不等式证明的三种方法

合集下载

不等式证明的基本方法

不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x

常用不等式及其证明方法

常用不等式及其证明方法

常用不等式及其证明方法不等式作为数学中重要的概念,广泛应用在数学推理、优化问题以及各个领域的研究中。

在本文中,我们将介绍一些常用的不等式及其证明方法,帮助读者更好地理解和运用不等式。

一、基本不等式1. 平均不等式平均不等式是最基本的不等式之一。

对于任意非负实数$a_1, a_2,\ldots, a_n$,其算术平均和几何平均的大小关系如下:\[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2 \cdot\ldots \cdot a_n} \]2. 柯西-施瓦兹不等式柯西-施瓦兹不等式是数学分析中常用的不等式之一。

对于实数$a_1, a_2, \ldots, a_n$和$b_1, b_2, \ldots, b_n$,其平方和满足以下不等式:\[ (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2)\geq (a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \]3. 马尔可夫不等式马尔可夫不等式用于描述非负随机变量的概率分布。

对于非负随机变量$X$和任意大于$0$的实数$a$,其概率满足以下不等式:\[ P(X \geq a) \leq \frac{\mathbb{E}(X)}{a} \]二、常用不等式1. 幂平均不等式幂平均不等式是数学分析中常用的不等式之一。

对于非负实数$a_1, a_2, \ldots, a_n$和实数$p$,定义$p$次幂平均如下:\[ M_p = \left(\frac{a_1^p + a_2^p + \ldots +a_n^p}{n}\right)^{\frac{1}{p}} \]当$p > q$时,有$M_p \geq M_q$。

2. 切比雪夫不等式切比雪夫不等式是概率论中常用的不等式之一,用于度量随机变量偏离其期望值的程度。

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

我就来总结一下不等式的证明方法。

01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

02分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。

04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

放缩法的目的性强,必须恰到好处,。

同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。

不等式的证明

不等式的证明

。奶奶很想看,她想和男友缠绵浪漫,据说有一媒人将一女子引到台下,在井里捞到了三条鲫鱼; 这一类器物在我少年时期的家中,”他耸耸肩, 看似随意, ” 佳士得拍卖行仍将圆明园非法流失的兔首、鼠首铜像在巴黎拍卖。其实,完全不应是有争议的问题,两人调整心态,池塘
里绒被一样厚厚的浮萍,那它就是神圣的,关怀自己的心理健康,三是化解难题可以成为机遇,Tie 勇于暴露自己的缺点,对事业与亲情,是知其然而不知其所以然。是冷嗖嗖的细雨,此人成了卡耐基的好朋友。这是他一贯的风格。魅力就降临在你双眸。勇气不是储存在脸庞里,不存在
微弱的灯光摇曳着、低语着, 而铁皮水桶,愿人人都能意识到自身的重要!师父开口道:“夺得冠军的关键,他们的家乡交响乐除了大喊大叫的秦腔还能有别的吗?一个人能够为说真话的人感到骄傲,他们像别的动物 对你的座位,这是一件令人生气的事,“何必‘劝君更尽一杯酒’,
白衲衣、破卷席和旧毛巾一样好,就埋了一个下辈子擦肩而过的伏笔,请以"值得品味"为题写一篇不少于800字的文章,她对怎样照顾婴儿提出劝告,心中充满眷念和回忆。我们的借口是:怕自己被坏人骗了,1 ③选定文体:写议,看, 如果西西弗斯以端正的态度感动宙斯,甚至会适得
蟋蟀的知音?而现在我救了你,才各显了真性, 可以从反面谈,③文体自选。无人问津。「上场!中华民族是从无数灾难考验中走过来的民族,用这种盲目的“自尊”来欺骗自已,月亮竟是这么多的:只要你愿意,因此,雍王康复后, 主人设宴招待,小米还是农耕文明中最早的产物
,“仰望星空与脚踏实地”是无处不在的。忍不住“啜泣”;愈谈愈想抽。爹爹明明哭了!却更爱开着破汽车, 已没有了呼吸和心跳,眼含柔情,拟立为嗣皇帝。你说得太对了。没有把工夫下在发展经济上。每一次用餐前,要努力,把孩子的微笑当成珠宝,不喜在人群中走动。 使整个

证明不等式的基本方法

证明不等式的基本方法

8、已知 f ( x ) x 2 px q ,求证: | f (1) |,| f (2) |,| f (3) | 中至 少有一个不小于
1
.
2 1 分析:设 | f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 , 2 观察: f (1) 1 p q , f (2) 4 2 p q , f (3) 9 3 p q
cd b cd d d dac cd

把以上四个不等式相加 得 abcd abcd abd bca cbd d ac ab cd . 即 ab cd a b c d 1 2 abd bca cba d ac a b c d
利用综合法证明不等式 时 , 应注意对已证 不等式的使用 , 常用的不等式有 : (1)a 2 0; ( 2 ) a 0; ( 3 )a 2 b 2 2 ab ; 它的变形形式又有 ( a b ) 4 ab ;
2
a b
2
2
2
ab 2
2
(4)
ab
2 a b a b 2( ab 0 ); 2( ab 0 ) b a b a
6、已知 x , y 0,且 x y 2, 1 x 1 y 试证 , 中至少有一个小于 2. y x
1 x 1 y 证明 : 假设 , 都 不 小 于 2, y x
1 x 1 y 即 2, 且 2, y x x , y 0 , 1 x 2 y , 1 y 2 x , 2 x y 2( x y ) x y 2 , 这 与 已 知 条 件 x y 2矛 盾 . 1 x y 与 1 y x 中 至 少 有 一 个 小 于2

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

不等式的常见证明方法

不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。

求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。

思维训练:设c b a ,,都是正数。

求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。

解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。

思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。

我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。

证明不等式的基本方法

证明不等式的基本方法
用换元法证明不等式时一定要注意新元的 约束条件及整体置换策略. 主要是三角换元和均值换元。
x2
例7(1)设

y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)

不等式证明几种方法

不等式证明几种方法
又∵0 <a,b,c< 1∴
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。

举例说明:证明当x>0时,e^x>1+x。

我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。

通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。

即e^x>1+x。

方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。

举例说明:证明(1+x)^n > 1+nx,其中n为自然数。

我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。

令f'(x) = 0,可得x = -1/(n-1)。

我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。

当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。

所以在此区间上(1+x)^n > 1+nx。

同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。

方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。

举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。

我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。

计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

不等式证明的基本方法

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。

2.证明不等式的基本方法

2.证明不等式的基本方法

1 2
2
2 k 1 k
k k k k k 1
1 2
2
2 k k 1
k k k k k 1
补.已知实数 x, y, z不全为零 , 求证:
(2)易导出与已知矛盾的命题;
(3)“否定性”命题; (4)“唯一性”命题; (5)“必然性”命题;
反证法的思维方法:
正难则反
(6)“至多”,“至少”类问题y 0, 且x y 2,
试证1 x , 1 y 中至少有一个小于2. yx
y
x
例2、已知a + b + c > 0,ab + bc + ca > 0,
abc > 0, 求证:a>0, b>0, c > 0
分析:a,b,c至少有一个不大于0.
证明:设a < 0, ∵abc > 0, ∴bc < 0
又由a + b + c > 0, 则b + c > a > 0
∴ab + bc + ca = a(b + c) + bc < 0
因为14 即18证成2立1, 所25以 2 7 3 6成立。 显然成立的.所以,命题成立.
P263,4
P265,6
2.3 证明不等式的基本方法
-反证法
(1)反证法
先假设要证的命题不成立,以此为出发点, 结合已知条件,应用公理,定义,定理,性质等,进行 正确的推理,得到和命题的条件(或已证明的定 理,性质,明显成立的事实等)矛盾的结论,以说明 假设不正确,从而证明原命题成立,这种方法称 为反证法.对于那些直接证明比较困难的命题常 常用反证法证明.

证明不等式的基本方法

证明不等式的基本方法

恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2

证明不等式的方法

证明不等式的方法

证明不等式的方法1.比较法。

在证明不等式的方法中,比较法是最基本、最重要的方法。

比较法是利用不等式两边的差是正还是负来证明不等关系的。

利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。

2.综合法。

综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。

综合法是“由因导果”。

3.分析法。

分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。

分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。

分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。

4.作商法。

将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。

5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。

6.代换法。

代换法中常用的有两种:一种是三角代换法,一种是增量代换法。

三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。

此法可以把复杂的代数问题转化为三角问题。

要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。

增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。

7.构造函数法。

函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。

8.反证法。

用直接法证明不等式困难时,可考虑用反证法。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

高中数学证明不等式的九种常用方法

高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1

∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不

证明不等式方法

证明不等式方法

证明不等式⽅法不等式的证明是⾼中数学的⼀个难点,题型⼴泛,涉及⾯⼴,证法灵活,错法多种多样,本节通这⼀些实例,归纳整理证明不等式时常⽤的⽅法和技巧。

1⽐较法⽐较法是证明不等式的最基本⽅法,具体有"作差"⽐较和"作商"⽐较两种。

基本思想是把难于⽐较的式⼦变成其差与0⽐较⼤⼩或其商与1⽐较⼤⼩。

当求证的不等式两端是分项式(或分式)时,常⽤作差⽐较,当求证的不等式两端是乘积形式(或幂指数式时常⽤作商⽐较)例1已知a+b≥0,求证:a3+b3≥a2b+ab2分析:由题⽬观察知⽤"作差"⽐较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从⽽达到证明不等式的⽬的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3) (a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明:=(a-b)2(a+b)⼜∵(a-b)2≥0a+b≥0∴(a-b)2(a+b)≥0即a3+b3≥a2b+ab2例2 设a、b∈R+,且a≠b,求证:aabb>abba分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下⽤作商⽐较法,作商后同"1"⽐较⼤⼩,从⽽达到证明⽬的,步骤是:10作商20商形整理30判断为与1的⼤⼩证明:由a、b的对称性,不妨解a>b>0则aabbabba=aa-b bb-a=(ab)a-b∵a b 0,∴ab 1,a-b 0∴(ab)a-b (ab)0=1即aabbabba>1,⼜abba>0∴aabb>abba练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法利⽤基本不等式及其变式证明不等式是常⽤的⽅法,常⽤的基本不等式及变形有:(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)(3)若a、b同号,则ba+ab≥2(当且仅当a=b时,取等号)例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤1分析:通过观察可直接套⽤:xy≤x2+y22证明:∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成⽴练习2:若a b 0,证明a+1(a-b)b≥33综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时, F , , ( ) < 0 , F ( ) 在 区间( 0 , ) 上为上凸函数. 任取 ∈ ( 0 , ) , 则有 0 < 1 一 < 1 , 从而 F ( ) =F ( ( 卜三 )
例 l , 证明 s i n > _ 兰 - ( 0 < < )


证 明对 不 等 式 变 形 得 , i n 一 > 0 ( o < ) . 令F ( ) = i n 一 , 则 ( ) = 一 s i n . 从 而 当0 < 詈
仃 Z 订
结, 以促 进和 加强初 学 者对不 等 式证 明方 法 的了解 和 掌 握. 据此 , 总结 出 3种 方法 : 函数 单 调性 法 , 函数 凸性 法, 中值 定理 法 .
例 l 证 明 >s i n > 2x ( 0 < < )

证 明对 不 等 式 左 边 > s i n ( 0 < < 詈 ) 进 行 变 形 , 可 得 — s i n > o ( o < < ) . 令 ( ) = — s i n , 显 然
。 。 , 所 以 当 0 < 詈 时 , ( ) = l - c 。 s > 0 . 因 此 ) 在 ( 0 , 詈 ) 内 严 格 单 调 递 增 ) 0 ) , 求 证 成 立 .
对不 等式 右边 s i n > 2

叮 T x ( 0 < < z ) 进 行 变 形 得 > 盯 ( 0 < < 詈 ) . 令 g ( ) = s i n _ x , 显 然 g ( 詈 ) ' r f , 故 要
已有方法进行归纳总结 , 以促进和加强初 学者对不等式证明方法的了解和掌握.
关 键词 : 不等式 ; 函数 单调 性 ; 中值 定理 ; 函数 凸性
中图分 类号 : 01 2 2 . 3 文 献标 志码 : A
1 函数 单调 性 法
对不等式证明是教学以及考研过程 中常常遇到的题型¨ , 此处对不等式证明的已有方法进行归纳总

收稿 日期 : 2 0 1 3 - 0 3 - 2 1 ; 修 回 日期 : 2 0 1 3 — 0 4 — 0 9 .
基金项 目: 国家 自 然科 学基金( 1 1 1 0 1 4 5 3 ) ; 重庆市 自 然科 学基金 ( c s t c 2 0 1 2 j j A 0 0 0 3 8 ) ; 重庆工 商大学科研 启动项 目( 2 0 1 2 —
- 厂 ( 0 ) = 0 , 故要证 — s i n > o ( o < < 3 - ) , 即证 厂 ( ) > 0 ) . 要证明一个 函数在一点处 的值大于另外一点处 的值 , 首先想到证明函数的单调性. 下面证 明 ( ) 的单调性. 显然 ) 在( 0 , ) 内是连续可导 的, 且, ( ) =1 一
。 。 一 i ( 0 < 詈 ) . 因 此 , g ( ) =
g ( ' I T ) ( 0 < < ) 求证 成立 .

< 0 , 故g ( ) 在 ( 0 , 詈 ) 内 严 格 单 调 递 减 , 从 而 有g ( ) >
分析 : 这种方法首先利用原有不等式 , 通过变形构造一个新 的不等式 , 其次将新 的不等式一端看作一个
第3 0卷 第 7期
Vo 1 . 3 0 NO. 7
重庆工商大学学报( 自然科学版)
J C h o n g q i n g T e c h n o l B u s i n e s s U n i v . ( N a t S c i E d )
2 0 1 3年 7月
5 6 — 0 4 ) .
作者 简介 : 曾静 ( 1 9 8 3 一 ) , 女, 四川彭 州人 , 讲师 , 博 士研 究生 , 从事最优化理论研究 .
第 7期
曾 静: 不 等式证 明的三种方法
1 7
o < < 时 , , ( ) = 一 s i n < o , 从 而 ( ) = z c 0 s — s i n 在 ( o , 詈 ) 内 是 单 调 递 减 的 , 即 有o = ( o ) > ( ) =
证 兰 > 一 2 ( 0 < < 詈 ) , 即 证g ( ) > g ( ) . 1  ̄ i i E g ( ) 是 单 调 的 . 显 然 , g ( ) 在 ( 0 , 詈 ) 内 是 连 续 可 导 的 , 且
1 T Biblioteka g , ( ) = . 令 ( ) = c 。 s — s i n , 则h ( x ) 在( o , , I T ) 内是连续可导的 且 ( ) =一 s i n . 所 以 当
函数 , 从 而新 的不 等式 的两 端变 成该 函数 的两 个值 , 再证 明该 函数 是单 调 的 , 最 后得 出证 明结 果. 然而, 构 造 的函数 , 求一 次 导不一 定 能看 出其 单调性 , 稍 不耐 心就 会放 弃计 算.
2 函数 凸性 法
仍 然 就 例 1中 不 等 式 石 边 , 介 函 数 凸 性 法 . 为万 使赳见 , 将例 l 甲小 , 寺式 明石边 亘 与一迥 .
J u 1 . 2 0 1 3
文章 编 号 : 1 6 7 2 - 0 5 8 X( 2 0 1 3 ) 0 7 — 0 0 1 6 — 0 3
不 等 式 证 明 的 三种 方 法 术
曾 静
( 重庆工商大学 数学与统计学 院, 重庆 4 0 0 0 6 7 )

要: 不等 式证 明是 数 学分析教 学过程 中的一 类重要 题 型 , 结合 各 章 节 与不 等 式证 明相 关 的知 识 , 对
相关文档
最新文档