九上科学第二次月考-(二)
浙江省温州市实验中学2023-2024学年九年级上学期月考科学试卷(10月份)
2023-2024学年浙江省温州实验中学九年级(上)月考科学试卷(10月份)一、选择题(本题有16小题,每小题4分,共64分)1.(4分)下列为稀释浓硫酸的操作,其中正确的是()A.B.C.D.2.(4分)下列物质的俗名和化学式不相符的是()A.苛性钠Na B.纯碱Na2CO3C.小苏打NaHCO3D.熟石灰Ca(OH)23.(4分)巧克力的外包装往往采用锡纸。
金属锡可以压成薄片,这主要是利用了金属锡的()A.延展性好B.导电性强C.有金属光泽D.硬度大4.(4分)钾肥能促使农作物生长茂盛,茎秆粗壮,促进糖和淀粉的生成()A.Ca3(PO4)2B.K2CO3C.KH2PO4D.KNO35.(4分)目前我国的加碘食盐主要是添加碘酸钾(KIO3),碘酸钾属于()A.氧化物B.酸C.碱D.盐6.(4分)用敞口容器盛放浓盐酸,一段时间后其溶质质量分数和pH的变化情况是()A.溶质质量分数变大,pH变小B.溶质质量分数和pH都变大C.溶质质量分数变小,pH变大D.溶质质量分数和pH都变小7.(4分)波尔多液是一种农业上应用广泛的杀菌剂,其配制的主要原理是CuSO4+Ca(OH)2=CaSO4+Cu(OH)2↓,该反应属于()A.化合反应B.分解反应C.复分解反应D.置换反应8.(4分)在金属表面覆盖保护膜是普遍采用的金属防锈措施之一。
下列自行车的防锈措施中,不属于覆盖保护膜的是()A.用防锈纸包装零件B.链条上油C.铁中添加镍铬制成不锈钢D.车架喷漆9.(4分)酒石酸(C4H6O6)是葡萄酒中的一种酸,在水溶液中可以电离出H+,从而呈现酸性,下列物质不能与酒石酸反应的是()A.CO2B.CuO C.KOH D.Fe10.(4分)某种“即食即热型快餐”适合外出旅行时使用,使用时拉动预留在外的拉线,可使外层两包化学物质接触()A.氢氧化钠和水B.氯化钠和水C.稀硫酸和水D.硝酸铵和水11.(4分)打开浓盐酸试剂瓶,发现瓶口有“白雾”出现。
福建省厦门市第一中学2023-2024学年九年级上学期第二次月考化学试题
福建省厦门第一中学2023-2024学年九年级上学期第二次月考化学试题一、本卷每题3分,每小题只有一个选项正确,请在答题卡选择题栏内用2B铅笔将该选项涂黑。
1.(3分)2023年生态文明贵阳国际论坛以“推进绿色低碳发展”为主题。
下列做法不符合这一主题的是()A.绿色出行,践行“低碳生活”B.露天焚烧垃圾,减少生活垃圾量C.植树造林,营造“绿水青山”D.节约生活用水,降低人均用水量2.(3分)为应对全球气候变化,我国向世界承诺:2030年前达到“碳达峰”,2060年前实现“碳中和”,体现了大国担当。
“碳中和”中的碳是指()A.二氧化碳B.碳元素C.碳原子D.碳单质3.(3分)下列制取、收集、验满、检验CO2的装置和原理能达到实验目的的是()A.制取B.收集C.验满D.检验4.(3分)中国林业科学研究院将木材经化学品处理,剥离半纤维素和木质素制成的木材海绵,可以从水中吸附油脂,这种新型海绵在容量、质量和可重复使用性方面超越了现有的所有其他海绵或吸附剂,下列说法正确的是()A.在木质海绵中碳原子不再运动B.木质海绵不具有疏松多孔的结构C.木质海绵吸附油污的过程中生成了新物质D.木材海绵能够有效解决石油和化学品泄漏对世界各地的水体造成的破坏5.(3分)消防用自动感温喷淋头结构如图所示。
当喷淋头附近温度升高到喷淋头的设定值时,丙三醇将热敏玻璃球胀破,喷淋头自动喷水灭火。
下列说法不正确的是()A.热敏玻璃球能迅速将外界的热量传递给丙三醇B.玻璃球胀破的原因是丙三醇分子间的间隔变大C.喷水灭火的原理是水降低了可燃物的着火点D.日常生活中应避免热源靠近自动感温喷淋头6.(3分)鉴别、除杂是重要的实验技能。
除去下列物质中的少量杂质,选择的方法不正确的是()选项物质杂质除去杂质的方法A N2O2通过灼热的铜网B CO2CO点燃COC H2O色素加入活性炭吸附D自来水可溶性杂质蒸馏A.A B.B C.C D.D7.(3分)下列关于燃烧与灭火的说法中,不正确的是()A.将大块煤粉碎后再燃烧,其目的是增大煤与氧气的接触面积B.烛火用扇子一扇即灭,因为带走了蜡烛周围的热量,温度降低C.图a中的现象可知,金属镁引起的火灾不可以用二氧化碳灭火D.图b中火柴头朝上时更容易燃烧,是因为散逸的热量会加热火柴梗,提高温度8.(3分)在一个密闭容器中,有甲、乙、丙、丁四种物质,一定条件下充分反应,测得反应前后各物质的质量如图所示。
2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷+答案解析
2023-2024学年陕西省西安市光中学教育集团九年级(上)第二次月考物理试卷一、单选题:本大题共10小题,共20分。
1.很多物理量的单位是以科学家名字命名的。
下列以科学家的名字命名的物理量单位与其物理量对应正确的是()A.安培——电阻B.欧姆——电压C.焦耳——热量D.伏特——电流2.下列四组物体中,在通常情况下都不容易导电的是()A.空气、人体B.陶瓷管、橡胶棒C.石墨棒、金属丝D.盐水溶液、塑料3.如图甲是小华在学校科技实践活动中自制的盐水动力车,主要是由盐水电池和一个小电动机组装而成的。
图乙是他在测量自制盐水电池的电压,下列内容摘自关于盐水动力车的说明书,其中说法不合理的是()A.盐水电池给小车供电时,化学能转化为电能B.盐水电池供电时不会升温C.自制盐水电池的电压是D.小车运动时电能转化为机械能4.下列有关电阻、变阻器说法正确的是()A.电阻是导体对电流的阻碍作用,导体中没有电流流过时,导体就没有电阻B.电阻是导体的一种性质,与电压成正比,与电流成反比C.将一根金属丝缓慢拉长后,其电阻变大D.滑动变阻器是通过改变电阻丝的横截面积来改变电阻的5.下列各图中,电流表能直接测量通过灯泡的电流的电路是()A. B.C. D.6.如图所示是电阻、的电压-电流关系图像,下列说法正确的是()A.电阻的阻值是B.的阻值小于的阻值C.电阻、串联,当电流为时,、两端总电压为3VD.电阻、并联,当电源电压为2V时,干路中的电流是7.用如图所示的器材探究影响导体电阻大小的因素,分别选用A、B、C、D四根不同的金属丝接入M、N 两点之间,下列说法正确的是()A.接A、D,可探究导体电阻大小与导体长度是否有关B.接C比接B时电流表示数更大一些C.接A、C,可探究导体电阻大小与横截面积是否有关D.该实验装置不能探究导体电阻与导体材料的关系8.在图所示的各电路中,闭合电键S后,在滑动变阻器滑片P向右移动的过程中,电表示数变化表示错误的是()A.电流表A示数变小B.电压表V示数变小C.电流表示数不变D.电流表A与电流表示数比值不变9.图甲是我们经常使用到的非接触式红外线测温枪的工作原理图。
浙江省温州市第二中学九年级上学期月考科学试卷(10月份)
20232024学年浙江省温州二中九年级(上)月考科学试卷(10月份)一、选择题(本题有15小题,每小题3分,共45分。
每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)如图是温州非物质文化遗产的代表,它们在制作过程中主要利用化学变化的是()A.石雕B.竹编C.酿酒D.糖塑2.(3分)诺贝尔奖获得者屠呦呦研究的青蒿素属于有机物。
青蒿素中一定含有的元素是()A.C B.N C.Ca D.Fe3.(3分)下列是探究酸的性质中涉及的实验操作,其中正确的是()A.倾倒稀盐酸B.滴加石蕊试剂C.稀释浓硫酸D.测pH4.(3分)9月23至10月8在浙江杭州顺利举行了亚运会,本次亚运金牌(如图)重154克—156克,而是用99.9%的白银,再在外面镀上6克999%的黄金。
根据知识回答第4题。
从物质组成成分的角度分析()A.金属单质B.有机物C.化合物D.混合物5.(3分)9月23至10月8在浙江杭州顺利举行了亚运会,本次亚运金牌(如图)重154克﹣156克,而是用99.9%的白银,再在外面镀上6克999%的黄金。
根据知识回答第6题。
亚运金牌制作应用了科学中的镀金技术,在电流作用下,使镀液中金的阳离子在银牌表面沉淀出来,已知离子中Cl元素的化合价为﹣1价()A.+1B.+2C.+3D.+46.(3分)9月23至10月8在浙江杭州顺利举行了亚运会,本次亚运金牌(如图)重154克—156克,而是用99.9%的白银,再在外面镀上6克999%的黄金。
根据知识回答第5题。
本届杭州亚运会的金牌具有很高的收藏和纪念价值。
在选择铸造金牌的材料时()A.金属的颜色B.金属的耐腐蚀性C.金属的导电性D.金属的延展性7.(3分)下列物质的俗称与化学式相对应的是()A.烧碱Na2CO3B.生石灰Ca(OH)2C.石灰石CaO D.食盐NaCl8.(3分)下列物质久置时易变质的是()A.浓盐酸B.浓硫酸C.氯化钠溶液D.氢氧化钠溶液9.(3分)向氯化铁溶液中滴入几滴氢氧化钠溶液,可观察到的现象是()A.B.C.D.10.(3分)下列一种试剂能将氢氧化钠溶液、氯化钡溶液、碳酸钠溶液一一区分开来,这种试剂是()A.稀盐酸B.稀硫酸C.氯化钠溶液D.硝酸钾溶液11.(3分)为验证锌、铁、铜三种金属的活动性顺序,小明同学设计了以下四种实验方案,其中能达到目的的是()A.B.C.D.12.(3分)除去下列各物质中混有的少量杂质(括号内为杂质),所用试剂和方法正确的是()A H2(水蒸气)通过足量浓硫酸B SO2(HCl气体)通入足量的NaOH溶液,干燥C MgO(Mg)加入足量稀盐酸D CuCl2溶液(FeCl2溶液)加入足量的铁屑充分反应后,过滤A.A B.B C.C D.D13.(3分)茶叶蛋蛋黄表面有一层黑色的物质(如图),它能否食用呢?小明取两个带有黑色物质的蛋黄开展实验,发现黑色物质不溶于水,其反应化学方程式为:2HCl+FeS =FeCl2+H2S↑根据知识回答第13题。
九年级第二次月考科学考试试题(有答案)
九年级第二次月考科学考试试题卷一、选择题(本大题共20小题,第小题4分,共80分)1下列不属于我国的新能源的是()A、核能B、天然气C、太阳能D、潮汐能2、下列物质中,能除去铁制品表面铁锈的是()A、稀硫酸B、水C、氢氧化钠溶液D、硫酸铜溶液3、仁下列四个现象中,能用光的折射解释的是()4、我们吃的水果中,杏、桃属于果实,其组成是()A.果皮与种皮B.种子与种皮C.果皮与种子D.子房与胚珠;5、激素在人体血液中的含量极低,但它对人体生命活动有着重要的调节作用。
如图是一幅患侏儒症的人、巨人症的人与正常人的对比照片。
侏儒症和巨人症是下列哪种激素在幼年时分泌异常所造成的()A.生长激素B.胰岛素C.雌性激素D.肾上腺素6、如图所示,下列器件中属于省力杠杆的是()A、30gB、100gC、200gD、400g10、关于温度、内能、热量,下列说法正确的是()B、剪刀7、一个足球运动员用100N的力踢一个重为5N的足球,球离脚后在水平草地上向前滚动了30m球在水平草地上向前滚动过程中,运动员对足球做的功(A. 3000JB. 500JC. 0J8、我们小时候都玩过秋千吧,闭上眼睛,那种时高时低的感觉如同在飞……,你知道其中能量的转化吗?对于图中荡秋千的小孩,下列分析错误的是(A、小孩在A点具有最大动能B、小孩在B点势能最小C、小孩从B荡到C的过程中,动能转化为势能D、如果没有能量损失,他将一直荡下去9、医院里常用溶质分数为5%的双氧水(H2O2)溶液清洗受伤病人的伤口,若要配制双氧水溶液600g,需要30%的高浓度双氧水的质量为()).无法判断D5%的A •放大镜看报B •小孔成像C.手影 D •悉尼大剧院倒影A、物体的温度越高,它含的热量越多B、物体内能越多,放热一定越多C 、物体的温度升高,内能增加D 、物体内能增加,一定要吸收热量11、如图所示,将同一物体分别沿光滑的斜面 AB 、AC 以相同的速度从底部匀速拉到顶点A ,已知AB>AC ,施加的力分别为 F i 、F 2,拉力做的功为W 2,拉力做功的功率分别为 P i 、P 2,则下列判断中正确的是 ( )A 、F i <F 2 , W i =W 2 , P i <P 212、 “十次车祸九次快,还有喝酒和超载”。
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)
江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。
河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)
2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。
2022~2023年九年级第二次月考(湖南省长沙市同升湖实验学校)
选择题2019年10月17日是我国第六个国家扶贫日,习近平对脱贫攻坚工作作出重要指示强调,当前,脱贫攻坚已到了决战决胜、全面收官的关键阶段。
各地区各部门务必咬定目标、一鼓作气,坚决攻克深度贫困堡垒,着力补齐贫困人口义务教育、基本医疗、住房和饮水安全短板,确保农村贫困人口全部脱贫,同全国人民一道迈入小康社会。
下列说法正确的是()①减贫成效举世瞩目,实现同步富裕指日可待②脱贫攻坚利国利民,改革发展成果人人共享③不忘初心牢记使命,全面小康你我共同努力④扶贫工作战略部署,响应党号召奋斗新时代A.①②④B.①③④C.①②③④D.②③④【答案】D【解析】题干材料体现我国高度重视扶贫问题,体现党和政府坚持以人民为中心的发展思想,中国共产党人不忘初心,牢记使命,为人民谋福祉,让全体人民共享发展成果,全体人民要团结奋斗,为全面建成小康社会积极进取。
②③④说法正确,符合题意。
①错误,共同富裕不是同步富裕。
故选D。
选择题《中华人民共和国监察法》第三条规定,各级监察委员会是行使国家监察职能的专责机关,依照本法对所有行使公权力的公职人员进行监察,调查职务违法和职务犯罪,开展廉政建设和反腐败工作。
这-规定有利于①推进国家治理体系和能力现代化②公民更好表达批评和建议的权利③建设公正透明、廉洁高效的政府④增强公民的守法意识和执法水平A. ③④B. ①②C. ②④D. ①③【答案】D【解析】依据教材内容,监察委员会依法行使的监察权,是在党的直接领导下,代表党和国家对所有行使公权力的公职人员进行监督,既调查职务违法行为,又调查职务犯罪行为,依托纪检、拓展监察、衔接司法,实现监察全覆盖。
推动形成风清气正的良好的政治生态;坚持治标与治本、惩处和预防相结合,通过有力的监督,推动强化不敢腐的震慑,扎牢不能腐的笼子,增强不想腐的自觉。
由此可见,①③正确。
②与题意无关,排除。
④观点错误,公民无权执法。
故选D。
选择题近期,美国及其个别盟国抵制华为5G技术事件持续发酵,美国商务部宣布禁止美国公司向华为销售零部件和关键技术,给华为公司的生产、经营和发展带来了一定影响。
人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)
2022-2023学年九年级数学上册第二次月考测试题(附答案)一、选择题:(共30分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.下列运算正确的是()A.(a2)3=a5B.a+a=a2C.a2•a3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由7个大小相同的小正方体组合而成的立体图形,则它的主视图是()A.B.C.D.5.如图,圆O中,弦AB、CD互相垂直且相交于点P,∠A=35°,则∠B的大小是()A.35°B.55°C.65°D.70°6.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<27.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系.下列说法中正确的是()A.修船共用了38分钟时间B.修船过程中进水速度是排水速度的3倍C.修船完工后的排水速度是抢修过程中排水速度的3倍D.最初的仅进水速度和最后的仅排水速度相同二、填空题:(共30分)11.在“百度”搜索引擎中输入“二十大”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.计算2的结果是.14.把多项式a2b﹣6ab2+9b3分解因式的结果是.15.不等式组的解集是.16.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.19.已知△ABC是以AB为一腰的等腰三角形,AB=5,tan∠BAC=,则△ABC的底边长为.20.如图,在△ABC中,AD平分∠CAB交BC于点D,∠CDA=45°,∠B=30°,DE⊥AB于点E,若AC=5,DE=2,则CB的长为.三、解答题:(共计60分)21.先化简,再求值:(+)÷,其中a=2sin60°+tan45°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在图①中,作以AB为底的等腰△ABC,点C在小正方形的顶点上.(2)在图②中,作以AB为一边的平行四边形ABDE,点D、E在小正方形的顶点上,且满足平行四边形ABDE的面积为8,则tan∠E=.23.为了加强语文课外阅读,某年级积极组织学生参加课外阅读读书分享会活动,从年级推荐的四种读物A:《水浒传》、B:《骆驼祥子》、C:《昆虫记》、D:《朝花夕拾》中选择一本读物每周一与班级同学分享读书体会.读书分享会活动组随机抽取本年级的部分学生,调查他们这四本读物中最喜爱一本读物,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该年级有1200名学生,估计全年级最喜爱《水浒传》的学生有多少人?24.如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,试直接写出图中除△ABE、△ADC以外的等腰三角形.25.松立商店准备从永波机械厂购进甲、乙两种零件进行销售,若甲种零件的进价是乙种零件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件多4件.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)松立商店购进甲、乙两种零件共102个,准备将零件批发给零售商.甲种零件的批发价是100元,乙种零件的批发价是130元,松立商店计划从零售商处的获利超过2284元,通过计算求出松立商店最多给零售商批发多少个甲种零件?26.如图,⊙O是△ABC的外接圆,∠BAC的平分线AO交BC于点D.(1)如图1,求证:AB=AC;(2)如图2,点E、F在弧AB上,连接BF、CF、BE、BO,若∠BCF+∠F=2∠EBO,求证:∠BCF=2∠ABE;(3)如图3,CF交AB于点K,连接AE,AE=BK,若CK:AC=13:24,BF=,求⊙O的半径.27.如图,直线y=kx+(k≠0)交x轴于点A,交y轴于点B,点C在x轴正半轴,连接BC,且AB=AC=m.(1)若△ABC的面积为S,求用含m的式子表示△ABC的面积;(2)如图2,点D在线段AB上,将线段DB绕点D顺时针旋转60°至DG,连接BG,点E在x轴负半轴上,且AE=BD,连接CG,求凹四边形ACGB的周长与四边形ACGD 的周长之差与△DBG的周长的比值;(3)在(2)的条件下,延长DG交x轴于点F,∠BAC=2∠CGF,若BG﹣GF=1,△ADF的周长为15,求直线AB的解析式.参考答案一、选择题:(共30分)1.解:﹣的相反数是,故选:B.2.解:A、(a2)3=a6,故原题计算错误;B、a+a=2a,故原题计算错误;C、a2•a3=a5,故原题计算正确;D、a2(a+1)=a3+a2,故原题计算错误;故选:C.3.解:A.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;B.该图形既不是轴对称图形,也不中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.4.解:该几何体的主视图是故选:A.5.解:由题意可知:∠DP A=90°,∵∠A=35°,∴由三角形的内角和定理可知:∠D=55°,由圆周角定理可知:∠B=∠D=55°,故选:B.6.解:∵y=的图象位于第一、第三象限,∴k﹣2>0,k>2.故选:A.7.解:共有6种可能,而有1种结果都是蓝色的,所以都是蓝色的概率概率为.8.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.9.解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.10.解:由图可得,修船共用了26﹣10=16(分钟),故A错误;修船过程中进水速度为:40÷10=4(吨/分钟),排水速度是4﹣(88﹣40)÷(26﹣10)=1(吨/分钟),故修船过程中进水速度是排水速度的4倍,故B错误;修船完工后的排水速度是88÷(48﹣26)=4(吨/分钟),故修船完工后的排水速度是抢修过程中排水速度的4倍,故C错误;由上可得,最初的仅进水速度和最后的仅排水速度相同,故D正确,故选:D.二、填空题:(共30分)11.解:100000000=1×108.故答案为:1×108.12.解:根据题意得:2x+7≠0,故答案为:x≠﹣3.5.13.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣.14.解:原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)2.15.解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.16.解:设平均每次降价的百分率为x,根据题意得:640(1﹣x)2=360,解得:x=25%或x=1.75(舍去),故答案是:25%.17.解:根据l===11π,解得:n=110,故答案为:110.18.解:过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2﹣1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中由勾股定理得:OD==,故答案为:.19.解:①如图,当AC为腰时,过点B作BD⊥AC,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=(舍去负值),∴AD=4,BD=3,∴CD=AC﹣AD=1,∴BC=;②当BC为腰时,过点B作BD⊥AC,如图,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=1(舍去负值),∴AD=4,∴AC=2AD=8.综上所述,△ABC的底边长为或8.故答案为:或8.20.解:作DF⊥AC,交AC的延长线与点F,∵∠CDA=45°,∠B=30°,∴∠DAE=15°,∵AD平分∠CAB交BC于点D,∴∠CAB=2∠DAE=30°,∵DE⊥AB,DF⊥AC,DE=2,∴DF=DE=2,在Rt△DEB中,∵∠B=30°,∴DB=2DE=4,∵∠DCF=∠B+∠CAB=60°,∴∠FDC=30°,在Rt△CDF中,设CF=x,则CD=2x,∵CF2+DF2=CD2,∴x2+4=4x2,∴或x=﹣(舍去),∵CD=,∴BC=CD+BD=.故答案为:.三、解答题:(共计60分)21.解:原式=[+]•=•=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)如图①,等腰△ABC即为所求;(2)如图②,作AF⊥DE于点F,∵平行四边形ABDE的面积为8,AE=DE==∴DE•AF=8,∴AF==,∴EF===,∴tan∠E==×=.故答案为:.23.解:(1)被调查的学生人数为:12÷20%=60(人);则被调查的学生人数有60人;(2)喜欢B读物的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)估计全年级最喜爱《水浒传》的学生有:1200×=480(人),则估计全年级最喜爱《水浒传》的学生有480人.24.证明:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ACD与△ABE中,,∴△ACD≌△ABE,∴∠ACD=∠ABC,∵∠BAC+∠ABC+∠ACB=180°,∠ECD+∠ACD+∠ACB=180°,∵AB=AC,∴∠ABC=∠ACB,∴∠BAC+2∠ACB=180°,∠ECD+2∠ACB=180°,∴∠BAC=∠ECD;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰直角三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.25.解:设每个乙种零件的进价分别为x元,每个甲种零件的进价为x元,由题意可得:=4,解得:x=100,经检验:x=100是原方程的根,∴x=80(元),答:每个甲种零件的进价为80元,每个乙种零件的进价为100元;(2)设松立商店给零售商批发a个甲种零件,由题意可得:(100﹣80)a+(130﹣100)×(102﹣a)>2284,解得:a<77.6,∴a的最大整数为77,∴松立商店最多给零售商批发77个甲种零件.26.(1)证明:如图1,延长AD交⊙O于点G,连接BG、CG,∵AG是⊙O的直径,∴∠ABG=∠ACG=90°,∴∠AGB+∠BAG=90°,∠AGC+∠CAG=90°,∵AG平分∠BAC,∴∠BAG=∠CAG,∴∠AGB=∠AGC,∴AB=AC;(2)证明:如图2,连接OE,∵=,∴∠AOE=2∠ABE,∵=,∴∠F=∠BAC,由(1)知:AG平分∠BAC,∴∠BAC=2∠BAO,∵OA=OB,∴∠BAO=∠ABO,∴∠BOD=∠BAO+∠ABO=2∠BAO,∴∠BOD=∠BAC,∵OB=OE,∴∠BEO=∠EBO,∵∠BEO+∠EBO+∠BOE=180°,∠AOE+∠BOD+∠BOE=180°,∴2∠EBO=∠AOE+∠BOD=2∠ABE+∠F,∵∠BCF+∠F=2∠EBO,∴∠BCF+∠F=2∠ABE+∠F,∴∠BCF=2∠ABE;(3)解:如图3,延长BE至M,使EM=BC,连接AM,连接FO并延长交⊙O于点N,连接BN,作线段AB的垂直平分线交AB于R,交BE于L,过点A作AT⊥BM于T,∵AB=AC,∴∠ACB=∠ABC,∵四边形ACBE是⊙O的内接四边形,∴∠ACB+∠AEB=180°,∵∠AEM+∠AEB=180°,∴∠AEM=∠ABC,即∠AEM=∠KBC,在△EMA和△BCK中,,∴△EMA≌△BCK(SAS),∴AM=CK,∠M=∠BCF,∵CK:AC=13:24,∴设CK=13a,AC=24a,则AM=13a,AB=AC=24a,由(2)知:∠BCF=2∠ABE,设∠ABE=β,则∠M=∠BCF=∠BNF=2β,∵LR垂直平分AB,∴AR=BR=12a,AL=BL,∴∠BAL=∠ABE=β,∴∠ALM=∠BAL+∠ABE=2β=∠M,∴AL=AM=BL=13a,∴LR===5a,∵sin∠ABE==,即sinβ==,∴AT=a,∴sin2β===,∵FN是直径,∴∠FBN=90°,∴=sin∠BNF=sin2β=,∴FN=BF=×=13,∴圆的半径为FN=.27.解:(1)令x=0,则y=,∴B(0,),∴OB=,∴S=•OB•AC=••m=m;(2)由题意可知,△DBG是等边三角形,∴BD=BG=DG,∵AB=AC,BD=AE,∴AD=EC.∴凹四边形ACGB的周长=AC+CG+GB+AB,四边形ACGD的周长=AC+CG+GB+DA,∴凹四边形ACGB的周长与四边形ACGD的周长之差=AB﹣DA=BD,∵△BBG的周长=3BD,∴凹四边形ACGB的周长与四边形ACGD的周长之差与△DBG的周长的比值为=.(3)如图,在点F的右侧取点K,使FK=GF,则∠FKG=FGK,设∠CGF=α,则∠BAC=2α,∴∠ABC=∠ACB=90°﹣α,由(2)知,△BDG是等边三角形,∴∠BDG=∠BGD=60°,∴∠CFG=60°﹣2α,∠CBG=30°﹣α,∠BGF=120°,∴∠CKG=∠FGK=30°﹣α,∠BGC=120°+α,∴∠CKG=∠CBG,在△GCF中,由三角形内角和可知,∠GCK=120°+α,∴∠BGC=∠GCK,∵GC=CG,∴△BCG≌△KGC(AAS),∴BG=KC,∵BG﹣GF=1,∴CK﹣FK=1,即CF=1,设FK=a,则CK=a+1,∴BD=DG=BG=AE=a+1,∵△ADF的周长为15,∴AD=EC=6﹣a,∴DF=2a+1,AF=8﹣a,过点F作FM⊥AB于点M,∴DM=DF=a+,FM=DM=(a+),∴AM=6﹣a,在Rt△AFM中,由勾股定理可得,AM2+FM2=AF2,∴(6﹣a)2+[(a+)]2=(8﹣a)2,解得a=2或a=﹣(舍).∴AB=6﹣a+a+1=6,∴AO=,∴A(﹣,0),将点A的坐标代入y=kx+,解得k=.∴直线AB的解析式为:y=x+.。
江苏省连云港市新海实验中学2022-2023学年九年级上学期第二次月考数学试题
江苏省连云港市新海实验中学2022-2023学年九年级上学期第二次月考数学试题一、单选题1.将一元二次方程2347x x +=化成一般式后,一次项系数和常数项分别为( ) A .4,7B .7,4-C .4,7-D .4-,7- 2.抛物线()213y x =-++的顶点坐标是( )A .()1,3B .()1,3-C .()1,3--D .()1,3- 3.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( )A .众数是60B .平均数是21C .抽查了10个同学D .中位数是50 4.分别写有数字0,1-,2-,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到数字正数的概率是( )A .15B .25C .35D .455.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O e 被水面截得的弦AB 长为6米,O e 半径长为4米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .(4米C .2米D .(4米 6.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有1个面被涂色的概率为( )A .427B .527C .49D .297.如图,在扇形ABC 中,90BAC ∠=︒,6AB =,若以点C 为圆心,CA 为半径画弧,与»BC交于点D ,则图中阴影部分的面积和是( )A .πB .2πC .3πD .4π8.如图为二次函数2y ax bx c =++的图像,下列说法:①0ac <:②20a b +=;③0a b c ++>;④当0.5x >时,y 随x 的增大而增大:⑤30a c +=;⑥对于任意实数m ,均有2am am a b +≥+.正确的说法有( )A .①④⑤⑥B .①②③⑤C .①③④⑥D .①②⑤⑥二、填空题9.方程2160x -=的根为;10.二次函数223y x =-+的图像向右平移2个单位长度之后得到的抛物线函数表达式为; 11.如图所示,电路连接完好,且各个元件工作正常,随机闭合三个开关中的任何两个,两个小灯泡同时发光的概率为.12.已知圆锥的底面半径为4cm ,母线长为5cm ,则圆锥的侧面积为cm 2.13.小明九年级上学期的平时成绩为90分,期中测试成绩为88分,期末测试成绩为96分,学校规定,平时成绩、期中成绩、期末成绩按2:3:5的比例计算学期平均成绩,则小明的学期平均成绩为;14.一组数据1x ,2x ,3x ,4x ,5x 方差为1.5,那么数据125x -,225x -,325x -,425x -,525x -的方差为;15.已知如图,O e 是锐角三角形ABC 的外接圆,AB AC =,连接OB ,OC ,延长CO 交弦AB 于点D ,若OBD V是直角三角形,则BAC ∠=.16.如图,点O 是正方形ABCD 的中心,AB =O 的直线EF 分别交AB 、CD 于点E 、F ,过点B 作BG EF ⊥于点G ,连接AG ,则AG 的最小值为.三、解答题17.解方程:(1)245x x =(2)232(1)0x x -+=18.如图,AB 是O e 的一条弦,OD AB ⊥,垂足为C ,交O e 于点D ,点E 在O e 上.(1)若50AOD ??,求DEB ∠的度数;(2)若12AB =,3CD =,求O e 半径长.19.已知关于x 的一元二次方程22250x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若1x ,2x 是这个方程的两个根,且22121233x x x x ++⋅=-,求k 的值. 20.甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,根据两个班选手的进球数,制作了如下统计图及数据分析表.(1)写出表格中a ,b ,c 的值:a =,b =,c =;(2)已知甲班选手进球数的方差为2.6,求乙班选手进球数的方差;(3)如果要从这两个班中选出一个班参加学校的投篮比赛,你认为应该选择哪个班比较合适?为什么?21.在4张相同的卡片上分别写有数字1、2、3、4,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1、2、5的三个小球,这些球除标号外都相同,搅匀后从中任意摸出一个球,将摸到的球的标号作为减数.(1)在袋子中摸到球的标号是2的概率为;(2)甲、乙二人玩游戏,游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则乙获胜,请用树状图或者表格来分析甲、乙二人获胜的概率;(3)这个游戏公平吗?如果不公平,请你设计一个公平的游戏规则,并说明理由. 22.如图,经过原点O 的抛物21(0)y ax bx a =+≠与x 轴交于另一点(4,0)A ,在第一象限内与直线2y x =交于点(8,)B t .(1)求OAB △的面积.(2)求这条抛物线的表达式.(3)若21y y >,那么自变量x 的取值范围是.23.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根,且其中一个根比另外一个根大1,那么称这样的方程为“邻根方程”.例如一元二次方程20x x +=的两个根是10x =,21x =-,则方程20x x +=是“邻根方程”(1)通过计算,判断方程260x x --=是不是“邻根方程”;(2)已知关于x 的方程2(1)0x m x m ---=(m 为常数)是“邻根方程”,求m 值.24.某厂家专门为产品生产包装盒,该厂有一种特制的矩形包装盒的原材料,长12cm ,宽为10cm .(1)已知该公司2020年销售这种原材料制作的包装盒的销售额为5000万元,并预计2022年的销售额为7200万元,假设该厂在这两年中的销售额的增长率相同,设为m ,那么根据题意列出的方程为;(2)该厂技术工人先将矩形原材料剪去两个全等的正方形,又剪去了两个全等的矩形,剩余部分制成了底面积为24cm 2的有盖包装盒(边缘损耗忽略不计),则剪去的正方形边长为cm .(3)已知该矩形包装盒的生产成本为40元/个,市场调研发现:如果以100元/个销售,每天可以售出200个.为了减少库存,厂家决定降价销售,根据近期销售情况发现,销售单价每降低1元,销售量就会增加20个,在尽可能减少库存的情况下,该厂家将售价定为多少元时,每天的销售利润为24000元?25.在扇形AOB 中,半径6OA =,点P 在OA 上,连接PB ,将O B P V 沿着PB 折叠得到O BP 'V .(1)如图①,若75O ∠=︒,且BO '与AB 所在的圆相切于点B .①APO '∠=__________︒;②求OP 的长;(2)如图②,BO '与»AB 相交于点D ,若点D 为»AB 的中点,且PD OB ∥,求»AB 的长.26.如图1,在平面直角坐标系xOy 中,抛物线21:F y x bx c =++经过点(3,0)A -和点(1,0)B .(1)抛物线1F 的表达式为,它的顶点坐标为;(2)如图2,作抛物线2F ,使它与抛物线1F 关于原点O 成中心对称,抛物线2F 的表达式为;(3)如图3,将(2)中抛物线2F 向上平移2个单位,得到抛物线3F ,抛物线1F 与抛物线3F 相交于C ,D 两点(点C 在点D 的左侧).①求点C 和点D 的坐标;②若点M ,N 分别为抛物线1F 和抛物线3F 上C ,D 之间的动点(点M ,N 与点C ,D 不重合),试求四边形CMDN 面积的最大值.。
苏科版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题1.下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1B.ax2+bx+c=0C.3(x+1)2=2(x+1)D.+﹣2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9 3.如图,已知A,B,C为⊙O上三点,若∠AOB=80°,则∠ACB度数为()A.80°B.70°C.60°D.40°4.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°5.若关于x的一元二次方程x2+x+m=0有实数根,则m的最大整数值是()A.﹣1B.0C.1D.26.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则以A,B,C为顶点的三角形外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(3,1)D.(1,3)8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题9.方程x2=2x的解是.10.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=.11.写出一个以和﹣3为根,且二次项系数为1的一元二次方程为.12.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,则⊙O的直径等于.13.在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.14.如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=cm时,BC与⊙A相切.15.若关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,则k的值为.16.如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB 上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么秒钟后⊙P与直线CD相切.三、解答题17.用适当的方法解下列方程:(1)(2x﹣1)2﹣25=0;(2)x2﹣2x﹣1=0(配方法);(3)2(x2﹣2)=7x;(4)3(x﹣2)2=x(x﹣2).18.已知:关于x的方程x2﹣6x+m﹣5=0的一个根是﹣1,求m值及另一根.19.已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.20.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,求∠A的度数.21.如图,AB是⊙O的直径,CE是⊙O上的两点,CD⊥AB于D,交BE于F,,求证:BF=CF.22.如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.23.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.24.文通小商店经销甲、乙两种商品,现有如下信息:信息1:甲乙两种商品的进货单价之和是3元.信息2:甲商品零售单价比进货单价多2元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件,共付了15元.请根据以上信息,解答请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲商品500件和乙商品400件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.商店决定把甲种商品的零售单价下降m (m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1900元?25.实践操作:如图,△ABC是直角三角形,∠ABC=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).(1)作∠BCA的平分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的位置关系是(直接写出答案)(2)若BC=6,AB=8,求⊙O的半径.26.阅读理解:(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=46°,D是△ABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=28°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在△ABC的三条高AD、BE、CF相交于点H,求证:∠EFC=∠DFC.参考答案一、选择题1.解:A、x2+2x=x2﹣1是一元一次方程,故A错误;B、ax2+bx+c=0,a=0时是一元一次方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、+﹣2=0是分式方程,故D错误;故选:C.2.解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.解:∵∠AOB=80°,∴∠ACB=∠AOB=40°,故选:D.4.解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.5.解:由题意知,Δ=12﹣4m≥0,∴m≤,∴m的最大整数值是0.故选:B.6.解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.7.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选:C.8.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.二、填空题9.解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.10.解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.11.解:∵+(﹣3)=﹣3,×(﹣3)=﹣3,∴以和﹣3为根,且二次项系数为1的一元二次方程为x2﹣(﹣3)x﹣3=0.故答案为:x2﹣(﹣3)x﹣3=0.12.解:作直径BD,连接CD,由圆周角定理得,∠D=∠BAC=30°,∠BCD=90°,∴BD=2BC=4,故答案为:4.13.解:连接OC,∵在⊙O中,直径AB=4,∴OA=OC=AB=2,∴弦CD⊥AB于P,OP=,∴CP==1,∴CD=2CP=2.故答案为:2.14.解:如图,过点A作AD⊥BC于点D.∵AB=AC,∠B=30°,∴AD=AB,即AB=2AD.又∵BC与⊙A相切,∴AD就是圆A的半径,∴AD=3cm,则AB=2AD=6cm.故答案是:6.15.解:∵关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,∴x1+x2=x1x2k+2=2k,解得:k=2.故答案为:2.16.解:当点P在射线OA时⊙P与CD相切,如图,过P作PE⊥CD与E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圆心在直线AB上向右移动了(6﹣2)cm后与CD相切,∴⊙P移动所用的时间==4(秒);当点P在射线OB时⊙P与CD相切,如图,过P作PE⊥CD与F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,∴⊙P移动所用的时间==8(秒).故答案为4或8.三、解答题17.解:(1)(2x﹣1)2﹣25=0,(2x﹣1)2=25,2x﹣1=±5,2x﹣1=5或2x﹣1=﹣5,x1=3,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x1=1+,x2=1﹣;(3)2(x2﹣2)=7x,2x2﹣7x﹣4=0,(x﹣4)(2x+1)=0,x﹣4=0或2x+1=0,x1=4,x2=﹣;(4)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)[3(x﹣2)﹣x]=0,(x﹣2)(3x﹣6﹣x)=0,(x﹣2)(2x﹣6)=0,x﹣2=0或2x﹣6=0,x1=2,x2=3.18.解:设方程的另一个根为n,∵方程x2﹣6x+m﹣5=0的两个根为﹣1和n,∴,解的:.∴m的值为﹣2,方程的另一根是7.19.解:由一元二次方程x2﹣4x+k=0有两个不相等的实数根,得Δ=b2﹣4ac=(﹣4)2﹣4k>0,解得k<4;(2)由k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0,得x2﹣4x+3=0,解得x1=1,x2=3,一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,当x=1时,把x=1代入x2+mx﹣1=0,得1+m﹣1=0,解得m=0,当x=3时,把x=3代入x2+mx﹣1=0,得9+3m﹣1=0,解得m=﹣,综上所述:如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,.20.解:连接OB,如图,∵AB=OC,∴AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.21.证明:延长CD交⊙O于点G,连接BC,∵AB是⊙O的直径,CD⊥AB于D∴=,∵=,∴=,∴∠BCF=∠CBF,∴BF=CF.22.(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.23.(1)解:∵CB=CD,∴∠CDB=∠CBD=39°,由圆周角定理得,∠CAB=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=39°+39°=78°;(2)证明:∵CE=CB,∴∠CBE=∠CEB,∴∠1+∠CDB=∠2+∠CAB,∵∠BAC=∠BDC=∠CBD,∴∠1=∠2.24.解:(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,则甲商品的进价为(x﹣2)元,乙商品的进价为,由题意得,,解得:.答:甲商品的零售单价为3元,乙商品的零售单价为3元;(2)把甲种商品的零售单价下降m,可多卖甲商品100×件,则利润为:(500+100×)×(3﹣m﹣1)+400(3﹣2)=1900,解得:m1=0.5,m2=1.答:当m为0.5或1时,商店每天销售甲、乙两种商品获取的总利润为1900元.25.解:实践操作:(1)如图所示:CO即为所求;(2)如图所示:⊙O即为所求;综合运用:(1)AC与⊙O的位置关系是:相切;故答案为:相切;(2)过点O连接AC与⊙O的切点E,∵BC=6,AB=8,∠ABC=90°,∴AC==10,由题意可得出:CB⊙O的切点为B,则CE=CB=6,设BO=x,则EO=x,AO=6﹣x,AE=10﹣6=4,∴在Rt△AOE中,AE2+EO2=AO2,即42+x2=(8﹣x)2,解得:x=3,∴⊙O的半径为:3.26.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=23°,故答案是:23°;(2)取BD中点O,连接AO、CO,在Rt△BAO中,AO=BD,同理:CO=BD,∴AO=DO=CO=BO,∴点A、B、C、D在以O为圆心的同一个圆上,∴∠BAC=∠BDC=28°;(3)∵CF⊥AB,BE⊥AC,∴点A、F、H、E在以AH为直径的同一个圆上,∴∠EFC=∠DAC,同理:点B、D、H、E在以BH为直径的同一个圆上,∠DFC=∠CBE,又∵∠DAC=∠EBC,∴∠EFC=∠DFC.。
【月考卷】人教版2021~2022学年九年级化学第二次月考模拟测试卷(二)含答案与解析
人教版2021~2022学年第二次月考模拟测试卷(二)九年级化学(时间:50分钟化学分值:100分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.考试范围:人教版九年级上册第一单元~第四单元第I卷(选择题共45分)一、选择题(每小题只有一个选项符合题意,每小题3分,共45分)1.绿水青山就是金山银山。
下列说法正确的是()A.焚烧秸秆不会造成大气污染B.可吸入颗粒列物对人体健康没有危害C.臭氧(O3)不属于空气污染指数项目D.化学在环境监测和保护中起重要作用2.我国生活饮用水水质标准规定“铜<1.0mg/L,铁<0.3mg/L”,其中的铜、铁是指()A.原子B.元素C.离子D.单质3.下列基本实验操作的图示正确的是()A.检查气密性B.读液体体积C.过滤悬浊液D.熄灭酒精灯4.下列化学符号中的数字表示的意义不正确的是()A.NO2:“2”表示一个二氧化氮分子含有两个氧原子B.2Cu:“2”表示两个铜C .O:“+2”表示氧化镁中镁元素显+2价D.2OH﹣:“2”表示两个氢氧根离子5.2019年12月17日下午,我国首艘国产航母“山东舰”正式交付海军服役。
建造航母需要大量的金属钛。
工业上以钛铁矿(主要成分为钛酸亚铁FeTiO3)为原料生产钛。
钛酸亚铁FeTiO3中钛的化合价是()A.+4 B.+3 C.+2 D.+16.下列说法正确的是()A.混合物中可能只含一种元素B.氧气具有可燃性,是一种常见的燃料C.氧气能与许多物质发生反应,是一种典型的氧化物D.催化剂一定能加快化学反应速率,但不能改变生成物的量7.图1几种元素在元素周期表中的部分信息,图2是几个微粒的结构示意图。
第二次月考的反思总结(4篇)
第二次月考的反思总结每次月考都要总结,这几乎是一个不变的程式。
本次月考,我考虑让学生总结,利用“自己人效应”,看看总结的效果,作为班主任的我在旁边进行必要的补充,这样一方面可以提高学生分析问题,口头表达的能力,另一方面从学生的角度来做总结,还能做出新意,避免每次月考总结都由班主任来搞,翻来覆去,了无新意。
思之再三,我决定让学习委员和班长牵头来搞这个工作。
本周班会,由学习委员张-同学作为主要负责人的第二次月考总结正式开始。
首先,张-同学分析了本班成绩,从总体来看,略有进步。
其中一次月考前二十名其他班只有两名同学,但一次月考没有复读班参与,本次月考复读班同学介入,前二十名没有其他班同学,复读班占据前二十名中的5、9、19三个席位,从这个角度讲,我班有进步,我们将挤进前二十名的其他班同学又挤了出去,很了不起,但是____名后的同学本次比上次多了十名同学,说明成绩靠后的同学比重有所增大。
在本次考试当中,我们的政治尤其较差,通过调研和分析,我们得出主要是大家对政治学习的态度不是很端正,认为政治到时候背背就可以了,实际上这是对政治的误解,六本书,到时候背能背过来吗再说,政治里面的内容很多,大多数需要理解,平时就应当抓紧,现在它可成了我们的弱项了。
大家应当端正学习态度,抓紧补习才是上策。
其次,她提出,应当对考试成绩看开些,但也不能太淡定。
今天到高考只剩下____多天,如果每次考试完之后都说这次考试没考好,下次再说,月考啊,我们还有多少个下次!因此,一定要抓紧学习中的分分秒秒,不要让相同的错误连犯两次,要有一种紧迫感,时不我待。
再次,对自己要进行准确的定位,如果有些习题太难,即使问老师或者问同学还似懂非懂,不妨放弃,抓基础,分类型,勤总结远比拿着一个题搞三四个小时效果好得多。
最后,她还就课堂的气氛以及跟老师的互动讲了自己的看法,当碰到老师发脾气,批评自己时,作为受批评者,心里肯定不舒服,当大家受批时,耷拉着脑袋,更是提不起神,这样老师可能更来气,这是一个恶性循环,为了少挨批,为了课堂更有效率,大家应当上课积极回答,配合老师,我们挨骂的几率就会降低,课程的进度也会快一些!第二次月考的反思总结(二)在这接近冬天的____月,我们迎接来了七年级的第二次月考。
安徽省六安市汇文中学、汇文学校2024-2025学年九年级上学期10月第二次月考化学试题(含答案)
汇文中学汇文学校2024~2025学年度秋学期九年级阶段性检测二化学试题卷(满分40分,化学与物理的考试时间共120分钟)一、选择题(每题1分,共12分)1.下列过程中,利用了化学反应产生的能量的是( )A.海水晒盐B、干冰制冷C.风力发电D.火箭发射2.认真观察、准确记录和仔细分析实验现象是学习化学的重要方法。
下列有关实验现象的描述不正确的是( )A.红磷在空气中燃烧产生大量白烟B.细铁丝在氧气中燃烧,火星四射,生成黑色固体C.木炭在氧气中燃烧发白光,生成能使澄清石灰水变浑浊的气体D.镁条在空气中燃烧发出耀眼的白光,生成氧化镁3.正确的实验操作是实验成功的保证。
下列实验操作正确的有( )A.1个B.2个C.3个D.4个4.下列有关分子和原子的说法正确的是( )A.分子是由原子构成的,所以物质均可以由原子构成B.原子一定由质子、中子、电子三种微粒构成C.原子和分子的本质区别是:原子较小,分子较大D.因为原子不带电,所以分子一定也不带电5.关于工业制取氧气说法正确的是( )A.得到的液态氧气储存在蓝色钢瓶中B.原理是利用氧气与氮气的密度不同C.氧气先从液态空气中逸出D.分离液态空气后剩下液氧是由氧分子构成的纯净物6.化学概念在逻辑上存在如图所示关系,对下列概念的说法正确的是( )A.氧化反应与化合反应属于并列关系B.纯净物与混合物属于包含关系C.物理性质与化学性质属于并列关系D.化合反应与分解反应属于交叉关系阅读下面的材料,完成下面小题:我们的呼吸离不开氧气。
一般情况下,我们呼吸使用空气就可以了。
正常的人呼吸用纯氧对身体有害。
吸入100%的氧气,只需几天就会发生肺氧气中毒。
一般医院中的氧气含量只是大于40%。
目前,我国太空空间站内的氧气主要是通过电解水方式获得,然后将氧气与储备的氮气以一定体积比混合成“人造空气”(约21%的氧气,78%的氮气,控制二氧化碳的含量低于0.7%),保证舱内大气的总压与氧气分压相对稳定。
人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)
2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题:(共30分)1.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=(x﹣1)(2+x)﹣x23.在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°6.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上7.设⊙O的直径为m,直线l与⊙O相离,点O到直线l的距离为d,则d与m的关系是()A.m=d B.m<d C.2d>m D.2d<m8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2510.如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.A.1B.2C.3D.4二、填空题:(共18分)11.一元二次方程2x2=x的解是.12.在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为.13.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.14.如图,P A,PB切⊙O于A,B两点,CD切⊙O于点E,分别交P A,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于.15.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.16.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为.三、解答题:(共72分)17.解下列方程:(1)3x2﹣5x+1=0(公式法);(2)3(2x﹣5)2﹣27=0.18.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+x2=8,求实数m的值.20.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.21.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?22.如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.23.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F(不与点C重合),使|FC﹣FE|的值最大,若存在,请求出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题:(共30分)1.解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选:A.2.解:A、y=3x﹣1,是一次函数,故A不符合题意;B、当a=0时,函数y=ax2+bx+c不是二次函数,故B不符合题意;C、s=2t2﹣2t+1,是二次函数,故C符合题意;D、y=(x﹣1)(2+x)﹣x2=2x+x2﹣2﹣x﹣x2=x﹣2,是一次函数,故D不符合题意;故选:C.3.解:∵点P(﹣2,a)与Q(b,3)关于原点对称,∴b=2,a=﹣3,则a+b的值为:2﹣3=﹣1.故选:D.4.解:①错误,不在同一条直线上的三点确定一个圆;②正确,三角形的内心到三边的距离相等;③错误,在同圆或等圆中,相等的圆周角所对的弧相等;④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦;⑤错误,过半径的外端且垂直于半径的直线是圆的切线.故选:A.5.解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.6.解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.7.解:∵⊙O的直径为m,点O到直线L的距离为d,直线L与⊙O相离,∴d>,即2d>m,故选:C.8.解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.10.解:如图,延长CB至Q,使BQ=DF,连接AQ,∵BQ=DF,∠ADF=∠ABQ,AB=AD,∴△ADF≌△ABQ(SAS),∴AF=AQ,∠DAF=∠BAQ,∵∠EAF=45°,∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAQ=∠EAF=45°,在△AEF和△AEQ中,,∴△AEF≌△AEQ(SAS),∴EQ=EF,∠AEB=∠AEF,∴BE+BQ=BE+DF=EF,故①②正确;设AB=BC=CD=2a,当BE=EC=a时,∵EF2=CF2+EC2,∴(a+DF)2=(2a﹣DF)2+a2,∴DF=a,∴CF=a,∴DF:CF=1:2,故④错误;如图,将△ABG绕点A逆时针旋转90°,连接PG,∴AP=AG,∠P AG=90°,∠ADP=∠ABG=45°,∴PG2=AG2+AP2=2AG2,∠BDP=90°,∴DG2+PD2=PG2,∴BG2+DG2=2AG2,故③正确;如图,连接ME,∵∠CBD=∠EAF=45°,∴点A,点B,点E,点M四点共圆,∴∠AEM=∠ABD=45°,∴∠AEM=∠EAM=45°,∴AM=EM,∴AE=AM,∵∠DAG=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,∴∠DAG=∠AMB,∵AD∥BC,∴∠DAG=∠AEB,∵∠AEB=∠AEF,∴∠AMB=∠AEF,又∵∠EAF=∠GAM,∴△EAF∽△MAG,∴相似比为=,故⑤正确;故选:D.二、填空题:(共18分)11.解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=.12.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故答案是:10.13.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.14.解:如图,连接OA,OB,OP,∵P A,PB切⊙O于A,B两点,OA,OB是半径,∴OA⊥P A,OB⊥PB,且OA=OB,∴OP是∠APB的平分线,∵∠APB=60°,∴∠APO=30°,∴OP=2OA=4,在Rt△APO中,由勾股定理得AP==2,∵P A,PB切⊙O于A,B两点,∴P A=PB=2,∵CD切⊙O于点E,∴AC=CE,BD=DE,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=P A+PB=4,故答案为:4.15.解:由题意得:AB=b﹣a=2,设AM=x,则BM=2﹣x,x2=2(2﹣x),x=﹣1±,x1=﹣1+,x2=﹣1﹣(舍),则AM=BN=﹣1,∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4,故答案为:2﹣4.16.解:∵A(0,0),B(2,0),∴AB的中点为(1,0),∴P1(1,1),∵△AP1B绕点B顺时针旋转180°,∴P2(3,﹣1),同理分别得到P3(5,1),P4(7,﹣1),P5(9,1),…,∴P n(2n﹣1,(﹣1)n+1),∴P2021的坐标为(4041,1),故答案为:(4041,1).三、解答题:(共72分)17.解:(1)∵a=3,b=﹣5,c=1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x==,∴;(2)∵3(2x﹣5)2﹣27=0,∴3(2x﹣5)2=27,∴(2x﹣5)2=9,则2x﹣5=3或2x﹣5=﹣3,解得x1=1,x2=4.18.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.19.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×m>0,m<4,∴实数m的取值范围是m<4.(2)∵x1+x2=4,5x1+x2=8,∴x1=1,∵x1是方程的根,把x1=1代入原方程得1﹣4+m=0,∴m=3,∴实数m的值是3.20.解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=21.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.22.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.23.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.24.解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4);(2)抛物线上存在点F,连接FC,FE.则有|FC﹣FE|≤CE.当点F为直线CE与抛物线交点时(不与点C重合),FC﹣FE=CE,此时|FC﹣FE|值最大.设直线CE解析式为y=kx﹣8,点E的坐标为(3,﹣4),∴3k﹣8=﹣4,∴k=,∴直线CE解析式为y=x﹣8,∵抛物线的表达式为y=x2﹣3x﹣8,联立解得,(舍去),,∴点F为直线CE与抛物线交点时(不与点C重合),|FC﹣FE|值最大.此时F;(3)①如图1,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.∴,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴,即,∴m=﹣,②如图2,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴,∴,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.。
2024-2025学年陕西省西安市新城区爱知初级中学九年级上学期第二次月考物理试题
2024-2025学年陕西省西安市新城区爱知初级中学九年级上学期第二次月考物理试题1.生活中,常用充电宝给手机充电,此时手机相当于电路中的()A.电源B.开关C.用电器D.导线2.关于图中的简单机械说法正确的是()A.图甲中的剪铁片剪刀的动力臂小于阻力臂,所以是费力杠杆B.图乙中旗杆顶端装有动滑轮,利用它来升国旗,可以改变力的方向C.利用图丙中的滑轮提升重物省功但费距离D.利用图丁中的滑轮组提升重物既省力又能改变力的方向,使用方便3.春天万物复苏,阳光明媚很适合锻炼。
小丽和妈妈进行爬山比赛,她们选择的起点、路径和终点都相同,爬到山顶,结果小丽先到达。
已知小丽的体重比妈妈的体重小()A.爬到山顶时,小丽做的功比妈妈做的功多B.爬到山顶时,妈妈做的功比小丽做的功多C.小丽做功的功率一定比妈妈做功的功率大D.妈妈做功的功率一定比小丽做功的功率大4.“神舟”17号载人飞船在震天的轰鸣声中腾空而起,飞向太空。
顺利完成任务后需要返回地球。
返回舱步入大气层一段时间后,由于受到空气阻力做匀速运动。
返回舱匀速下降过程中,下列说法正确的是()A.动能不变,重力势能减少,内能增加B.动能增加,重力势能减少,内能减少C.动能减少,重力势能增加,内能不变D.动能不变,重力势能减少,内能不变5.下列关于内能、温度、热量的说法中正确的是()A.温度高的物体内能一定大,温度低的物体内能一定小B.物体的内能与温度有关,物体的内能增加,温度一定升高C.热传递过程中,内能小的物体也可能将热量传递给内能大的物体D.温度高的物体含有的热量多6.“烧烤”已是人们夜间饮食文化的重要组成部分。
“烧烤”过程中涉及的物理知识分析正确的是()A.烧烤签常选用不锈钢,主要是利用不锈钢的比热容大B.烧烤时边烤边撒佐料,利用了温度越高扩散现象越慢C.烤肉变熟的过程,通过热传递改变其内能D.烧烤用的木炭燃烧越充分,其热值越大7.如图所示,用酒精灯给试管中的水加热,水温上升,直至沸腾一段时间后,会看到试管口的橡皮塞被冲出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(全)科学第二次月考本卷可能用到的相对原子质量:H:l C:12 O:16 Na:23 C1:35.5 Ca:40 Fe:56 Zn:65 S:32本卷中的g=10牛/千克一、选择题(每题3分,共60分)1.国外最近开发出一种高效的水果长期保鲜技术,在3℃潮湿的条件下,通过低压水银灯的照射,引起光化学反应,使水果在贮存的过程中,释放出来的乙烯与水反应,转变为乙醇,下列有关说法正确的是:( )A此变化的能量转化是化学能转化为光能 B 此变化是物理变化C乙烯和水发生光化学反应生成乙醇D.乙烯与氧气反应生成乙醇2.过氧化氢( H2O2)是一种无色粘稠液体,易分解为水和氧气,常用作氧化剂、漂白剂和消毒剂,为了贮存、运输、使用的方便,工业上将过氧化氢转化为固态的过碳酸钠晶体(2Na2CO3H2),该晶体具有碳酸钠和过氧化氢的双重性质。
接触下列物质不会使过碳酸钠失效的是( )A二氧化锰B硫酸铜C盐酸D.氯化钠3.为避免对胃产生刺激,制药厂常把一些药物封装在淀粉制成的胶囊中给人服用。
根据淀粉在消化道内的消化情况分析,其原理是( )A装在淀粉胶囊,药物需慢慢渗出B淀粉在口腔内初步消化,便于吞咽C胆汁不能消化淀粉D.胃不能消化淀粉,胶囊可经胃进入小肠4.下列食物含糖类物质较多的是( )5.下列所示的杠杆中,属于费力杠杆的是6.航天科学技术测得,三氧化二碳(C2 O3)是金星大气层的成分之一,化学性质与一氧化碳相似。
下列有关氧化二碳的说法不正确的是( )A C2 O3中碳元素的质量分数约为33. 3% B.C2O3能把氧化铜中的铜还原出来C 充分燃烧的产物是CO2D.C2O3能使澄清石灰水变浑浊7.-台电动机正常工作时线圈两端的电压为380伏,线圈的电阻为2欧,线圈中的电流为10安。
这台电动机正常工作1秒消耗的电能为W.产生的热量为Q,则( )A W =3800焦,Q=200焦B W=3800焦,Q=3800焦C.W=72200焦,Q=200焦D.W=72200焦,Q=3800焦8.以下不属于陶瓷特点的是( )A.耐水B.耐酸碱C.具有较好的导电性D.绝缘性好9.氧化铯是一种可溶性碱,其化学式为CsOH,则下列叙述中正确的是( )A CsOH溶液的pH小于7B.CsOH在水中的电离方程式为CsOH====Cs++OH-C CsOH溶液不能使酚酞变红D.CsOH与硫酸反应生成的盐的化学式为CsSO410.为了探究pH对酶活性的影响,需要进行如下实验步骤:①取3支试管,编号并各注入2毫升淀粉溶液;②向各试管注入1毫升淀粉酶溶液;③向各试管滴入1滴碘液;④向各试管中注入2毫升盐酸溶液、氢氧化钠溶液和清水;⑤观察实验现象。
以上实验步骤最合理的顺序应为( )A①一④一②一③一⑤B①一②一④一③一⑤C①一②一③一④一⑤D.①一③一④一②一⑤11.“绿色化学”是当今社会提出的一个新概念。
它包括“原料的绿色化”、“化学反应的绿色化”、“产物的绿色化”等内容。
其中“化学反应的绿色化”,是指参加反应的物质中的所有原子完全被利用且全部转化到欲制的产品中。
下列化学反应符合“化学反应的绿色化”要求的是( )A用锌和稀硫酸反应制取氢气B.在高温下用一氧化碳和氧化铜反应制取金属铜C用氢氧化钙和碳酸钠溶液反应制取少量氢氧化钠D.用金属镁和氧气在点燃的条件下反应制取少量氧化镁12.下列化学方程式符合题意且书写正确的是( )13. 一轻质杆支于水平的转轴上,可绕轴在竖直面上自由转动(杆的质量和杆与转轴间摩擦不计),当杆左右两端固定质量分别为m和n(m<n)两金属球时,杆恰好在水平位置平衡如图。
现把转轴位置从O向右移到O’处,在杆转动到竖直位置前,下列说法正确的是( ) A P球:下降,动能增加、势能减少B.P球:上升,动能增加、势能增加C.Q球:下降,动能增加、势能减少D.Q球:上升,动能增加、势能减少14.下列现象中,通过热传递改变物体内能的是( )15l小星家新买了一规格为“800W”的电热水壶,他经过几次使用后发现,晚饭后烧开一壶水总比早晨烧开一壶水所用的时间长,你认为主要原因是( )A晚间大气压升高,水的沸点升高,需要的热量比早晨多B.晚间电热水壶两端的电压低于早晨电热水壶两端的电压C晚间水蒸发更快,带走更多的热量D.晚间环境温度比早晨的温度低16.将分别标有“8V 4W”、“4V 2W”字样的灯L1、L2串联使用。
当灯L1正常发光时,灯L2会( )A正常发光B比正常发光暗C.比正常发光亮D.以上三种情况均有可能17.我们小时候都玩过秋千吧,闭上眼睛,那种时高时低的感觉如同在飞……你知道其中能量的转化吗?对于图中荡秋千的小孩,下列分析错误的是( )A小孩在A点具有最大动能B小孩在B点势能最大C小孩从B荡到C的过程中,动能转化为势能D.如果没有能量损失,他将一直荡下去18.如图所示,物体A通过动滑轮在水平拉力F的作用下沿水平面以1米/秒的速度匀速运动,此时弹簧秤B的读数为8牛顿,如果动滑轮、绳子和弹簧秤的重力和摩擦均不考虑,那么物体A与水平面的摩擦力以及2秒内F所做的功分别为( )A 8牛顿,16焦耳B 8牛顿,32焦耳C 16牛顿,16焦耳D.16牛顿,32焦耳19.有下列四种实验设计及操作,实验过程中其现象不足以说明C02与NaOH溶液发生了反应的是( )20.如图所示,用一细线悬挂一根粗细均匀的轻质细麦桔杆,使其静止在水平方向上,O为麦桔杆的中点。
这时有两只大肚皮的蚂蚁同时从O点分别向着麦桔杆的两端匀速爬行,在蚂蚁爬行的过程中麦桔杆在水平方向始终保持平衡,则( )A 两蚂蚁的质量一定相等B.两蚂蚁的爬行速度大小一定相等C.两蚂蚁的质量与爬行速度大小的乘积一定相等D.两蚂蚁对麦桔杆的压力一定相等二、简答题(每空2分,共40分)21.物质的组成与结构决定物质的性质”是化学学科中的重要观点。
按照这一观点讨论下面的问题:(1)酸溶液具有一些共同的化学性质,是因为酸溶液中都含有____。
(2)过氧化氢是一种常见的杀菌消毒剂,其原因是过氧化氢分子中含有一种叫做“过氧基”(下图①中虚线框标出的部分)的结构。
据此推测下列②~④的物质中,可用作杀菌消毒剂的是:____(填序号)(3)请写出通过置换反应生成③的化学方程式__________________________________22.金属加工后的废液中含有2%~5%的NaNO2(一种盐),它是一种环境污染物。
人们用氯化铵溶液来处理此废液,使NaNO2转化为无毒物质。
该反应分两步进行:(1)第一步反应属于化学反应基本类型中的________________(2)第二步反应中,X的化学式是________________________23.我们在学习杠杆原理时知道阿基米德有一句豪言壮语——“给我一根杠杆和一个支点,我就能撬动地球”。
小刚同学对此产生了疑惑,他查阅了有关资料,知道地球的质量为6×1024千克。
并且假设支点距地球1米,阿基米德给杠杆的最大压力为600牛,则阿基米德需要一根约为____米的轻质杠杆。
即使他以100千米/时的速度(相当于小汽车在高速公路上的速度)匀速下压杠杆,要将地球撬起1厘米,也需要________年(1年约为104小时)。
24.某同学在家中发现一种缓泻药——“果导片”,药品说明书中标明其主要成分是酚酞。
该同学想知道它能否作为酚酞指示剂的代用品。
他将果导片研成粉末加入消毒用酒精(酚酞不易溶于水,溶于酒精)中搅拌、静置。
取上层清液滴入到澄清石灰水中,观察到现象____ _______;滴入到醋酸及食盐水中则没有观察到明显的现象,从而得出“果导片”可作酚酞指示剂代用品的结论。
然后他又用胶头滴管缓缓向滴有“果导片”溶液的澄清石灰水中滴足量稀盐酸,他观察到现象是________,其中发生反应的化学方程式是________。
25.如左下图所示的是两只普通照明灯泡的I-U图像,已知甲、乙两灯的额定电压都为220伏,试通过图象判断甲灯正常工作时的电流为____安,乙灯的额定功率为_________瓦,如果将两只灯串联在220伏的电路中,电路中的实际总功率为____________瓦。
26.小明同学利用圆珠笔杆、钢丝、细绳制成了如图所示的滑轮组用其匀速提升重物,已知钩码的质量为50克,笔杆的质量每支为10克,不计绳重和摩擦,小明将重物匀速提起,所用的拉力为__________牛,如果将物体提升10厘米,小明的机械效率为_______________27.科学实验表明,通常情况下人体的温度高于周围环境的温度,所以人体始终向外散热。
一个质量为60千克的学生每小时释放的热量相当于1.4千瓦的用电器工作6分钟。
则一个质量为60千克的学生每小时向外释放的热量是__________焦;人体每秒钟向外散发的热量叫散热功率,该学生的散热功率是____________________28.近几年木糖醇作为新型甜味剂正在悄悄地代替蔗糖进入生活。
木糖醇是白色粉末状固体,化学式为CH12O5。
木糖醇与蔗糖在口腔中细菌的作用下pH变化如右图所示。
试回答:(1)人们食用含糖较高的物质在口腔中细菌的作用下产生酸性物质,腐蚀蛀坏牙齿,形成龋齿。
则食用____(填“蔗糖”或“木糖醇”)能有效的防止龋齿。
(2)螺蛳是大家熟悉的一种动物,也是经常出现在饭桌上的味美价廉的一道菜。
螺蛳肉的主要营养成分是蛋白质,它进人人体消化道后,主要是在____中被消化吸收。
(3)小明感冒得了扁桃体炎,医生给他左手静脉点滴青霉素,请问青霉素最先在心脏的哪一腔发现?________________________________________________________三、实验探究题(每空2分,共30分。
)29.为了研究从长期使用的热水瓶中倒出的片状团体(水垢)的成分,学生进行以下探究:根据上述探究,估计此水垢的成分中含有____(写物质名称)。
写出实验①中发生反应的化学方程式:______________________________________30.实验小组进行了“测定额定电压是2.5伏的小灯泡功率”的实验:(1)实验记录与计算如下表:根据他们观察的现象和记录的实验数据分析,计算小灯泡的额定功率是____瓦。
(2)他们还注意到,这个实验记录也可以用来计算小灯泡灯丝的电阻,并发现灯丝的电阻值随电压升高而增大,同学们想:导体的电阻不是与电压、电流无关吗?怎么会有这样的结论呢?请你给他们作出合理的解释:______________________________________________________________________(3)①在左图中用笔画线代替导线完成该实验的电路连接;(请正确选择电表量程)②请在坐标右图中作出小灯泡的电压和电流的关系图像。