线段FG ,EG 与CE 的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P ,Q ,给出如下定义:若P ,Q 为某个三角形的顶点,且边PQ 上的高h ,满足h=PQ ,则称该三角形为点P ,Q 的“生成三角形”. (1)已知点A (4,0), ①若以线段OA 为底的某等腰三角形恰好是点O ,A 的“生成三角形”,求该三 角形的腰长;②若Rt △ABC 是点A ,B 的“生成三角形”,且点B 在x 轴上,点C 在直线 25y x =-上,则点B 的坐标为_________________________________;(2)⊙ T 的圆心为点T )0,2(,半径为2,点M 的坐标为)6,2(,N 为直线4+=x y 上一点,若存在Rt △MND ,是点M ,N 的“生成三角形”,且边ND 与⊙ T 有公共 点,直接写出点N 的横坐标N x 的取值范围.石景山区2019年初三综合练习数学试卷答案及评分参考阅卷须知:C1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
石景山区初三二模数学试题含答案
HFE DC BA 石景山区2018年初三统一练习二数学试卷学校姓名 准考证号考生须知1.本试卷共6页,共三道大题,28道小题.满分100分,考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.数轴上的点A 表示的数是a ,当点A 在数轴上向右平移了6个单位长度后得到点B ,若点A 和点B 表示的数恰好互为相反数,则数a 是(A )6 (B )6- (C )3 (D )3- 2.如图,在ABC △中,BC 边上的高是(A )AF (B )BH (C )CD (D )EC第2题图 第3题图 3.如图是某个几何体的侧面展开图,则该几何体是(A )三棱锥 (B )四棱锥 (C )三棱柱 (D )四棱柱 4.任意掷一枚骰子,下列情况出现的可能性比较大的是(A )面朝上的点数是6 (B )面朝上的点数是偶数 (C )面朝上的点数大于2 (D )面朝上的点数小于2 5.下列是一组logo 设计的图片,其中不是..中心对称图形的是 (A ) (B ) (C ) (D )6.一个正方形的面积是12,估计它的边长大小在(A)2与3之间(B)3与4之间(C)4与5之间(D)5与6之间7.某商场一名业务员则这组数据的众数和中位数分别是(A)10,8 (B)9.8,9.8 (C)9.8,7.9 (D)9.8,8.1 8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是(A)两人从起跑线同时出发,同时到达终点(B)跑步过程中,两人相遇一次(C)起跑后160秒时,甲、乙两人相距最远(D)乙在跑前300米时,速度最慢二、填空题(本题共16分,每小题2分)9.分解因式:=+-xxx232_________.10.若代数式24+2xx-的值为0,则实数x的值是_________.11.一次函数()0y kx b k=+≠的图象过点()0,2,且y随x的增大而减小,请写出一12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可13.若222351x y+-=,则代数式22695x y+-的值为.14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(-4,1)、(-1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,-3),则由线段AB得到线段A B''的过程是:,由线段A B''得到线段A B''''15.如图,⊙O的半径为2,切线AB的长为200S(米)t(秒)ODCBA16070800600300点P 是⊙O 上的动点,则AP 的长的取值 范围是__________.16.已知:在四边形ABCD 中,∠ABC =∠ADC =90º, M 、N 分别是CD 和BC 上的点. 求作:点M 、N ,使△AMN 的周长最小. 作法:如图,(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.请回答:这种作法的依据是_____________.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24、25题,每小题5分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程. 17.计算:11()tan 603223-+-︒--.18.解不等式241126x x +--≥,并把它的解集在数轴上表示出来. 19.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:△ADC ∽△DEB .20.已知关于x 的一元二次方程220x x m ++=.(1)当m 为何非负整数时,方程有两个不相等的实数根; (2)在(1)的条件下,求方程的根.21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE .(1)求证:DEC BEC ∠=∠;(2)若8AB =,10BC =,求CE 的长.A ''A 'N MD CBA A BCDCA22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图餐余情况剩大量不剩(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.24.如图,在△ABC 中,∠ο90=C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作EH ⊥AB 于点H ,连接BE .(1)求证:EC EH =;(2)若4BC =,2sin 3A =,求AD 的长. 25.如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.27.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB上,连接AN ,平移△ABN ,使点N 移动到点M ,得到△DEM (点D 与点A 对应,点E 与点B 对应),DM 交AC 于点P . (1)若点N 是线段MB 的中点,如图1.① 依题意补全图1; ② 求DP 的长;(2)若点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,若MQ =DP ,求(1)已知,点()1,0P ,①点1,22A ⎛⎫-⎪ ⎪⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”); (2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方 向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.石景山区2018年初三统一练习二数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)9. 2(1)x x -. 10.2. 11.答案不唯一.如:2y x =-+. 12.(230)600x x +-=.13.13. 14.向右平移4个单位长度;绕原点顺时针旋转90︒. 15.26AP ≤≤. 16. ①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的 连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24、25题,每小题5分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.解:原式=223+-- ………………4分3=. ………………5分 18.解:去分母,得 3(2)(41)6x x +--≥ ………………1分去括号,得 36416x x +-+≥ ………………2分 移项,合并同类项:1x -≥- ………………3分 系数化为1:1x ≤. ………………4分 把解集表示在数轴上:………………5分19. 证明:∵△ABC 是等边三角形,∴60B C ∠=∠=︒, ………… 1分 ∴1160ADB C ∠=∠+∠=∠+︒,………… 2分 ∵60ADE ∠=︒,∴260ADB ∠=∠+︒, ………… 3分 ∴12∠=∠, ………… 4分 ∴△ADC ∽△DEB . ………… 5分 20.解:(1)∵方程有两个不相等的实数根,∴0∆>. …………… 1分 ∴440m ->.即1m <. …………… 2分 又m 为非负整数,∴0m =. …………… 3分 (2)当0m =时,原方程为220x x +=,解得:10x =,22x =-. …………… 5分21.(1)证明:∵DE 是AB 边的垂直平分线,∴DE AB ⊥,4AE EB ==, ………… 1分 ∵45A ∠=︒, ∴DE AE EB ==, 又∵DC CB =,CE CE =, ∴△EDC ≌△EBC .∴45DEC BEC ∠=∠=︒. ………… 2分 (2)解:过点C 作CH AB ⊥于点H , 可得,CH EH =,设EH x =,则4BH x =-, 在Rt △CHB 中, 222CH BH BC +=, ……… 3分即22(4)10x x +-=,解之,13x =,21x =(不合题意,舍),………… 4分 即3EH =.∴232CE EH ==. ………… 5分22.解:(1)∵一次函数2y x b =-+的图象过点1(,0)2A ,HCDA∴0212b =-⨯+. ∴解得,1b =.∴一次函数的表达式为21y x =-+. ………………1分 ∵一次函数的图象与反比例函数(0)y xkk =≠图象交于点(),3a M ,∴321a =-+,解得,1a =-. ………………2分 由反比例函数(0)y xkk =≠图象过点()1,3M -,得3k =-.∴反比例函数的表达式为3y x=-. ………………3分(2………………5分 23.解: (1)1000; ………………2分 (2)………………4分(3)50180009001000⨯=. ………………6分 答:估计该校18000名学生一餐浪费的食物可供900人食用一餐. 24.(1)证明:连接OE ∵⊙O 与边AC 相切 ∴OE ⊥AC ∵∠ο90=C∴OE ∥BC . ……………………..1分 ∴OEB CBE ∠=∠ ∵OB OE =, ∴OEB OBE ∠=∠ ∴OBE CBE ∠=∠∵EH ⊥AB∴EH EC =. …………………………..2分 (2)解:在Rt △ABC 中,4BC =,2sin 3BC A AB ==, ∴6AB =. ………………………………..3分 ∵OE ∥BC∴OE AO BC AB =,即4OE = 解得,125OB = ………………………………..4分∴2465AD AB BD =-=-=..5分 25.解:(1)2.7 ………………………… 1分(2)……………………… 4分(3)6.8 ……………………… 5分26.解:(1)∵抛物线240y ax x c a =++≠()经过点34(,)A -和02(,)B , 可得:91242a c c ⎧++=-⎨=⎩解得:22a c ⎧=-⎨=⎩∴抛物线的表达式为2242y x x =-++. ……………………… 2分 ∴顶点坐标为()14,. ……………………… 3分(2)设点02(,)B 关于3x =的对称点为B’, 则点B’()62,. 若直线y kx b =+经过点()94,C 和()62B ',,可得2b =-. 若直线y kx b =+经过点()94,C 和()34,A -,可得8b =-.直线y kx b =+平行x 轴时,4b =.综上,824b b -<<-=或. ……………………… 7分27.解:(1)①如图1,补全图形. ………………… 1分② 连接AD ,如图2.在Rt △ABN 中,∵∠B =90°,AB =4,BN =1, ∴17=AN .∵线段AN 平移得到线段DM , ∴DM =AN =17, AD =NM =1,AD ∥MC , ∴△ADP ∽△CMP . ∴21==MC AD MP DP . ∴317=DP .………………… 3分 图1图2yx–1123456789–1–2–3–4–512345CB'ABO(2)连接NQ ,如图3.由平移知:AN ∥DM ,且AN =DM . ∵MQ DP =, ∴PQ DM =.∴AN ∥PQ ,且AN =PQ . ∴四边形ANQP 是平行四边形. ∴NQ ∥AP .∴45BQN BAC ∠=∠=︒. 又∵90NBQ ABC ∠=∠=︒, ∴BN BQ =. ∵AN ∥MQ ,∴AB NBBQ BM=. 又∵M 是BC 的中点,且4AB BC ==∴42NBNB =. ∴NB =舍负). ∴ME BN ==∴2CE =.………………… 7分(2)法二,连接AD ,如图4. 设CE 长为x ,∵线段AB 移动到得到线段DE , ∴4+==x BE AD ,AD ∥BM . ∴△ADP ∽△CMP . ∴24xMC AD MP DP +==. ∵MQ =DP , ∴x xMP DP DP QD MQ 21042++=+=. ∵△QBM ∽△QAD , ∴xAD BM QD MQ +==42. 解得222-=x .∴222-=CE . ………………… 7分28.解:(1)上;外; ………………… 2分 (2)连接PH ,如图1,∵点P 的“伴随圆”与直线x y 33=相切, ∴PH OH ⊥.∴1PH =,30POH ∠=︒, 可得,2OP =,∴点P )(0,2或)(0,2-; …………………… 6分 (3)4π-+.(可参考图2) …………………… 8分E。
北京市石景山区中考数学二模试卷(含答案解析)
北京市石景山区中考数学二模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.﹣a>c B.a>b C.ab>0 D.a>﹣32.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为()A.5.2×105 B.5.2×10﹣5 C.5.2×10﹣4 D.52×10﹣63.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50° C.40° D.25°4.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.在某次体育测试中,九年级(1)班的15名女生仰卧起坐的成绩如表:成绩(次∕分钟)44 45 46 47 48 49人数(人) 1 1 3 3 5 2则此次测试成绩的中位数和众数分别是()A.46,48 B.47,47 C.47,48 D.48,486.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上任意一点(与点B不重合),则∠BPC 的度数为()A.30° B.45° C.60° D.90°7.如图,l1反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,l2反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨 B.等于5吨 C.小于5吨 D.大于5吨8.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为AC=2km,BD=3km,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处 B.距C点2km处 C.距C点3km处 D.CD的中点处9.如图是北京3月1日﹣7日的PM2.5浓度(单位:μg/m3)和空气质量指数(简称AQI)的统计图,当AQI不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的PM2.5浓度最高②这七天的PM2.5浓度的平均数是30μg/m3③这七天中有5天的空气质量为“优”④空气质量指数AQI与PM2.5浓度有关其中说法正确的是()A.②④ B.①③④C.①③ D.①④10.如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积是()A.20 B.24 C.48 D.60二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围为________.12.分解因式:a2b﹣4ab+4b=___________.13.如图,△ABC是⊙O的内接正三角形,图中阴影部分的面积是12π,则⊙O的半径为_________.14.关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,写出一组满足条件的实数a,c的值:a=______,c=_________.15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段a.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为2a.作法:如图,(1)作线段BC=a;(2)作线段BC的垂直平分线DE交BC于点F;(3)在射线FD上顺次截取线段FG=GA=a,连接AB,AC.所以△ABC即为所求作的等腰三角形.请回答:得到△ABC是等腰三角形的依据是:①_____________:②_____________.16.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n 300 700 1000 5000 15000成活的棵数m 280 622 912 4475 135450.933 0.889 0.912 0.895 0.903成活的频率根据表中的数据,估计这种树苗移植成活的概率为_______(精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约______万棵.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:(π﹣)0+6cos45°+﹣|﹣3|.18.解不等式﹣≥﹣1,并把它的解集在数轴上表示出来.19.如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.20.已知x2﹣10xy+25y2=0,且xy≠0,求代数式﹣÷的值.21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?22.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的长.23.如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m ≠0)的一个交点为B(﹣1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△PAC的面积为4,求点P的坐标.24.绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题:(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如右图,其中喜欢mobike的教师有36人,求喜欢ofo的教师的人数.25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE 的延长线于点H.(1)求证:HC=HF;(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.26.已知y是x的函数,如表是y与x的几组对应值.x …﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 4 5 …y … 1.969 1.938 1.875 1.75 1 0 ﹣2 ﹣1.5 0 2.5 …小明根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=﹣1对应的函数值y约为________;②该函数的一条性质:_________.27.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,﹣1),抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l与图形M有公共点,求k的取值范围.28.已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作CE⊥BC于点C,且CE=BD(点E与点A在射线BC同侧),连接AD,ED.(1)如图1,当点D在线段BC上时,请直接写出∠ADE的度数.(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED与AC相交于点P,若AB=2,直接写出CP的最大值.29.在平面直角坐标系xOy中,点P的坐标为(a,b),点P的变换点P'的坐标定义如下:当a>b时,点P'的坐标为(﹣a,b);当a≤b时,点P'的坐标为(﹣b,a).(1)点A(3,1)的变换点A'的坐标是______;点B(﹣4,2)的变换点为B',连接OB,OB',则∠BOB'=_______;(2)已知抛物线y=﹣(x+2)2+m与x轴交于点C,D(点C在点D的左侧),顶点为E.点P在抛物线y=﹣(x+2)2+m上,点P的变换点为P'.若点P'恰好在抛物线的对称轴上,且四边形ECP'D 是菱形,求m的值;(3)若点F是函数y=﹣2x﹣6(﹣4≤x≤﹣2)图象上的一点,点F的变换点为F',连接FF',以FF'为直径作⊙M,⊙M的半径为r,请直接写出r的取值范围.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.﹣a>c B.a>b C.ab>0 D.a>﹣3【分析】根据数轴的性质,实数的性质计算即可.【解答】解:由数轴得,a<0<b<c,|a|>|c|>|b|,∴﹣a>c,故A正确;故选:A.【点评】本题考查了实数和数轴,掌握数轴的性质,实数的性质是解题的关键.2.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为()A.5.2×105 B.5.2×10﹣5 C.5.2×10﹣4 D.52×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000052=5.2×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50° C.40° D.25°【分析】先根据平行线的性质,得出∠ABC,再根据三角形内角和定理,即可得到∠2.【解答】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故选:C.【点评】本题主要考查了平行线的性质以及垂线,解题时注意:两直线平行,同位角相等.4.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项正确;B.是轴对称图形,不是中心对称图形,故本选项错误;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.在某次体育测试中,九年级(1)班的15名女生仰卧起坐的成绩如表:成绩(次∕分钟)44 45 46 47 48 49人数(人) 1 1 3 3 5 2则此次测试成绩的中位数和众数分别是()A.46,48 B.47,47 C.47,48 D.48,48【分析】根据众数和中位数的定义求解可得.【解答】解:由于一共有15个数据,∴其中位数为第8个数据,即中位数为47,∵48出现次数最多,有5次,∴众数为48,故选:C.【点评】本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上任意一点(与点B不重合),则∠BPC 的度数为()A.30° B.45° C.60° D.90°【分析】接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.【解答】解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=∠BOC=45°.故选:B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,l1反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,l2反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨 B.等于5吨 C.小于5吨 D.大于5吨【分析】交点(5,5000)表示当销售量为5吨时,销售收入和销售成本相等,要想赢利,收入图象必须在成本图象上方,从图象得出,当x>5时,收入大于成本.【解答】解:由图可得,当0<x<5时,收入小于成本;当x=5时,收入等于成本;当x>5时,收入大于成本.故选:D.【点评】此题为一次函数与不等式的综合应用,搞清楚交点的实际意义和函数图象的相对位置是关键.8.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为AC=2km,BD=3km,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处 B.距C点2km处 C.距C点3km处 D.CD的中点处【分析】作出点A关于江边的对称点E,连接EB交CD于P,则PA+PB=PE+PB=EB.根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.根据△PCE∽△PDB,利用相似三角形的对应边的比等于相似比求解.【解答】解:作出点A关于江边的对称点E,连接EB交CD于P,则PA+PB=PE+PB=EB.根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.根据△PCE∽△PDB,设PC=x,则PD=5﹣x,根据相似三角形的性质,得=,即=,解得x=2.故供水站应建在距C点2千米处.故选:B.【点评】本题考查了相似三角形的应用及最短路线问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.如图是北京3月1日﹣7日的PM2.5浓度(单位:μg/m3)和空气质量指数(简称AQI)的统计图,当AQI不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的PM2.5浓度最高②这七天的PM2.5浓度的平均数是30μg/m3③这七天中有5天的空气质量为“优”④空气质量指数AQI与PM2.5浓度有关其中说法正确的是()A.②④ B.①③④C.①③ D.①④【分析】根据折线统计图,可得答案.【解答】解:由第一个图的纵坐标,得①3月4日的PM2.5浓度最高,故①符合题意;②=34.85μg/m3,故②不符合题意;③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI与PM2.5浓度有关,故④符合题意;故选:D.【点评】本题考查了折线统计图,观察统计图从图中获得有效信息是解题关键.10.如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积是()A.20 B.24 C.48 D.60【分析】根据点P的移动规律,当OP⊥BC时取最小值3,根据矩形的性质求得矩形的长与宽,易得该矩形的面积.【解答】解:如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.故选:C.【点评】本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出BP=CP =4,OP=3.二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围为x≥﹣2 .【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.分解因式:a2b﹣4ab+4b=b(a﹣2)2 .【分析】考查了对一个多项式因式分解的能力.本题属于基础题,当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应先提公因式,再用完全平方公式.【解答】解:a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2【点评】本题考查因式分解的概念,注意必须将式子分解到不能分解为止.完全平方公式:a2±2ab+b2=(a±b)2.13.如图,△ABC是⊙O的内接正三角形,图中阴影部分的面积是12π,则⊙O的半径为 6 .【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,设⊙O的半径为r,∵阴影部分的面积是12π,∴=12π,解得:r=6,故答案为:6.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.14.关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,写出一组满足条件的实数a,c的值:a= 1 ,c= 1 .【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4ac=0,取a=1找出c值即可.【解答】解:∵关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,∴△=22﹣4ac=0,∴ac=1,即当a=1时,c=1.故答案为:1;1.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段a.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为2a.作法:如图,(1)作线段BC=a;(2)作线段BC的垂直平分线DE交BC于点F;(3)在射线FD上顺次截取线段FG=GA=a,连接AB,AC.所以△ABC即为所求作的等腰三角形.请回答:得到△ABC是等腰三角形的依据是:①线段垂直平分线上的点到线段两个端点的距离相等:②有两条边相等的三角形是等腰三角形.【分析】根据垂直平分线的性质和等腰三角形的判定即可得出答案.【解答】解:根据题意知,∵DE垂直平分BC,∴AB=AC,∴△ABC是等腰三角形,其依据是:①线段垂直平分线上的点到线段两个端点的距离相等;②有两条边相等的三角形是等腰三角形,故答案为:线段垂直平分线上的点到线段两个端点的距离相等、有两条边相等的三角形是等腰三角形.【点评】本题主要考查作图﹣复杂作图,熟练掌握垂直平分线的性质和等腰三角形的判定是解题的关键.16.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n 300 700 1000 5000 15000成活的棵数m 280 622 912 4475 135450.933 0.889 0.912 0.895 0.903成活的频率根据表中的数据,估计这种树苗移植成活的概率为0.9 (精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约 5 万棵.【分析】利用表格中数据估算这种幼树移植成活率的概率即可.然后用样本概率估计总体概率即可确定答案.【解答】解:由表格数据可得,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右,故这种幼树移植成活率的概率约为0.9.∵该地区计划成活4.5万棵幼树,∴那么需要移植这种幼树大约4.5÷0.9=5万棵故本题答案为:0.9;5.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:(π﹣)0+6cos45°+﹣|﹣3|.【分析】利用零指数幂、立方根以及特殊角的三角函数值分别化简求出答案.【解答】解:原式=1+6×+2﹣3=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、立方根、绝对值等考点的运算.18.解不等式﹣≥﹣1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:2(2x+1)﹣3(5x﹣1)≥﹣6.去括号,的:4x+2﹣15x+3≥﹣6.移项、合并,得:﹣11x≥﹣11.系数化为1,的:x≤1.不等式的解集在数轴上表示如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.【分析】依据CE⊥AD,BF⊥AD,可得CE∥BF,即可得出∠DBF=∠DCE.根据∠ACE=∠DCE,即可得到∠ACE=∠DBF.【解答】证明:∵CE⊥AD,BF⊥AD,∴∠CED=∠BFD=90°.∴CE∥BF.∴∠DBF=∠DCE.∵CD=CA,CE⊥AD,∴∠ACE=∠DCE.∴∠ACE=∠DBF.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.20.已知x2﹣10xy+25y2=0,且xy≠0,求代数式﹣÷的值.【分析】根据分式的混合运算把原式化为最简分式,由已知条件得到x=5y,代入即可得到结果.【解答】解:原式==,∵x2﹣10xy+25y2=0,∴(x﹣5y)2=0.∴x=5y,∴原式==.【点评】本题考查了分式的化简求值,熟练掌握分式的混合运算的法则是解题的关键.21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?【分析】设用于练习的宣纸的单价是x元∕张,根据等量关系:,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,可得方程,再解方程即可求解.【解答】解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.【点评】本题考查分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.找到关键描述语,分析题意,找到合适的等量关系是解决问题的关键.22.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的长.【分析】(1)由Rt△BAE≌Rt△CDF,推出∠1=∠F,推出BE∥CF,又BE=CF,即可证明四边形EBCF 是平行四边形;(2)Rt△BAE中,∠2=30°,AB=,求出AE.BE,在Rt△BEC中,求出BC,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠CDF=∠ABC=90°,AB=DC,AD=BC,在Rt△BAE和Rt△CDF中,,∴Rt△BAE≌Rt△CDF,∴∠1=∠F,∴BE∥CF,又∵BE=CF,∴四边形EBCF是平行四边形.(2)解:∵Rt△BAE中,∠2=30°,AB=,∴AE=AB•tan∠2=1,,∠3=60°,在Rt△BEC中,,∴AD=BC=4,∴ED=AD﹣AE=4﹣1=3.【点评】本题考查矩形的性质、平行四边形的判定.解直角三角形,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,在平面直角坐标系xOy中,直线y=kx+3(k≠0)与x轴交于点A,与双曲线y=(m ≠0)的一个交点为B(﹣1,4).(1)求直线与双曲线的表达式;(2)过点B作BC⊥x轴于点C,若点P在双曲线y=上,且△PAC的面积为4,求点P的坐标.【分析】(1)将点B(﹣1,4)代入直线和双曲线解析式求出k和m的值即可;(2)根据直线解析式求得点A坐标,由求得点P的纵坐标,继而可得答案.【解答】解:(1)∵直线y=kx+3(k≠0)与双曲线y=(m≠0)都经过点B(﹣1,4),∴﹣k+3=4,m=﹣1×4.∴k=﹣1,m=﹣4.∴直线的表达式为y=﹣x+3,双曲线的表达式为.(2)由题意,得点C的坐标为C(﹣1,0),直线y=﹣x+3与x轴交于点A(3,0).∴AC=4.∵,∴yP=±2.∵点P在双曲线上,∴点P的坐标为P1(﹣2,2)或P2(2,﹣2).【点评】本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.24.绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题:(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如右图,其中喜欢mobike的教师有36人,求喜欢ofo的教师的人数.【分析】(1)根据题意列式计算即可得到结论;(2)根据题意列式计算即可得到结论.【解答】解:(1)3月7日使用“共享单车”的教师人数为:20(1+50%)=30人,补全条形统计图如图所示.(2)36÷45%=80. 80×(1﹣45%﹣15%)=32(人).答:喜欢ofo的教师有32人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,AB为⊙O的直径,弦BC,DE相交于点F,且DE⊥AB于点G,过点C作⊙O的切线交DE 的延长线于点H.(1)求证:HC=HF;(2)若⊙O的半径为5,点F是BC的中点,tan∠HCF=m,写出求线段BC长的思路.【分析】(1)连接OC,想办法想办法证明∠2=∠5即可.(2)思路一:①OF过圆心且点F是BC的中点,由垂径定理可得BC=2CF,∠OFC=90°;②由∠6与∠1互余,∠2与∠1互余可得∠6=∠2,从而可知tan∠6=m;③在Rt△OFC中,由,可设OF=x,CF=mx,由勾股定理,得x2+(mx)2=52,可解得x的值;④由BC=2CF=2mx,可求BC的长.思路二:①由AB是⊙O的直径,可得△ACB是直角三角形,知∠6与∠4互余,又DE⊥AB可知∠3与∠4互余,得∠6=∠3;②由∠6=∠3,∠3=∠2,可得∠6=∠2,从而可知tan∠6=m;③在Rt△ACB中,由,可设AC=x,BC=mx,由勾股定理,得x2+(mx)2=102,可解得x的值;④由BC=mx,可求BC的长.【解答】(1)证明:连接OC,如图1.∵CH是⊙O的切线,∴∠2+∠1=90°,∵DE⊥AB,∴∠3+∠4=90°,∵OB=OC,∴∠1=∠4,∴∠2=∠3,又∵∠5=∠3,∴∠2=∠5,∴HC=HF.(2)求解思路如下:思路一:连接OF,如图2.①OF过圆心且点F是BC的中点,由垂径定理可得BC=2CF,∠OFC=90°;②由∠6与∠1互余,∠2与∠1互余可得∠6=∠2,从而可知tan∠6=m;③在Rt△OFC中,由,可设OF=x,CF=mx,由勾股定理,得x2+(mx)2=52,可解得x的值;④由BC=2CF=2mx,可求BC的长.思路二:连接AC,如图3.①由AB是⊙O的直径,可得△ACB是直角三角形,知∠6与∠4互余,又DE⊥AB可知∠3与∠4互余,得∠6=∠3;②由∠6=∠3,∠3=∠2,可得∠6=∠2,从而可知tan∠6=m;③在Rt△ACB中,由,可设AC=x,BC=mx,由勾股定理,得x2+(mx)2=102,可解得x的值;④由BC=mx,可求BC的长.【点评】本题考查切线的性质、垂径定理、解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.26.已知y是x的函数,如表是y与x的几组对应值.x …﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 4 5 …y … 1.969 1.938 1.875 1.75 1 0 ﹣2 ﹣1.5 0 2.5 …小明根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=﹣1对应的函数值y约为 1.5 ;②该函数的一条性质:当x<2时,y随x的增大而减小.【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)如右图所求;(2)①x=﹣1对应的函数值y约为1.5;②当x<2时,y随x的增大而减小,(答案不唯一);故答案为:1.5,当x<2时,y随x的增大而减小.【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.27.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),对称轴与x轴交于点(3,0),且AB=4.(1)求抛物线C1的表达式及顶点坐标;(2)将抛物线C1平移,得到的新抛物线C2的顶点为(0,﹣1),抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点B.若直线l与图形M有公共点,求。
【精品】2018石景山初三数学一模试题及答案word
数学试卷
考 1.本试卷共 8 页,共三道大题, 28 道小题.满分 100 分,考试时间 120 分钟. 生 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.
须 3.试卷答案一律填涂或书写在答题卡上, 在试卷上作答无效. 在答题卡上, 选
知
择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.
题号
1
2
3
4
5
6
7
8
答案
B
C
D
A
C
C
B
B
二、填空题(本题共 16 分,每小题 2 分)
9. <.
10.八.
11. 5.
12
13. 2.
14. 4 .
15. 40.0.
x y 100,
.x 3y 100.
( 3)在 CD 边上取点 G ,使 CG
( 4)在 DA 边上取点 H ,使 DH
,连接 OF ;
,连接 OG ;
H
D ,连接 OH .
OF GC
由于 AE
+
+
+
.
S S 可证 △AOE S四边形 EOFB S四边形 FOGC =S四边形 GOHD = △HOA.
初三数学试卷第 4 页(共 8 页)
题 5 分;第 24、 25 题,每小题 6 分;第 26、 27 题,每小题 7 分;第 28 题 8 分).
解答应写出文字说明,演算步骤或证明过程.
1 17.计算: 2sin 45° 5 (
3)0
18 .
3
18.解不等式组:
3( x 1) 4 x 5,
x6
北京市石景山区初三数学第二次统一考试及答案
石景山区初三第二次统一练习数学试卷考 生 须 知1.本试卷共6页.全卷共九道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名、报名号和准考证号.4.考试结束后,将试卷和答题纸一并交回.一、选择题(共8个小题,每小题4分,共32分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上. 1. |3|-的相反数是A .3-B .3C .31-D .3±2. 下图中所示的几何体的主视图是3. 明代长城究竟有多长?4月18日,国家文物局和国家测绘局联合发布数据,明长城长度为8.8851千米,比十年前最近的一次调查又增加了2200多千米.8.8851千米用科学记数法可以表示为(保留三个有效数字)A .31085.8⨯米B .61085.8⨯米C .310852.8⨯米D .610852.8⨯米4.若10<<a ,则下列四个不等式中正确的是A .a a 11<< B .11<<a a C .11<<a a D .a a<<11 5. 对于二次函数2(0)y ax bx c a =++≠,我们把使函数值等于0的实数x 叫做这个函数的零点..,则二次函数22y x mx m =-+-(m 为实数)的零点..的个数是 A .1 B .2C .0D .随m 值变化 6.小明外出游玩,带上棕色、蓝色、淡黄色3件上衣和蓝色、白色2条长裤,他任意拿出1件上衣和1条长裤正好是棕色上衣和蓝色长裤的概率是A .21 B .51 C .61 D .91 7. 有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2009a 为 A .2009B .2C .21 D .1-A .B .C .D .8. 如图,在图1所示的正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形的半径为R ,则圆的半径与扇形的半径之间的关系为 A .r R 2= B .r R 49=C .r R 3=D .r R 4=二、填空题(共4个小题,每小题4分,共16分) 9.分解因式:=-2282b a .10.若01|3|=-++-n m m ,则=mn .11.如图,P 为菱形ABCD 的对角线AC 上一点,AB PE ⊥于E ,AD PF ⊥于F ,3=PF ,则PE 的长是 .12.观察下列有序数对:)1,3(-,)21,5(-,)31,7(-,)41,9(-,…,根据你发现的规律,第100个有序数对是 .三、解答题(共5个小题,每小题5分,共25分) 13.计算:2103)2()30(sin )3(81-+︒--+--π.14.解方程:)2(5)2(3+=+x x x .15.反比例函数xky =的图象在第一象限的分支上有一点A (2,3),P 为x 轴正半轴上的一个动点. (1)求反比例函数的解析式;(2)当P 在什么位置时,OPA ∆为直角三角形,求出此时P 点的坐标.16.已知:如图,AB CD ⊥于点D ,AC BE ⊥于点E ,BE 、CD 交于点O ,且AO 平分BAC ∠. 求证:OC OB =.17.先化简,后求值:⋅+-21x x 11124222-÷+--x x x x ,其中02=-x x .F EP D CBA第11题图1图2第8题第16题四、解答题(共2个小题,每小题5分,共10分)18.大楼AD 的高为10米,不远处有一塔BC ,某人在楼底A 处测得塔顶B 处的仰角为︒60,爬到楼顶D 点测得塔顶B 点的仰角为︒30,求塔BC 的高度.19.如图,⊙O 的直径4=AB ,点P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,联结AC .(1)若︒=∠30CPA ,求PC 的长;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M .你认为CMP ∠的大小是否发生变化?若变化,请说明理由;若不变化,求出CMP ∠的大小.五、解答题(本题满分6分)20.某单位欲招聘一名员工,现有A B C ,,三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.表一(1)请将表一和图一中的空缺部分补充完整; (2)竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情 况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数; (3)若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定A B C 笔试 85 95 90口试 80 85 图二B 40%C 25% A 35%10095 908580 75 70 分数/分 图一 竞聘人 A B C 笔试口试 第19题DB 第18题个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功. 六、解答题(共2个小题,第21题6分,第22题3分,共9分)21.汽车在行驶中,由于惯性作用,刹车后,还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.在一个限速40千米/小时以内的弯道上,甲、乙两车相向而行,发现情况不对后同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米.查有关资料知,甲车的刹车距离y (米)与车速x (千米/小时)的关系为y 201.01.0x x +=;乙车的刹车距离s (米)与车速x (千米/小时)的关系如右图所示.请你就两车的速度方面分析这起事故是谁的责任.22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为3、4、5;(3)在图3中以格点为顶点画一个三角形,使三角形三边长分别为2、5、13.七、解答题(本题满分7分)23.如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线c bx ax y ++=2恰经过x 轴上的点A 、B .(1)求点C 的坐标; (2)若抛物线向上平移后恰好经过点D ,求平移后抛 物线的解析式.第21题y xO AB CD第23题第22题图 图1 图2 图3八、解答题(本题满分7分)24.如图,在平面直角坐标系中,O 为坐标原点,AOB ∆为等边三角形,点A 的坐标是(34,0),点B 在第一象限,AC 是OAB ∠的平分线,并且与y 轴交于点E ,点M 为直线AC 上一个动点,把AOM ∆绕点A 顺时针旋转,使边AO 与边AB 重合,得到ABD ∆. (1)求直线OB 的解析式;(2)当M 与点E 重合时,求此时点D 的坐标;(3)是否存在点M ,使OMD ∆的面积等于33, 若存在,求出点M 的坐标; 若不存在,请说明理由.九、解答题(本题满分8分)25.(1)如图1,四边形ABCD 中,CB AB =,︒=∠60ABC ,︒=∠120ADC ,请你 猜想线段DA 、DC 之和与线段BD 的数量关系,并证明你的结论;(2)如图2,四边形ABCD 中,BC AB =,︒=∠60ABC ,若点P 为四边形ABCD 内一点,且︒=∠120APD ,请你猜想线段PA 、PD 、PC 之和与线段BD 的 数量关系,并证明你的结论.图2第25题第24题 C BA 0yxEO 图1石景山区初三第二次统一练习数学参考答案及评分标准阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(共8个小题,每小题4分,共32分)题 号 12345678答 案 A D B A B C C D二、填空题(本题共4道小题,每小题4分,共16分)题 号 91011 12答 案)2)(2(2b a b a -+6-3)1001,201(-三、解答题(共5个小题,每小题5分,共25分) 13.解:原式=2)21(1211+-+-- ……………………………………………4分 =21. ……………………………………………5分 14.解:原方程可化为01032=-+x x , ……………………………………………1分解得21-=x ,352=x . ……………………………………………5分 15.解:(1)将)3,2(A 代入xky =, ……………………………………………1分 得 6=k .所以函数解析式为xy 6=. ……………………………………………2分 (2)当︒=∠90OPA 时,)0,2(P . ……………………………………………3分 当︒=∠90OAP 时,过A 作x AH ⊥轴于H ,由△OAH ∽△APH , ……………………………………………4分得 PHAHAH OH =.即 292322===OH AH PH .所以,213292=+=OP . 此时,点P 的坐标为(213,0). ……………………………………………5分16.证明:∵ AB CD ⊥,AC BE ⊥,∴ OEA ODA ∠=∠. ……………………………………………1分 ∵ OA 平分BAC ∠,∴ CAO BAO ∠=∠.又OA OA =,∴ OAD ∆≌OAE ∆. ……………………………………………2分 ∴ OE OD =. ……………………………………………3分 在OBD ∆和OCE ∆中,OE OD =,OEC ODB ∠=∠,COE BOD ∠=∠, ∴ OBD ∆≌OCE ∆. ……………………………………………4分 ∴ OC OB =. ……………………………………………5分17.解:⋅+-21x x 11124222-÷+--x x x x )1)(1()1()2)(2(212-+⋅--+⋅+-=x x x x x x x 22--=x x . ……………………………………………3分 当02=-x x 时,原式2-=. ……………………………………………5分四、解答题(共2个小题,每小题5分,共10分) 18.解:过点B 作AD BE ⊥交AD 延长线于点E .……………………………………………1分 在Rt △BED 中,由题意︒=∠60BDE . 设x DE =,则x BE 3=. ……………………………………………2分在Rt △BEA 中,由题意︒=∠30BAE . x BE 3=,则x AE 3=. ………………3分∴ 1023==-=-=x x x DE AE AD . ∴ 5=x . ………………4分∴ 15510=+=+=DE AD BC . ………………5分 答:塔BC 的高度为15米.19.解:(1)联结OC ,则PC OC ⊥.DBE 第18题在Rt △OCP 中,221==AB OC ,︒=∠30CPA . ∴ 323==OC PC . ……………………………………………2分(2)CMP ∠的大小不发生变化. ……………………………………………3分MPA A CMP ∠+∠=∠ CPO COP ∠+∠=2121 ︒=︒⨯=459021. …………………5分 五、解答题(本题满分6分) 20.解:(1)90;补充后的图如下:……………………………………………2分 (2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=% ……………………………………………4分 (3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)所以,B 能竞聘成功. ……………………………………………6分 六、解答题(本题共2个小题,第21题6分,第22题3分,共9分) 21.解:因为=y 201.01.0x x +,而=y 12,所以1201.01.02=+x x .解之,得 401-=x ,302=x .……………………………………………2分 舍去40-=x ,得 30=x 40<,所以甲车未超速行驶. ……………………………………………3分100 95 90 85 80 75 70分数/分竞聘人ABC笔试 口试第19题设s kx =,把(60,15)代入,得 k 6015=.解得 41=k .故s x 41=. ……………………………………………4分 由题意知 124110<<x .解得4840<<x . 所以乙车超速行驶. ……………………………………………6分 综上所述,这次事故责任在乙方. 22.解:如图所示,每问1分,共3分.七、解答题(本题满分7分)23.解:(1)联结AC ,在菱形ABCD 中,CD //AB ,DA CD BC AB ===,由抛物线对称性可知BC AC =. ……………………………………………1分 ∴ ACD ABC ∆∆,都是等边三角形. ∴ 260sin =︒==ODAD CD . ……………………………………………2分∴ 点C 的坐标为(2,3). ……………………………………………3分(2)由抛物线2y ax bx c =++的顶点为(2,3),可设抛物线的解析式为3)2(2+-=x a y . 由(1)可得A (1,0),把A (1,0)代入上式, 解得3-=a .……………………………………………5分设平移后抛物线的解析式为k x y +--=2)2(3,把(0,3)代入上式得35=k . ∴ 平移后抛物线的解析式为35)2(32+--=x y .……………………………………………7分即33432++-=x x y .八、解答题(本题满分7分)y xO A B CD第23题图1图2 图3第22题24.解:(1)B (32,6);OB l :x y 3=. ……………………2分(2)如图1,由题意x DA ⊥轴,︒=∠=∠30BAD EAO .此时 823===OA AE DA ,即点D (34,8). ……………………4分(3)如图2、图3,过M 作x MN ⊥轴,设a MN =, 当M 在x 轴上方时,由︒=∠30OAM ,∴ a MA 2=,a NA 3=.=∆OMD S 33234213)2(21)334(21=⋅⋅-⋅++⋅-a a a a a a . 解得3=a . ……………………………………………5分 当M 在x 轴下方时,由︒=∠30NAM ,∴ a MA 2=,a NA 3=.=∆OMD S 33)334(213)2(2123421=⋅+-⋅++⋅⋅a a a a a a . 解得1=a . ……………………………………………6分 ∴ 1M (3,3),2M (35,1-).……………………………………………7分 九、解答题(本题满分8分)25.解:(1)如图1,延长CD 至E ,使DA DE =.可证明EAD ∆是等边三角形. ……………………………………………1分 联结AC ,可证明BAD ∆≌CAE ∆. ……………………………………………2分 故BD CE CD DE CD AD ==+=+.……………………………………………3分A BC DEx yO 图1 E图2E图3图1图2第25题11 / 11 (2)如图2,在四边形ABCD 外侧作正三角形D B A ',可证明C B A '∆≌ADB ∆,得DB C B ='.……………………………………………4分∵ 四边形DP B A '符合(1)中条件,∴ PD AP P B +='. ……………………………………………5分 联结C B ',ⅰ)若满足题中条件的点P 在C B '上,则PC B P C B +'='.∴ PC PD AP C B ++='.∴ PC PD PA BD ++= . ……………………………………………6分 ⅱ)若满足题中条件的点P 不在C B '上,∵ PC B P C B +'<',∴ PC PD AP C B ++<'.∴ PC PD PA BD ++<. ……………………………………………7分 综上,PC PD PA BD ++≤. ……………………………………………8分。
2018年石景山初三数学二模试题及答案
HFE DC BA 石景山区2018年初三统一练习二数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.数轴上的点A 表示的数是a ,当点A 在数轴上向右平移了6个单位长度后得到点B ,若点A 和点B 表示的数恰好互为相反数,则数a 是(A )6 (B )6- (C )3 (D )3- 2.如图,在ABC △中,BC 边上的高是(A )AF (B )BH (C )CD (D )EC第2题图 第3题图 3.如图是某个几何体的侧面展开图,则该几何体是(A )三棱锥 (B )四棱锥 (C )三棱柱 (D )四棱柱 4.任意掷一枚骰子,下列情况出现的可能性比较大的是(A )面朝上的点数是6 (B )面朝上的点数是偶数 (C )面朝上的点数大于2(D )面朝上的点数小于2 5.下列是一组logo 设计的图片,其中不是..中心对称图形的是 (A ) (B ) (C ) (D )6.一个正方形的面积是12,估计它的边长大小在(A)2与3之间(B)3与4之间(C)4与5之间(D)5与6之间7.某商场一名业务员则这组数据的众数和中位数分别是(A)10,8 (B)9.8,9.8 (C)9.8,7.9 (D)9.8,8.1 8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是(A)两人从起跑线同时出发,同时到达终点(B)跑步过程中,两人相遇一次(C)起跑后160秒时,甲、乙两人相距最远(D)乙在跑前300米时,速度最慢二、填空题(本题共16分,每小题2分)9.分解因式:=+-xxx232_________.10.若代数式24+2xx-的值为0,则实数x的值是_________.11.一次函数()0y kx b k=+≠的图象过点()0,2,且y随x的增大而减小,请写出一12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为人,依题意,可13.若222351x y+-=,则代数式22695x y+-的值为.14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(-4,1)、(-1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,-3),则由线段AB得到线段A B''的过程是:,由线段A B''得到线段A B''''15.如图,⊙O的半径为2,切线AB的长为x)点P 是⊙O 上的动点,则AP 的长的取值 范围是__________.16.已知:在四边形ABCD 中,∠ABC =∠ADC =90º, M 、N 分别是CD 和BC 上的点. 求作:点M 、N ,使△AMN 的周长最小. 作法:如图,(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.请回答:这种作法的依据是_____________.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24、25题,每小题5分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程. 17.计算:111()tan 603223-+-︒--.18.解不等式241126x x +--≥,并把它的解集在数轴上表示出来. 19.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:△ADC ∽△DEB .20.已知关于的一元二次方程220x x m ++=.(1)当m 为何非负整数时,方程有两个不相等的实数根; (2)在(1)的条件下,求方程的根.21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE .(1)求证:DEC BEC ∠=∠;(2)若8AB =,10BC =,求CE 的长.x A ''A 'N MD CBA A BCDCA22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.24.如图,在△ABC 中,∠90=C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作EH ⊥AB 于点H ,连接BE .(1)求证:EC EH =;剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图餐余情况剩大量不剩(2)若4BC =,2sin 3A =,求AD 的长. 25.如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.27.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB上,连接AN ,平移△ABN ,使点N 移动到点M ,得到△DEM (点D 与点A 对应,点E 与点B 对应),DM 交AC 于点P . (1)若点N 是线段MB 的中点,如图1.① 依题意补全图1; ① 求DP 的长;(2)若点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,若MQ =DP ,求CE 的长.28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点13,22A ⎛⎫-⎪ ⎪⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”); (2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别图1N MABCNMABC备用图交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方 向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.石景山区2018年初三统一练习二数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)9. 2(1)x x -. 10.2. 11.答案不唯一.如:2y x =-+. 12.(230)600x x +-=. 13.13. 14.向右平移4个单位长度;绕原点顺时针旋转90︒. 15.26AP ≤≤. 16. ①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的 连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24、25题,每小题5分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.解:原式=22+- ………………4分=………………5分 18.解:去分母,得 3(2)(41)6x x +--≥ ………………1分去括号,得 36416x x +-+≥ ………………2分 移项,合并同类项:1x -≥- ………………3分 系数化为1:1x ≤. ………………4分 把解集表示在数轴上:………………5分19. 证明:∵△ABC 是等边三角形,∴60B C ∠=∠=︒, ………… 1分 ∴1160ADB C ∠=∠+∠=∠+︒,………… 2分 ∵60ADE ∠=︒,∴260ADB ∠=∠+︒, ………… 3分 ∴12∠=∠, ………… 4分 ∴△ADC ∽△DEB . ………… 5分 20.解:(1)∵方程有两个不相等的实数根,∴0∆>. …………… 1分 ∴440m ->.即1m <. …………… 2分 又m 为非负整数,∴0m =. …………… 3分 (2)当0m =时,原方程为220x x +=,解得:10x =,22x =-. …………… 5分21.(1)证明:∵DE 是AB 边的垂直平分线,∴DE AB ⊥,4AE EB ==, ………… 1分 ∵45A ∠=︒, ∴DE AE EB ==, 又∵DC CB =,CE CE =, ∴△EDC ≌△EBC .∴45DEC BEC ∠=∠=︒. ………… 2分 (2)解:过点C 作CH AB ⊥于点H , 可得,CH EH =,设EH x =,则4BH x =-, 在Rt △CHB 中, 222CH BH BC +=, ……… 3分即22(4)10x x +-=,解之,13x =,21x =(不合题意,舍),………… 4分 即3EH =.∴232CE EH ==. ………… 5分12–1–20HCDE A22.解:(1)∵一次函数2y x b =-+的图象过点1(,0)2A , ∴0212b =-⨯+. ∴解得,1b =.∴一次函数的表达式为21y x =-+. ………………1分 ∵一次函数的图象与反比例函数(0)y xkk =≠图象交于点(),3a M ,∴321a =-+,解得,1a =-. ………………2分 由反比例函数(0)y xkk =≠图象过点()1,3M -,得3k =-.∴反比例函数的表达式为3y x=-.………………3分(2………………5分 23.解: (1)1000; ………………2分 (2)………………4分(3)50180009001000⨯=. ………………6分 答:估计该校18000名学生一餐浪费的食物可供900人食用一餐. 24.(1)证明:连接OE ∵⊙O 与边AC 相切 ∴OE ⊥AC ∵∠90=C∴OE ∥BC . ……………………..1分 ∴OEB CBE ∠=∠ ∵OB OE =,餐余情况剩大量不剩∴OEB OBE ∠=∠ ∴OBE CBE ∠=∠ ∵EH ⊥AB∴EH EC =. …………………………..2分 (2)解:在Rt △ABC 中,4BC =,2sin 3BC A AB ==, ∴6AB =. ………………………………..3分 ∵OE ∥BC∴OE AO BC AB =,即4OE = 解得,125OB = ………………………………..4分∴2465AD AB BD =-=-=分 25.解:(1)2.7 ………………………… 1分(2)……………………… 4分(3)6.8 ……………………… 5分26.解:(1)∵抛物线240y ax x c a =++≠()经过点34(,)A -和02(,)B , 可得:91242a c c ⎧++=-⎨=⎩解得:22a c ⎧=-⎨=⎩∴抛物线的表达式为2242y x x =-++. ……………………… 2分 ∴顶点坐标为()14,. ……………………… 3分(2)设点02(,)B 关于3x =的对称点为B’, 则点B’()62,. 若直线y kx b =+经过点()94,C 和()62B ',,可得2b =-. 若直线ykx b =+经过点()94,C 和()34,A -,可得8b =-.直线y kx b =+平行x 轴时,4b =.综上,824b b -<<-=或. ……………………… 7分27.解:(1)①如图1,补全图形. ………………… 1分② 连接AD ,如图2.在Rt △ABN 中,∵∠B =90°,AB =4,BN =1, ∴17=AN .∵线段AN 平移得到线段DM , ∴DM =AN =17, AD =NM =1,AD ∥MC , ∴△ADP ∽△CMP . ∴21==MC AD MP DP . ∴317=DP .………………… 3分 图1yx–1123456789–1–2–3–4–512345CB'ABO(2)连接NQ ,如图3.由平移知:AN ∥DM ,且AN =DM . ∵MQ DP =, ∴PQ DM =.∴AN ∥PQ ,且AN =PQ . ∴四边形ANQP 是平行四边形. ∴NQ ∥AP .∴45BQN BAC ∠=∠=︒. 又∵90NBQ ABC ∠=∠=︒, ∴BN BQ =. ∵AN ∥MQ ,∴AB NBBQ BM=. 又∵M 是BC 的中点,且4AB BC ==, ∴42NBNB =. ∴22NB =(舍负). ∴22ME BN ==.∴222CE =-.………………… 7分 (2)法二,连接AD ,如图4. 设CE 长为x ,∵线段AB 移动到得到线段DE , ∴4+==x BE AD ,AD ∥BM . ∴△ADP ∽△CMP . ∴24xMC AD MP DP +==. ∵MQ =DP , ∴x xMP DP DP QD MQ 21042++=+=. ∵△QBM ∽△QAD , ∴xAD BM QD MQ +==42. 解得222-=x .∴222-=CE . ………………… 7分图3PNQDEMA C BPNQDEMA C B图428.解:(1)上;外; ………………… 2分 (2)连接PH ,如图1,∵点P 的“伴随圆”与直线x y 33=相切, ∴PH OH ⊥.∴1PH =,30POH ∠=︒, 可得,2OP =,∴点P )(0,2或)(0,2-; …………………… 6分 (3)1624π-+.(可参考图2) …………………… 8分yx–1–2–3123–1–212H'P'HPO图1y xHGFE–1–2–312345–1–2–3–4123ADBCO图2。
石景山区2018年初三统一练习暨毕业考试数学试卷.doc
绵阳市总工会“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出节目、舞美服务竞争性谈判邀请书绵阳市总工会将于7月-12月底,开展“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出活动,现面向市场公开对活动节目以及舞美物料搭建采购两家供应商,欢迎符合条件和要求的单位报名参与,具体事项如下:一、项目概况1.名称:“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出活动2.地点:县区、重点工程、重点企业、社区3.场次:加省总工会送文化慰问演出共4场。
4.时间:7月—12月底二、采购项目名称和标的1.项目一名称和标的:“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出节目采购(共3场,15万元以内)。
2.项目二名称和标的:“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出舞美搭建和物料采购(共4场,8万元以内)。
二、采购需求(一)项目一采购要求“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出节目采购,活动全长时间约90分钟以内左右。
文艺演出10个节目,每个节目时长5分钟左右。
具体为:1.总编导和开场节目(全场10个节目的创编、指导、音乐创作,以及相应的演员、服装、道具、化妆、演出等)。
2.节目形式(节目包含不限于歌舞、小品、影子舞、音舞诗画、音舞快板等艺术形式)。
3.节目创作编排(节目主题鲜明,应围绕迎接建国70周年,弘扬劳模精神、工匠精神和劳动精神,反映广大职工爱国、爱岗、爱家和积极投身中国科技城和西部现代化强市建设等主题。
)。
4.主持人(具备专业水准的主持人不少于2人,需提供主持人资料)。
5.撰稿(专业创作人员撰写包含活动串词、主持词等在内的文稿)。
6.活动审查、彩排(所有节目需制定审查、彩排计划)。
(二)项目二采购要求中标方需在规定时间内完成市总工会要求的“中国梦劳动美”2019年绵阳市总工会送文化到基层慰问演出舞台搭建和物料采购,具体包含:1.舞美设计舞美设计制作,要具有综合性文艺演出的设计感与布局,美观、亮丽、大方,主背景约12.8*5.4米,耳幕约3.4米*4.4米*1.9米*2个,高清喷绘背景布(供应商须提供舞美的设计创意方案图)。
石景山区2018届初三期末数学试题及答案
石景山区2017-2018学年度第一学期初三期末试卷数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如果y x 43=(0≠y ),那么下列比例式中正确的是 (A )43=y x (B )yx 43= (C )43y x = (D )34y x = 2.在Rt △ABC 中,︒=∠90C ,5=AB ,2=AC ,则tan A 的值为 (A )21 (B )2(C )25 (D )552 3.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则BOD ∠的度数为 (A )︒100(B )︒120(C )︒130(D )︒1504.如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O 的半径为4,则弦AB 的长为(A )32 (B )34 (C )52 (D )54第3题 第4题5.如果在二次函数的表达式c bx ax y ++=2中,0>a ,0<b ,0<c ,那么这个二次 函数的图象可能是(A ) (B ) (C ) (D ) 6.若二次函数m x x y ++=22的图象与坐标轴有3个交点,则m 的取值范围是 (A )1>m(B )1<m(C )1>m 且0≠m (D )1<m 且0≠m7.如图,将函数()12312+-=x y 的图象沿y 轴向上平移得 到新函数图象,其中原函数图象上的两点),1(m A 、),4(n B 平移后对应新函数图象上的点分别为点'A 、'B .若阴影部分的面积为6,则新函数的表达式为 (A )()22312+-=x y (B )()32312+-=x y (C )()12312--=x y (D )()32312--=x y 8.如图,点M 为□ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与□ABCD 的另一边 交于点N .当点M 从A →B 匀速运动时,设点M 的 运动时间为t ,△AMN 的面积为S ,能大致反 映S 与t 函数关系的图象是(A ) (B ) (C ) (D )l N MD CBA第7题第8题二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为3:2,那么这两个相似三角形的面积比为______. 10.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上.若∠ADE =∠C ,AB =6,AC =4,AD =2,则EC =________.11.如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 的三等分点,则图中所有阴影部分的面积之和是________cm 2.12. “平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC 的坡度达到2.1:1,那么立柱AC 的长为_______米.13.如图,一次函数b kx y +=1的图象与反比例函数()02<=x xmy 的图象相交于点A 和点B .当021>>yy 时,x 的取值范围是_______.14.如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC =________.15.如图,在平面直角坐标系xOy 中,△ABC 经过若干次图形的变化(平移、轴对称、 旋转)得到△DEF ,写出一种由△ABC 得到△第13题 第14题 DBACE DCBA 第10题 第11题第12题16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三 个三角形,栽种三种不同的花草. 下面是小美的设计(如图2). 作法:(1)作射线BM ; (2)在射线BM 上顺次截取BB 1=B 1B 2=B 2B 3; (3)连接B 3C ,分别过B 1、B 2作B 1C 1∥B 2C 2∥B 3C , 交BC 于点C 1、C 2; (4)连接AC 1、AC 2. 则C AC C AC ABC S S S 2211∆∆∆==.请回答,C AC C AC ABC S S S 2211∆∆∆==成立的理由是:① ; ② . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26题7分,第27题7分,第28题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:︒-︒+︒-︒60sin 260cos 145cos 30tan 32.18.用配方法求二次函数3102+-=x x y 的顶点坐标.19.在Rt △ABC 中,︒=∠90C ,A ∠、B ∠、C ∠的对边分别为a 、b 、c .若2=a ,sin 31=A ,求b 和c .图2B 3B 1B 2MC 2C 1ABC图1CBA20.小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两 人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果; (2)这个游戏公平吗?请说明理由.21.如图,小明想测量山的高度.他在点B 处仰望山顶A ,测得仰角︒=∠30ABN ,再向山的方向(水平方向)行进100m 至索道口点C 处,在点C 处仰望山顶A ,测得仰角︒=∠45ACN .求这座山的高度.(结果精确到0.1m ,小明的身高忽略不计)(参考数据:41.12≈,73.13≈)22.在平面直角坐标系xOy 中,一次函数b x y +=的图象与x 轴交于点)0,2(A ,与反比例函数xky =的图象交于点),3(n B . (1)求一次函数与反比例函数的表达式;(2)若点P 为x 轴上的点,且△P AB 的面积是2,则点P 的坐标是 .NMC A23.如图,四边形ABCD 是平行四边形,CE ⊥AD 于点E ,DF ⊥BA 交BA 的延长线于点F .(1)求证:△ADF ∽△DCE ;(2)当AF =2,AD =6,且点E 恰为AD 中点时,求AB 的长.24.二次函数m mx x y 522+-=的图象经过点)2,1(-. (1)求二次函数图象的对称轴; (2)当14≤≤-x 时,求y 的取值范围.25.如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ; (2)连接BF ,若AD 532=,AF =6,tan 34=∠AED ,求BF 的长.FE DCB ACA26.在平面直角坐标系xOy 中,抛物线n mx x y ++-=2经过点)0,1(-A 和)3,0(B . (1)求抛物线的表达式;(2)抛物线与x 轴的正半轴交于点C ,连接BC .设抛物线的顶点P 关于直线t y =的对称点为点Q ,若点Q 落在△OBC 的内部,求t 的取值范围.27.在正方形ABCD 中,点P 在射线AC 上,作点P 关于直线CD 的对称点Q ,作射线BQ 交射线DC 于点E ,连接BP . (1)当点P 在线段AC 上时,如图1. ①依题意补全图1;②若EQ =BP ,则∠PBE 的度数为 ,并证明;(2)当点P 在线段AC 的延长线上时,如图2.若EQ =BP ,正方形ABCD 的边长为1,请写出求BE 长的思路.(可以不写出计算结果)图2图128.在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式; (3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.。
2018石景山区初三数学二模试卷及答案
石景山区2018年初三第二次统一练习数 学 试 卷考 生 须 知1.本试卷共10页.第10页为草稿纸,全卷共五道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回.第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2018年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒4.北京市2001-2019年星级饭店客房出租率(%)的情况如下表: 年份 2001 2002 2018 2018 2018 2018 2018 2018 2018 2018 出租率 62 62 52 65 62 61 60 52 4956 表中出租率(%)的中位数和众数分别为( )A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31B .32 C .61 D .41 第3题图 爱国创新爱国 包容爱国厚德爱国爱国创新爱国6.若一个多边形的内角和是900°,则这个多边形的边数是( ) A .5 B .6 C .7 D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( ) A .向右平移2个单位,向上平移一个单位 B .向右平移2个单位,向下平移一个单位 C .向左平移2个单位,向下平移一个单位 D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________.11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2018次电子跳蚤能跳到的圆圈内所标的数字为 .第8题图第11题图111210987654321第12题图三、解答题(本题共30分,每小题5分) 13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx . 解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-,与x 轴、y 轴分别交于 A 、 B 两点. (1)求此一次函数的解析式; (2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:y x O 321FEABC D18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数;(2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高?解:20.以下是根据全国 2018年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2018年早稻的产量为 万吨;(4)2018-2019这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2018年的粮食产量为多少万吨.(结果保留到整数位) 解:A BD E C B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MP 的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:DCBAM C OD P BA 图⑴ 图⑵ 图⑶(C )OCBAO'OCB A五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上. (1) 当a =1时,求反比例函数xky =的解析式; (2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.解:A B C D E AE B C D图1 图 2 y x O 备用图25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:yOx备用图石景山区2018初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)题 号 12345678答 案B A D D A C C B二、填空题(本题共4道小题,每小题4分,共16分) 9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分=322+…………………………………………………5分14. 123482---=-xxx 解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB E C DAE BAC …………………………… 3分 ∴△ABC ≌△ADE ……………………………………………………… 4分 ∴BC=DE . ……………………………………………………… 5分16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线3y x =-平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分 (2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分 (2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2018;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分 在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分∴)25,1(P , ∴)25,1(-'P ,代入xk y = 得25-=k , ∴xy 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'P 'Pxy ODC BAO 'DCBA∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(b D -, ∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F7654321AEBCG D∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD ∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t , 舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分87654321E D CBAGF图(2)。
石景山区2018年初三统一练习暨毕业考试数学试卷.doc
石景山区2018年初三统一练习暨毕业考试数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =2.实数a ,b 在数轴上的位置如图所示,以下说法正确的是12–1–2abA .0a b +=B .b a <C .b a <D .0ab > 34.下列博物院的标识中不是..轴对称图形的是5.如图,AD ∥BC ,AC 平分∠BAD ,若∠B =40°, 则∠C 的度数是A .40°B .65°C .70°D .80°A B C D6.如图,在平面直角坐标系xOy 中,点C ,B ,E 在y 轴上, Rt △ABC 经过变化得到Rt △EDO ,若点B 的坐标为(01),, OD =2,则这种变化可以是A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度 C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是 A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响 很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:① 当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822; ② 随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定 性,可以估计该球员“罚球命中”的概率是0.812;③ 由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809. 其中合理的是 A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.对于函数6y x=,若2x >,则y 3(填“>”或“<”). 10.若正多边形的一个外角是45°,则该正多边形的边数是_______. 11.如果5x y +=,那么代数式221+y x x yx y ÷--()的值是_______.12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马 有x 匹,大马有y 匹,依题意,可列方程组为____________. 13.如图,AB 是⊙O的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .14. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =,3DE =,则BC = .15.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为____________m .(精确到0.1m ,sin 630.89≈°,cos630.45≈°,tan 63 1.96≈°)第13题图 第14题图B16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角 板画出了一个角的平分线,他的做法是这样的:如图, (1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =;(2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 .三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.计算:012sin 455(3---++°18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题. 如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ;O HFE B A(3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH . 由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .20.关于x 的一元二次方程2(32)60mx m x +--=. (1)当m 为何值时,方程有两个不相等的实数根; (2)当m 为何整数时,此方程的两个根都为负整数.21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD ⊥于点E .(1)求证:AE CE =; (2)若tan 3D =,求AB 的长.22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -. (1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥, 求m 的取值范围.23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是D 是OC 中点,15CBE ∠=°,求线段EF 的长.24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验, 他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.25.如图,半圆O的直径5cmAB=,点M在AB上且1cmAM=,点P是半圆O上的动点,过点B作BQ PM⊥交PM(或PM的延长线)于点Q.设cmPM x=,cmBQ y=.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;B(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm . 26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠)向右平移个单位长度后得到抛物线2G ,点A 是抛物线2G 的顶点. (1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.石景山区2018年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共16分,每小题2分)9.<. 10.八. 11.5. 12.100,3100.3x y x y +=+=⎧⎪⎨⎪⎩13. 2. 14.4. 15. 40.0.16.(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.图1三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每 小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程. 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分20.解:(1)∵24b ac ∆=- 2(32)24m m =-+ 2(32)0m =+≥∴当0m ≠且23m ≠-时,方程有两个不相等实数根. …………… 3分(2)解方程,得: 12x m=,23x =-. …………… 4分 ∵m 为整数,且方程的两个根均为负整数, ∴1m =-或2m =-.∴1m =-或2m =-时, 此方程的两个根都为负整数. …………… 5分 21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠.①②又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴CD ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分 22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1.可得211(2)(2)1642m m -+-⨯=, 解得2m =-,8m =(舍).②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分 23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF==-………………5分24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.………………6分(答案不唯一,理由须支撑推断结论)25.解:(1)4; 0. ………………2分(2)………………4分(3)1.1或3.7.………………6分26.解:(1)A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x=-+,如图所示,由题意可得AD==∵=90BAC∠°,AB AC=,∴=45ABD∠︒.∴BD AD==∴点B的坐标为.∵点B 在抛物线2G 上,可得3m =-.∴抛物线2G的表达式为23y x =+,即223y x x =-++ ………………… 5分②m <<-. ………………… 7分 27.(1)补全图形如图1. ………………… 1分(2)①证明:连接∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ………………… 3分 ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=, 又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ………………… 5分 ②BP AB =. ………………… 7分28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =,∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分。
最新整理石景山区二模初三数模拟试卷及答案.doc
北京市石景山区 初三第二次统一练习数 学 试 卷第Ⅰ卷(机读卷 共32分)一、选择题(共8个小题,每小题4分,共32分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求涂抹在“机读答题卡”第1—8题的相应位置上.1.一个数的倒数是-2,则这个数是 ( )A .-2 B. 21-C. 2D.21 2.下列计算正确的是 ( ) A .a 2·a 3=a 5 B .(a 2)3=a 5 C .a 10÷a 2=a 5 D .2a 5-a 5=23.1天24小时共有86400秒,用科学记数法可表示为(保留两个有效数字)( )A .4106.8⨯秒 B .4107.8⨯秒 C . 3106.8⨯秒 D .3107.8⨯秒 4. 从甲、乙、丙三人中选两名代表,甲被选中的概率为 ( )A .21 B.31 C.32D.15.在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是 ) A .先向下移动1格,再向左移动1格 B .先向下移动1格,再向左移动2格 C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格6.某青年篮球队12名队员的年龄情况如下表:( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是19岁 C .众数是19岁,中位数是20.5岁 D .众数是19岁,中位数是20岁7.如图,一个圆柱形笔筒,量得笔筒的高是20cm ,底面圆的半径为5cm ,那么笔筒的侧面积为 ( ) A.200cm 2B.100πcm 2C.200πcm 2D.500πcm28.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形.设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为 ( )第Ⅱ卷(非机读卷 共88分)二、填空题(共4个小题,每小题4分,共16分,把正确答案填写在横线上) 9.分解因式:x x 93=______________________.10.若关于x 的方程x 2+5x+k=0有实数根,则k 的取值范围是 ________________.11.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm ,则此光盘的直径是_____cm.12.定义:平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(),p q 是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是___________. 三、解答题(共5个小题,每小题5分,共25分) 13.计算:|2|)215(60cos 201-+--︒+- 解:14.解方程组:⎩⎨⎧=-=+1272y x y x 15.化简:x x x x 4)2121(2-⋅+-- 解: 解:16.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,求证:EF DF =.证明:17.三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯炮的位置,再作出甲的影子.(不写作法,保留作图痕迹,指明结果)A BC D四、解答题(共2个小题,每小题5分,共10分)18. 如图,在ΔABC 中,∠C=90°,点D 在BC 上,BD=4,AD=BC ,cos ∠ADC=53. (1)求DC 的长; (2)求sinB 的值. 解:(1)(2)19.如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA 、PB 分别相切于点A 、B ,不倒翁的鼻尖正好是圆心O.(1)若∠OAB=25°,求∠APB 的度数;(2)若∠OAB=n °,请直接写出∠APB 的度数. 解:(1)(2)若∠OAB=n °,则∠APB= 度.五、解答题(本题满分5分)20.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;A(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:.频率六、解答题(共2个小题,每小题5分,共10分)21.个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元而不高于4000元,缴纳超过800元部分稿费的14%;(3)稿费超过4000元的,缴纳全部稿费的11%.张老师得到一笔稿费,缴纳个人所得税420元,问张老师的这笔稿费是多少元?解:22.现有一张长和宽之比为2∶1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作).图甲图乙图①图②图③七、解答题(本题满分6分)23.如图,Rt△ABC中,∠C=90°,∠B的平分线交AC于E,DE⊥BE.(1)试说明AC是△BED外接圆的切线;(2)若CE=1,BC=2,求△ABC内切圆的面积.(2)24.研究发现,二次函数2ax y =(0≠a )图象上任何一点到定点(0,a41)和到定直线a y 41-=的距离相等.我们把定点(0,a 41)叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.(1)写出函数241x y =图象的焦点坐标和准线方程; (2)等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点,求等边三角形的边长; (3)M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P (1,3) 为定点,求MP+MF 的最小值.解:(1)焦点坐标:准线方程: (2)(3)25.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板ABC 和DEF 叠放在一起,使三角形板DEF 的顶点D 与三角形板ABC 的AC 边中点O 重合,把三角形板ABC 固定不动,让三角形板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点M ,射线DF 与线段BC 相交于点N .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证△ADM ∽△ D .此 时,AM · = .(2)将三角形板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中090α<<,问AM · 的值是否改变?说明你的理由.(3)在(2)的条件下,设AM= x ,两块三角形板重叠面积为y ,求y 与x 的函数关系式.(图2,图3供解题用)P图2图3图1AB MND(O)EFABCMND(O)EFFED(O)MCB(N)A解:(2)(3)北京市石景山区 初三第二次统一练习数学试卷参考答案及评分标准第Ⅰ卷(机读卷 共32分)一、选择题(共8个小题,每小题4分,共32分)第Ⅱ卷(非机读卷 共88分)二、填空题(共4个小题,每小题4分,共16分)13.解:|2|)215(60cos 21-+--︒+- =212121+-+ ………………………………………4分=2. ………………………………………5分14.解方程组:)2()1(1272⎩⎨⎧=-=+y x y x解:由方程(2),得12+=y x (3) ………………………………………1分把(3)代入(1),得7)12(2=++y y ,解得1=y ; …………………………3分把1=y 代入(3),得3=x . ………………………………………4分所以,原方程组的解是⎩⎨⎧==.1,3y x ………………………………………5分15.解: xx x x 4)2121(2-⋅+-- =xx x x x x x x x )2)(2(])2)(2(2)2)(2(2[-+⋅-+--+-+ …………………………3分=xx x x x )2)(2()2)(2(4-+⋅-+=x4. …………………………………………………………5分 16.证明: ∆∆A ABC EC 和关于折痕AC 对称,A B C ∆∴≌AEC ∆. …………………………………………………………1分 ∴=∠=∠AE AB B E ,.在矩形ABCD 中,,90︒=∠=∠=D B CD AB ,.90︒=∠=∠=∴D E CD AE , ……3分在∆∆AEF CDF 和中,⎪⎩⎪⎨⎧=∠=∠∠=∠CD AE CFD AFE DE A EF ∆∴≌CDF ∆. …………………………………………………………4分DF EF =∴. …………………………………………………………5分17. 画图3分,指出结果各1分.路灯灯泡位置在点M 处,甲的影子是QN . 四、解答题(共2个小题,每小题5分,共10分)18. 解:(1)在直角三角形ADC 中,∠C=90°,设DC=3k ,由cos ∠ADC=53,可知AD=5k ,AC=4k.又AD=BC=BD+DC ,所以 5k=4+3k ,解得k=2.……………………2分 故DC=3k=6. ………………………………3分(2)由(1)可知AC=4k=8.在直角三角形ABC 中,AB=22AC BC +=22810+=412.……4分 所以,sinB=4144128==AB AC =41414. ……5分19.解:(1)∵ PA 、PB 切⊙O 于A 、B ,A∴PA=PB. ………………………………………………1分∴OA⊥PA. ……………………………………………2分∵∠OAB=25°,∴∠PAB=65°. ………………………3分∴∠APB=180°-65°×2=50°. ………………………4分(2)2n. …………………………5分五、解答题(本题满分5分)20.(1)答案如下表;………………………2分(2)答案如下图;………………………4分(3)80.5~90.5. ………………………5分六、解答题(共2个小题,每小题5分,共10分)21.解:∵ 4000×11%=440>420,∴张老师的这笔稿费不超过4000元. ………………………1分设张老师的这笔稿费为x元,根据题意,得(x-800)×14%=420.………………………3分解得x=3800.………………………4分答:张老师的这笔稿费为3800元.………………………5分22. 画出一种情况得2分,两种情况得4分,三种情况得5分.七、解答题(本题满分6分)23.解:(1)取BD的中点O,联结OE.∵ OE=OB,∴∠OBE=∠OEB. 又∠0BE=∠CBE,∴∠CBE=∠OEB. ∴ BC∥OE.………………1分∴∠OEA=∠C=90°. ∴ AC⊥OE.∴ AC是△BED外接圆的切线.…………………2分(2)Rt △BCE 中,∵ ∠OBE=∠OEB ,∠C=∠BED=90°, ∴ △BCE ∽△BED. ∴21==BC CE BE DE . ………………………3分 ∴ DE=2521=BE ,∴ BD=2522=+DE BE . ∴ OE=OB=OD=54∵ BC ∥OE, ∴58AE AO OE AC AB BE ===. ∴ AE=53,AO=2512. …………………………………………………4分∴ △ABC 的内切圆半径为r=12(BC+AC-AB )=43. ………………………5分∴ △ABC 的内切圆面积为169π. ………………………………………………6分八、解答题(本题满分8分) 24.解:(1)焦点坐标为(0,1), ………………………………………………1分准线方程是1-=y ; ………………………………………………2分(2)设等边ΔOAB 的边长为x ,则AD=x 21,OD=x 23. 故A 点的坐标为(x 21,x 23). …………3分 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x (舍去),或38=x . …………………………………………4分 ∴ 等边三角形的边长为38. ………………………………………………5分 (3)如图,过M 作准线1-=y 的垂线,垂足为N ,则MN=MF. ………………………6分过P 作准线1-=y 的垂线PQ ,垂足为Q ,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. ……………………………8分九、解答题(本题满分8分) 25.解:(1)4 …………………………1分 (2)AM · 的值不会改变. ………2分 理由如下:在△ADM 与△ D 中,∠A=∠C=60° ∠DNC=∠DBN+∠BDN=30°+α. ∠ADM=30°+α. 即∠ADM=∠ D.∴ △ADM ∽△ D.∴CDAMCN AD =. ∴ AM · =AD ·CD=4. ………………………………4分 (3)情形1:当0°<α<60°时,1<AM<4,即1<x<4,此时两三角形板重叠部分为四边形DMBN ,过D 作DQ ⊥AB 于Q ,DG ⊥BC 于G , ∴ DQ=DG=3.由(2)知:AM · =4得 =x4, 于是y=DQ CN DQ AM AB ⋅-⋅-2121432 xx 322334--=(1<x<4). ……………………………………6分 (或xx x y 2343832-+-=)情形2:当60°≤α<90°时,AM ≥4时,即x ≥4,此时两三角形板重叠部分为△DPN , 如图3,过点D 作DH ∥BC 交AM 于H ,易证:△MBP ∽△MHD , ∴MHMBDH BP =. 又MB=x-4,MH= x-2,DH=2, ∴ BP=282--x x , ∴ 28244----=x x x PN .于是)4(3223)28244(32121≥--=----⋅⋅=⋅=x xx x x x x DG PN y . ……7分 GQ 图2A BC M ND(O)F EH G P图3AB CMN D(O)EF(或)2(343232-+-=x x x x y )综上所述,当1<x<4时,y x x 322334--=(或x x x y 2343832-+-=) 当x ≥4时,x x x y 3223--=(或)2(343232-+-=x x x x y ). ……8分注:若有其他解法,请参照评分标准酌情给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H
F
E D
C B
A 石景山区2018年初三统一练习二
数学试卷
一、选择题(本题共16分,每小题2分)
下面各题均有四个选项,符合题意的选项只有..
一个. 1.数轴上的点A 表示的数是a ,当点A 在数轴上向右平移了6个单位长度后得到点B ,若点A 和点B 表示的数恰好互为相反数,则数a 是
(A )6 (B )6- (C )3 (D )3- 2.如图,在ABC △中,BC 边上的高是
(A )AF (B )BH (C )CD (D )EC
第2题图 第3题图 3.如图是某个几何体的侧面展开图,则该几何体是
(A )三棱锥 (B )四棱锥 (C )三棱柱 (D )四棱柱 4.任意掷一枚骰子,下列情况出现的可能性比较大的是
(A )面朝上的点数是6 (B )面朝上的点数是偶数 (C )面朝上的点数大于2
(D )面朝上的点数小于2 5.下列是一组logo 设计的图片,其中不.是.
中心对称图形的是 (A ) (B ) (C ) (D )
6.一个正方形的面积是12,估计它的边长大小在
(A ) 2与3之间 (B )3与4之间 (C ) 4与5之间 (D )5与6之间 7
.某商场一名业务员则这组数据的众数和中位数分别是
(A )
10,8 (B )9.8,9.8 (C )9.8,7.9 (D )9.8,8.1 8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD .则下列说法正确的是
(A )两人从起跑线同时出发,同时到达终点 (B )跑步过程中,两人相遇一次
(C )起跑后160秒时,甲、乙两人相距最远 (D )乙在跑前300米时,速度最慢 二、 填空题(本题共16分,每小题2分) 9. 分解因式:=+-x x x 2
3
2_________.
10.若代数式24+2
x x -的值为0,则实数x 的值是_________.
11.一次函数()0y kx b k =+≠的图象过点()0,2,且y 随x 的增大而减小,请写出一
12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物
园的人数比到植物园人数的2倍少30人,若设到植物园的人数为人,依题意,可列方程为 .
13.若2
2
2351x y +-=,则代数式2
2
695x y +-的值为 . 14.如图,在平面直角坐标系xOy 中,点A 、B 的坐
标分别为(-4,1)、(-1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A ''、B ''的坐标分别为(1,0)、(3,-3),则由线段AB 得到线段A B ''的过程是: ,由线段A B '
'得到线段A B ''''
x )
P
A
B
O
15.如图,⊙O 的半径为2,切线AB 的长为23,
点P 是⊙O 上的动点,则AP 的长的取值 范围是__________.
16.已知:在四边形ABCD 中,∠ABC =∠ADC =90º, M 、N 分别是CD 和BC 上的点. 求作:点M 、N ,使△AMN 的周长最小. 作法:如图,
(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.
请回答:这种作法的依据是_____________.
三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24、25题,每
小题5分;第26、27题,每小题7分;第28题8分).解答应写出文字说明,演算步骤或证明过程. 17.计算:111
()tan 603223
-+-︒--.
18.解不等式
241
126
x x +--≥,并把它的解集在数轴上表示出来.
19.如图,在等边三角形ABC 中,点D ,E 分别在BC ,
AB 上,且60ADE ∠=︒. 求证:△ADC ∽△DEB .
A ''
A '
N M
D C
B
A A B
C
D
20.已知关于的一元二次方程2
20x x m ++=.
(1)当m 为何非负整数时,方程有两个不相等的实数根; (2)在(1)的条件下,求方程的根.
21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,
DE 是AB 边的垂直平分线,连接CE .
(1)求证:DEC BEC ∠=∠;
(2)若8AB =
,BC =CE 的长.
22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1
(,0)2
A ,
B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;
(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接
写出m 的值 .
23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光
盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
x
A
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50
人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.
24.如图,在△ABC 中,∠
90=C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作EH ⊥AB 于点H ,连接BE . (1)求证:EC EH =; (2)若4BC =,2
sin 3
A =,求AD 的长.
剩大量
60%
不剩剩少量
剩一半部分同学用餐剩余情况统计图
餐余情况
剩大量不剩
25.如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动
点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.
小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:
(说明:补全表格时相关数据保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函
数的图象;
(3)结合画出的函数图象,解决问题:
点E 是BC 边的中点时,PA 的长度约为 cm .
26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()
34,A -和 ()02,B .
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线
3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象
N 都相交,且只有两个交点,求b 的取值范围.
27.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB
上,连接AN ,平移△ABN ,使点N 移动到点M ,得到△DEM (点D 与点A 对应,点E 与点B 对应),DM 交AC 于点P . (1)若点N 是线段MB 的中点,如图1.
① 依题意补全图1; ① 求DP 的长;
(2)若点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,若MQ =DP ,求
CE 的长.
图1
N M
A
B
C
N M
A
B C
备用图
28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称
⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,
①点1,2A ⎛
⎝⎭
在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”); (2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 3
3
=
相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别
交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方 向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.。