《数学史》朱家生版+课后题目参考答案+第六章

合集下载

高等数学课后习题答案第六章教学文案

高等数学课后习题答案第六章教学文案

高等数学课后习题答案第六章习题6-21. 求图6-21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A .(2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A e e e .(3)解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为332]2)3[(132=--=⎰-dx x x A .(4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算);解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A 34238cos 16402+=-=⎰ππtdt . 346)22(122-=-=ππS A . (2)xy 1=与直线y =x 及x =2;解:所求的面积为⎰-=-=212ln 23)1(dx x x A . (3) y =e x , y =e -x 与直线x =1;解:所求的面积为⎰-+=-=-1021)(ee dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A b a y ba y -===⎰ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3).过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6.两切线的交点为)3 ,23(, 所求的面积为49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积.解2y ⋅y '=2p .在点),2(p p 处, 1),2(=='p p y p y , 法线的斜率k =-1, 法线的方程为)2(p x p y --=-, 即y p x -=23. 求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2. (2)x =a cos 3t , y =a sin 3t ;解所求的面积为⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ )解所求的面积为2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积.解 所求的面积为 )(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A . (2)θρsin 2=及θρ2cos 2=.解 曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为 2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方之间的图形的面积.解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e .所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+-=-⎰⎰. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值.解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0.因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 2030383822a x a dx ax A a a===⎰.11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积. 解 所得旋转体的体积为20020222400x a x a axdx dx y V xx x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积. 解 绕x 轴旋转所得旋转体的体积为 ππππ712871207206202====⎰⎰x dx x dx y V x .绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y . 13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==0332322)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.证明 ⎰⎰---==RHR R HR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V .(2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202chch )(udu a au x dx ax a dx x y V aaπππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ)2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴.解 ⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=⎰. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=aaaady y a b dy y a b V 222222)()(ππ2202228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为y h a A A --, y hb B B --.截面的面积为π)()(y h b B B y h a A A --⋅--.于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ.18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ), 由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为 )(3)(22x R x A -=, 所以 322334)(3R dx x R V RR=-=⎰-.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==babadx x xf dx x xf V )(2)(2ππ.20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s ,令t x =+21, 即12-=t x , 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=',x x y 4121412+-=', )1(2112x x y +='+,所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s .23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s .因为2)1(22-='x y y , yx y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以 ]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y y ydy y p p dy p y dy y x s 02202021)(1)(1y y p y p y p y p 022222])ln(22[1++++=py p y p y p p y 2222ln22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长. 解 用参数方程的弧长公式. dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式 ⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰.27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 ⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000ta dt t a t -==⎰.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a t a 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为:横坐标a a x )2332()32sin 32(-=-=πππ,纵坐标a a y 23)32cos 1(=-=π,故所求分点的坐标为)23 ,)2332((a a -π.28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式.θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(11202-+=+=⎰θϕθθa a e aa d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ. 习题6-31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds W k(牛⋅厘米). 2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功?解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=, 其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为 dyy kMm dW 2=, 所求的功为 )(2h R R mMhk dy y kMm W h R R+⋅==⎰+.(2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cx t x v ='=, 阻力4229t kc kv f -=-=. 而32)(cx t =, 所以 34323429)(9)(x kc cx kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa===-=⎰⎰⎰. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==⎰,击第二次作功为)2(212112h h k kxdx W h+==⎰+. 因为21W W =, 所以有 )2(21212h h k k +=,解得12-=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为 dx x x dx r x dW 22)3210(-=⋅=ππ, 所求功为⎰-=1502)3210(dx x x W π ⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.解 建立x 轴, 方向向下, 原点在水面.水压力元素为xdx dx x dP 221=⋅⋅=,闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN). 8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为 11)43()43(2222=+-y x . 压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=, 所求压力为⎰⎰-⋅⋅+=--⋅=2223022cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x P ππ169cos 49202==⎰tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=-) 9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015-=, 压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=, 所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力.解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为 dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=, 所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)=1.65(牛). 11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF ra dF x -=, dF r y dF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ.12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=R ds m G dF x θθμθθμd RGm R Rd Gm cos cos )(2=⋅=, θθμϕϕd R Gm F x ⎰-=22cos 2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半?解 x 应满足⎰⎰+=+300112111dt t dt t x . 因为212]12[1100-+=+=+⎰x t dt t x x , 1]12[2111213030=+=+⎰t dt t , 所以 1212=-+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解 ⎰++⋅=432222)sin (cos 21)2(21ππθθθπd a a S 24322241)2sin 1(28a d a a -=++=⎰πθθπππ. 3. 设抛物线c bx ax y ++=2通过点(0, 0),且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线c bx ax y ++=2与直线x =1, y =0所围图形的面积为94, 且使该图形绕x 轴旋转而成的旋转体的体积最小.解 因为抛物线c bx ax y ++=2通过点(0, 0), 所以c =0, 从而bx ax y +=2.抛物线bx ax y +=2与直线x =1, y =0所围图形的面积为23)(102b a dx bx ax S +=+=⎰. 令9423=+b a , 得968a b -=. 该图形绕x 轴旋转而成的旋转体的体积为)235()(221022ab b a dx bx ax V ++=+=⎰ππ )]968(2)968(315[22a a a a -+-+=π. 令0)]128(181********[=-+-⋅+2=a a a d dV π, 得35-=a , 于是b =2.4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ7512722240274023=⋅=⋅=⎰x dx x x V . 5. 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312⎰--⋅⋅=dx x x V π 22224cos )sin 2(4 sin 2ππππ=+=-⎰-tdt t t x 令. 6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长.解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(-, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=⎰ )32ln(6++=.7. 半径为r 的球沉入水中, 球的上部与水面相切, 球的比重与水相同, 现将球从水中取出, 需作多少功?解 建立坐标系如图. 将球从水中取出时,球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x , 在水上上升的高度为r -x . 在水下对薄片所做的功为零, 在水上对薄片所做的功为 dx x r x r g dW ))((22--=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=--=⎰-. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内, 长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的上端点与原点对应. 长边在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=⎰.9. 设星形线t a x 3cos =, t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力.解 取弧微分ds 为质点, 则其质量为 ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323='+'=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有 ⎰+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π, ⎰+⋅++⋅⋅=202222322)()(1πds yx y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π, 所以)53 ,53(22Ga Ga =F .。

高等数学第六章参考答案

高等数学第六章参考答案

第六章参考答案习题6.11. 在空间直角坐标系中,指出下列各点在哪个卦限? ()3,4,3A -4,()4,3B -; 3,43(),C --; 3()3,4,D ---解 A 在第四卦限, B 在第二卦限, C 在第六卦限, D 在第七卦限.2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: ()0,4,1A ;()1,0,3B ; ()0,2,0C ; 0,0(,1)D -解 在xOy 面上的点的坐标为(,,0)x y ; 在yOz 面上, 的点的坐标为(0,,)y z ; 在zOx 面上, 的点的坐标为(,0,)x z .在x 轴上的点的坐标为(,0,0)x ; 在y 轴上的点的坐标为(0,,0)y , 在z 轴上的点的坐标为(0,0,)z .A 在yOz 面上,B 在xOz 面上,C 在y 轴上,D 在z 轴上.3. 求点(,,)x y z 关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(,,)x y z 关于x O y 面的对称点为(,,)(,,)x y z x y z -; 点称点(,,)x y z 为(,,)(,,)x y z x y z --; 点(,,)x y z 关于z 轴的对称点为(,,)x y z --.(3)点(,,)x y z 关于坐标原点的对称点为(,,)x y z ---.4. 过()01,2,3M 分别作平行于x 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 过0M 且平行于x 轴的直线上点的坐标,其特点是,它们的纵坐标均为2,它们的竖坐标均为3。

过0M 且平行于xOy 面的平面上点的坐标,其特点是,它们的横坐标均为1.5. 求点5,4( ,3)M -到各坐标轴的距离. 解 点M 到x 轴的距离就是点5,4(,3)M -与点(5,0,0)之间的距离, 即22(4)35x d =-+=.点M 到y 轴的距离就是点5,4(,3)M -与点0,4)( ,0-之间的距离, 即 225334y d =+=.点M 到z 轴的距离就是点5,4(,3)M -)与点(0,0,3)之间的距离, 即 225(4)41z d =+-=.6. 求证以1(4,3,1)M 、2(7,1,2)M 、3(5,2,3)M 三点为顶点的三角形是一个等腰三角形.解 因为 222212741()()()32114,M M =-+-+-=222223()( 572()12,)36M M =-+-+-=222213()(542()31,)36M M =-+-+-=所以2313 ,M M M M = 即123 M M M 为等腰三角形.7. 设已知两点 (2, 2, 2)A )和 (1, 3, 0)B 计算向量AB −−→的模、方向余弦和方向角.解 (12, 32, 02)(1, 1, 2)AB =---=--; 22211(2)2AB =++=;21cos -=α, 1cos 2β=, 2cos 2γ=-;32πα=, 3πβ=, 34πγ=.8. 设向量的方向余弦分别满足(1)cos 0=α; (2)cos 1=β;(3)cos cos 0==αβ, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos 0=α时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos 1=β时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos cos 0==αβ时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.9. 一向量的终点在点(2,17)B -, 它在x 轴、y 轴和z 轴上的投影依次为4,4,7-. 求这向量的起点A 的坐标.解 设点A 的坐标为(,,)x y z . 由已知得 ⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得2,3,0x y z =-==. 点A 的坐标为(2,3,0)A -.10. 设358m i j k =++, 247n i j k =--和54p i j k =+-. 求向量43a m n p =+-在x 轴上的投影及在y 轴上的分向量.解因为434()7541()()3715a m n p i j k i j k i j k i j k =+-=+++---+-=++,所以43a m n p =+-在x 轴上的投影为13, 在y 轴上的分向量7j . 11. 设a 的方向角,43ππαβ==,且3=a ,求a 的坐标表示。

数学第六章 实数知识点及练习题及解析

数学第六章 实数知识点及练习题及解析

数学第六章 实数知识点及练习题及解析一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③ B .①②④ C .①③④ D .②④ 3.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=4.观察下列各等式:231-+= -5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16 ……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-133530b -= ) A .0B .±2C .2D .46.下列各式中,正确的是( )A 34B 34; C 38D 347.设n 为正整数,且n n+1,则n 的值为( ) A .5B .6C .7D .88.某数的立方根是它本身,这样的数有( )A .1 个B .2 个C .3 个D .4 个9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( ) A .0个B .1个C .2个D .3个 10.下列运算中,正确的是( ) A .93=±B .382=C .|4|2-=-D .2(8)8-=-二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 . 13.64的立方根是___________.14.2(2)-的平方根是 _______ ;38a 的立方根是 __________.15.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.16.若x <0323x x ____________. 17.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 18.0.050.55507.071≈≈≈≈,按此规500_____________19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值. 22.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示; (2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。

高等数学课后习题答案第六章

高等数学课后习题答案第六章

习题6-2 1求图6-21 中各画斜线部分的面积(1)解 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A .(2)解法一 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A解法二 画斜线部分在y 轴上的投影区间为[1 e ] 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A ee e(3)解 画斜线部分在x 轴上的投影区间为[-3 1] 所求的面积为 332]2)3[(132=--=⎰-dx x x A(4)解 画斜线部分在x 轴上的投影区间为[-1 3] 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A2. 求由下列各曲线所围成的图形的面积: (1) 221x y =与x 2+y 2=8(两部分都要计算);解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A34238cos 16402+=-=⎰ππtdt .346)22(122-=-=ππS A .(2)xy 1=与直线y =x 及x =2;解:所求的面积为⎰-=-=212ln 23)1(dx x x A .(3) y =e x , y =e -x 与直线x =1;解:所求的面积为⎰-+=-=-1021)(ee dx e e A x x .(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba y ba y -===⎰ln ln ln ln3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积.解:y ¢=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3).过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6. 两切线的交点为)3 ,23(, 所求的面积为49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A .4. 求抛物线y 2=2px 及其在点),2(p p处的法线所围成的图形的面积.解2y ×y =2p在点),2(p p处1),2(=='p p y p y 法线的斜率k =-1法线的方程为)2(px p y --=- 即y p x -=23求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -法线与抛物线所围成的图形的面积为 233232316)612123()223(p y p y y p dy p y y p A pppp =--=--=--⎰5. 求由下列各曲线所围成的图形的面积(1)=2a cos q解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =pa 2.(2)x =a cos 3t , y =a sin 3t ;解所求的面积为 ⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰(3)=2a (2+cos q )解所求的面积为2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0t 2p )与横轴所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==aaa dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰. 7. 求对数螺线=ae q (-p q p )及射线q =p 所围成的图形面积解所求的面积为)(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A8. 求下列各曲线所围成图形的公共部分的面积.(1)=3cos q 及=1+cos q解曲线=3cos q 与=1+cos q交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A .(2)θρsin 2=及θρ2cos 2=解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π 所求的面积为2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd dA9. 求位于曲线y =e x 下方该曲线过原点的切线的左方以及x轴上方之间的图形的面积.解 设直线y kx 与曲线y e x 相切于A (x 0 y 0)点 则有⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000求得x 01 y 0e k e所求面积为21ln 21)ln 1(00020edy y y y y y e dy y y e e e ee=⋅+-=-⎰⎰10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值.解 设弦的倾角为a . 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=. 显然当时, A 1=0; 当2πα<时, A 1>0.因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 2030383822a x a dx ax A a a===⎰.11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积. 解 所得旋转体的体积为2020222400x a x a axdx dx y V xx x ππππ====⎰⎰12. 由y =x 3x =2 y =0所围成的图形分别绕2πα=x 轴及y 轴旋转 计算所得两个旋转体的体积解 绕x 轴旋转所得旋转体的体积为ππππ712871207206202====⎰⎰x dx x dx y V x绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y13. 把星形线3/23/23/2a y x =+所围成的图形 绕x 轴旋转 计算所得旋转体的体积解 由对称性 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==03323202)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π证明 ⎰⎰---==RHR RHR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V .(2)ax a y ch = x =0 x =a y =0 绕x 轴解 ⎰⎰⎰===102302202chch )(udu a au x dx ax a dx x y V a a πππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ)2sh 2(43+=a π(3)16)5(22=-+y x , 绕x 轴. 解⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a . 解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=⎰. 16 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=aaaa dy y ab dy y a b V 222222)()(ππ2202228ππb a dy y a b a=-=⎰.17 设有一截锥体 其高为h 上、下底均为椭圆 椭圆的轴长分别为2a 、2b 和2A 、2B 求这截锥体的体积解 建立坐标系如图 过y 轴上y 点作垂直于y 轴的平面 则平面与截锥体的截面为椭圆 易得其长短半轴分别为yha A A -- yhb B B --截面的面积为π)()(y h b B B y h a A A --⋅--于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ18 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 解 设过点x 且垂直于x 轴的截面面积为A (x ), 由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为)(3)(22x R x A -=, 所以 322334)(3R dx x R V RR=-=⎰-.19. 证明 由平面图形0a x b 0y f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=ba dxx xf V )(2π证明 如图 在x 处取一宽为dx 的小曲边梯形 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2x ×f (x )dx 这就是体积元素 即dV 2x ×f (x )dx于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==babadxx xf dx x xf V )(2)(2ππ20. 利用题19和结论 计算曲线y =sin x (0x )和x 轴所围成的图形绕y 轴旋转所得旋转体的体积解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s ,令t x =+21, 即12-=t x , 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1x 3的一段弧的长度解 xx x y 31-= xx y 2121-='xx y 4121412+-=' )1(2112xx y +='+所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2( )36 ,2(-所求弧长为⎰'+=21212dxy s因为 2)1(22-='x y y yx y 2)1(-=' )1(23)1(32)1()1(34242-=--=-='x x x y x y所以 ]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.解 ⎰⎰⎰+=+='+=y yydy y p p dy p y dy y x s 02202021)(1)(1y y p y p y p y p 022222])ln(22[1++++=py p y py p p y 2222ln22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长.解 用参数方程的弧长公式. dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直 使细线与圆周始终相切 细线端点画出的轨迹叫做圆的渐伸线 它的方程为 )sin (cos t t t a x +=)cos (sin t t t a y -=计算这曲线上相应于t 从0变到的一段弧的长度解 由参数方程弧长公式 ⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰27. 在摆线x =a (t -sin t ) y =a (1-cos t )上求分摆线第一拱成13的点的坐标解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0) 则⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000t a dt t a t -==⎰当t 02时 得第一拱弧长s (2)8a 为求分摆线第一拱为1 3的点为A (x y ) 令ata 2)2cos 1(40=-解得320π=t 因而分点的坐标为横坐标aa x )2332()32sin 32(-=-=πππ纵坐标aa y 23)32cos 1(=-=π故所求分点的坐标为)23 ,)2332((a a -π 28. 求对数螺线θρa e =相应于自=0到=的一段弧长.解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(1122-+=+=⎰θϕθθa a e aa d e a . 29. 求曲线=1相应于自43=θ至34=θ的一段弧长解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd30. 求心形线=a (1+cos 的全长.解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ. 习题6-31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm, 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds W k(牛×厘米). 2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为2ln 8008018000080800)10(4004002πππππ=-=-⋅⋅=⎰⎰dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是hR mgRhW +=, 其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg, 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km.证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功dy y kMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==⎰+. (2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cx t x v ='=, 阻力4229t kc kv f -=-=. 而32)(cx t =, 所以 34323429)(9)(x kc cx kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa===-=⎰⎰⎰. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm. 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm, 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =fdx =kxdx ,击第一次作功为k kxdx W 21101==⎰,击第二次作功为)2(212112h h k kxdx W h+==⎰+. 因为21W W =, 所以有 )2(21212h h k k +=, 解得12-=h (cm).6. 设一锥形贮水池, 深15m, 口径20m, 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为dx x x dx r x dW 22)3210(-=⋅=ππ,所求功为⎰-=1502)3210(dx x x W π⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m. 求闸门上所受的水压力.解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+-y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=,所求压力为 ⎰⎰-⋅⋅+=--⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x P ππ169cos 49202==⎰tdx (吨)=17.3(kN).(提示: 积分中所作的变换为t x sin 4343=-)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m, 高为20m. 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 解 建立坐标系如图. 直线AB 的方程为 x y 1015-=,压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=,所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm, 试求它每面所受的压力.解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克).(牛).11. 设有一长度为l 、线密度为m 的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为 dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为, dF ry dF y =.dF r adF x -=2202222022)(1)(la a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ. 12. 设有一半径为R 、中心角为 的圆弧形细棒, 其线密度为常数m . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M的引力.解 根据对称性, F y =0. θμcos 2⋅⋅⋅=R dsm G dF x θθμθθμd RGm R Rd Gm cos cos )(2=⋅=, θθμϕϕd R Gm F x ⎰-=22cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足⎰⎰+=+300112111dt t dt t x.因为212]12[1100-+=+=+⎰x t dt t x x, 1]12[2111213030=+=+⎰t dt t , 所以 1212=-+x , 45=x (m).2. 求由曲线r =a sin q , r =a (cos q +sin q )(a >0)所围图形公共部分的面积. 解⎰++⋅=432222)sin (cos 21)2(21ππθθθπd a a S 24322241)2sin 1(28a d a a -=++=⎰πθθπππ3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x Î[0, 1]时, y ³0. 试确定a 、b 、c 的值, 使得抛物线c bx ax y ++=2与直线x =1, y =0所围图形的面积为94, 且使该图形绕x 轴旋转而成的旋转体的体积最小.解 因为抛物线c bx ax y ++=2通过点(0 0) 所以c 0 从而 bxax y +=2抛物线bx ax y +=2与直线x =1, y =0所围图形的面积为 23)(102ba dx bx ax S +=+=⎰令9423=+b a 得968ab -=该图形绕x 轴旋转而成的旋转体的体积为)235()(221022ab b a dx bx ax V ++=+=⎰ππ)]968(2)968(315[22a a a a -+-+=π令0)]128(18181863125[=-+-⋅+2=a a a d dV π 得35-=a 于是b 24. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ7512722240274023=⋅=⋅=⎰x dx x x V5. 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312⎰--⋅⋅=dx x x V π22224cos )sin 2(4 sin 2ππππ=+=-⎰-tdt t t x 令6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长.解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(- )1 ,2( 于是所求的弧长为 202222])1ln(2112[212x x x x dx x s ++++=+=⎰)32ln(6++=7. 半径为r 的球沉入水中, 球的上部与水面相切, 球的比重与水相同, 现将球从水中取出, 需作多少功? 解 建立坐标系如图将球从水中取出时球的各点上升的高度均为2r 在x 处取一厚度为dx 的薄片 在将球从水中取出的过程中薄片在水下上升的高度为r x 在水上上升的高度为r x 在水下对薄片所做的功为零 在水上对薄片所做的功为dxx r x r g dW ))((22--=π对球所做的功为 g r x d x r x r g W r r 22234))((ππ=--=⎰-8. 边长为a 和b 的矩形薄板, 与液面成角斜沉于液体内, 长边平行于液面而位于深h 处, 设a >b , 液体的比重为, 试求薄板每面所受的压力.解 在水面上建立x 轴 使长边与x 轴在同一垂面上长边的上端点与原点对应 长边在x 轴上的投影区间为[0 b cos ] 在x 处x 轴到薄板的距离为h x tan 压力元素为dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅= 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=⎰ 9. 设星形线t a x 3cos = t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力.解 取弧微分ds 为质点 则其质量为ds y x ds y x 322322)()(+=+其中tdtt a dt t a t a ds cos sin 3])sin [(])cos [(2323='+'= 设所求的引力在x 轴、y 轴上的投影分别为F x 、F y 则有⎰+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π⎰+⋅++⋅⋅=202222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π所以)53 ,53(22Ga Ga =F。

高等数学第六章答案

高等数学第六章答案

高等数学第六章答案第六章定积分的应用第二节定积分在几何上的应用1? 求图中各阴影部分的面积?(1)(2) 1 1. 632? 332 (4)? 3 (3)2. 求由下列各曲线所围成的图形的面积?(1) 6??(2)4? 33?ln2? 21 (3)e??2? e(4)b?a93? ? 414? (1)?21(2)?4 35? (1) ?a2?(2) 32?a? 82 (3)18?a? ?6? (1)2?(2)?4? ?35? 4(3)及?2?cos2??6?127.求下列已知曲线所围成的图形? 按指定的轴旋转所产生的旋转体的体积:(1)y?x和x轴、向所围图形,绕x轴及y轴。

21(2)y?x2和y2?8x,绕x及y轴。

2(3)x??y?5??16,绕x轴。

2(4)xy=1和y=4x、x=2、y=0,绕。

(5)摆线x=a?t-sint?,y?a?1?cost?的一拱,y?0,绕x轴。

??482413(1,;(2)?,?;(3)160?2;(4)?;(5)5?2a3. 525568.由y?x3? x?2? y?0所围成的图形? 分别绕x轴及y轴旋转? 计算所得两个旋转体的体积?128?? 764? Vy?5 Vx?9.把星形线x2/3?y2/3?a2/3所围成的图形? 绕x轴旋转? 计算所得旋转体的体积?10.(1)证明由平面图形0?a?x?b? 0?y?f(x)绕y轴旋转所成的旋转体的体积为V?2?32?a3 105?xf(x)dx? 证明略。

a 2b (2)利用题(1)结论? 计算曲线y?sin x(0?x??)和x轴所围成的图形绕y轴旋转所得旋转体的体积? 2?11.计算底面是半径为R的圆? 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积?3R? 22312.计算曲线y?x2上相应于3?x?8的一段弧的弧长。

12 33213.计算曲线y?ln(1?x)上相应于0?x?11的一段弧的弧长。

数学史习题及答案

数学史习题及答案

第六讲思考题解析几何产生的时代背景是什么解析几何的实际背景更多的是来自对变量数学的需求。

文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代。

机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题。

在数学上就需要研究求曲线的切线问题。

所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学。

作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了。

解析几何的实际背景更多的是来自对变量数学的需求。

从16世纪开始,欧洲资本主义逐渐发展起来,进入了一个生产迅速发展,思想普遍活跃的时代。

生产实践积累了大量的新经验,并提出了大量的新问题。

可是,对于机械、建筑、水利、航海、造船、显微镜和火器制造等领域的许多数学问题,已有的常量数学已无能为力,人们迫切地寻求解决变量问题的新数学方法。

第七讲思考题谈谈您对于“读读欧拉,他是我们大家的老师”(拉普拉斯语)的看法莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。

他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。

欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。

他是把微积分应用于物理学的先驱者之一。

他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。

欧拉的数学和科学成果简直多得令人难以相信。

他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。

数学史朱家生习题答案

数学史朱家生习题答案

数学史朱家生习题答案数学史朱家生习题答案数学作为一门古老而又重要的学科,其历史可以追溯到古代文明的起源。

在数学的发展过程中,许多数学家都做出了重要的贡献,其中朱家生是中国数学史上的一位重要人物。

本文将通过回答一些与朱家生相关的习题,来探讨他的数学思想和贡献。

1. 朱家生是谁?他的数学成就有哪些?朱家生(1916-2004)是中国著名的数学家,他在数学教育和研究领域做出了重要的贡献。

他曾任教于北京大学,并担任中国数学会主席。

朱家生的数学成就包括但不限于:在数论和代数几何方面作出了重要的研究,提出了朱家生猜想,并在数学教育改革中起到了重要的推动作用。

2. 朱家生猜想是什么?它为数学界带来了什么影响?朱家生猜想是一个关于数论中的整数分拆问题的猜想。

具体来说,它猜测了任何一个正整数都可以表示为不同奇素数的和。

这个猜想在数论领域引起了广泛的关注,并且至今尚未被证明或者推翻。

朱家生猜想的提出激发了许多数学家对整数分拆问题的研究,推动了相关领域的发展。

3. 朱家生如何影响了数学教育改革?朱家生在中国的数学教育改革中起到了重要的推动作用。

他提倡“数学思维”的培养,强调数学教育应该注重培养学生的创造力和解决问题的能力。

他主张通过培养学生的数学素养来提高整个国家的科学技术水平。

朱家生的观点对中国的数学教育产生了深远的影响,推动了数学教育的改革和发展。

4. 朱家生的数学思想有哪些特点?朱家生的数学思想具有以下几个特点:首先,他注重数学的实际应用。

他认为数学应该与实际问题相结合,通过解决实际问题来推动数学的发展。

其次,他强调数学的创造性思维。

他认为数学不仅仅是一种工具,更是一种思维方式,通过培养学生的创造力和解决问题的能力来推动数学的发展。

最后,他重视数学教育的普及。

他认为数学是一门普及的学科,应该为更多的人所了解和掌握,通过数学的普及来提高整个社会的科学素养。

5. 朱家生对中国数学界的影响是什么?朱家生对中国数学界的影响是深远的。

高等数学第六章习题及答案

高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。

数学史朱家生版+课后题目参考答案解析+第五章

数学史朱家生版+课后题目参考答案解析+第五章

1.导致欧洲中世纪黑暗时期出现的主要原因是什么因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期.1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生.2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就.3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后;4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展.简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期.2、在欧洲中世纪黑暗时期曾经出现过那些知名的数学家,他们在当时那样的背景下各自做了哪些数学工作答:罗马人博伊西斯(罗马贵族),曾不顾禁令用拉丁文从古希腊着作的片段中编译了一些算术、几何、音乐、天文的初级读物,他把这些内容称为“四大科”,其中的数学着作还被教会学校作为标准课本使用了近千年之久,但博伊西斯本人还是遭受政治迫害被捕入狱并死在狱中。

第六章 高数习题详细解答

第六章 高数习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ).由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: AM =MC ,BM =MD ,∴AD =AM +MD =MC +BM =BC与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点? 解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为,到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-=222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB的模、方向余弦和方向角.解:因为(1,1)AB =- , 所以2AB =,11cos ,cos 22αβγ===-,从而 π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1) BC 与CA 及其模;(2) BC 的方向余弦、方向角;(3)与 BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=-- {}{}12,00,011,0,1,CA =---=--故==BC CA (2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===. (3)与 BC 同向的单位向量为:oa=⎧⎫=⎨⎬⎩⎭BC BC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b 的夹角余弦.解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j k a b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b - 解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直.2) [()()]⋅-⋅⋅ a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β,21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量. 解:=⨯=xy z xyzij kc a b a a a b b b 324112=--i j k =105+j k,||= c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=- ,三角形ABC 的面积为,22516121521||21222=++=⨯=A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为:21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面;(3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成 (2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222az x ay x解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在出三种不同形式的方程).yOz 平面内以坐标原点为圆心的单位圆的方程(任写解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点. 解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t ty t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+3222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程. 解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥-0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.10 、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ==∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1).又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; (4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为: 0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为 ,试证:点0M 到直线L 的距离为d =.证:设0M M与L 的夹角为θ,一方面由于0sin d M M θ= ;另一方面,00sin M M s M M s θ⨯= ,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB就是飞机相对于地面的速度.840cos 840sin 420,3266OA i j j AB j ππ=⋅+⋅=+=所以, 2452,856.45OB j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a bbc ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.图6-1 空所流动与飞机飞行速度的关系二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2= a,b ,则=⨯b a 2 ,=⋅b a 0 ;解 =⨯b a b a sin() a,bπ2=2,=⋅b a b a cos() a,bπ2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a ,所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj i n 452131113121--=--=⨯=P P P P ,又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C AB 4,5-=-=,于是所求平面方程为 0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C '=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p+--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z yx z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与x O y 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b , ()6π=a,b,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b.2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求 ()a,b. 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,ba b a b , ()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪= 由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i kj i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kj i b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y x z ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M = 在π上,所以0MM ⊥ n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1) 在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2) 420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1=解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .。

(完整word版)《数学史》朱家生版+课后题目参考答案+第六章

(完整word版)《数学史》朱家生版+课后题目参考答案+第六章

1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。

他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束.他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。

”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。

在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。

(在变量的理解和应用上。

希腊人无法处理三个以上变量的乘积.而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。

)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考.运用科学方法的必然结果。

3。

阐述费马的主要数学成就。

(1)对解析几何的贡献费马独立于勒奈·笛卡儿发现了解析几何的基本原理。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。

《数学史》朱家生版+课后题目参考答案+第四章

《数学史》朱家生版+课后题目参考答案+第四章

1.作为世界四大文明古国之一,中国在公元前3000年至公元前1500年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。

在殷墟出土的甲骨文卜辞中有很多记数的文字。

从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。

算筹是中国古代的计算工具,而这种计算方法称为筹算。

算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。

算筹为加、减、乘、除等运算建立起良好的条件。

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。

在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。

战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。

著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。

墨家还给出有穷和无穷的定义。

《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。

这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

十进制是一种便捷的计数方法,而筹算是一种有效的工具,两者均是中国对世界的重大贡献。

在同时代的各古代文明中,只有中国提出了十进制。

《数学史》朱家生版+课后题目参考答案+第二章

《数学史》朱家生版+课后题目参考答案+第二章

1、试从数学科学发展的角度,探讨古希腊把逻辑学中的演绎证明引入数学的理由,并进一步论述数学与逻辑的关系。

答:一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。

同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。

其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。

因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。

研究中国传统数学中逻辑思想与方法的必要性一直以来,不论是在逻辑史学界,还是在数学史学界,对于中国传统数学中逻辑思想与方法的研究没有得到应有的重视。

但从下面我们简单论述来看,加强这方面的研究却具有显明的必要性。

一、从逻辑与数学的关系看数学与逻辑的研究对象虽各不相同,但它们的性质、特点却有很多共同和类似的地方,正因为如此,才使得它们关系十分密切,在内容和方法上可以互相运用和相互渗透。

一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。

同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。

其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。

因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。

首先,肯定数学和逻辑的同一性。

这是因为:(1)数学和逻辑都是高度抽象的学科,数学是研究数量的形式结构的,逻辑是研究思维的形式结构的,形式结构都是高度抽象的,是抽象结构,它们的定义、定理、原理、法则等的正确性均不涉及各种事物具体内容;(2) 数学和逻辑都讲严格性,数学只有具有推理论证的严密性和结论的确定性或可靠性才成其为科学,逻辑也只有当它的推理论证严格而公理系统化时才形成科学;(3) 数学和逻辑都具有广泛的应用性,数学的应用自不待言,对逻辑而言可以肯定地说哪里有思维哪里就要逻辑,一切科学都在应用逻辑。

数学史第6章

数学史第6章
笛卡儿用这种新思想解决帕普斯问题,从而得到了曲线的 方程,他断言,曲线的次数与坐标轴的选择无关,并指出,这 个轴要选得使最后得出的方程愈简单愈好。
帕普斯问题
❖ 设l1,l2,l3和l4是四条给 定直线,过平面上一点C引
四条线各与已知直线交成已
知角,设交点为P、Q、R和S ,要求满足CP·CR=CS·CQ
6.2 笛卡儿与他的《几何学》
3、笛卡儿的《几何学》
❖ 应该指出,笛卡儿的坐标系是不完备的,他未曾引入第二条坐 标轴,即y轴.另外笛卡儿也没有考虑横坐标的负值.笛卡尔所 建立的解析几何在数学史上具有划时代的意义。
❖ 笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之 一,被誉为“近代科学的始祖”。
笛卡儿
Descartes 1596——1650
法国人
6.2 笛卡儿与他的《几何学》
1、笛卡儿生平简介
❖ 1616年获该校博士学位.取得学位之后,他就暗下决心:今后 不再仅限于书本里求知识,更要向“世界这本大书”求教, 以“获得经验”,而且要靠理性的探索来区别真理和谬误.
❖ 1618年起,先在军队里当过几年兵,离开军队之后便到德国, 丹麦,荷兰,瑞士,意大利等国游历,所见所闻丰富了他的见 识,更重要的是对当时科学的最新成果增强了了解.
❖文艺复兴以来日益受到人们关注的行星绕日运动和抛体运动, 要求人们用运动和变化的观点研究圆锥曲线,即把曲线看成是物 体经运动而生成且随时间的变化而变化着的轨迹。要研究这些比 较复杂的曲线,原先的一道方法显然已经不适应了,这些工作成 为解析几何建立的外部动力。
❖总之,在这一时期数学得到了越来越多的应用,同时,也有更 多的问题需要应用数学去解决。科学的需要和对研究新的数学方 法的兴趣推动了笛卡儿和费马对会标几何的研究。在他们手里, 代数学与几何学得到了有机的结合,从而开拓出了一个崭新的数 学领域。

数学史朱家生版课后题目参考答案第

数学史朱家生版课后题目参考答案第

1.数学的起源于世界xxxx产生的关系11数本(1)班郭奇2011041047“数学”这个词在我们的生活中可谓是无处不在,他作为人类思维的表达形式,反映了人们的积极进取的意志、缜密周详的推理及对完美境界的追求。

“数学”与我们身边的其他学科也有着密切联系。

例如在天文学方面、医学方面、经济学方面等等。

大到天文地理,小到生活琐事,数学的魅力可谓是发挥的淋漓尽致。

然而关于数学的起源,却有着一个古老而神奇的传说。

相传在非常非常遥远的古代,有一天在黄河的波涛中突然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的河水中又爬出一只“神龟”来,龟背上也驮着一卷书,书中则阐述了数的排列方法。

马背上的图叫“河图”,乌龟背上的书叫做“洛书”,当“河图洛书”出现后,数学也就诞生了。

当然,这个也只不过是个传说罢了。

数学作为最古老的一门学科,他的起源可以上溯到一万多年以前。

但是,公元1000年以前的资料留存下来的极少,迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。

远在一万五千年以前,人类就可以相当逼真的描绘出人和动物的形象,这是萌发图形意识的最早证据。

后来就开始逐渐对圆形和直线型的追求,从而成为数学图形的最早的原型。

在日常的生活实践中又逐渐产生了记数的意识和系统。

人类摸索过许多种记数的方法,例如用石块记数,结绳记数等,最后逐步发展到现在我们所用的数字。

图形意识和记数意识发展到一定阶段,又产生了度量的意识。

从人类社会的发展史来看,人们对数学本质特征的认识也在不断变化和深化着。

欧几里得说过“数学的根源在于普通的常识,最显著的例子是非负整数。

”他的算术来自于普通常识中的非负整数。

而且直到十九世纪中叶,对于数的科学探索还停留在普通的常识。

因此,十九世纪以前,人们普遍认为数学是一门自然学科,经验学科,因为那时的数学与现实之间的联系非常密切。

随着数学研究的不断深入,从十九世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位。

高等数学课后习题答案第六章

高等数学课后习题答案第六章

习题621 求图621 中各画斜线部分的面积(1)解 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A .(2)解法一 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A解法二 画斜线部分在y 轴上的投影区间为[1 e ] 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A e e e(3)解 画斜线部分在x 轴上的投影区间为[3 1] 所求的面积为332]2)3[(132=--=⎰-dx x x A(4)解 画斜线部分在x 轴上的投影区间为[1 3] 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A 2. 求由下列各曲线所围成的图形的面积(1) 221x y =与x 2y 28(两部分都要计算)解388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A 34238cos 16402+=-=⎰ππtdt 346)22(122-=-=ππS A (2)xy 1=与直线yx 及x 2解所求的面积为⎰-=-=212ln 23)1(dx x x A(3) ye x ye x 与直线x 1解所求的面积为⎰-+=-=-1021)(e e dx e e A x x (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y -===⎰ln ln ln ln3 求抛物线yx 24x 3及其在点(0 3)和(3 0)处的切线所围成的图形的面积解y 2 x 4过点(0, 3)处的切线的斜率为4 切线方程为y 4(x 3)过点(3, 0)处的切线的斜率为2 切线方程为y 2x 6两切线的交点为)3 ,23( 所求的面积为 49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A4 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积解2yy 2p在点),2(p p 处 1),2(=='p p y p y 法线的斜率k 1 法线的方程为)2(p x p y --=- 即y p x -=23 求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p p p =--=--=--⎰ 5 求由下列各曲线所围成的图形的面积(1)2a cos解所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A a 2 (2)xa cos 3t , ya sin 3t ;解所求的面积为⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰(3)=2a (2+cos )解所求的面积为2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰ 6 求由摆线xa (t sin t ) ya (1cos t )的一拱(0t 2)与横轴所围成的图形的面积解所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰ 7 求对数螺线ae ()及射线所围成的图形面积解所求的面积为)(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A 8 求下列各曲线所围成图形的公共部分的面积(1)3cos 及1cos解曲线3cos 与1cos 交点的极坐标为)3,23(πA )3,23(π-B 由对称性 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A(2)θρsin 2=及θρ2cos 2=解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π 所求的面积为 2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A9 求位于曲线y =e x 下方该曲线过原点的切线的左方以及x 轴上方之间的图形的面积解 设直线ykx 与曲线ye x 相切于A (x 0 y 0)点 则有⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000求得x 01 y 0e ke所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+-=-⎰⎰ 10 求由抛物线y 24ax 与过焦点的弦所围成的图形的面积的最小值解 设弦的倾角为 由图可以看出 抛物线与过焦点的弦所围成的图形的面积为10A A A +=显然当2πα=时 A 10 当2πα<时 A 10 因此 抛物线与过焦点的弦所围成的图形的面积的最小值为 20300383822a x a dx ax A a a ===⎰ 11 把抛物线y 24ax 及直线xx 0(x 00)所围成的图形绕x 轴旋转 计算所得旋转体的体积解 所得旋转体的体积为2002002224000x a x a axdx dx y V xx x ππππ====⎰⎰12 由yx 3 x 2 y 0所围成的图形 分别绕x 轴及y 轴旋转计算所得两个旋转体的体积解 绕x 轴旋转所得旋转体的体积为ππππ712871207206202====⎰⎰x dx x dx y V x 绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y13 把星形线3/23/23/2a y x =+所围成的图形 绕x 轴旋转 计算所得旋转体的体积解 由对称性 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==03323202)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰14 用积分方法证明图中球缺的体积为)3(2H R H V -=π证明 ⎰⎰---==RHR RHR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ15 求下列已知曲线所围成的图形 按指定的轴旋转所产生的旋转体的体积(1)2x y = 2y x = 绕y 轴解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V(2)ax a y ch = x 0 xa y 0 绕x 轴 解 ⎰⎰⎰===102302202chch )(udu a au x dx ax a dx x y V a a πππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ)2sh 2(43+=a π (3)16)5(22=-+y x 绕x 轴 解⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x(4)摆线xa (t sin t ) ya (1cos t )的一拱 y 0 绕直线y 2a 解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a 232023237sin )cos 1(8ππππa tdt t a a =+-=⎰ 16 求圆盘222a y x ≤+绕xb (b >a >0)旋转所成旋转体的体积解 ⎰⎰------+=aaaady y a b dy y a b V 222222)()(ππ2202228ππb a dy y a b a=-=⎰17 设有一截锥体 其高为h 上、下底均为椭圆 椭圆的轴长分别为2a 、2b 和2A 、2B 求这截锥体的体积解 建立坐标系如图 过y 轴上y 点作垂直于y 轴的平面 则平面与截锥体的截面为椭圆 易得其长短半轴分别为 y h a A A -- y h b B B --截面的面积为π)()(y h b B B y h a A A --⋅--于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ18 计算底面是半径为R 的圆 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积解 设过点x 且垂直于x 轴的截面面积为A (x ) 由已知条件知 它是边长为x R -2的等边三角形的面积 其值为)(3)(22x R x A -= 所以 322334)(3R dx x R V RR=-=⎰-19 证明 由平面图形0axb 0yf (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π证明 如图 在x 处取一宽为dx 的小曲边梯形 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2xf (x )dx 这就是体积元素 即 dV 2xf (x )dx于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==babadx x xf dx x xf V )(2)(2ππ20 利用题19和结论 计算曲线y sin x (0x )和x 轴所围成的图形绕y 轴旋转所得旋转体的体积解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V21 计算曲线y ln x 上相应于83≤≤x 的一段弧的长度 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s令t x =+21 即12-=t x 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s 22 计算曲线)3(3x x y -=上相应于1x 3的一段弧的长度解 x x x y 31-= x x y 2121-='x x y 4121412+-=' )1(2112x x y +='+所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s23 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2( )36 ,2(-所求弧长为⎰'+=21212dx y s因为2)1(22-='x y y yx y 2)1(-=' )1(23)1(32)1()1(34242-=--=-='x x x y x y 所以]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s 24 计算抛物线y 22px 从顶点到这曲线上的一点M (x y )的弧长 解 ⎰⎰⎰+=+='+=y yydy y p p dy p y dy y x s 02202021)(1)(1y y p y p y p y p 022222])ln(22[1++++=py p y p y p p y 2222ln22++++= 25 计算星形线t a x 3cos = t a y 3sin =的全长 解 用参数方程的弧长公式 dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π26 将绕在圆(半径为a )上的细线放开拉直 使细线与圆周始终相切 细线端点画出的轨迹叫做圆的渐伸线 它的方程为 )sin (cos t t t a x += )cos (sin t t t a y -= 计算这曲线上相应于t 从0变到的一段弧的长度解 由参数方程弧长公式 ⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰27 在摆线xa (t sin t ) ya (1cos t )上求分摆线第一拱成1 3的点的坐标解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0) 则 ⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000ta dt t a t -==⎰当t 02时 得第一拱弧长s (2)8a 为求分摆线第一拱为1 3的点为A (x y ) 令a ta 2)2cos 1(40=-解得320π=t 因而分点的坐标为横坐标a a x )2332()32sin 32(-=-=πππ纵坐标a a y 23)32cos 1(=-=π故所求分点的坐标为)23 ,)2332((a a -π28 求对数螺线θρa e =相应于自0到的一段弧长 解 用极坐标的弧长公式 θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(1122-+=+=⎰θϕθθa a e aa d e a 29 求曲线1相应于自43=θ至34=θ的一段弧长解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd30 求心形线a (1cos 的全长 解 用极坐标的弧长公式 θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ习题631 由实验知道 弹簧在拉伸过程中 需要的力F (单位 N )与伸长量s (单位 cm)成正比 即Fks (k 为比例常数) 如果把弹簧由原长拉伸6cm 计算所作的功解 将弹簧一端固定于A 另一端在自由长度时的点O 为坐标原点 建立坐标系 功元素为dWksds 所求功为 182160260===⎰s k ksds W k(牛厘米) 2 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽 设温度保持不变 要使蒸汽体积缩小一半 问需要作多少功 解 由玻马定律知ππ80000)8010(102=⋅⋅==k PV设蒸气在圆柱体内变化时底面积不变 高度减小x 厘米时压强 为P (x )牛/厘米2 则ππ80000)]80)(10[()(2=-⋅x x P π-=80800)(x P功元素为dx x P dW )()10(2⋅=π 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W (J) 3 (1)证明 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=其中g 是地面上的重力加速度 R 是地球的半径(2)一颗人造地球卫星的质量为173kg 在高于地面630km 处进入轨道 问把这颗卫星从地面送到630的高空处 克服地球引力要作多少功已知g 98m/s 2 地球半径R 6370km证明 (1)取地球中心为坐标原点 把质量为m 的物体升高的功元素为dy y kMmdW 2=所求的功为 )(2h R R mMhk dy y kMm W hR R+⋅==⎰+(2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ) 4 一物体按规律3ct x =作直线运动 媒质的阻力与速度的平方成正比 计算物体由x 0移至xa 时 克服媒质阻力所作的功 解 因为3ct x = 所以23)(cx t x v ='= 阻力4229t kc kv f -=-= 而32)(cx t = 所以 34323429)(9)(x kc cx kc x f -=-= 功元素dWf (x )dx 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa===-=⎰⎰⎰ 5 用铁锤将一铁钉击入木板 设木板对铁钉的阻力与铁钉击入木板的深度成正比 在击第一次时 将铁钉击入木板1cm 如果铁锤每次打击铁钉所做的功相等 问锤击第二次时 铁钉又击入多少解 设锤击第二次时铁钉又击入h cm 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比 即fkx 功元素dWf dxkxdx 击第一次作功为k kxdx W 21101==⎰击第二次作功为)2(212112h h k kxdx W h+==⎰+因为21W W = 所以有 )2(21212h h k k += 解得12-=h (cm)6 设一锥形贮水池 深15m 口径20m 盛满水 今以唧筒将水吸尽 问要作多少功解 在水深x 处 水平截面半径为x r 3210-= 功元素为dx x x dx r x dW 22)3210(-=⋅=ππ所求功为⎰-=1502)3210(dx x x W π⎰+-=15032)9440100(dx x x x π 1875(吨米)(kJ)7 有一闸门 它的形状和尺寸如图 水面超过门顶2m 求闸门上所受的水压力解 建立x 轴 方向向下 原点在水面水压力元素为xdx dx x dP 221=⋅⋅= 闸门上所受的水压力为21252252===⎰x xdx P (吨)=205 8(kN)8 洒水车上的水箱是一个横放的椭圆柱体 尺寸如图所示 当水箱装满水时 计算水箱的一个端面所受的压力解 建立坐标系如图 则椭圆的方程为11)43()43(2222=+-y x 压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=所求压力为 ⎰⎰-⋅⋅+=--⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x P ππ169cos 49202==⎰tdx (吨)(kN)(提示 积分中所作的变换为t x sin 4343=-)9 有一等腰梯形闸门 它的两条底边各长10m 和6m 高为20m 较长的底边与水面相齐 计算闸门的一侧所受的水压力 解 建立坐标系如图 直线AB 的方程为 x y 1015-=压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)14388(千牛)10 一底为8cm 、高为6cm 的等腰三角形片 铅直地沉没在水中 顶在上 底在下且与水面平行 而顶离水面3cm 试求它每面所受的压力解 建立坐标系如图腰AC 的方程为x y 32= 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)(牛)11 设有一长度为l 、线密度为的均匀细直棒 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M 试求这细棒对质点M 的引力解 建立坐标系如图 在细直棒上取一小段dy 引力元素为 dy ya Gm y a dy m G dF 2222+=+⋅=μμ dF 在x 轴方向和y 轴方向上的分力分别为dF ra dF x -= dF r ydF y =2202222022)(1)(la a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ 12 设有一半径为R 、中心角为 的圆弧形细棒 其线密度为常数 在圆心处有一质量为m 的质点F 试求这细棒对质点M 的引力 解 根据对称性 F y 0 θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd RGm R Rd Gm cos cos )(2=⋅=θθμϕϕd R Gm F x ⎰-=22cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰ 引力的大小为2sin 2ϕμR Gm 方向自M 点起指向圆弧中点总 习 题 六1 一金属棒长3m 离棒左端xm 处的线密度为11)(+=x x ρ(kg/m ) 问x 为何值时 [0 x ]一段的质量为全棒质量的一半 解 x 应满足⎰⎰+=+300112111dt t dt t x因为212]12[1100-+=+=+⎰x t dt t x x1]12[2111213030=+=+⎰t dt t 所以 1212=-+x45=x (m)2 求由曲线a sin a (cossin)(a >0)所围图形公共部分的面积 解⎰++⋅=432222)sin (cos 21)2(21ππθθθπd a a S 24322241)2sin 1(28a d a a -=++=⎰πθθπππ 3 设抛物线c bx ax y ++=2通过点(0 0) 且当x [0 1]时 y 0 试确定a 、b 、c 的值 使得抛物线c bx ax y ++=2与直线x 1 y 0所围图形的面积为94 且使该图形绕x 轴旋转而成的旋转体的体积最小解 因为抛物线c bx ax y ++=2通过点(0 0) 所以c 0 从而 bx ax y +=2抛物线bx ax y +=2与直线x 1 y 0所围图形的面积为 23)(102b a dx bx ax S +=+=⎰令9423=+b a 得968a b -=该图形绕x 轴旋转而成的旋转体的体积为)235()(221022ab b a dx bx ax V ++=+=⎰ππ)]968(2)968(315[22a a a a -+-+=π 令0)]128(181********[=-+-⋅+2=a a a d dV π 得35-=a 于是b 2 4 求由曲线23x y =与直线x 4 x 轴所围图形绕y 轴旋转而成的旋转体的体积解 所求旋转体的体积为πππ7512722240274023=⋅=⋅=⎰x dx x x V5 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积 解 )2(122312⎰--⋅⋅=dx x x V π22224cos )sin 2(4 sin 2ππππ=+=-⎰-tdt t t x 令 6 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(- )1 ,2(于是所求的弧长为 202222])1ln(2112[212x x x x dx x s ++++=+=⎰)32ln(6++=7 半径为r 的球沉入水中 球的上部与水面相切 球的比重与水相同 现将球从水中取出 需作多少功解 建立坐标系如图 将球从水中取出时 球的各点上升的高度均为2r 在x 处取一厚度为dx 的薄片 在将球从水中取出的过程中 薄片在水下上升的高度为rx 在水上上升的高度为rx 在水下对薄片所做的功为零 在水上对薄片所做的功为 dx x r x r g dW ))((22--=π 对球所做的功为g r x d x r x r g W rr 22234))((ππ=--=⎰-8 边长为a 和b 的矩形薄板 与液面成角斜沉于液体内 长边平行于液面而位于深h 处 设a >b 液体的比重为 试求薄板每面所受的压力解 在水面上建立x 轴 使长边与x 轴在同一垂面上 长边的上端点与原点对应 长边在x 轴上的投影区间为[0 b cos] 在x 处x 轴到薄板的距离为hx tan 压力元素为dx x h gadx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅= 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=⎰ 9 设星形线t a x 3cos = t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方 在原点O 处有一单位质点 求星形线在第一象限的弧段对这质点的引力解 取弧微分ds 为质点 则其质量为 ds y x ds y x 322322)()(+=+其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323='+'=设所求的引力在x 轴、y 轴上的投影分别为F x 、F y 则有 ⎰+⋅++⋅⋅=22222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π⎰+⋅++⋅⋅=202222322)()(1πds yx y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==⎰π 所以)53 ,53(22Ga Ga =F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?
解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和
流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?
答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。

他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束。

他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。

”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。

在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。

(在变量的理解和应用上。

希腊人无法处理三个以上变量的乘积。

而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。

)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考。

运用科学方法的必然结果。

3.阐述费马的主要数学成就.
(1)对解析几何的贡献
费马独立于勒奈·笛卡儿发现了解析几何的基本原理。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。

他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。

并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。

费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。

但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。

(2)对微积分的贡献
16、17世纪,微积分是继解析几何之后的最璀璨的明珠。

人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。

但在诸多先驱者当中,费马仍然值得一提。

曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。

这项工作较为古老,最早可追溯到古希腊时期。

阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。

由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。

由于约翰尼斯开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。

尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。

费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。

(3)对概率论的贡献
早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。

l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。

到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。

(4)对数论的贡献
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。

l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。

费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。

费马在数论领域中的成果是巨大的,其中主要有:
费马大定理:n>2是整数,则方程x^n+y^n=z^n没有满足xyz≠0的整数解。

这个是不定方程,它已经由英国数学家怀尔斯证明了(1995年),证明的过程是相当艰深的!
费马小定理:a^p-a≡0(mod p),其中p是一个素数,a是正整数,它的证明比较简单。

事实上它是Euler定理的一个特殊情况,Euler 定理是说:a^φ(n)-1≡0(mod n),a,n都是正整数,φ(n)是Euler 函数,表示和n互素的小于n的正整数的个数.
(5)对光学的贡献
费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。

这个原理的提出源远流长。

早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。

后由海伦揭示了这两个定律的理论实质——光线取最短路径。

经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。

—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。

费马的高明之
处则在于变这种的哲学的观念为科学理论。

费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。

并用最小作用原理解释了一些问题。

这给许多数学家以很大的鼓舞。

尤其是莱昂哈德·欧拉,竟用变分法技巧把这个原理用于求函数的极值。

这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。

4、试比较笛卡尔和费马的思想方法与现代解析几何的异同。

答:在解析几何的研究过程中费马的工作与笛卡儿工作的共同之处是都没有负坐标,但是,两人研究坐标几何的方法大不相同。

笛卡儿批评了希腊的传统,而且主张同这些传统决裂;费马则着眼于继承希腊人的思想,认为他自己的工作是重新表达了阿波罗尼斯的工作。

真正的发现—代数方法的威力—是属于笛卡儿的,他知道自己是在改造古代的方法。

因此,和费马的方法相比,笛卡儿的方法具有普遍性,而且就潜力而论也适用于更一般的曲线。

随着解析几何自身的产生和发展,“曲线”概念得到进一步深化。

解析几何把“曲线”概括为任意的几何图形,开辟了用代数方法研究几何问题的新思路。

其次,笛卡儿和费马发明的解析几何,把二维平面上的点和有序实数对(x,y)之间对应起来,以此类推,提出了高维空间的理论,这是现代数学极其重要的思想。

19世纪以后,经典
解析几何已经发展的相当完备,但解析几何依然充满活力。

事实上,现代数学中的两个很有生命的分支—泛函分析和代数几何,在很大程度上都是解析几何的直接延续。

相关文档
最新文档