【配套K12】春中考数学总复习第三单元函数第13讲二次函数的综合应用试题

合集下载

中考数学 二次函数综合试题附详细答案

中考数学 二次函数综合试题附详细答案

中考数学 二次函数综合试题附详细答案一、二次函数1.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则033k mm==+⎧⎨-⎩,∴13 km⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-621+62∵点P在第三象限.∴P2(6-52).综上所述:满足条件为P1(2-2),P2(6-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2.∴P (1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y=>,所以可以通过(3)令8y=,即212486x x-++=,可得212240x x-+=,解得12623,623x x=+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.5.如图,抛物线212222y x x=-++与x轴相交于A B,两点,(点A在B点左侧)与y轴交于点C.(Ⅰ)求A B,两点坐标.(Ⅱ)连结AC,若点P在第一象限的抛物线上,P的横坐标为t,四边形ABPC的面积为S.试用含t的式子表示S,并求t为何值时,S最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(A B ;(Ⅱ)2(2S t t =--+<<,当t =时,S =最大;(Ⅲ)满足条件的点m n 、的值为:34m n ==,或154m n ==-,或14m n == 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线21222y x x =-++,令0y =,则212022x x -++=,解得:x =x =∴((,A B(Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴212,,22p t PQ p BQ t OQ t =-++===,∴()()11122222AOC PQB OCPQ S S S S p t t p =++=++⨯+⨯⨯V V 梯形 1122t pt pt t =++-=++21222t t ⎫=-+++⎪⎪⎭2t t =+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线212222y x x =-++的对称轴为22x =, ∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A ,①当AP 和HG 为对角线时, ∴()2112111222,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭, ∴234m n ==, ②当AG 和PH 是对角线时, ∴(()2112112122,20222222m m n ⎛⎫=-++=+ ⎪ ⎪⎭⎝⎭, ∴215,24m n ==-, ③AH 和PG 为对角线时, ∴(()2121112122,22022222m m n ⎛⎛⎫-=+-+++=+ ⎪ ⎪⎝⎭⎝⎭, ∴3214m n ==, 即:满足条件的点m n 、的值为: 2324m n =-=,或5215,24m n ==-,或32124m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.6.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M , 则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩,解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PBPJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.7.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 82秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3, ∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A′H+A′C≥HC=2218233⎛⎫+=⎪⎝⎭,∴t≥82,即点M在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t的取值范围,难度系数较大,是中考的压轴题.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

二次函数综合应用题(有答案)中考题必练经典(学有余力的看)

二次函数综合应用题(有答案)中考题必练经典(学有余力的看)

函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。

需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。

2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。

(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。

(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。

3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。

推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。

备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。

这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

中考数学总复习 第三单元 函数 第13讲 二次函数的综合应用试题

中考数学总复习 第三单元 函数 第13讲 二次函数的综合应用试题

第13讲 二次函数的综合应用1.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间的函数关系式为y =-n 2+14n -24,则该企业一年中利润最高的月份是( C )A .5月B .6月C .7月D .8月2.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为25元.3.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9 m ,AB =36 m ,D ,E 为桥拱底部的两点,且DE∥AB,点E 到直线AB 的距离为7 m ,则DE 的长为48m.4.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y =-2x 2+80x+750,由于某种原因,售价只能满足15≤x≤22,那么一周可获得的最大利润是1_550元.5.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =1.6.6.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180 cm ,高为20 cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计)解:根据题意,得y =20x(1802-x), 整理,得y =-20x 2+1 800x.∵y =-20x 2+1 800x =-20(x -45)2+40 500,∵-20<0,∴当x =45时,函数有最大值,y 最大=40 500,即当底面的宽为45 cm 时,抽屉的体积最大,最大为40 500 cm 3.7.如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at 2+5t +c.已知足球飞行0.8 s 时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t.已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平距离为28 m ,他能否将球直接射入球门?解:(1)将(0,0.5)和(0.8,3.5)代入y =at 2+5t +c ,得⎩⎪⎨⎪⎧c =0.5,0.82a +5×0.8+c =3.5.解得⎩⎪⎨⎪⎧a =-2516,c =0.5.∴y =-2516t 2+5t +0.5=-2516(t -85)2+4.5. ∴足球飞行的时间是1.6秒时,足球离地面最高,最大高度是4.5米.(2)当x =28时,28=10t ,∴t =2.8.当t =2.8时,y =-2516×19625+5×2.8+0.5=2.25.∵0<2.25<2.44,∴他能将球直接射入球门.8.某宾馆有50个房间供游客居住,当每个房间定价为120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为w 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5 000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客最少有多少人?解:(1)y =-x +50.(2)w =(-x +50)(10x +100)=-10(x -20)2+9 000.所以当x =20,即每间房价定价为10×20+120=320元时,每天利润最大,最大利润为9 000元.(3)由-10(x -20)2+9 000≥5 000,得0≤x≤40.由20(-x +50)≤600,得x≥20.所以x 的取值应满足20≤x≤40.故当x =40时,这天宾馆入住的游客人数最少,为2(-x +50)=2(-40+50)=20(人).答:这天宾馆入住的游客最少有20人.9.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a 的取值范围应为0<a≤5. 10.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90 90 已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,每天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.解:(1)y =⎩⎪⎨⎪⎧-2x 2+180x +2 000(1≤x<50),-120x +12 000(50≤x≤90). (2)当1≤x<50时,y =-2x 2+180x +2 000=-2(x -45)2+6 050.∵-2<0,∴当x =45时,y 有最大值,最大值为6 050.当50≤x≤90时,y =-120x +12 000.∵-120<0,∴y 随x 的增大而减少.∴当x =50时,y 有最大值,最大值为6 000.∴销售该商品第45天时,每天销售利润最大,最大利润为6 050元.(3)41天.11.如图,已知抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,与y 轴交于点C ,直线y =kx 与抛物线交于A ,B 两点.(1)写出点C 的坐标并求出此抛物线的解析式;(2)当原点O 为线段AB 的中点时,求k 的值及A ,B 两点的坐标;(3)是否存在实数k 使得△ABC 的面积为3102?若存在,求出k 的值;若不存在,请说明理由.解:(1)令抛物线y =ax 2+bx -3中x =0,得y =-3,∴C(0,-3).∵抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,∴⎩⎪⎨⎪⎧0=a -b -3,0=9a +3b -3.解得⎩⎪⎨⎪⎧a =1,b =-2. ∴此抛物线的解析式为y =x 2-2x -3.(2)设A(x A ,y A ),B(x B ,y B ).由题意得kx =x 2-2x -3,即x 2-(2+k)x -3=0,∴x A +x B =2+k ,x A ·x B =-3.∵原点O 为线段AB 的中点,∴x A +x B =2+k =0.解得k =-2.当k =-2时,x 2-(2+k)x -3=x 2-3=0,解得x A =-3,x B = 3.∴y A =-2x A =23,y B =-2x B =-2 3.∴当原点O 为线段AB 的中点时,k 的值为-2,点A 的坐标为(-3,23),点B 的坐标为(3,-23). (3)不存在.理由如下:假设存在这样的实数k ,由(2)可知:x A +x B =2+k ,x A ·x B =-3,S △ABC =12OC·|x A -x B | =12×3×(x A +x B )2-4x A ·x B =32(2+k )2+12 =3102, ∴(2+k)2+12=10,即(2+k)2+2=0.∵(2+k)2+2≥2≠0,无解,∴假设不成立.∴不存在实数k 使得△ABC 的面积为3102.。

中考数学总复习《二次函数综合》专项测试卷(附答案)

中考数学总复习《二次函数综合》专项测试卷(附答案)

中考数学总复习《二次函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.抛物线y=(x﹣2)2+4的顶点坐标是()A.(2,﹣4)B.(﹣2,4)C.(﹣2,﹣4)D.(2,4)2.将抛物线y=x2+2先向左平移2个单位,再向下平移1个单位,得到的新抛物线的解析式()A.y=(x﹣1)2+4B.y=(x+1)2+4C.y=(x﹣2)2+1D.y=(x+2)2+13.二次函数y=﹣2(x+1)2﹣4,下列说法正确的是()A.开口向上B.对称轴为直线x=1C.顶点坐标为(﹣1,﹣4)D.当x<﹣1时,y随x的增大而减小4.二次函数y=x2﹣2x+1的图象与x轴的交点个数是()A.0个B.1个C.2个D.不能确定5.在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(单位:米)与飞行的水平距离x(单位:米)之间具有函数关系y=﹣x2+x+,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米6.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣1,x2=2,那么抛物线y=x2+bx+c的对称轴为直线()A.x=1B.C.D.7.已知(﹣2,y1)、(,y2),(1,y3)是二次函数y=x2+x+c图象上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y3<y1<y2C.y2<y3<y1D.y3<y2<y18.如图是二次函数和一次函数y2=kx+t的图象,当y1<y2时,x的取值范围是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>29.函数y=ax+c与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.10.已知二次函数y=ax2+bx+c的图象如图所示抛物线的顶点坐标是(1,1),有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④若点A(m,n)在该抛物线上,则am2+bm+c≥a+b+c.其中正确的结论个数是()A.1B.2C.3D.4二、填空题(本题共6题,每小题2分,共12分)。

中考数学总复习 第三单元 函数 第13讲 二次函数的综合应用试题(2021年整理)

中考数学总复习 第三单元 函数 第13讲 二次函数的综合应用试题(2021年整理)

广西贵港市2017届中考数学总复习第三单元函数第13讲二次函数的综合应用试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西贵港市2017届中考数学总复习第三单元函数第13讲二次函数的综合应用试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西贵港市2017届中考数学总复习第三单元函数第13讲二次函数的综合应用试题的全部内容。

第13讲二次函数的综合应用1.如图,直线y=x-3与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c同时经过B,C 两点,点A是抛物线与x轴的另一个交点.(1)求抛物线的函数表达式;(2)若点P在线段BC上,且S△P AC=错误!S△PAB,求点P的坐标.解:(1)∵点B在x轴上,∴0=x-3,∴x=3.∴点B的坐标为(3,0).∵点C在y轴上,∴y=0-3=-3。

∴点C的坐标为(0,-3).∵抛物线y=x2+bx+c经过B(3,0),C(0,-3),∴错误!解得错误!∴此抛物线的函数表达式为y=x2-2x-3.(2)过点P作PM⊥OB于点M。

∵点B的坐标为(3,0),点C的坐标为(0,-3),∴OB=3,OC=3。

∵S△PAC=错误!S△PAB,∴S△PAB=错误!S△ABC.∴错误!·AB·PM=错误!×错误!·AB·OC。

∴PM=错误!OC=2.由于点P在第四象限,可设点P(x P,-2).∵点P在直线y=x-3上,∴-2=x P-3.解得x P=1.∴点P的坐标为(1,-2).2.(2016·青岛)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为错误! m,到墙边OA的距离分别为错误! m,错误! m。

中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.x>),请你分别用x的代数式来表示销售(1)不妨设该种品牌玩具的销售单价为x元(40量y件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?3.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?4.某服装厂批发应季T恤衫,其单价y(元)与一次批发数量x(件)(x为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.6.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少?(2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?7.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围):并求年产量多少万件时,所获毛利润最大(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润8.某商场销售一款服装,经市场调查发现,每月的销售量y(件)与销售单价x(元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.销售单价x(元/件)260240220销售量y(件)637791(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x(元).(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元(3)106 107 108【解析】【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值.(1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克;(2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数,∵20-< ,∴11x =时,w 有最大值是242元,∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数,∴由二次函数的对称性可知,x 的取值为9,10,11,12,13当9x =或13时,2244234x x -+=;当10x =或12时,2244240x x -+=,当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350,∴当106a =或107或108时符合题意.答:所有符合题意的a 值为:106,107,108.【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质.2.(1)y=1000−10x ,w =−10x 2+1300x −30000;(2)商场销售该品牌玩具获得的最大利润为8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润.(1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)解:根据题意得10001054045x x -≥⎧⎨≥⎩, 解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250,∵a =−10<0,对称轴是直线x =65,∴当45≤x ≤46时,w 随x 增大而增大.∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.3.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+=()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.5.(1)1CG =(2)①2311388y x x =-+;②EMP 面积的最大值为21213km 32,此时BP 的长为11km 2 【解析】【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解.(1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒,∵FEB GEC ∠=∠,∴FEB GEC △∽△,∴BF BE CG CE =, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =,∴2BF =,4BE =,2CE =,∴242CG =, ∴1CG =.(2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高.∵点E 是AD 的中点,∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=-=-=, ∴PME △的边MP 上的高112x EG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒=∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2. 【点睛】 本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键.6.(1)A 城生产20件,最小值是5700万元;(2)从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A ,B 两城运费的和最小.【解析】【分析】(1)设A ,B 两城生产这批产品的总成本的和为W (万元),则W 等于A 城生产产品的总成本加上B 城生产产品的总成本,由此可列出W 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A 城把该产品运往C 地的产品数量为n 件,分别用含n 的式子表示出从A 城把该产品运往D 地的产品数量、从B 城把该产品运往C 地的产品数量及从B 城把该产品运往D 地的产品数量,再列不等式组求得n 的取值范围,然后用含n 的式子表示出A ,B 两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.7.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =, 即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.8.(1)724510y x =-+ (2)当售价为250元时,商场每月所获利润最大,最大利润为7000元(3)不能,理由见解析【解析】【分析】(1)根据表格数据判断为一次函数,设y kx b =+,用待定系数法求出解析时; (2)利润=单件利润⨯销售数量,化简为二次函数的顶点式,根据函数性质判断; (3)计算按(2)中获得最大月利润的方式进行销售时的数量,与580比较.(1)解:由表格可知,此函数为一次函数,故设y kx b =+;则有24077{22091k b k b +=+=, 解得710245k b ⎧=-⎪⎨⎪=⎩, 724510y x ∴=-+; (2)设销售利润为w 元,由题意得:7(150)(245)10w x x =--+ 273503675010x x =-+- 27(250)700010x =--+ 7010a =-<, w ∴有最大值,∴当250x =时,w 取最大值,7000w =最大,答:当售价为250元时,商场每月所获利润最大,最大利润为7000元;(3)当250x =时,70y =(件),70(124)560580⨯-=<,∴12月底不能销售完这批服装.【点睛】本题考查一次函数和二次函数的实际应用,解题关键用待定系数法求出一次函数解析式,注意二次函数最值讨论时,一般整理成顶点式,再通过看a 值确定最大值或最小值. 9.(1)y =-2x +160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y 与x 的关系式;(2)由题意得w =(x -30)(-2x +160)=-2(x -55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.这种台灯的售价应定为65元时,最大利润为12250元.【解析】【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据“总利润=每个台灯的利润×销售量”列出函数解析式,最后运用二次函数求最值即可.【详解】解:设售价为x 元,根据题意得:()()()2306001040106512250W x x x =---=--+⎡⎤⎣⎦,∴当x =65时,12250y =最大,答:这种台灯的售价应定为65元时,最大利润为12250元.【点睛】本题主要考查二次函数的应用,根据“总利润=每个台灯的利润×销售量”列出函数解析式是解答本题的关键.。

第13讲中考数学总复习(练习题) 二次函数的综合运用

第13讲中考数学总复习(练习题) 二次函数的综合运用
象交于A,B两点,且CB=3AC,P为CB的中点,设点P的坐标为
8 2
y= x
(x,y)(x>0),则y关于x的函数表达式为
.
3
导航
解析:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图.
∵AD⊥y轴,BE⊥y轴,
AC CD AD
∴AD∥BE,∴BC = CE = BE,
∵CB=3AC,∴CE=3CD,BE=3AD,
此时ax2-(a+1)x+1≤0,函数图象与x轴至少有一个交点,不能
使ax2-(a+1)x+1≤0对任意实数x都成立;
当a=0时,-x+1≤0,不能使ax2-(a+1)x+1≤0对任意实数x都
成立;故④正确.
导航
3.(2021·无锡)如图,在平面直角坐标系中,O为坐标原点,点C为
y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图
∴y=x2,
设点C横坐标为m,则CD=CE=2m,
∴点E坐标为(m,4-2m),
∴m2=4-2m,
解得 m=-1- 5(舍)或 m=-1+ 5.
∴CD=2m=-2+2 5.
导航
能 力 提 升
5.(2021·乐山)已知关于x的一元二次方程x2+x-m=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
2
由图可知抛物线与x轴的一个交点为(1,0),
∴另一个交点为(-2,0),
∴一元二次方程x2+x-m=0的解为x1=1,x2=-2.
导航
2
6.(2021·徐州)如图,点A,B在y= x 的图象上.已知A,B的横坐标
分别为-2,4,直线AB与y轴交于点C,连接OA,OB.

最新人教版中考数学复习知识点梳理——第13课时 二次函数的综合运用

最新人教版中考数学复习知识点梳理——第13课时 二次函数的综合运用
∴20+9+p2=17-8p+p2. 解得p=-—23 . ∴P(0,-—23 ). ②若∠APM=90°,则AP2+MP2=AM2.
∴9+p2+17-8p+p2=20.
解得p1=1,p2=3. ∴P(0,1)或(0,3).
返回目录
③若∠AMP=90°,则AM2+MP2=AP2. ∴20+17-8p+p2=9+p2. 解得p=—27 . ∴P(0,—27 ). 综上所述,点P的坐标为(0,-—32 )或(0,1)或(0,3)或(0,—27 ) 时,△PAM为直角三角形.
(C )
返回目录
2. 二次函数y=ax2+bx+c的图象如图3-13-1,则反比例
函数y=ax与一次函数y=—xa +b在同一平面直角坐标系内的
考点演练
3. (2019呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的
大致图象可能是
(D )
返回目录
4. 已知一次函数y=—ab x+c的图象如图3-13-2,则二次函数 y=ax2+bx+c在平面直角坐标系中的图象可能是 ( A )
(2)当△MDB的面积最大时,求点P的坐标; (2)连接MD,如答图3-13-1,设P(m,0) (0<m<6),则M(m,-m2+5m+6),N(m,m-6), 则MN=-m2+4m+12. ∴S△MDB=—21 MN·OB=-3m2+12m+36=-3(m-2)2+48. ∵-3<0, ∴当m=2时,△MDB的面积最大. 此时,P点的坐标为(2,0).

中考数学《二次函数的综合》专项训练含答案

中考数学《二次函数的综合》专项训练含答案

中考数学《二次函数的综合》专项训练含答案一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t=﹣32(t ﹣3)2+272,∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x 轴的交点为M 、N (M 在N 的左侧), 由(2)知:M (﹣3,0),N (1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5), ∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.在平面直角坐标系中,O 为原点,抛物线2(0)2y ax x a =-≠经过点3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点C .(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标; (Ⅲ)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=,若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(Ⅰ)抛物线的解析式为212y x x =-;抛物线的对称轴为直线x =;(Ⅱ)P 点坐标为9(0,)4-;(Ⅲ)存在,Q 点坐标为或(-,理由见解析 【解析】 【分析】(Ⅰ)将3)A -点代入二次函数的解析式,即可求出a ,再根据对称轴的公式即可求解.(Ⅱ)先求出B 点胡坐标,要求PA PB +胡最小值,只需找到B 关于轴的对称点1B ,则直线A 1B 与y 轴的交点就是点P ,根据待定系数法求出AB 1的解析式,令y=0,即可求出P 点的坐标.(Ⅲ)设点Q 的坐标,并求出△AOQ 面积,从而得到△AOQ 面积,根据Q 点胡不同位置进行分类,用m 及割补法求出面积方程,即可求解. 【详解】(Ⅰ)∵2(0)2y ax x a =-≠经过点3)A -,∴23a -=⨯12a =,∴抛物线的解析式为212y x x =,∵21222b x a =-=-=⨯ ∴抛物线的对称轴为直线x =(Ⅱ)∵点(0,0)O,对称轴为x =, ∴点O 关于对称轴的对称点B点坐标为. 作点B 关于轴的对称点1B,得1(B -, 设直线AB 1的解析式为y kx b =+,把点3)A -,点1(B -代入得30bb⎧-=+⎪⎨=-+⎪⎩,解得94k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴94y x =-.∴直线944y x =--与y 轴的交点即为P 点. 令0x =得9y 4=-, ∵P 点坐标为9(0,)4-.(Ⅲ)∵3)A -,//AC x 轴,∴AC =3OC =,∴11322AOC S OC AC ∆=⋅=⋅=又∵13AOC AOQ S S ∆∆=,∴32AOQ AOC S S ∆∆==. 设Q点坐标为21(,)22m m m -,如图情况一,作QR CA ⊥,交CA 延长线于点R , ∵932AOQ AOC AQR OCRQ S S S S ∆∆∆=--=梯形, ∴()21133113333322222m m m m ⎛⎫⋅+-+-⋅⋅- ⎪ ⎪⎭-⎝2133933222m m ⎛⎫-+= ⎪ ⎪⎝⎭, 化简整理得23180m m --=, 解得133m =,223m =-.如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M , ∵93AOQ AQN QMO OMNA S S S S ∆∆∆=--=梯形, ∴2211331133(3m)3()222222m m m m m ⎛⎫⎛⎫--+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭393(3)22m m --+-=,化简整理得23180m m --=, 解得133m =,223m =-, ∴Q 点坐标为(33,0)或(23,15)-, ∴抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=.【点睛】主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.5.如图,抛物线212222y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.(Ⅰ)求A B ,两点坐标.(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)222)42(022)S t t =-+<<,当2t =时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:2324m n =-=,或521524m n ==-,或32124m n =-= 【解析】 【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论. 【详解】解:(Ⅰ)抛物线21222y x x =-++, 令0y =,则212202x x -++=, 解得:2x =-22x =∴()()2,0,22,0A B - (Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q , ∵P 的横坐标为t ,∴设(),P t p , ∴2122,22,2p t t PQ p BQ t OQ t =-++==-=, ∴()()11122222222AOC PQB OCPQ S S S S p t t p =++=⨯⨯++⨯+⨯-⨯V V 梯形 11222222t pt p pt p t =+++-=++ 21222222t t t ⎛⎫=-++++ ⎪ ⎪⎭()22242(022)2t t =--+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =,∴)2,2P,∵抛物线21222y x x =-++的对称轴为2x =∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A , ①当AP 和HG 为对角线时,∴()2112111222,2022222222m m m n ⎛⎫⎛⎫=++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴23,24m n =-=, ②当AG 和PH 是对角线时, ∴()()2112112122,2022222222m m m n ⎛⎫⎛⎫-=+-+++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, ∴5215,24m n ==-, ③AH 和PG 为对角线时,∴()()2121112122,22022222m m m n ⎛⎫⎛⎫-+=+-+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴321,24m n =-=, 即:满足条件的点m n 、的值为:23,24m n =-=,或5215,24m n ==-,或321,24m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.6.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y =13x 2+23x ﹣1;(2)4912,(12,72);(3)点G 的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3). 【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E 的坐标为(m ,m +3),点F 的坐标为(m , 13m 2+23m ﹣1),由此得到EF =﹣13m 2+13m +4,根据二次函数最值的求法解答即可; (3)分三种情形①如图1中,当EG 为菱形对角线时.②如图2、3中,当EC 为菱形的对角线时,③如图4中,当ED 为菱形的对角线时,分别求解即可.【详解】解:(1)将y =0代入y =x +3,得x =﹣3.∴点A 的坐标为(﹣3,0).设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2),点A 的坐标为(﹣3,0),点B 的坐标为(1,0), ∴y =a (x +3)(x ﹣1).∵点C 的坐标为(0,﹣1),∴﹣3a =﹣1,得a =13, ∴抛物线的解析式为y =13x 2+23x ﹣1; (2)设点E 的坐标为(m ,m +3),线段EF 的长度为y ,则点F 的坐标为(m ,13m 2+23m ﹣1) ∴y =(m +3)﹣(13m 2+23m ﹣1)=﹣13m 2+13m +4 即y =-13(m ﹣12) 2+4912, 此时点E 的坐标为(12,72);(3)点G 的坐标为(2,1),(﹣,﹣﹣1),,﹣1),(﹣4,3). 理由:①如图1,当四边形CGDE 为菱形时.∴EG 垂直平分CD∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2.∵EG 关于y 轴对称,∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG设点E 的坐标为(n ,n +3),点D 的坐标为(0,3)∴DE∵DE =DC =4, ∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3)将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1).∴EC =22(0)(31)k k -+++=22816k k ++.∵EC =CD =4,∴2k 2+8k +16=16,解得k 1=0(舍去),k 2=﹣4.∴点E 的坐标为(﹣4,﹣1)将点E 上移1个单位长度得点G .∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”.①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围.【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小;【解析】【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-, (2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-.解得0b =或1b =-.当0b =时,2a =;当1b =-时,1a =, ∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ . ∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论8.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线223432333y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=x+33-;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵223432333y x x =--+,a=233-,则抛物线的“衍生直线”的解析式为2323y=x+-; 联立两解析式求交点2234323332323y=x+y x x ⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩, ∴A (-2,23),B (1,0);(2)如图1,过A 作AD ⊥y 轴于点D ,在2234323y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN 为该抛物线的“衍生三角形”,∴N 在y 轴上,且AD=2,在Rt △AND 中,由勾股定理可得DN=22AN -AD =13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF ,∴∠ ACK=∠ EFH ,在△ ACK 和△ EFH 中ACK=EFH AKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=,即E 的纵坐标为∴ E (-1,-3); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去;②当AC 为平行四边形的对角线时,∵ C (-3,0),且A (-2,∴线段AC 的中点坐标为(-2.5,),设E (-1,t ),F (x ,y ),则x-1=2×(-2.5),y+t=∴x= -4,y=,3×(-4)+3,解得t=-3, ∴E (-1,),F (-4); 综上可知存在满足条件的点F ,此时E (-1,)或E (-1,-3),F (-4,3)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题9.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.10.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【解析】【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论.【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b ,将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩, 解得:3300m n =-⎧⎨=⎩, ∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩; (2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105, ∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600,当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65, ∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.11.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.12.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P在点M上方时,即0<t<3时,PM=t﹣3﹣(223t t--)=23t t-+,∴S=12PM×QF=21(3)2t t-+=21322t t-+,②如图3,当点P在点M下方时,即t<0或t >3时,PM=223t t--﹣(t﹣3)=23t t-,∴S=12PM×QF=12(23t t-)=21322t t-.综上所述,S=2213(03)22{13(03)22t t tt t t t或-+<<-.考点:二次函数综合题;分类讨论.13.如图1,抛物线2:C y ax bx=+经过点(4,0)A-、(1,3)B-两点,G是其顶点,将抛物线C绕点O旋转180o,得到新的抛物线'C.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线12:5l y kx=-经过点A,D是抛物线C上的一点,设D点的横坐标为m(2m<-),连接DO并延长,交抛物线'C于点E,交直线l于点M,2DE EM=,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:74+-74. 【解析】【分析】 (1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180o ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可;(3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=o ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180o ,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++, ∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴 ∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=o ,∴1tan3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;∵(3,3)E -,∴45EOT ∠=o∵90EOH ∠=o∴45HOT ∠=o∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:7734+-或7374-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.14.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由. 【答案】⑴2y x 2x 3=-++;⑵当12a =,S □MANB =2S △ABM =274 ,此时115M ,24⎛⎫ ⎪⎝⎭;⑶存在. 当15F 1,4⎛⎫ ⎪⎝⎭时,无论x 取任何实数,均有PG PF =. 理由见解析. 【解析】【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20 443 a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,0 23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.15.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.【解析】试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形时满足条件,直接计算即可.试题解析:(1)当m=﹣3时,B(﹣3,0),。

中考数学复习考点知识讲解与专题训练13---二次函数的综合运用

中考数学复习考点知识讲解与专题训练13---二次函数的综合运用

中考数学复习考点知识讲解与专题训练第13讲 二次函数的综合运用命题点1:与二次函数相关的综合题1.(9分)(2019•广东)如图1,在平面直角坐标系中,抛物线y =√38x2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形; (3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?解:(1)令√38x 2+3√34x −7√38=0,解得x 1=1,x 2=﹣7.∴A (1,0),B(﹣7,0).由y =√38x 2+3√34x −7√38=√38(x +3)2﹣2√3得,D (﹣3,﹣2√3);(2)证明:∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴D 1D FD 1=COOF ,∵D (﹣3,﹣2√3),∴D 1D =2√3,OD 1=3,∵AC =CF ,CO ⊥AF ,∴OF =OA =1,∴D 1F =D 1O ﹣OF =3﹣1=2, ∴2√32=OC 1,∴OC =√3,∴CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE ,∴∠ECF =∠AFC =60°,∴EC ∥BF ,∵EC =DC =√32+(√3+2√3)2=6,∵BF =6,∴EC =BF ,∴四边形BFCE是平行四边形;(3)∵点P 是抛物线上一动点,∴设P 点(x ,√38x 2+3√34x −7√38),①当点P 在B 点的左侧时,∵△PAM 与△DD 1A 相似,∴DD1PM =D 1AMA 或DD1AM=D 1A PM,∴√3√38x +3√34x−7√38=41−x 或2√31−x =√38x +3√34x−7√38,解得:x 1=1(不合题意舍去),x 2=﹣11或x 1=1(不合题意舍去)x 2=−373;当点P 在A 点的右侧时,∵△PAM 与△DD 1A 相似,∴PM AM =DD 1D 1A 或PM MA =D 1ADD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3,解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去);当点P 在AB 之间时,∵△PAM 与△DD 1A 相似,∴PMAM =DD 1D 1A 或PMMA =D 1ADD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3,解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53;综上所述,点P 的横坐标为﹣11或−373或−53;②由①得,这样的点P共有3个.2.(9分)(2018•东莞市)如图,已知顶点为C(0,﹣3)的抛物线y =ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:{b=−39a+b=0,解得:{a=13b=−3,所以二次函数的解析式为:y =13x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°, ∴OD =OC •tan30°=√3,设DC 为y =kx ﹣3,代入(√3,0),可得:k =√3,联立两个方程可得:{y =√3x −3y =13x 2−3,解得:{x 1=0y 1=−3,{x 2=3√3y 2=6,∴M 1(3√3,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°﹣15°=30°, ∴∠OCE =60°,∴OE =OC •tan60°=3√3,设EC 为y =kx ﹣3,代入(3√3,0)可得:k =√33,联立两个方程可得:{y =√33x −3y =13x 2−3, 得:{x 1=0y 1=−3,{x 2=√3y 2=−2,∴M 2(√3,﹣2),综上M 的坐标为(3√3,6)或(√3,﹣2).3.(9分)(2017•广东)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3; (2)∵点C 在y 轴上,∴C 点横坐标x =0, ∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52,∴sin ∠OCB =OB BC =3√52=2√55.3年模拟1.(2020•龙湖区一模)如图,抛物线y =−12x 2+52x ﹣2与x 轴交于A 、B 两点,与y 轴交于点C ,四边形OBHC 为矩形,CH 的延长线交抛物线于点D (5,﹣2),连接BC 、A D .(1)将矩形OBHC 绕点B 按逆时针旋转90°后,再沿x 轴对折到矩形GBFE (点C 与点E 对应,点O 与点G 对应),求点E 的坐标;(2)设过点E 的直线交AB 于点P ,交CD 于点Q . ①当四边形PQCB 为平行四边形时,求点P 的坐标;②是否存在点P ,使直线PQ 分梯形ADCB 的面积为1:3两部分?若存在,求出点P 坐标;若不存在,请说明理由.解:(1)令y=0,得−12x2+52x−2=0,解得x1=1,x2=4,∴A(4,0),B(1,0),∴OA=4,OB=1,∵四边形OBHC为矩形,CH的延长线交抛物线于点D(5,﹣2),∴点C(0,﹣2),CH=OB=1,BH=OC=2,∠BHC=90°,∵将矩形OBHC绕点B按逆时针旋转90°,∴EF=1,BF=2,∠EFB=90°,∴E(3,1);(2)①如图,∵点C(0,﹣2),点B(1,0),∴直线BC解析式为:y=2x﹣2,∵四边形PQCB为平行四边形,∴BC∥PQ,∴设直线PQ 解析式为:y =2x +b , ∵直线PQ 过点E ,∴1=6+b ,∴b =﹣5,∴直线PQ 解析式为:y =2x ﹣5, 当y =0时,x =52,∴点P (52,0);②存在,∵点A (4,0),点B (1,0),点C (0,﹣2),点D (5,﹣2),∴AB =3,CD =5,∴四边形ABCD 的面积=12×2×(3+5)=8, 设直线PQ 解析式为:y =mx +n ,且过点E (3,1),∴1=3m +n ,∴n =1﹣3m ,∴直线PQ 解析式为:y =mx +1﹣3m , 当y =0时,x =3m−1m,当y =﹣2时,x =3m−3m,∴点P (3m−1m,0),点Q (3m−3m,0),当四边形BPQC 的面积:四边形PQDA 的面积=1:3, ∴四边形BPQC 的面积=14×8=2, ∴12×2×(3m−3m+3m−1m−1)=2,∴m =43,∴点P (94,0);当四边形BPQC 的面积:四边形PQDA 的面积=3:1, ∴四边形BPQC 的面积=34×8=6, ∴12×2×(3m−3m+3m−1m−1)=6,∴m =﹣4,∴点P (134,0);综上所述,所求点P 的坐标为(94,0)或(134,0). 2.(2020•莒县一模)如图1,在平面直角坐标系中,直线y =x +4与抛物线y =−12x 2+bx +c (b ,c 是常数)交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1)求该抛物线的解析式;(2)P 是抛物线上一动点(不与点A 、B 重合),①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求PDOD 的最大值;②如图3,若点P 在x 轴的上方,连接PC ,以PC 为边作正方形CPEF ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 恰好落在y 轴上,求出对应的点P 的坐标.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入抛物线解析式得{−4b+c=8c=4,解得{b=−1c=4,∴抛物线的解析式为y=−12x2−x+4;(2)①如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,则PDOD =PFOB,∵OB=4为定值,∴当PF取最大值时,PDOD有最大值,设P(x,−12x2−x+4),其中﹣4<x<0,则F(x,x+4),∴PF=y p−y F=−12x2−x+4−(x+4)=−12x2−2x,∵−12<0且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,∴PDOD =PFOB=12;②∵点C(2,0),∴CO=2,如图2,点F在y轴上时,过点P作PH⊥x 轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,∠HPC=∠OCF,∠PHC=∠COF,PC=FC,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴p1=(−1+√5,2),p2=(−1−√5,2).3.(2020•斗门区二模)如图,抛物线y=x2+bx+c经过A(0,3),B (4,3)两点,与x轴交于点E,F,以AB为边作矩形ABCD,其中CD边经过抛物线的项点M,点P是抛物线上一动点(点P不与点A,B重合),过点P作y轴的平行线1与直线AB交于点G,与直线BD交于点H,连接AF交直线BD于点N.(1)求该抛物线的解析式以及顶点M的坐标;(2)当线段PH=2GH时,求点P的坐标;(3)在抛物线上是否存在点P,使得以点P,E,N,F为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线y=x2+bx+c经过A(0,3),B(4,3)两点,∴{c=316+4b+c=3,得{b=−4c=3,即该抛物线的解析式为y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点M的坐标为(2,﹣1);(2)∵四边形ABCD是矩形,且CD边经过抛物线的顶点M(2,﹣1),∴D(0,﹣1),设直线BD的解析式为y=kx+b,∵直线BD经过点B(4,3),D(0,﹣1),∴{4k+b=3b=−1,解得,{k=1b=−1,∴直线BD的解析式为y=x﹣1,∵点P为是抛物线上一动点,∴设P(a,a2﹣4a+3),则G(a,3),H(a,a﹣1),∴PH=|a2﹣4a+3﹣(a﹣1)|=|a2﹣5a+4|,GH=|3﹣(a﹣1)|=|4﹣a|,∵PH=2GH,∴|a2﹣5a+4|=2|4﹣a|,解得,a1=﹣1,a2=3,a3=4,∴P1(﹣1,8),P2(3,0),P3(4,3),∵点P 不与点A ,B 重合∴P 3(4,3)不符合要求,∴当线段PH =2GH 时,点P 的坐标为P (﹣1,8)或P (3,0);(3)当y =0时,0=x 2﹣4x +3,得x 1=3,x 2=1,则点E 的坐标为(1,0),点F 的坐标为(3,0),∵A (0,3),F (3,0),∴直线AF 的解析式为y =﹣x +3,联立{y =x −1y =−x +3,得{x =2y =1,∴N (2,1),如图1所示,当点P 在直线EF 下方时,∵M (2,﹣1),N (2,1),E (1,0),F (3,0),∴MN 与EF 互相垂直平分,∴当点P 在点M 的位置时,四边形PENF 是平行四边形,此时P (2,﹣1);如图2所示,当点P在点E的左侧时,若四边形PEFN是平行四边形,则P(0,1),∵抛物线经过点A(0,3),∴P(0,1)不符合实际,舍去;如图3所示,当点P在点F的右侧时,若四边形PFEN是平行四边形,则P(4,1),∵抛物线经过点B(4,3),∴P(4,1)不符合实际,舍去;综上所述,存在点P(2,﹣1)时,使得以点P,E,N,F为顶点的四边形是平行四边形.4.(2020•英德市一模)如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B (1,0)两点,点C 为抛物线与y 轴的交点.(1)求此抛物线的解析式;(2)P 是x 轴上方抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,问:是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上找一点D ,过点D 作x 轴的垂线,交AC 于点E ,是否存在这样的点D ,使DE 最长,若存在,求出点D 的坐标,以及此时DE 的长,若不存在,请说明理由.解:(1)设抛物线的表达式为:y =a (x ﹣x 1)(x ﹣x 2)=a (x ﹣1)(x﹣4)=a (x 2﹣5x +4)=ax 2+bx ﹣2,故4a =﹣2,解得:a =−12,故抛物线的表达式为:y =−12x 2+52x ﹣2;(2)存在,理由:设点P (x ,−12x 2+52x ﹣2),则点M (x ,0),则PM =−12x 2+52x ﹣2,AM =4﹣x ,∵tan ∠OAC =12,∵以A 、P 、M 为顶点的三角形与△OAC 相似,故tan ∠PAM =12或2,故−12x 2+52x−24−x =2或12,解得:x =2或4(舍去)或5(舍去),故x =2,经检验x =2是方程的解,故P (2,1);(3)设直线AC 的表达式为:y =kx +t ,则{0=4k +tt =−2,解得{k =12t =−2,故直线AC 的表达式为:y =12x ﹣2,设点D (x ,−12x 2+52x ﹣2),则点E (x ,12x ﹣2),DE =(−12x 2+52x ﹣2)﹣(12x ﹣2)=−12x 2+2x , ∵−12<0,故DE 有最大值,当x =2时,DE 的最大值为2,此时点D (2,1);故点D 的坐标(2,1),此时DE 的长为2.5.(2020•花都区一模)如图,抛物线y =﹣x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(﹣3,0),与y 轴交于点C (0,3).(1)求抛物线的函数解析式;(2)点M 为抛物线y =﹣x 2+bx +c 上异于点C 的一个点,且S △OMC =12S △ABC ,求点M 的坐标;(3)若点P 为x 轴上方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AP 、BP 分别交抛物线的对称轴于点E 、F .请问DE +DF 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)将点A、C的坐标代入抛物线表达式得{−9−3b+c=0c=3,解得{b=−2c=3,故抛物线的表达式为:y=﹣x2﹣2x+3;(2)对于抛物线y=﹣x2﹣2x+3,令y=0,则x=﹣3或1,故点B(1,0),∴12S△ABC=12×12×AB×OC=14×4×3=3,∵S△OMC=1 2×OC×|x M|=32|x M|=3,解得:x M=±2,故点M的坐标为(2,﹣5)或(﹣2,3);(3)是定值,理由:设点P的坐标为(m,﹣m2﹣2m+3),设直线AP的表达式为:y=kx+t,则{0=−3k+t−m2−2m+3=mk+t,解得,{k=1−mt=3−3m故直线AP的表达式为:y=﹣(m﹣1)(x+3),当x=−b=−1时,y=2﹣2m,即点E(﹣1,2﹣2m),即DE=2﹣2m,2a同理可得,直线BP的表达式为:y=﹣(m+3)(x﹣1),当x=﹣1时,y=2m+6,故点F(﹣1,2m+6),即DF=2m+6,∴DE+DF=2﹣2m+2m+6=8,为定值.21/ 21。

2020年中考专题复习 第13讲 二次函数的综合与应用

2020年中考专题复习 第13讲  二次函数的综合与应用

③当∠BCQ=90°2 时,则有BC2+CQ22=BQ2,即18+t2+6t+10=t2+4,解得t=-4,此时Q点坐标为(1,-4);
综上可知点Q的坐标为(1, 3)或 (1,7
)或(1,23)或(17,-4).
2
2
3 7 2
3 7 2
类型三 与特殊四边形有关
例3 已知二次函数y=- x2+bx+c图3象与x轴交于A,B两点,与y轴

解得
x2+bx+c的图象上,
3
4
∴(2)二存次在c函.1数2①3的当4解ObC析为式c四为边y=0形,的边x2时+,bMcx+N∥33;94O,C,
MN=OC,作MN∥y轴交直线BC于N,如解图①,
3
9
4
4
例3题解图①
∵MN∥OC,
∴当MN=OC=3时,以M,N,C,O为顶点且以OC为边的四边形是
4
x2-33x=3,解得 4
3 4
此时N点坐标为(2+ ,)或(, 3); Nhomakorabea3
3
9
2 3
3
4
44
4
4
22
22
33 2 22
3
33 2 22 2
3
②当OC为对角线时,MN与OC互相平分,如解图②,
∵点C(0,3),∴OC的中点为(0, ),
3
设点N(a, a+3),点M(m, m2+ m+3),

角线两种情况来进行分类讨论.
(i)当OC为边时:③

(ii)当OC为对角线时:④

MN∥OC,MN=OC
MN与OC相互平分

xN ,

3 4
xN

中考数学总复习 第一部分 教材同步复习 第三章 函数 第13讲 二次函数的综合与应用课件

中考数学总复习 第一部分 教材同步复习 第三章 函数 第13讲 二次函数的综合与应用课件
• (2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′, 若这两条抛物线有交点,求m的取值范围.
1225/10/2021
• 问题解决:
• (3)已知抛物线y=ax2+2ax-b(a≠0). • ①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有
两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标; • ②于+1的若点n长2)抛 ((的0物用,衍线含k生y+n关的抛2于2)式物点的子线(衍表为0生示y,n,抛)k+其物.1顶线2)点为的为y2衍,A生n其,抛顶…物点;线为(为An为2y;1,正…其整;顶数关点)于为.点A求(1;A0n关,Ank+
182/10/2021
• (1)求a的值; • (2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示); • (3)在系列Rt△AnBnBn+1中,探究下列问题: • ①当n为何值时,Rt△AnBnBn+1是等腰直角三角形? • ②Rt△设A1m≤Bkm<Bmm+≤1相n(似k?,若m存均在为,正求整出数其)相,似问比:;是若否存不在存R在t△,A说kB明kB理k+由1与.
124/10/2021
• 类型2 与图象变换有关的二次函数问题
• 2.(2017·江西22题9分)已知抛物线C1:y=ax2-4ax-5(a>0). • (1)当a=1时,求抛物线与x轴的交点坐标及对称轴; • (2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两
个定点的坐标;
• ②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2
1221/10/2021
(3)由△AMN 为等腰三角形,可分为如下三种情况: ①如答图 2,当 MN=NA=2 2时,过点 N 作 ND⊥x 轴,垂足为 点 D,则有 ND=1,DA=m-(-1)=m+1,

中考数学复习第三单元函数及其图象第13课时二次函数的综合应用

中考数学复习第三单元函数及其图象第13课时二次函数的综合应用







25
25
A.- 4 <m<3
B.- 4 <m<2
C.-2<m<3
D.-6<m<-2
图13-2
第七页,共四十一页。
)






[答案] D
[解析]当y=0时,-x2+x+6=0,解得x1=-2,x2=3,则A(-2,0),B(3,0),
将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x-3),
故△BOA 为等腰三角形.
第六页,共四十一页。
, ,
2 2






2.[2018·贵阳] 已知二次函数 y=-x2+x+6 及一次函数 y=-x+m,将该二次函数在 x
轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新函数(如
图 13-2 所示),当直线 y=-x+m 与新图象有 4 个交点时,m 的取值范围是 (
1
1
5
= ,
2
1
= 2,
1
1
1
2
2
∴y= x+ ,
1
1
3
则 D m,-2m2+2m+2 ,C m,2m+2 ,CD= -2m2+2m+2 - 2m+2 =-2m2+2m+2,
1
1
1
1
1
3
∴S=S△ACD+S△BCD=2(m+1)·CD+2(4-m)·CD=2×5CD=2×5× -2m2+2m+2

中考数学总复习 第三单元 函数及其图象 第13课时 二次函数的综合与应用(考点突破)课件

中考数学总复习 第三单元 函数及其图象 第13课时 二次函数的综合与应用(考点突破)课件
难题,解此类题的关键是根据图形的特点,综合运用所 学知识如勾股定理、全等或相似(xiānɡ sì)三角形的性质等 建立等量关系,从而构造出二次函数,再利用二次函数 的性质求解.
2021/12/9
第二页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数的实际(shíjì)应用
1.在商品经营活动中,经常会遇到求最大利润、 最大销量等问题. 解此类题的关键是根据题意确 定出二次函数的解析式,然后确定其最大值,实 际问题中自变量x的取值要使实际问题有意义,因 此(yīncǐ)在求二次函数的最值时,一定要注意自变量 x的取值范围.
No 当每件的销售(xiāoshòu)价x为多少时,销售(xiāoshòu)该纪念品每天获得的利润y最大。单个商
品的利润×商品总件数=商品总获利。考点四:构建二次函数模型解决实际问题
Image
12/9/2021
第十六页,共十六页。
2021/12/9
第三页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数(hánshù)的实际应用
2.利用二次函数解决抛物线形的隧道、大桥和拱门等实际 问题时,要恰当地把这些实际问题中的数据落实到平面 直角坐标系中的抛物线上,从而确定抛物线的解析(jiě xī) 式,通过抛物线的解析(jiě xī)式可解决一些测量等问题.
4、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目 (tímù)分解开来,讨论过程中要思考全面.
2021/12/9
第五页,共十六页。
强化训练
考点(kǎo diǎn)一:二次函数的最值
D
2021/12/9
第六页,共十六页。
归纳(guīnà)拓展

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.2.如图,A1、A2、A3是抛物线y=ax2(a>0)上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.A1、A2、A3三点的横坐标为连续整数n﹣1、n、n+1,则线段CA2的长为()A.a B.2a C.n D.n-13.王芳将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A.m1,m4B.m2,m3C.m3,m6D.m4,m54.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣85.对于题目:“已知M(1,−32a),N(4,3a+3),若抛物线y=ax(x−4)与线段MN拾有一个公共点,求a的取值范围.”甲的答案是:a≤−1;乙的答案是:−1≤a<0.下列说法正确的是()A.甲对B.乙对C.甲、乙合在一起才对D.甲、乙合在一起也不对6.如图,点A是二次函数y=√3x2图象上的一点,且位于第一象限,点B是直线y=−√32x上一点,点B′与点B关于原点对称,连结AB,AB′,若△ABB′为等边三角形,则点A的坐标是()A.( 13,19√3)B.( 23,49√3)C.(1,√3)D.( 43,169√3)7.如图,已知抛物线顶点M在y轴上,抛物线与直线y=x+1相交于A、B两点.点A在x轴上,点B的横坐标为2,那么抛物线顶点M的坐标是()A.(﹣1,0)B.(1,0)C.(0,1)D.(0,﹣1)8.如图,抛物线y1=−x2+4x和直线y2=2x. 当y1>y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<49.如图,将抛物线y=-x2+x+6图象中,轴上方的部分沿x轴翻折到x轴下方·图象的其余部分不变,得到个新图象.则新图象与直线y=-6的交点个数是()A.1B.2C.3D.410.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2-4c>0;②b+c=0;③3b+c+6=0;④当1<x<3时,x2+(b−1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个11.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),下列结论:①b2>4ac;②ax2+bx+c≥-6;③若点(-2,m),(-5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=−4的两根为﹣5和﹣1,其中正确的有()A .1个B .2个C .3个D .4个12.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(﹣1,2),(2,1),若抛物线y=ax 2﹣x+2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是( ) A .a≤﹣1或 14 ≤a < 13B .14 ≤a < 13C .a≤ 14 或a > 13D .a≤﹣1或a≥ 14二、填空题13.直线y=m 是平行于X 轴的直线,将抛物线y=- 12x 2-4x 在直线y=m 上侧的部分沿直线 y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与 直线y=-x 有3个交点,则满足条件的m 的值为14.定义:min{a ,b}={a(a ≤b),b(a >b).若函数y =min{x +1,−x 2+2x +3 },则该函数的最大值为 .15.已知关于x 的方程(x+1)(x-3)+m =0(m <0)的两根为a 和b ,且a <b ,用“<”连接-1、3、a 、b 的大小关系为 .16.如图,已知抛物线y 1=ax 2+bx +c(a ≠0)与直线y 2=mx +n(m ≠0)交于点A ,B ,点A ,B 的横坐标分别是−2,54,则不等式ax 2+bx +c <mx +n 的解为 .17.已知抛物线y=2x 2+bx+c 与直线y=﹣1只有一个公共点,且经过A (m ﹣1,n )和B (m+3,n ),过点A ,B 分别作x 轴的垂线,垂足记为M ,N ,则四边形AMNB 的周长为 .18.若直线 y =x +m 与抛物线 y =x 2−2x 有交点,则 m 的取值范围是 .三、综合题19.如图1,在平面直角坐标系中,直线 y =x −1 与抛物线 y =−x 2+bx +c 交于 A 、B 两点,其中 A(m ,0) , B(4,n) .该抛物线与 y 轴交于点 C ,与 x 轴交于另一点 D .(1)求m、n的值及该抛物线的解析式;(2)如图2.若点P为线段AD上的一动点(不与A、D重合).分别以AP、DP为斜边,在直线AD的同侧作等腰直角△ APM和等腰直角△ DPN,连接MN,试确定△ MPN面积最大时P 点的坐标.(3)如图3.连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.20.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B,与y轴交于点C,OB=OC= 3.(1)求该抛物线的函数解折式;(2)连接BC,点D是线段BC上方抛物线上的一点,连接OD,CD,OD交BC于点E,是否存在点D使S△COE:S△CDE=3:2,若存在,请直接写出点D的坐标,若不存在,请说明理由.21.舟山渔业公司以30元/千克的价格收购一批渔产品进行销售,为了得到日销售量P(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500与x之间的函数表达式(直接写出);(2)当这批渔产品的销售价格定为每千克多少元时,渔业公司的日销售利润最大?(3)该公司每销售1千克这种渔产品需支出a元(a>0)的相关费用,当40≤x≤45时,该公司的日获利的最大值为2430元,求a的值(日获利=日销售利润-日支出费用).22.某商场销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件,设销售单价为x(x≥250)元.(1)写出一周销售量y(件)与x(元)的函数关系式.(2)设一周销售获得毛利润w元,写出w与x的函数关系式,并确定当x在什么取值范围内变化时,毛利润w随x的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得一周内净利润(净利润=毛利润-经营费用)最大,超市对该商品定价为元,最大毛利润为元.23.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?24.已知,直线y=−2x+3与抛物线y=ax2相交于A、B两点,且A的坐标是(−3,m)(1)求a,m的值;(2)抛物线的表达式及其对称轴和顶点坐标.参考答案1.【答案】D2.【答案】A3.【答案】A4.【答案】D5.【答案】B6.【答案】B7.【答案】D8.【答案】A9.【答案】D10.【答案】C11.【答案】C12.【答案】A13.【答案】6或14.【答案】315.【答案】a<-1<3<b16.【答案】−2<x<5 417.【答案】2218.【答案】m≥−9 419.【答案】(1)解:把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3).∵y=﹣x2+bx+c经过点A与点B,∴{−1+b+c=0−16+4b+c=3,解得:{b=6c=−5,则二次函数解析式为y=﹣x2+6x﹣5;(2)解:如图2,△APM与△DPN都为等腰直角三角形,∴△APM=△DPN=45°,∴△MPN=90°,∴△MPN为直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DA=5﹣1=4,设AP=m,则有DP=4﹣m,∴PM= √22m,PN= √22(4﹣m),∴S△MPN= 12PM•PN= 12× √22m× √22(4﹣m)=﹣14m2﹣m=﹣14(m﹣2)2+1,∴当m=2,即AP=2时,S△MPN最大,此时OP=3,即P(3,0);(3)解:存在,易得直线CD解析式为y=x﹣5,设Q(x,x﹣5),由题意得:△BAD=△ADC=45°,分两种情况讨论:①当△ABD△△DAQ 时, AB DA = BD AQ ,即 3√24 = 4AQ ,解得:AQ= 8√23,由两点间的距离公式得:(x ﹣1)2+(x ﹣5)2=1289 ,解得:x= 73 ,此时Q ( 73 ,﹣ 83); ②当△ABD△△DQA 时, BDAQ =1,即AQ= √10 ,∴(x ﹣1)2+(x ﹣5)2=10,解得:x=2,此时Q(2,﹣3).综上,点Q 的坐标为(2,﹣3)或( 73 ,﹣ 83).20.【答案】(1)解:∵OB=OC=3∴点B(3,0),点C(0,3) ∴{9a +6+c =0c =3解得{a =−1c =3∴抛物线的解析式为:y =−x 2+2x +3. (2)解:点D 的坐标为(1,4)或(2,3).21.【答案】(1)解:设P=kx+b{50k +b =045k +b =150解之:{k =−30b =1500∴P =−30x +1500 (2)解:设日销售利润为yy =P(x −30)=(−30x +1500)(x −30)即 y =−30(x −40)2+3000 ∴当 x =40时,y 有最大值3000元(3)解:日获利 y =P(x −30−a)=(−30x +1500)(x −30−a) 即 y =−30x 2+(2400+30a)x −(1500a +45000)对称轴 x =−2400+30a 2×(−30)=40+12a若 a >10,则当x =45时,y 有最大值;即 y =2250−150a <2430 (不符合题意)若 a <10,则当x =40+12a 时,y 有最大值将 x =40+12a 得: y =30(14a 2−10a +100)当y =2430时,2430=30(14a 2−10a +100)解得a 1=2,a 2=38(舍去)综上所述 a =222.【答案】(1)解:y=1000-10x(2)解:W=(1000-10x)(x-40)=-10(x-70)2+9000当50≤x≤70时,毛利润w随x的增大而增大(3)75;500023.【答案】(1)解:y=100+10(60-x)=-10x+700(2)解:设每星期利润为W元W=(x-30)(-10x+700)=-10(x-50)2+4000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元(3)解:①由题意:-10(x-50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:-10(x-50)2+4000≥3910解得:47≤x≤53∵y=100+10(60-x)=-10x+700.170≤y≤230,∴每星期至少要销售该款童装170件24.【答案】(1)解:把A的坐标(-3,m)代入y=-2x+3得m=-2×(-3)+3=9所以A点坐标为(-3,9)把A(-3,9)代入线y=ax2得9a=9,解得a=1.综上所述,m=9,a=1.(2)解:抛物线的表达式为y=x2,根据抛物线特点可得:对称轴为y轴,顶点坐标为(0,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲 二次函数的综合应用
1.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的
利润y 和月份n 之间的函数关系式为y =-n 2+14n -24,则该企业一年中利润最高的月份是( C )
A .5月
B .6月
C .7月
D .8月
2.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为25元.
3.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9 m ,AB =36 m ,D ,E 为桥拱底部的两点,且DE∥AB,点E 到直线AB 的距离为7 m ,则DE 的长为48m.
4.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y =-2x 2+80x
+750,由于某种原因,售价只能满足15≤x≤22,那么一周可获得的最大利润是1_550元.
5.(2016·台州)竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =1.6.
6.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180 cm ,高为20 cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计)
解:根据题意,得y =20x(1802
-x), 整理,得y =-20x 2
+1 800x.
∵y =-20x 2+1 800x =-20(x -45)2+40 500,
∵-20<0,
∴当x =45时,函数有最大值,y 最大=40 500,即当底面的宽为45 cm 时,抽屉的体积最大,最大为40 500 cm 3.
7.(2015·随州)如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y
轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at 2+5t +c.已知足球飞行0.8 s
时,离地面的高度为3.5 m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t.已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平距离为28 m ,他能否将球直接射入球门?
解:(1)将(0,0.5)和(0.8,3.5)代入y =at 2
+5t +c ,
得⎩⎪⎨⎪⎧c =0.5,0.82a +5×0.8+c =3.5.解得⎩⎪⎨⎪⎧a =-2516,c =0.5.
∴y =-2516t 2+5t +0.5=-2516(t -85
)2+4.5. ∴足球飞行的时间是1.6秒时,足球离地面最高,最大高度是4.5米.
(2)当x =28时,28=10t ,∴t =2.8.
当t =2.8时,y =-2516×19625
+5×2.8+0.5=2.25.
∵0<2.25<2.44,∴他能将球直接射入球门.
8.(2016·鄂州)某宾馆有50个房间供游客居住,当每个房间定价为120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).
(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;
(2)设宾馆每天的利润为w 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5 000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客最少有多少人?
解:(1)y =-x +50. (2)w =(-x +50)(10x +100)=-10(x -20)2+9 000.
所以当x =20,即每间房价定价为10×20+120=320元时,每天利润最大,最大利润为9 000元.
(3)由-10(x -20)2+9 000≥5 000,得0≤x≤40.
由20(-x +50)≤600,得x≥20.
所以x 的取值应满足20≤x≤40.
故当x =40时,这天宾馆入住的游客人数最少,为2(-x +50)=2(-40+50)=20(人).
答:这天宾馆入住的游客最少有20人.
9.(2016·扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a 的取值范围应为0<a≤5.
10.九(1)x(1≤x
50≤x≤90 已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.
(1)求y 与x 的函数关系式;
(2)问销售该商品第几天时,每天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.
解:(1)y =⎩⎪⎨⎪⎧-2x 2
+180x +2 000(1≤x<50),-120x +12 000(50≤x≤90). (2)当1≤x<50时,
y =-2x 2+180x +2 000=-2(x -45)2+6 050.
∵-2<0,
∴当x =45时,y 有最大值,最大值为6 050.
当50≤x≤90时,y =-120x +12 000.
∵-120<0,∴y 随x 的增大而减少.
∴当x =50时,y 有最大值,最大值为6 000.
∴销售该商品第45天时,每天销售利润最大,最大利润为6 050元.
(3)41天.
11.(2016·永州)如图,已知抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,与y 轴交于点C ,直线y =kx 与
抛物线交于A ,B 两点.
(1)写出点C 的坐标并求出此抛物线的解析式;
(2)当原点O 为线段AB 的中点时,求k 的值及A ,B 两点的坐标;
(3)是否存在实数k 使得△ABC 的面积为3102
?若存在,求出k 的值;若不存在,请说明理由.
解:(1)令抛物线y =ax 2
+bx -3中x =0,得y =-3,
∴C(0,-3).
∵抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,
∴⎩
⎪⎨⎪⎧0=a -b -3,0=9a +3b -3. 解得⎩⎪⎨⎪⎧a =1,b =-2. ∴此抛物线的解析式为y =x 2-2x -3.
(2)设A(x A ,y A ),B(x B ,y B ).
由题意得kx =x 2-2x -3,即x 2-(2+k)x -3=0,
∴x A +x B =2+k ,x A ·x B =-3.
∵原点O 为线段AB 的中点,
∴x A +x B =2+k =0.解得k =-2.
当k =-2时,x 2-(2+k)x -3=x 2-3=0,
解得x A =-3,x B = 3.
∴y A =-2x A =23,y B =-2x B =-2 3.
∴当原点O 为线段AB 的中点时,k 的值为-2,点A 的坐标为(-3,23),点B 的坐标为(3,-23).
(3)不存在.理由如下:假设存在这样的实数k ,
由(2)可知:x A +x B =2+k ,x A ·x B =-3, S △ABC =12
OC·|x A -x B | =12
×3×(x A +x B )2-4x A ·x B =
32(2+k )2+12 =3102
, ∴(2+k)2+12=10,即(2+k)2+2=0. ∵(2+k)2+2≥2≠0,无解,
∴假设不成立.
∴不存在实数k 使得△ABC 的面积为3102
.。

相关文档
最新文档