平行四边形专题

合集下载

第05讲 平行四边形专题+佳颖

第05讲 平行四边形专题+佳颖

第五讲 平行四边形专题专题讲解专题1 平行四边形的性质例1 (1)如图,□ABCD 周长为36cm ,DE ⊥AB 于E ,DF ⊥BC 于F ,DE=4cm ,DF=5cm ,则S□ABCD= 。

CA(2)□ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,AE=2cm ,BF=1cm ,∠EDF=60°,则S □ABCD = 。

(3)如图,过□ABCD 内一点P 作AD ,AB 边的平行线EF ,GH ,若S 四边形PHCF =5,S 四边形PGAE =3,则S △PBD = 。

H GDB点拨平行四边形的面积:(1)计算公式:S=底×高;(2)等底等高的平行四边形面积相等,等底等高的三角形面积是平行四边形面积的一半;(3)经过对角线交点的任意直线将平行四边形分成面积相等的两个部分。

解析:归纳总结:①型特征:②方法与技巧:练1.1 如图,在□ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12D.24DB练1.2 国家文明卫生城市—武汉,风光秀丽,花木葱茏,某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花。

如果AB∥EF∥DC,BC ∥GH∥AD,那么下列说法中错误的是()。

A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等B练1.3 如图,张、王、李、赵四家的承包田都是形状面积完全相同的矩形,四家用不同的方式修路(图中阴影部分),以便施肥、喷药之用,但各家修的路有一个共同点,即A1B1=A2B2=A3B3=A4B4,且路的两侧都是平行的,那么路的占地面积()。

A.张家最少B.赵家最少C.张、王、李、赵四家一家比一家少 D.四家相等B1A1A2B2张王B3A3练1.4 如图是一个平行四边形土地ABCD,后来在其边缘挖了一个小平行四边形水塘DFGH,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹)。

人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=245ACACcos︒=∴2AD AB AC+=.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2,∴AH=BH=BC ,∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,∴EF=BC .考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。

第18章平行四边形全章专题讲座

第18章平行四边形全章专题讲座

第18章平行四边形及特殊平行四边形的判定一、平行四边形的判定1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2. 能判定四边形ABCD为平行四边形的题设是()(A)AB∥CD,AD=BC (B)AB=CD,AD=BC(C)∠A=∠B,∠C=∠D(D)AB=AD,CB=CD3.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()A.0个B. 1个C. 3个D. 4个4.已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.5.已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F求证:四边形BEDF是平行四边形.6.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE 是平行四边形.7. 在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)8.已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.9. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.10. 已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC , 求证:BE =CF11.在ABCD 中,AB=2,BC=6,∠ABC=60°,P 点是AD 上一动点,求△PBC 的面积。

人教【数学】培优平行四边形辅导专题训练

人教【数学】培优平行四边形辅导专题训练

一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【详解】(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=534∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2, 在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.。

平行四边形专题详解

平行四边形专题详解

平行四边形专题详解18.1 平行四边形知识框架{基础知识点{ 平行四边形的定义平行四边形的性质平行四边形的判定定理三角形中位线定理典型题型{利用平行线的性质求角度平行线间距离的运用平行四边形的证明难点题型{平行四边形间距离的应用平行四边形有关的计算平行四边形的有关证明一、基础知识点知识点1 平行四边形的定义1)平行四边形的定义:两组对边分别平行的四边形。

平行四边形用“▱”表示,平行四边形ABCD 表示为“▱ABCD ”,读作“平行四边形ABCD ”注:只要满足对边平行的四边形都是平行四边形。

矩形、菱形、正方形都是特殊的平行四边形 2)平行四边形的高:一条边上任取一点作另一边的垂线,该垂线的长度称作平行四边形在该边上的高。

3)两条平行线之间的距离:一条直线上任一点到另一直线的距离。

平行线间距离处处相等。

例1.如图,AB ∥EG ,EF ∥BC ,AC ∥FG ,A ,B ,C 分别在EF ,EG 上,则图中有 个平行四边形,可分别记作 。

例2.如图,▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:BE=DF 。

例3.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法错误的是()A.AB=CDB.CE=FGC.直线a,b之间的距离是线段AB的长D.直线a,b之间的距离是线段CE的长知识点2 平行四边形的性质平行四边形的性质,主要讨论:边、角、对角线,有时还会涉及对称性。

如下图,四边形ABCD是平行四边形:1)性质1(边):①对边相等;②,即:AB=CD,AD=BC;AB∥CD,AD∥BC2)性质2(角):对角相等,即:∠BAD=∠BCD,∠ABC=∠ADC3)性质3(对角线):对角线相互平分,即:AO=OC,BO=OD注:①平行四边形仅对角线相互平分,对角线不相等,即AC≠BD(矩形的对角线才相等);②平行四边形对角相等,但对角线不平分角,即∠DAO≠∠BAO(菱形对角线才平分角)4)性质4(对称性):平行四边形不是轴对称图形,是中心对称图形。

人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)

人教版数学八年级下册:第十八章  平行四边形   专题练习(附答案)

第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。

平行四边形专题证明题33道-含答案

平行四边形专题证明题33道-含答案

图1 平行四边形专题练习1.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .2.(08贵阳市)如图1,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.3.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =5.以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 .6.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .7.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题(每题3分,共30分)8.如图2在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°图2 图3 图49.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等10.如图3所示,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm11.已知:如图4,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .3E AF D C B H G12.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( )A.①③⑤B.②③⑤C.①②③D.①③④⑤13.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是( )A.88 mm B.96 mm C.80 mm D.84 mm图5 图614、(08甘肃省白银市)如图6所示,把矩形ABCD沿EF对折后使两部分重合,若150∠=,∠=()则AEFA.110° B.115°C.120° D.130°15、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组16、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C. 对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形.三、解答题17、如图7,四边形ABCD是菱形,对角线AC=8 cm ,BD=6 cm, DH⊥AB于H,求:DH的长。

《平行四边形》专题练习(含答案)

《平行四边形》专题练习(含答案)

平行四边形专题练习一、选择题1. (2018·宜宾)在ABCD 中,若BAD ∠与CDA ∠的平分线交于点E ,则AED ∠的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定 2. (2018·黔西南州)如图,在ABCD 中,4AC =cm.若ACD ∆的周长为13 cm ,则ABCD 的周长为( )A. 26 cmB. 24 cmC. 20 cmD. 18 cm3. (2018·海南)如图ABCD 的周长为36,对角线,AC BD 相交于点O ,E 是CD 的中点,12BD =,则DOE ∆的周长为( )A.15B. 18C. 21D. 24 4. ( 2018·台州)如图,在ABCD 中,2,3AB BC ==.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点,P Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A.12 B. 1 C. 65 D. 325. (2018·东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加一个条件使四边形ABCD 是平行四边形,你认为下列四个条件中可选择的是( )A. AD BC =B. CD BF =C. A C ∠=∠D. F CDF ∠=∠ 6. (2018·安徽)在ABCD 中,,E F 是对角线BD 上不同的两点.下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A. BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠7. (2018·玉林)在四边形ABCD 中:①//AB CD ;②//AD BC ;③AB CD =;④AD BC =,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( ) A. 3种 B. 4种 C. 5种 D. 6种8. (2018·呼和浩特)顺次连接平面上,,,A B C D 四点得到一个四边形,从①//AB CD ;②BC AD =;③A C ∠=∠;④B D ∠=∠四个条件中任取其中两个,可以得出‘“四边形ABCD 是平行四边形”这一结论的情况共有( )A. 5种B. 4种C. 3种D. 1种 9. (2018·眉山)如图,在ABCD 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接,EF BF ,下列结论:①2ABC ABF ∠=∠;②EF BF =;③2EFB DEBC S S ∆=四边形;④3CFE DEF ∠=∠.其中正确的结论共有( )A.1个B. 2个C. 3个D. 4个10. (2018·通辽)如图,ABCD 的对角线,AC BD 交于点O ,DE 平分ADC ∠交AB 于点E ,60BCD ∠=︒,12AD AB =,连接OE .下列结论:①ABCDS AD BD =; ②DB平分CDE ∠; ③AO DE =;④5ADE OFE S S ∆∆=.其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题11. (2018·常州)如图,在ABCD 中,70A ∠=︒,DC DB =,则CDB ∠= .12. (2018·十堰)如图,ABCD 的对角线,AC BD 相交于点O ,且8AC =,10BD =,5AB =,则OCD ∆的周长为 .13. (2018·泰州)如图,在ABCD 中,,AC BD 相交于点O .若6,16AD AC BD =+=,则BOC ∆的周长为 .14. (2018·衡阳)如图,ABCD 的对角线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ∆的周长为8,那么ABCD 的周长是 .15.(2018·临沂)如图,在ABCD 中,10,6AB AD ==,AC BC ⊥,则BD 的长为 .16. (2018·东营)如图,(3,3)B -,(5,0)C ,以,OC CB 为边作OABC ,则经过点A 的反比例函数的解析式为 . 17. (2018·株洲)如图,在ABCD 中,连接BD ,且BD CD =,过点A 作AM BD ⊥于点M ,过点D 作DN AB ⊥于点N ,且DN =,在DB 的延长线上取一点P ,满足ABD MAP PAB ∠=∠+∠,则AP 的长为 .18.(导学号78816053)(2018·无锡)如图,60XOY ∠=︒,点A 在边OX 上,2OA =.过点A作AC OY ⊥于点C ,以AC 为一边在XOY ∠内作等边三角形ABC ,P 是ABC ∆围成的区域(包括各边)内的一点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY于点E .设,OD a OE b ==,则2a b +的取值范围是 . 三、解答题19. (2018·无锡)如图,在ABCD 中,,E F 分别是边,BC AD 的中点.求证:ABF CDE ∠=∠.20. (2018·衢州)如图,在ABCD 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为E ,F .求证:AE CF =.21. (2018·大连)如图,ABCD 的对角线,AC BD 相交于点O ,点,E F 在AC 上,且AF CE =.求证:BE DF =.22. (2018·福建)如图,ABCD 的对角线,AC BD 相交于点O ,EF 过点O 且与,AD BC分别相交于点,E F .求证:OE OF =.23. (2018·宿迁)如图,在ABCD 中,点,E F 分别在边,CB AD 的延长线上,且BE DF =,EF 分别与,AB CD 交于点,G H .求证:AG CH =.24. (2018·曲靖)如图,在ABCD 的边,AB CD 上截取,AF CE ,使得AF CE =,连接,,EF M N 是线段EF 上两点,且EM FN =,连接,AN CM .(1)求证: AFN CEM ∆≅∆;(2)若107CMF ∠=︒,72CEM ∠=︒,求NAF ∠的度数.25. (2018·岳阳)如图,在ABCD 中,AE CF =.求证:四边形BFDE 是平行四边形.26. (2018·孝感)如图,,,,B E C F 在一条直线上,已知//,//,AB DE AC DF BE CF =,连接AD .求证:四边形ABED 是平行四边形.27. (2018·陕西)如图,//AB CD ,,E F 分别为,AB CD 上的点,且//EC BF ,连接AD ,分别与,EC BF 相交于点,G H ,若AB CD =,求证:AG DH =.28. (2018·巴中)如图,在ABCD 中,过点B 作BM AC ⊥于点E ,交CD 于点M ,过点D 作DN AC ⊥于点F ,交AB 于点N . (1)求证:四边形BMDN 是平行四边形; (2)已知12,5AF EM ==,求AN 的长.29. (2018·江西)如图,在四边形ABCD 中,//AB CD ,2AB CD =,E 为AB 的中点,请仅用无刻度的直尺分别按下面的要求画图.(保留画图痕迹) (1)在图①中,画出ABD ∆的BD 边上的中线;(2)在图②中,若BA BD =,画出ABD ∆的AD 边上的高.30. (2018·黄冈)如图,在ABCD 中,分别以边,BC CD 作等腰三角形BCF 、等腰三角形CDE ,使,BC BF CD DE ==,CBF CDE ∠=∠,连接,AF AE . (1)求证: ABF EDA ∆≅∆;(2)延长AB 与CF ,相交于点G ,若AF AE ⊥,求证: BF BC ⊥.31. (2018·永州)如图,在ABC ∆中,90ACB ∠=︒,30CAB ∠=︒,以线段AB 为边向外作等边三角形ABD ,E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若6AB =,求BCFD 的面积.32. (2018·重庆)如图,在ABCD 中,O是对角线AC 的中点,E 是BC 上一点,且AB AE =,连 接EO 并延长交AD 于点F .过点B 作AE 的垂线,垂足 为H ,交AC 于点G .(1)若3,1AH HE ==,求ABE ∆的面积;(2)若45ACB ∠=︒,求证:DF =.参考答案一、1. B 2. D 3. A 4. B 5. D 6. B 7. B 8. C 9. D 10. B 二、填空题11. 40︒ 12. 14 13. 14 14. 1615. 16. 6y x= 17. 618. 225a b ≤+≤ 三、19. 点拨:证明()ABF CDE SAS ∆≅∆,即可得ABF CDE ∠=∠. 20. 点拨:证明()ABE CDF AAS ∆≅∆,即可得AE CF =. 21. 点拨:证明()BEO DFO SAS ∆≅∆,即可得BE DF =. 22. 点拨:证明()AOE COF ASA ∆≅∆,即可得OE OF =. 23. 点拨:证明()AGF CHE ASA ∆≅∆,即可得AG CH =.24. (1)点拨:由FN EM AFN CEM AF CE =⎧⎪∠=∠⎨⎪=⎩,得到AFN CEM ∆≅∆(2) 35NAF ∠=︒25. 点拨:由//BF DEBF DF ⎧⎨=⎩,得到四边形BFDE 是平行四边形26. 点拨:证明()ABC DEF ASA ∆≅∆,得到AB DE =, 又∵//AB DE ,∴四边形ABED 是平行四边形.27. 点拨:证明()AEG DFH ASA ∆≅∆,得到AG DH =.28. (1) 点拨:由////CD ABDN BM⎧⎨⎩,得到四边形BMDN 是平行四边形;(2)13AN =29. (1)如图①,连接CE ,交BD 于点F ,连接AF ,线段AF 即为所求 (2)如图②,连接CE ,交BD 于点F ,连接AF ,DE 交于点G ,连接BG ,并延长BG ,交AD 于点H ,线段BH 即为所求30. (1) 点拨:由BF DA ABF EDA AB DE =⎧⎪∠=∠⎨⎪=⎩,得到ABF EDA ∆≅∆(2) 点拨:由90CBF EAF ∠=∠=︒,得到BF BC ⊥ 31. (1) 点拨:由////BC DFCF BD⎧⎨⎩,得到四边形BCFD 为平行四边形;(2) BCFDS=32. (1) ABE S ∆= (2) 点拨:AOF COE ∆≅∆,得到AF CE =, ∵AD BC =, ∴DF BE =.AME BNG ∆≅∆,得到ME NG =, ∴22BE ME NG ==在Rt GNC ∆中,45GCN ∠=︒,∴CG =,2NG =,∴DF =。

专题43平行四边形(学生版)

专题43平行四边形(学生版)
5、已知:如图,在 ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.
6、如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.
A.1组B.2组C.3组D.4组
7、在ABCD中,点E为AD的中点,连接BE,交AC于点F,
则AF:CF=()
A.1:2B.1:3C.2:3D.2:5
8、如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连结AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()
A.∠ABC=60° B.AB:BC=1:4 C.AB:BC=5:2D.AB:BC=5:8
10、如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是【】
A.DF=BEB.AF=CEC.CF=AED.CF∥AE
11、如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为【】
15、如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.
16、如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连别在AD、BC上,且ED=BF,EF与AC相交于点O.求证:OA=OC.
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的长。
经典习题二
一、选择题
1、如图,在 ABCD中,点E为AB的中点,点F

专题23 平行四边形(原卷版)

专题23 平行四边形(原卷版)

专题23平行四边形【考查题型】【知识要点】知识点一平行四边形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”。

平行四边形的性质:1)对边平行且相等;2)对角相等、邻角互补;3)对角线互相平分;4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。

平行四边形的判定定理:1)边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形.2)角:④两组对角分别相等的四边形是平行四边形;⑤任意两组邻角分别互补的四边形是平行四边形.3)边与角:⑥一组对边平行,一组对角相等的四边形是平行四边形;4)对角线:⑦对角线互相平分的四边形是平行四边形.平行四边形的面积公式:面积=底×高平行线的性质:1)平行线间的距离都相等;2)两条平行线间的任何平行线段都相等;3)等底等高的平行四边形面积相等。

考查题型一添加一个条件成为平行四边形典例1.(2022·四川达州·统考中考真题)如图,在ABC 中,点D ,E 分别是AB ,BC 边的中点,点F 在DE 的延长线上.添加一个条件,使得四边形ADFC 为平行四边形,则这个条件可以是()A .B F ∠=∠B .DE EF =C .AC CF =D .AD CF=变式1-1.(2021·黑龙江牡丹江·统考中考真题)如图,在四边形ABCD 中,AB DC =,请添加一个条件,使四边形ABCD 成为平行四边形,你所添加的条件为___________(写一个即可).变式1-2.(2020·黑龙江牡丹江·中考真题)如图,在四边形ABCD 中,连接AC ,ACB CAD ∠=∠.请你添加一个条件______________,使AB CD =.(填一种情况即可)变式1-3.(2021·湖南岳阳·统考中考真题)如图,在四边形ABCD 中,AE BD ⊥,CF BD ⊥,垂足分别为点E ,F .(1)请你只添加一个条件(不另加辅助线),使得四边形AECF 为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形AECF 为平行四边形.考查题型二平行四边形的证明典例2.(2022·辽宁鞍山·统考中考真题)如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.变式2-1.(2022·广西河池·统考中考真题)如图,点A ,F ,C ,D 在同一直线上,AB =DE ,AF =CD ,BC =EF .(1)求证:∠ACB =∠DFE ;(2)连接BF ,CE ,直接判断四边形BFEC 的形状.变式2-2.(2022·北京·统考中考真题)如图,在ABCD Y 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.变式2-3.(2022·广西贺州·统考中考真题)如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED BF =,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分8FAE AC ∠=,,3tan 4DAC ∠=,求四边形AFCE 的面积.变式2-4.(2022·江西·统考中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB CD FG ∥∥,A ,D ,H ,G 四点在同一直线上,测得72.9, 1.6m, 6.2m FEC A AD EF ∠=∠=︒==.(结果保留小数点后一位)(1)求证:四边形DEFG 为平行四边形;(2)求雕塑的高(即点G 到AB 的距离).(参考数据:sin 72.90.96,cos72.90.29,tan 72.9 3.25︒≈︒≈︒≈)变式2-5.(2021·湖北鄂州·统考中考真题)如图,在ABCD Y 中,点E 、F 分别在边AD 、BC 上,且ABE CDF ∠=∠.(1)探究四边形BEDF 的形状,并说明理由;(2)连接AC ,分别交BE 、DF 于点G 、H ,连接BD 交AC 于点O .若23AG OG =,4AE =,求BC 的长.变式2-6.(2021·山东聊城·统考中考真题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.考查题型三利用平行线的性质求解典例3.(2022·广东·统考中考真题)如图,在ABCD Y 中,一定正确的是()A .AD CD =B .AC BD =C .AB CD =D .CD BC=变式3-1.(2022·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''' ,点A '对应直尺的刻度为0,则四边形ACC A ''的面积是()A .96B .C .192D .变式3-2.(2022·四川乐山·统考中考真题)如图,在平行四边形ABCD 中,过点D 作DE ⊥AB ,垂足为E ,过点B 作BF ⊥AC ,垂足为F .若=6,AC =8,DE =4,则BF 的长为()A .4B .3C .52D .2变式3-3.(2022·湖南湘潭·统考中考真题)在ABCD Y 中(如图),连接AC ,已知40BAC ∠︒=,80ACB ∠=︒,则BCD ∠=()A .80︒B .100︒C .120︒D .140︒变式3-4.(2022·内蒙古通辽·统考中考真题)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =120BDC ∠=︒,BCD S =△,若反比例函数()0k y x x =<的图像经过C ,D 两点,则k 的值是()A .-B .6-C .-D .12-变式3-5.(2022·黑龙江·统考中考真题)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x =的图象上,顶点A 在反比例函数k y x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是()A .2B .1C .1-D .2-变式3-6.(2022·四川宜宾·统考中考真题)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是()A .5B .10C .15D .20变式3-7.(2021·天津·统考中考真题)如图,ABCD Y 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是()A .()4,1-B .()4,2-C .()4,1D .()2,1变式3-8.(2021·贵州黔东南·统考中考真题)如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A(1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为()A .1B .2C .3D .4变式3-9.(2021·湖北荆门·统考中考真题)如图,将一副三角板在平行四边形ABCD 中作如下摆放,设130∠=︒,那么2∠=()A .55︒B .65︒C .75︒D .85︒变式3-10.(2022·安徽·统考中考真题)如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.变式3-11.(2022·江苏连云港·统考中考真题)如图,在ABCD Y 中,150ABC ∠=︒.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA ∠内交于点G ;作射线BG 交DC 于点H .若1AD =,则BH 的长为_________.变式3-12.(2022·贵州毕节·统考中考真题)如图,在Rt ABC 中,90,3,5BAC AB BC ∠=︒==,点P 为BC边上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 长度的最小值为_________.变式3-13.(2022·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.变式3-14.(2022·辽宁·统考中考真题)如图,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点D 为OB 的中点,▱OCDE 的顶点C 在x 轴上,顶点E 在直线AB 上,则▱OCDE 的面积为_______.考查题型四利用平行线的性质证明典例4.(2022·广西桂林·统考中考真题)如图,在平行四边形ABCD 中,点E 和点F 是对角线BD 上的两点,且BF =DE .(1)求证:BE =DF ;(2)求证: ABE ≌ CDF .变式4-1.(2022·广西梧州·统考中考真题)如图,在ABCD Y 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG ==.求证:EF HG =.变式4-2.(2022·湖南永州·统考中考真题)如图,BD 是平行四边形ABCD 的对角线,BF 平分DBC ∠,交CD于点F .(1)请用尺规作ADB ∠的角平分线DE ,交AB 于点E (要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形DEBF 为平行四边形,请将下面的证明过程补充完整.证明:∵四边形ABCD 是平行四边形,∴AD BC∥∵ADB ∠=∠______(两直线平行,内错角相等)又∵DE 平分ADB ∠,BF 平分DBC ∠,∴12EDB ADB ∠=∠,12DBF DBC ∠=∠∴EDB DBF∠=∠∴DE ∥______(______)(填推理的依据)又∵四边形ABCD 是平行四边形∴BE DF∥∴四边形DEBF 为平行四边形(______)(填推理的依据).变式4-3.(2022·内蒙古·中考真题)如图,在平行四边形ABCD 中,点O 是AD 的中点,连接BO 并延长交CD 的延长线于点E ,连接BD ,AE .(1)求证:四边形ABDE 是平行四边形;(2)若BD CD =,判断四边形ABDE 的形状,并说明理由.变式4-4.(2021·四川广元·统考中考真题)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC CF =;(2)连接AC 和BE 相交于点为G ,若GEC 的面积为2,求平行四边形ABCD 的面积.考查题型五利用平行线的性质与判定求解典例5.(2022·内蒙古赤峰·统考中考真题)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是()A .四边形ABCD 周长不变B .AD CD=C .四边形ABCD 面积不变D .AD BC =变式5-1.(2022·内蒙古包头·中考真题)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE 与CDE 的周长比为()A .1:4B .4:1C .1:2D .2:1变式5-2.(2021·黑龙江·统考中考真题)如图,平行四边形ABFC 的对角线AF 、BC 相交于点E ,点O 为AC 的中点,连接BO 并延长,交FC 的延长线于点D ,交AF 于点G ,连接AD 、OE ,若平行四边形ABFC 的面积为48,则AOG S △的面积为()A .5.5B .5C .4D .3变式5-3.(2021·江西·中考真题)如图,将ABCD Y 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F ,若80B ∠=︒,2ACE ECD ∠=∠,FC a =,FD b =,则ABCD Y 的周长为______.变式5-4.(2022·四川内江·统考中考真题)如图,矩形ABCD 中,AB =6,AD =4,点E 、F 分别是AB 、DC 上的动点,EF ∥BC ,则AF +CE 的最小值是_____.变式5-5.(2021·山西·统考中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =BHNM )的面积.请你思考此问题,直接写出结果.知识点二三角形中位线三角形中位线概念:连接三角形两边中点的线段叫做三角形中位线。

平行四边形专题训练(含答案)

平行四边形专题训练(含答案)

平行四边形专题训练一.解答题(共17小题)1.如图,在▱ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF 交CE于点G.(1)若∠D=60°,CF=2,求CG的长;(2)求证:AB=ED+CG.2.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.3.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH 于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.4.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.5.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.6.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE的延长线交CD于点F,交AD的延长线于点G.(1)若BE=,EC=,求△BCE的面积;(2)若∠ABE=2∠EBC,且AB=BE,求证:EC=DG.7.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tan B=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF 垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.8.如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE 于点H,证明:GH=CH.9.在▱ABCD中,点E是BC的中点,过点A作AF⊥CD交直线CD于点F,连接AE、DE(1)如图1,当点F与点C重合时,AB=AC=2,求线段DE的长;(2)如图2,若∠EAF=30°,AE=CF,求证:BE=AF.10.已知,在▱ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,BE=CE.(1)如图1,当∠AEB=60°,BF=2时,求▱ABCD的面积;(2)如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当GF=GC时,求证:AB=2EG.ABCD BD AD E CD AE BD F G为AF的中点,连接DG.(1)如图1,若DG=DF=1,BF=3,求CD的长;(2)如图2,连接BE,且BE=AD,∠AEB=90°,M、N分别为DG,BD上的点,且DM=BN,H为AB的中点,连接HM、HN,求证:∠MHN=∠AFB.12.在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.13.已知在平行四边形ABCD中,过点D作DE⊥BC于点E,且AD=DE.连接AC交DE于点F,作DG⊥AC于点G.(1)如图1,若,AF=,求DG的长;(2)如图2,作EM⊥AC于点M,连接DM,求证:AM﹣EM=2DG.14.已知,在平行四边形ABCD中,点E是AD边上一点,且DE=DC.(1)若点E与点A重合(如图1),点B沿MN翻折后的点B1恰好落在AC上,且∠MNB1=45°,AB1=1,AM=2,BM=.求:①∠AMN的度数;②BN的长;(2)如图2,若CE交对角线BD于F,∠ABD=2∠DBC,求证:BC=DF+AB.15.在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.16.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.17.如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.18.如图,平行四边形ABCD中,过点C作CE⊥AB于点E,点F是AD上一点,连结BF、CF,交CE于点G。

专题8 平行四边形的性质及应用

专题8  平行四边形的性质及应用

专题8 平行四边形的性质及应用知识要点1.平行四边形的定义:两组对边分别平行的四边形是平行四边形.(注意定义的双向性)2.平行四边形的性质,如图8-1所示.3.证明平行四边形的边、角、对角线的性质时,我们常用的策略是构造全等三角形.4.平行四边形与等腰三角形的知识联系,如图8-2所示.典例精析例1如图8-3,在□ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长度是多少?【分析】通过平行四边形与平分线的条件,可以找到题中的“知二得一”,利用这个结论即可证明.【解】∵四边形ABCD是平行四边形,∴AB=CD=4 cm,BC=AD=7 cm.∴AB∥CD.∴∠ABF=∠F.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠FBC=∠F.∴BC=CF=7cm.∴DF=CF -CD=3 cm.【点评】角平分线,平行线与等腰三角形的“知二得一”是非常重要的基本图形,是解决很多带有这种模型的关键突破口.我们要能在各种背景下识别这样的基本图形.拓展与变式1如图8-4,四边形ABCD是平行四边形,AE=3,BE平分∠ABC且交AD于点E,DF∥BE且交BC于点F.求CD+CF的长.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC.∵BE平分∠ABC,∴∠ABE=∠EBC=∠AEB.∴AB=AE=3,CD=3.∵BE∥DF,∴四边形EBFD是平行四边形.∴ED=BF.∴CF=AE=3.∴CD+CF=6.拓展与变式2 如图8-5,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB 的中点,AB=6,BC=4,则AE∶EF∶FB为().A.1∶2∶3 B.2∶1∶3 C.3∶2∶1 D.3∶1∶2解:B【反思】正确识别和应用基本图形是提高解题效率的基本能力要求.例2□ABCD的对角线AC,BD相交于点O,且AC+BD=34,AB=11,求△OCD 的周长.【分析】本题没有图形,我们要根据题意先将图形画出来,再利用平行四边形的对角线互相平分来解决问题.【解】如图8-6,∵四边形ABCD是平行四边形,∴OC=12AC,OD=12BD.∴OC+OD=12(AC+BD)=17.∵CD=AB=11,∴△OCD的周长为OC+OD+CD=28.【点评】根据题意画出正确的图形是三种语言转化的基本要求,而平行四边形的对角线互相平分的性质又是在遇到平行四边形带有对角线时的首要解题策略.拓展与变式3 □ABCD的顶点A,C在□DEBF的对角线EF上.求证:AE=CF.证明:如图D8-1,连接BD交AC于点O.∵四边形ABCD是平行四边形,∴AO=CO.∵四边形DEBF是平行四边形,∴EO=FO.∴EO-AO=FO-CO.∴AE=CF.拓展与变式4□ABCD的周长为26 cm,AC与BD相交于点O,△AOB的周长比△OBC的周长大4 cm,那么AB等于___________.解:8.5 cm拓展与变式5如图8-7,在周长是12 cm的□ABCD中,AB≠AD,AC与BD相交于点O,点E在AD边上,且OE⊥BD,则△ABE的周长是___________.解:6 cm【反思】灵活运用平行四边形的对角线互相平分的性质对于更好地理解平行四边形的性质是很重要的.例3在□ABCD中,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F.若AD=11,EF=5,则AB的长为多少?【分析】本题依然需要根据题意画出图形,但这里点E和点F的顺序不能确定,所以本题要分类讨论.【解】分两种情况讨论:①如图8-8,当AE与DF相交时,在□ABCD中,BC∥AD,∴∠DAE=∠AEB,∠ADF=∠CFD.∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF.∴∠BAE=∠AEB,∠CFD=∠CDF.∴AB=BE,CF=CD.∴BE=AB=CD=CF.∵EF=5,BC=AD=11,∴BC=BE+CF-EF=2AB-EF=2AB-5=11.∴AB=8.②如图8-9,当AE与DF不相交时,同理可得BC=BE+CF+EF=2AB+EF=2AB+5=11,∴AB=3.【点评】分类讨论是重要的思想方法,而在题目没有给出确定的图形时,一定要有分类讨论的意识,才能正确并完整地解决问题.拓展与变式6若以A(-2,0),B(1,0),C(0,1)三点为顶点画平行四边形,那么第四个顶点不可能在第________象限.解:四拓展与变式7在面积为15的□ABCD中,过点A作AE垂直BC于点E,作AF垂直CD于点F.若AB=5,BC=6,求CE+CF的长.解:①如图D8-2,当∠BAD是钝角时,∵AE⊥BC,AF⊥CD,∴S□ABCD=AE·BC=15.∴AE=2.5.同理AF=3.∵∠AEB=90°,∴BE DF∵>56,∴DF>DC,BE<BC.∴点E在BC上,点F在DC延长线上.∴CE+CF=BC-BE+DF-DC.∴CE+CF=1.②如图D8-3,当∠BAD为锐角时,同①理,BE DF=,点E,F均在□ABCD的外部,∴CE+CF=CB+BE+CD+DF.∴CE+CF=11.综上所述,CE+CF的长为111.【反思】分类讨论是贯穿于数学学习的重要思想方法,我们在解决需要自行画图的问题时,应特别注意这种思想方法的应用.专题突破1.如图8-10,在□ABCD中,已知AD=8 cm,AB=6 cm,DE平分∠ADC交BC边于点E,则BE等于____________.解:2 cm2.如图8-11,在□ABCD中,点O是对角线AC,BD的交点,AC⊥BC,且AB=10 cm,AD=6 cm,则AO=__________cm.解:43.如图8-12,在□ABCD中,对角线AC和BD交于点O.若AC=8,AB=6,BD =m,那么m的取值范围是________________.解:4<m<204.BD为□ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD,BC分别交于点E,F.求证:DE=DF.证明:如图D8-4,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠EDO=∠FBO.∵O为BD的中点,∴OB=OD.∴∠EOD=∠FOB,∴△EOD≌△FOB.∴EO=FO.又EF⊥BD,∴DE=DF.5.已知□ABCD的对角线AC与BD相交于点O,∠AOB=120°,AC=6.当△ADC是直角三角形时,求AD的长.解:分三种情况讨论:①如图D8-5,当∠CAD=90°时,若A在C上方,∵四边形ABCD是平行四边形,∴AO=12AC=3.∵∠AOB=120°,∴∠ADO=30°.∴OD=2AO=6.∴AD.②如图D8-6,当∠ACD=90°时,若A在C下方,同理可以求出CD=,∴AD③如图D8-7,当∠ADC=90°时,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD.∵CD=CD,∴△BCD≌△ADC.∴BD=AC.∴AO=OC=OB=OD.∴∠ACD=30°.∴AD=12AC=3.综上所述,AD的长是或3.。

专题25平行四边形的判定定理-重难点题型

专题25平行四边形的判定定理-重难点题型

专题4.3 平行四边形的判定定理-重难点题型【知识点1 平行四边形的判定】(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.【题型1 平行四边形的判定条件】【例1】(2021春•玄武区期中)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD【变式1-1】(2021春•驿城区期末)在四边形ABCD中,对角线AC、BD相交于点O,在下列条件中,①AB∥CD,AD∥BC,②AB=CD,AD=BC;③AB∥CD,AD=BC,④OA=OC,OB=OD,⑤AB∥CD,∠BAD=∠BCD,能够判定四边形ABCD是平行四边形的个数有()A.2个B.3个C.4个D.5个【变式1-2】(2021春•凤翔县期末)在四边形ABCD中,对角线AC,BD相交于点O.给出下列四组条件:①AB ∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有()A.①②③B.②③④C.①②④D.①③④【变式1-3】(2021春•宜兴市月考)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AB∥CD,AD=BC;④AO=CO,BO=DO.其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组【题型2 平行四边形的判定与坐标】【例2】(2021春•江油市期末)如图,△OAB的顶点O、A、B的坐标分别是(0,0)(3,0),(1,1),下列点M中,O、A、B、M为顶点的四边形不是平行四边形的是()A .(1,﹣1)B .(2,﹣1)C .(﹣2,1)D .(4,1)【变式2-1】(2021春•石狮市期末)在平面直角坐标系中,已知点A (0,0)、B (2,2)、C (3,0),若以点A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 的坐标不可能为( )A .(﹣1,2)B .(5,2)C .(1,﹣2)D .(2,﹣2)【变式2-2】(2020春•彭州市期末)如图,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,A (﹣2,0),B (0,4),将△OAB 绕O 点顺时针旋转90°得到△OCD ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边形,则符合条件的点M 的坐标为 .【变式2-3】(2021春•开封期末)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 的坐标为(4,0),点C 在y 的正半轴上,且OB =2OC ,在直角坐标平面内确定点D ,使得以点D 、A 、B 、C 为顶点的四边形是平行四边形,请写出点D 的坐标为 .【题型3 平行四边形的判定与动点】【例3】(2021春•阳谷县期末)如图,在四边形ABCD 中,AD ∥BC ,且AD <BC ,BC =6cm ,动点P ,Q 分别从点D ,B 同时出发,点P 以1cm /s 的速度向点A 运动,点Q 以2cm /s 的速度向点C 运动,几秒后四边形CDPQ 是平行四边形( )A .1B .2C .3D .4 【变式3-1】(2021秋•芝罘区期末)如图,四边形ABCD 中,AD ∥BC ,AD =8cm ,BC =12cm ,M 是BC 上一点,且BM =9cm ,点E 从点A 出发以1cm /s 的速度向点D 运动,点F 从点C 出发,以3cm /s 的速度向点B 运动,当其中一点到达终点,另一点也随之停止,设运动时间为t (s ),则当以A 、M 、E 、F 为顶点的四边形是平行四边形时,t 的值是( )A .34B .3C .3或32D .32或34 【变式3-2】(2021春•抚州期末)在平面直角坐标系中,已知点A (4,0),点B (﹣3,2),点C (0,2),点P 从点B 出发,以2个单位每秒的速度沿射线BC 运动,点Q 从点A 出发,开始以1个单位每秒的速度向原点O 运动,到达原点后立刻以原来3倍的速度沿射线OA 运动,若P ,Q 两点同时出发,设运动时间为t 秒,则当t=时,以点A,Q,C,P为顶点的四边形为平行四边形.【变式3-3】(2021春•惠来县期末)如图,在△ABC中,AB=AC=20cm,BD⊥AC于点D,且BD=16cm.点M 从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为1cm/s,过点P的直线PQ∥AC,交BC于点Q,连接PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形是平行四边形?【题型4 平行四边形的判定与证明】【例4】(2021•郓城县模拟)如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连结AE、BD,求证:四边形ABDE是平行四边形.【变式4-1】(2021春•西安期末)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD是平行四边形.【变式4-2】如图,四边形ABCD的对角线AC、BD相交于点O,过点O画直线EF分别交AD、BC于点E、F,已知OE=OF,且AO+AE=CO+CF,求证:四边形ABCD为平行四边形.【变式4-3】(2020春•长宁区期末)已知:如图,△ABC和△ADE都是等边三角形,点D在BC边上,EF∥BC 交AC于点F,联结BE.求证:四边形BEFC为平行四边形.【题型5 二次证明平行四边形】【例5】如图,在平行四边形ABCD中,AE=CF,M、N分别为ED、FB的中点,试说明四边形ENFM为平行四边形.【变式5-1】如图,O为四边形ABCD的对角线BD的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF,AE∥CF,AE=CF.求证:四边形ABCD是平行四边形.【变式5-2】如图,E、F是△ABC的边AB、BC边的中点,在AC上取G、H两点,使AG=GH=HC,连接EG、FH并延长交于点D求证:四边形ABCD是平行四边形.【变式5-3】如图,E、F是四边形ABCD的对角线BD上两点,DF=BE,AE∥CF,AE=CF.求证:四边形ABCD 是平行四边形.【题型6 平行四边形的判定与性质综合】【例6】(2021春•西湖区校级月考)如图,已知△ABC为等边三角形,动点P在△ABC内,以PB,PC为边向外作等边三角形△PBD,△PCE.(1)若PB=8,PC=6,BC=10,①求证:四边形PEAD是平行四边形;②求出四边形PEAD的面积;(2)随着点P在△ABC所在平面上运动时,当△PBC满足什么条件时,平行四边形PEAD一定存在?(直接写出答案)【变式6-1】(2021秋•南岗区校级月考)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若AB平分∠F AC,延长FE交CD于点H,请直接写出与∠ABE相等的角.【变式6-2】(2021春•安国市期末)如图,平面直角坐标系中,四边形ABCD是平行四边形,A(﹣3,0),B(3,0),C(0,4),连接OD,点E是线段OD的中点.(1)求点E和点D的坐标;(2)平面内是否存在一点N,使以C、D、E、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.【变式6-3】(2021春•修水县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在▱ABCD的外面),连接AE,CE,CF,AF.(1)若DE=12OD,BF=12OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(2)若DE=13OD,BF=13OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.若DE=1n OD,BF=1n OB呢?请直接写出结论.。

平行四边形+专题:平行四边形中的最值问题+讲练课件+++2023—2024学年人教版数学八年级下册

平行四边形+专题:平行四边形中的最值问题+讲练课件+++2023—2024学年人教版数学八年级下册

解:∵四边形CDEF是正方形,
∴OC=OD,∠COD=90°,∠ACO=∠BDO=45°.
∴∠AOC+∠AOD=90°.
∵∠AOB=90°,∴∠BOD+∠AOD=90°.
∴∠AOC=∠BOD.
ACO=BDO,
∴在△AOC和△BOD中,Oቤተ መጻሕፍቲ ባይዱ=OD,
AOC=BOD,
∴△AOC≌△BOD(ASA). ∴OA=OB.
新人教版初中八年级数学下学期
第十八章 平行四边形
专题:平行四边形中的最值问题
利用轴对称求最值
1. 如图,正方形ABCD的边长为3,点E在BC上,且BE =2,点P在对角线BD上,则PE+PC的最小值为 ( B )
2. 如图,菱形ABCD的边长为2,∠DAB=60°,点E为 BC边的中点,点P为对角线AC上一动点,则PB+PE 的最小值为__3__.
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC.
∴∠ADB=∠CBD. ∵将△ADE,△CBF分别沿DE,BF翻折,点A,点C 都恰好落在点O处, ∴△ADE≌△ODE.∴△CFB≌△OFB. ∴∠∠CBAFD=E∠=O∠BOFD=E=12∠12C∠BADD. B, ∴∠EDO=∠FBO;
(2)求证:四边形DEBF是菱形; (2)证明:∵∠EDO=∠FBO,∴DE∥BF.
∵四边形ABCD是矩形, ∴AB∥CD,AD=BC,∠A=90°. ∵DE∥BF,AB∥CD, ∴四边形DEBF是平行四边形. 又∵△ADE≌△ODE, ∴∠A=∠DOE=90°. ∴EF⊥BD.∴四边形DEBF是菱形;
(3)如图2,若AD=2,P是线段ED上的动点,求2AP+ PD的最小值.
(3)解:如图2,过点P作PH⊥AD于点H, ∵四边形DEBF是菱形,△ADE≌△ODE. ∴∠ADE=∠ODE=∠ODF=30°.

平行四边形专题(含答案)

平行四边形专题(含答案)

平行四边形专题一.选择题(共15小题)1.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确2.下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.124.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个5.平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<226.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个7.如图,▱的对角线、交于点O,平分∠交于点E ,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个8.在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④9.如图,在平行四边形中,2,F是的中点,作⊥,垂足E在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④10.如图,平行四边形的周长是26,对角线与交于点O,⊥,E是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.811.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S312.如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.2613.如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.614.如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14 15.如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5二.解答题(共11小题)16.如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.17.如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.18.如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.19.如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.20.如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.21.如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.22.如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.23.如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?24.如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.25.如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.26.已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.平行四边形专题(答案)一.选择题(共15小题)1.(2015春•博野县期末)已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26C.12<α<20 D.以上答案都不正确【分析】因为平行四边形的对角线互相平分,根据三角形三边之间的关系,可先求得另一对角线的一半的取值为大于7而小于13,则它的另一条对角线α的取值范围为14<α<26.【解答】解:如图,已知平行四边形中,10,6,求的取值范围,即a的取值范围.∵平行四边形∴2,26∴α,3∴在△中:﹣<<即:14<α<26故选B.【点评】此题主要考查平行四边形的性质和三角形三边之间的关系.2.(2012•麻城市校级模拟)下列说法中错误的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形③两条对角线互相垂直的矩形是正方形;④两条对角线相等的菱形是正方形⑤任何一个具有对称中心的四边形一定是正方形或矩形⑥角既是轴对称图形又是中心对称图形⑦线段、圆、矩形、菱形、正方形都是中心对称图形⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条A.1个B.2个C.3个D.4个【分析】对平行四边形性质的考查,以及矩形,正方形,中心对称图形的性质及判定.【解答】解:①中对角线互相平分的四边形是平行四边形,所以①对;②等腰梯形两条对角线也相等,②也不对;③中对角线互相垂直的矩形是正方形,正确;④两条对角线相等的菱形是正方形,正确,⑤任何一个具有对称中心的四边形一定是正方形或矩形,错误,等腰梯形,菱形都有对称中心;⑥角是轴对称图形但不是中心对称图形,所以⑥不对⑦线段、圆、矩形、菱形、正方形都是中心对称图形,都有对称中心,所以正确;⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条,正三角形只有三条对称轴.所以题中共有②⑤⑥⑧四个错误,故答案选D.【点评】本题综合考查了各种图形的性质以及有关判定,熟记性质和判定,准确掌握知识是解题的关键.3.如图,在▱中,8,6,∠30°,点E,F在上,且,则△的面积为()A.8 B.4 C.6 D.12【分析】可先求平行四边形的总面积,因为,所以三个小三角形的面积相等,进而可求解.【解答】解:如图,过点D作⊥于点G,∵6,∠30°,∴3,∴平行四边形的面积为•8×3=24,∴△的面积为×24=12∴△的面积×12=4故选B.【点评】平行四边形的面积等于平行四边形的边长与该边上的高的积.即•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,并注意体会三角形面积相等的条件.4.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.根据平行四边形的性质,结合图形,逐一分析即可.【解答】解:根据平行四边形的基本性质和判定,可知:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形,正确.②平行四边形的面积等于三角形的面积的2倍,说明不清楚,比较对象不明了,所以错误.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,正确.④平行四边形对角线的交点到一组对边的距离相等,正确.故选C.【点评】主要考查了平行四边形的基本性质,并利用性质解题,熟记性质是解题的关键,注意解题时要数形结合.5.(2011春•东莞校级期中)平行四边形中,对角线和相交于点O,如果12,10,,那么x的取值范围是()A.1<x<11 B.5<x<6 C.10<x<12 D.10<x<22【分析】根据题意画出图形,根据平行四边形的对角相互相平分,可得,;根据三角形的三边关系,可得x的取值范围是1<x<11.【解答】解:∵四边形是平行四边形,12,10,∴6,5,∵,∴x的取值范围是1<x<11.故选A.【点评】此题考查了平行四边形的性质:平行四边形的对角相互相平分.还考查了三角形的三边关系:三角形中任意两边之和>第三边,三角形中任意两边之差<第三边.题目比较简单,解题时要细心.6.如图所示,四边形是平行四边形,那么下列说法正确的有()①四边形是平行四边形,记做“四边形是▱”;②把四边形分成两个全等的三角形;③∥,且∥;④四边形是平行四边形,可以记做“▱”.A.1个B.2个C.3个D.4个【分析】根据平行四边形的基本性质和基本表示方法进行判断即可.【解答】解:根据有关概念和性质可知:①四边形是平行四边形,记做“四边形是▱”,错误.②把四边形分成两个全等的三角形,正确.③∥,且∥,正确④四边形是平行四边形,可以记做“▱”,应该为:记做“▱”,错误.故选B.【点评】主要考查了平行四边形的基本性质和基本表示方法.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.(2015•绥化)如图,▱的对角线、交于点O,平分∠交于点E,且∠60°,,连接.下列结论:①∠30°;②S▱•;③;④,成立的个数有()A.1个B.2个C.3个D.4个【分析】由四边形是平行四边形,得到∠∠60°,∠120°,根据平分∠,得到∠∠60°推出△是等边三角形,由于,得到,得到△是直角三角形,于是得到∠30°,故①正确;由于⊥,得到S▱•,故②正确,根据,,且>,得到≠,故③错误;根据三角形的中位线定理得到,于是得到,故④正确.【解答】解:∵四边形是平行四边形,∴∠∠60°,∠120°,∵平分∠,∴∠∠60°∴△是等边三角形,∴,∵,∴,∴∠90°,∴∠30°,故①正确;∵⊥,∴S▱•,故②正确,∵,,∵>,∴≠,故③错误;∵,,∴,∴,故④正确.故选:C.【点评】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(2016•菏泽)在▱中,3,4,当▱的面积最大时,下列结论正确的有()①5;②∠∠180°;③⊥;④.A.①②③B.①②④C.②③④D.①③④【分析】当▱的面积最大时,四边形为矩形,得出∠∠∠∠90°,,根据勾股定理求出,即可得出结论.【解答】解:根据题意得:当▱的面积最大时,四边形为矩形,∴∠∠∠∠90°,,∴5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱的面积最大时,四边形为矩形是解决问题的关键.9.(2016•虞城县二模)如图,在平行四边形中,2,F是的中点,作⊥,垂足E 在线段上,连接、,则下列结论中一定成立的是()①∠∠;②;③S△2S△;④∠3∠.A.①②B.②③④C.①②④D.①②③④【分析】由在平行四边形中,2,F是的中点,易得,继而证得①∠∠;然后延长,交延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△≌△(),得出对应线段之间关系进而得出答案.【解答】解:①∵F是的中点,∴,∵在▱中,2,∴,∴∠∠,∵∥,∴∠∠,∴∠∠,∴∠∠,故此选项正确;②延长,交延长线于M,∵四边形是平行四边形,∴∥,∴∠∠,∵F为中点,∴,在△和△中,,∴△≌△(),∴,∠∠M,∵⊥,∴∠90°,∴∠∠90°,∵,∴,故②正确;③∵,∴S△△,∵>,∴S△<2S△故S△2S△错误;④设∠,则∠,∴∠∠90°﹣x,∴∠180°﹣2x,∴∠90°﹣180°﹣2270°﹣3x,∵∠90°﹣x,∴∠3∠,故此选项正确.故选C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△≌△是解题关键.10.(2016•绵阳)如图,平行四边形的周长是26,对角线与交于点O,⊥,E 是中点,△的周长比△的周长多3,则的长度为()A.3 B.4 C.5 D.8【分析】由▱的周长为26,对角线、相交于点O,若△的周长比△的周长多3,可得13,﹣3,求出和的长,得出的长,再由直角三角形斜边上的中线性质即可求得答案.【解答】解:∵▱的周长为26,∴13,,∵△的周长比△的周长多3,∴()﹣()﹣3,∴5,8.∴8.∵⊥,E是中点,∴4;故选:B.【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出是解决问题的关键.11.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S23D.3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c 表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=()(a﹣c )2﹣c2,∴S21﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S23=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.12.(2016•丽水)如图,▱的对角线,交于点O,已知8,12,6,则△的周长为()A.13 B.17 C.20 D.26【分析】由平行四边形的性质得出3,6,8,即可求出△的周长.【解答】解:∵四边形是平行四边形,∴3,6,8,∴△的周长3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(2016•泰安)如图,在▱中,6,8,∠C的平分线交于E,交的延长线于F,则的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠∠,证出8,同理:6,求出﹣2,﹣2,即可得出结果.【解答】解:∵四边形是平行四边形,∴∥,8,6,∴∠∠,∵平分∠,∴∠∠,∴∠∠,∴8,同理:6,∴﹣2,﹣2,∴4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.14.(2016•丹东)如图,在▱中,平分∠,交于点F,平分∠,交于点E,6,2,则长为()A.8 B.10 C.12 D.14【分析】由平行四边形的性质和角平分线得出∠∠,得出6,同理可证6,再由的长,即可求出的长.【解答】解:∵四边形是平行四边形,∴∥,6,,∴∠∠,∵平分∠,∴∠∠,则∠∠,∴6,同理可证:6,∵﹣2,即6+6﹣2,解得:10;故选:B.【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出是解决问题的关键.15.(2013•达州)如图,在△中,∠90°,3,4,点D在上,以为对角线的所有▱中,最小的值是()A.2 B.3 C.4 D.5【分析】由平行四边形的对角线互相平分、垂线段最短知,当⊥时,线段取最小值.【解答】解:∵在△中,∠90°,∴⊥.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时⊥.∴∥.又点O是的中点,∴是△的中位线,∴ 1.5,∴23.故选B.【点评】本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.二.解答题(共11小题)16.(2016•西宁)如图,在▱中,E是的中点,连接并延长交的延长线于点F.(1)求证:;(2)连接,若2,求证:⊥.【分析】(1)由在▱中,E是的中点,利用,即可判定△≌△,继而证得结论;(2)由2,,可得,又由△≌△,可得,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形是平行四边形,∴∥,∴∠∠,∵E为中点,∴,在△与△中,,∴△≌△(),∴;(2)∵2,,∴,∵△≌△,∴,∴⊥.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.17.(2016•温州)如图,E是▱的边的中点,延长交的延长线于点F.(1)求证:△≌△.(2)若∠90°,5,3,求的长.【分析】(1)由平行四边形的性质得出∥,∥,证出∠∠F,∠∠,由证明△≌△即可;(2)由全等三角形的性质得出3,由平行线的性质证出∠∠90°,由勾股定理求出,即可得出的长.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,∴∠∠F,∠∠,∵E是▱的边的中点,∴,在△和△中,,∴△≌△();(2)解:∵≌△,∴3,∵∥,∴∠∠90°,在▱中,5,∴4,∴28.【点评】此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(2016•新疆)如图,四边形中,∥,⊥交于点E,⊥交于点F,且.求证:四边形是平行四边形.【分析】由垂直得到∠∠90°,根据可证明△≌△,得到,根据平行四边形的判定判断即可.【解答】证明:∵⊥,⊥,∴∠∠90°,∵∥,∴∠∠,在△和△中,∵,∴△≌△(),∴,∵∥,∴四边形是平行四边形.【点评】本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出,主要考查学生运用性质进行推理的能力.19.(2016•梅州)如图,平行四边形中,⊥,∠45°,E、F分别是、上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)由平行四边形的性质和证明△≌△,得出对应边相等即可;(2)证出,再证明,得出1,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∴∠∠.在△与△中,∴△≌△().∴.(2)解:∵⊥,∥,∴∠∠90°.∵∠45°,∴∠∠45°.∴∵⊥,∴∠∠90°.∴∠∠45°.∴,∴1,由(1)可知,1,∴3,∴3.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.20.(2016•滨州)如图,是△的角平分线,它的垂直平分线分别交,,于点E,F,G,连接,.(1)请判断四边形的形状,并说明理由;(2)若∠30°,∠45°,2,点H是上的一个动点,求的最小值.【分析】(1)结论四边形是菱形.只要证明即可.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,求出、即可解决问题.【解答】解:(1)四边形是菱形.理由:∵垂直平分,∴,,∴∠∠,∵∠∠,∴∠∠,在△和△中,,∴△≌△,∴,∴,∴四边形是菱形.(2)作⊥于M,⊥于N,连接交于点H,此时最小,在△中,∵∠90°,∠30°,2,∴,∵∥,⊥,⊥,∴∥,,2,在△中,∵∠90°,∠45°,∴∠∠45°,∴,∴3,在△中,∵∠90°,.3,∴10.∵,∴的最小值为10.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H 的位置,属于中考常考题型.21.(2015•枣庄)如图,▱中,⊥,∠45°,E、F分别是,上的点,且,连接交于O.(1)求证:;(2)若⊥,延长交的延长线于G,当1时,求的长.【分析】(1)通过证明△与△全等即可求得.(2)由△是等腰直角三角形,得出∠45°,因为⊥,得出∠45°,所以△与△都是等腰直角三角形,从而求得的长和2,然后等腰直角三角形的性质即可求得.【解答】(1)证明:∵四边形是平行四边形,∴,∥,∴∠∠,在△与△中∴△≌△()∴;(2)解:∵⊥,∴∠90°,∵∠45°,∴∠∠45°,∵⊥,∴∠∠45°,∴△是等腰直角三角形,∵∥,⊥,∴⊥,∴,△是等腰直角三角形,∵△≌△()∴,∴,即2,∵△是等腰直角三角形,∴1,∴,∴在等腰△中,22∴2,【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.22.(2015•潜江)如图,▱放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段′的长及点E的坐标.【分析】(1)由A与B的坐标求出的长,根据四边形为平行四边形,求出的长,进而确定出C 坐标,设反比例解析式为,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱中,A(2,0),B (6,0),D(0,3),∴4,∥,∴C(4,3),设反比例解析式为,把C坐标代入得:12,则反比例解析式为;(2)∵B(6,0),∴把6代入反比例解析式得:2,即B′(6,2),∴平行四边形向上平移2个单位,即′=2,∴D′(0,5),把5代入反比例解析式得:,即E (,5).【点评】此题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.23.(2015•柳州)如图,在四边形中,∥,∠90°,8,12,18,点P从点A出发以2的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,∥?(2)从运动开始,当t取何值时,△为直角三角形?【分析】(1)已知∥,添加即可判断以为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.【解答】解:(1)当∥时,四边形是平行四边形,此时,∴12﹣2,∴4.∴当4时,四边形是平行四边形.(2)过D点,⊥于F,∴8.﹣18﹣12=6,10,①当⊥,则18.即:218,∴6;②当⊥,此时P一定在上,1=10+12﹣222﹣2t,2,易知,△∽△2P1,∴,解得:,③情形:当⊥时,因∠<90°,此种情形不存在.∴当6或时,△是直角三角形.【点评】此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.24.(2016•永州)如图,四边形为平行四边形,∠的角平分线交于点F,交的延长线于点E.(1)求证:;(2)连接,若⊥,∠60°,4,求平行四边形的面积.【分析】(1)由平行四边形的性质和角平分线得出∠∠,即可得出;(2)先证明△是等边三角形,得出4,2,由勾股定理求出,由证明△≌△,得出△的面积=△的面积,因此平行四边形的面积=△的面积•,即可得出结果.【解答】(1)证明:∵四边形是平行四边形,∴∥,∥,,∴∠∠,∵是∠的平分线,∴∠∠,∴∠∠,∴,∴;(2)解:∵,∠60°,∴△是等边三角形,∴4,∵⊥,∴2,∴2,∵∥,∴∠∠,∠∠E,在△和△中,,∴△≌△(),∴△的面积=△的面积,∴平行四边形的面积=△的面积•×4×2=4.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题(2)的关键.25.(2015•呼和浩特)如图,▱的对角线、相交于点O,.(1)求证:△≌△;(2)若,连接、,判断四边形的形状,无需说明理由.【分析】(1)先证出,再由即可证明△≌△;(2)由对角线互相平分证出四边形是平行四边形,再由对角线相等,即可得出四边形是矩形.【解答】(1)证明:∵四边形是平行四边形,∴,,∵,∴,在△和△中,,∴△≌△();(2)解:四边形是矩形;理由如下:∵,,∴四边形是平行四边形,∵,∴四边形是矩形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.26.(2016•青岛)已知:如图,在▱中,E,F分别是边,上的点,且,直线分别交的延长线、的延长线于点G,H,交于点O.(1)求证:△≌△;(2)连接,若,则四边形是什么特殊四边形?请说明理由.【分析】(1)由平行四边形的性质得出,∠∠,由证明△≌△即可;(2)由平行四边形的性质得出∥,,证出,得出四边形是平行四边形,得出,再由等腰三角形的三线合一性质得出⊥,即可得出四边形是菱形.【解答】(1)证明:∵四边形是平行四边形,∴,∠∠,在△和△中,,∴△≌△();(2)解:四边形是菱形;理由如下:如图所示:∵四边形是平行四边形,∴∥,,∵,∴,∴四边形是平行四边形,∴,∵,∴⊥,∴四边形是菱形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质、菱形的判定.熟练掌握平行四边形的性质,证出四边形是平行四边形是解决问题(2)的关键.。

平行四边形专题

平行四边形专题

平行四边形专题
什么是平行四边形?
平行四边形是一种特殊的四边形,具有以下特点:- 两组对边分别平行
- 对边长度相等
平行四边形的性质和定理
定理1:平行四边形的对边相等
平行四边形的两对对边长度相等。

定理2:平行四边形的对角线互相平分
平行四边形的对角线互相平分。

定理3:平行四边形的内角对应相等
平行四边形的内角对应相等,即相对的内角相等,相对的外角和为180度。

定理4:平行四边形的相邻内角互补
平行四边形的相邻内角互补,即相邻的内角和为180度。

定理5:平行四边形的内交角相等
若平行四边形的一对对边相交,则交角相等。

平行四边形的性质举例
下面是一些平行四边形的案例:
- 长方形:四个角都是直角的平行四边形
- 正方形:四个边长相等的长方形,对角线相等
- 菱形:四个边长相等的平行四边形,对角线相互垂直,交于中点
结论
平行四边形是一种具有特殊性质的四边形,具有对边相等、内角对应相等等特点。

熟悉平行四边形的性质和定理,有助于解题和证明相关问题。

专题24 平行四边形及其性质-重难点题型

专题24 平行四边形及其性质-重难点题型

专题4.2 平行四边形及其性质-重难点题型【知识点1 平行四边形的性质】平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.【题型1 平行四边形的性质(求长度)】【例1】(2021春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8B.13C.16D.18【变式1-1】(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8B.10C.16D.20【变式1-2】(2021春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是()A.8cm B.16cm C.24cm D.32cm【变式1-3】(2021秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为.【题型2 平行四边形的性质(求角度)】【例2】(2021•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED =80°,则∠EAC的度数是()A.10°B.15°C.20°D.25°【变式2-1】(2021春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD 的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35°B.30°C.25°D.20°【变式2-2】(2021春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,若∠A=60°,则∠EHF的度数为()A.100°B.110°C.120°D.150°【变式2-3】(2021春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150°B.145°C.135°D.120°【题型3 平行四边形的性质(求面积)】【例3】(2021春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE 的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5B.6C.7D.8【变式3-1】(2021春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF 与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为()A.40B.45C.50D.55【变式3-2】(2021春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△P AD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是()A.S1+S2>12S B.S1+S2<12SC.S1+S2=12S D.无法判定【变式3-3】(2021秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可()A.△ECD B.△EBF C.△EBC D.△EFC【题型4 平行四边形的性质与坐标】【例4】(2021秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为.【变式4-1】(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【变式4-2】(2021秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1)B.(3,2)C.(3,3)D.(3,4)【变式4-3】(2021•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为()A.3B.4C.5D.10【题型5 平行四边形中的最值问题】【例5】(2021春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以P A和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是()A.3B.4C.5D.6【变式5-1】(2021春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为()A.4B.2C.2√3D.4√3【变式5-2】(2021春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以P A,PC为边作平行四边形P AQC,则对角线PQ的长度的最小值为.【变式5-3】(2021•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为.【题型6 平行四边形中的折叠问题】【例6】(2021春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=.【变式6-1】(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【变式6-2】(2021•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,D是边AB上一点,连接CD,将△ACD沿CD翻折得到△ECD,连接BE.若四边形BCDE是平行四边形,则BC的长为()A.√3B.3C.2√3D.3√2【变式6-3】(2020秋•锦江区校级期中)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD∥CE,其中正确的有()A.1个B.2个C.3个D.4个。

八年级数学下册专题05平行四边形六大模型(原卷版)

八年级数学下册专题05平行四边形六大模型(原卷版)

专题05 平行四边形六大模型模型一:中点四边形模型二:梯子模型模型三:十字架模型四:对角互补模型五:半角模型模型六:与正方形有关三垂线模型一:中点四边形中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形O。

结论1: 点M、N、P、Q 是任意四边形的中点,则四边形MNPQ 是平行四边形结论2: 对角线垂直的四边形的中点四边形是矩形结论3:对角线相等的四边形的中点四边形是菱形结论4: 对角线垂直且相等的四边形的中点四边形是正方形【典例1】(2024•长沙模拟)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形(2023•阳春市二模)若顺次连接四边形ABCD各边的中点所得的四边形是菱形,【变式1-1】则四边形ABCD的两条对角线AC,BD一定是()A.互相平分B.互相平分且相等C.互相垂直D.相等【变式1-2】(2023•铜川一模)如图,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BD B.AB=CD C.AB∥CD D.AC=BD【变式1-3】(2023春•宿豫区期中)顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形模型二:梯子模型如下图,一根长度一定的梯子斜靠在竖直墙面上,当梯子底端滑动时,探究梯子上某点(如中点)或梯子构成图形上的点的轨迹模型(图2),就是所谓的梯子模型。

[考查方向]已知一条线段的两个端点在坐标轴上滑动,求线段最值问题。

模型一:如图所示,线段AC的两个端点在坐标轴上滑动,LACB= ZAOC= 90°AC的中点为P,连接OP、BP、OB,则当O、P、B三点共线时,此时线段OB最大值。

即已知RtAACB中AC、BC的长,就可求出梯子模型中OB的最值模型二: 如图所示,矩形ABCD 的顶点A、B分别在边OM、ON上,当点A在边OM上运动时,点B随之在ON上运动,且运动的过程中矩形ABCD形状保持不变,AB的中点为P,连接OP、PD、OD,则当O、P、D三点共线时,此时线段OD 取最大值【典例2】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC =2.运动过程中点D到点O的最大距离是.【变式2-1】如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是.【变式2-2】如图,∠MEN=90°,矩形ABCD的顶点B,C分别是∠MEN两边上的动点,已知BC=10,CD=5,点D,E之间距离的最大值是.模型三:十字架第一种情况:过顶点在正方形ABCD中,AE⊥BF,可得AE=BF,借助于同角的余角相等,证明△BAF≌△ADE(ASA)所以AE=BF第二种情况:不过顶点在正方形ABCD中,E,F,G,H分别为AB,BC,CD,DA边上的点,其中:EG⊥FH,可得EG=FH也可以如下证明在正方形ABCD中,E,F,G,H分别AB、BC、CD、DA边上的点,其中:EG⊥FH,可得EG=FH【典例3】(2023春•商南县校级期末)如图,在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF相交于点G,连接AG,求证:(1)CE⊥DF.(2)∠AGE=∠CDF.【变式3-1】(2023•黄石)如图,正方形ABCD中,点M,N分别在AB,BC上,且BM=CN,AN与DM相交于点P.(1)求证:△ABN≌△DAM;(2)求∠APM的大小.【变式3-2】(2023秋•惠阳区校级月考)如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.(1)请判断BE与DG的数量关系与位置关系,并证明你的结论.(2)如图2,已知AB=4,,当点F在边AD上时,求BE的长.【变式3-3】(2023春•滨州期末)已知ABCD是一个正方形花园.(1)如图1,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,问这两条路等长吗?为什么?(2)如图2,在正方形四边各开一个门E、F、G、H,并修建两条路EG和FH,使得EG⊥FH,问这两条路等长吗?为什么?模型四:对角互补对角互补模型:即四边形或多边形构成的几何图形中,相对的角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形总复习知识清单考点精析知识点一、多边形的有关概念和性质1.多边形的性质: (1)多边形的内角和定理:n 边形的内角和等于(n-2)·180°; (2)推论:多边形的外角和是360°; (3)对角线条数公式:n 边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.1.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.2.下列正多边形中,能够铺满地面的是( )A 、正五边形B 、正六边形C 、正七边形D 、正八边形3.一个多边形从一个顶点共引出三条对角线,此多边形一定是( )A.四边形B. 五边形C.六边形D.三角形4. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为135°,那么这个多边形的边数为( ) A.6 B.7 C.8 D.以上答案都不对【变式2】多边形的内角和随着边数的增加而___,边数增加一条时,它的内角和增加 _度. 考点二、平行四边形5. 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为________.6. 已知O 是□ABCD 的对角线交点,AC=24,BD=38,AD=14,那么△OBC 的周长等于_______.考点课标要求 四边形多边形的内角和外角和公式、正多边形的概念、四边形的不稳定性平行四边形、矩形、菱形、正方形、梯形、等腰梯形的概念和性质 四边形成为平行四边形、矩形、菱形、正方形、等腰梯形的条件 任意一个三角形、四边形或正六边形可以镶嵌平面 用几种图形进行简单的镶嵌设计举一反三:【变式1】在平行四边形ABCD中,两条对角线AC、BD相交于点O,如右图,与△ABO面积相等的三角形有( )个.A、1B、2C、3D、4考点三、矩形8.矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=8,则矩形对角线的长_________.9. 如右图,把一张矩形纸片ABCD沿BD对折,使C点落在E处且与AD相交于点O.写出一组相等的线段__________.(不包括和).举一反三:【变式1】四边形ABCD的对角线相交于点O,在下列条件中,不能判定它是矩形的是( )A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°【变式2】矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为__________. 考点四、菱形10.在菱形ABCD中,对角线AC、BD交于点O,AC、BD的长分别为5厘米、10厘米,则菱形ABCD的面积为_________厘米2.11.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角举一反三【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为( )A. 45°,135°B. 60°,120°C. 90°,90°D. 30°,150°【变式2】如图,已知AD平分∠BAC,DE∥AC,DF∥AB,AE=5.(1)判断四边形AEDF的形状? (2)它的周长是多少?【变式3】如图,菱形ABCO的边长为2,∠AOC=45°,则点B的坐标为___________.考点五、正方形12.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等13.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个14.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?举一反三:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形【变式2】正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于__ cm.【变式3】(1)顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形随堂练习1.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线2.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC⊥BD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是()A.一组临边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形4.如图为菱形ABCD与△ABE的重迭情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.125.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③ B.①④⑤ C.①③④ D.③④⑤6.在矩形ABCD中,AB=1,AD= 3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③ B.③④ C.①②④ D.②③④7.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是cm.8.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.9.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.10.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.11.如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长周六课后作业1.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.2.如图,△ABC中,AB=AC=6,BC=4.5,分别以A、B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是.3.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为.4.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有个.5.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由6.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.3,求(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=2AG,MN的长.平行四边形综合问题分析平行四边形的点存在性问题 知三找一题型1.矩形OABC 在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=-x 2+3x 的图象与BC 交于D 、E 两点. (1)求DE 的长;(2)M 是BC 上的动点,若OM ⊥AM ,求点M 的坐标;(3)在抛物线上是否存在点Q ,使以D 、O 、Q 、M 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边OA 、OB 分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程01272=+-x x 的两根(OA <OB ),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点0运动;同时,动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 运动,设点P 、Q 运动的时间为t 秒. (1)求A 、B 两点的坐标.(2)求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.(3)当t=2时,在坐标平面内,是否存在点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形?若存在,请直接写出M 点的坐标;若不存在,请说明理由.知二找二题型3.综合与实践:如图,在平面直角坐标系中,抛物线322++-=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求直线AC 的解析式及B 、D 两点的坐标; (2)点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A 、P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出M 点的坐标.4.如图,平面直角坐标系中,四边形OABC 为直角梯形,CB ∥OA ,∠OCB=90°,CB=1,AB=5,直线y=21-x+1过A 点,且与y 轴交于D 点 (1)求点A 、点B 的坐标; (2)试说明:AD ⊥BO ;(3)若点M 是直线AD 上的一个动点,在x 轴上是否存在另一个点N ,使以O 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请求出点N 的坐标;若不存在,请说明理由.5如图,在平面直角坐标系中,直线y=-x+3与x 轴、y 轴分别交于A 、B 两点,对称轴为x=2的抛物线c bx ax y ++=2经过A 、B 两点,与x 轴交于另一点C . (1)求该抛物线所对应的函数关系式及顶点M 的坐标;(2)将(1)中的抛物线在x 轴下方部分沿着x 轴翻折,点M 的对应点为M′. ①判断点M′是否落在直线AB 上,并说明理由; ②若点P (m ,n )是直线AB 上的动点,点Q 是(1)中抛物线上的动点,是否存在点P ,使以点P 、Q 、M 、M′为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.动点构成平行四边形问题1.如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,BE=1cm ,若动点M 、N 同时出发,相遇时停止运动. ①经过几秒钟,点A 、E 、M 、N 组成平行四边形? ②经过几秒钟,点A 、E 、M 、N 组成等腰梯形?2.梯形ABCD 中,AD ∥BC ,∠C=30° AD=8cm ,CD=16cm ,BC=28cm ,点P 、Q 分别是梯形某边上同时出发的一个动点,当其中一个动点到达端点停止运动时,另一个动点随之停止运动.其中,点P 移动的速度是1cm/s ,点Q 移动的速度是2cm/s . (1)在图①中,点P 从点A 出发向点D 移动,点Q 从点C 出发向点B 移动,设所移动的时间为t .t 为何值时,四边形PQCD 为平行四边形? (2)在图②中,如果点P 从点A 出发向点D 移动,点Q 从点C 出发向点D 移动.设所移动的时间为t ,用关于t 的式子表示△PQB 的面积,并求出t 的取值范围.3.如图,抛物线1417452+--=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (-3,0).(1)求直线AB 的函数关系式;(2)动点E 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点E 作EG ⊥x 轴,交直线AB 于点F ,交抛物线于点G .设点E 移动的时间为t 秒,GF 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点E 与点O 、C 重合的情况),连接CF ,BG ,当t 为何值时,四边形BCFG 为平行四边形?问对于所求的t 值,平行四边形BCFG 是否菱形?请说明理由.周日课后作业:1.如图,在直角坐标系中,点O 是坐标原点,四边形OABC 是平行四边形,点A 的坐标为(14,0),点B 的坐标为(18,34).(1)求点C 的坐标和平行四边形OABC 的对称中心的点的坐标;(2)动点P 从点O 出发,沿OA 方向以每秒1个点位的速度向终点A 匀速运动,动点Q 从点A 出发,沿AB 方向以每秒2个单位的速度向终点B 匀速运动,一点到达终点时另一点停止运动.设点P 运动的时间为t 秒,求当t 为何值时,△PQC 的面积是平行四边形OABC 的一半?(3)当△PQC 的面积是平行四边形OABC 面积的一半时,在平面直角坐标系中找到一点M ,使四边形MPQC 是平行四边形,请直接写出点M 的坐标.2.已知:二次函数y=x2+bx+c 的图象与x 轴交于A ,B 两点,其中A 点坐标为(-3,0),与y 轴交于点C ,点D (-2,-3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PA+PD 的最小值;(3)点G 抛物线上的动点,在x 轴上是否存在点E ,使B 、D 、E 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E 点坐标;如果不存在,请说明理由.。

相关文档
最新文档