1.3.1导数在研究函数中的应用
导数在研究函数中的应用教案
1.3导数在研究函数中的应用教案一、教学目标:知识与技能:1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.会求函数的单调区间(其中多项式函数一般不超过三次).过程与方法:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:掌握函数的单调性与导数的关系.难点:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程(一)温故知新以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小.但在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.本节我们就来研究这个问题.解析:请同学思考并回顾以前所学知识并积极回答之.(二)新知探究探究点一函数的单调性与导函数正负的关系思考1 观察高台跳水运动员的高度h随时间t变化的函数h(t)=-4.9t2+6.5t+10的图象,及运动员的速度v随时间t变化的函数v(t)=h′(t)=-9.8t+6.5的图象,思考运动员从起跳到最高点,从最高点到入水的运动状态有什么区别.思考2 观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?答(1)在区间(-∞,+∞)内,y′=1>0,y是增函数;(2)在区间(-∞,0)内,y′=2x<0,y是减函数;在区间(0,+∞)内,y′=2x>0,y是增函数;(3)在区间(-∞,+∞)内,y′=3x2≥0,y是增函数;(4)在区间(-∞,0),(0,+∞)内,y′=-1x2<0,y是减函数.小结一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.思考3 若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?答不一定.由思考2中(3)知f′(x)≥0恒成立.思考4 (1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出思考2中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1 已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4,或x<1时,f′(x)<0;当x=4,或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.解当1<x<4时,f′(x)>0,可知f(x)在此区间内单调递增;当x>4,或x<1时,f′(x)<0,可知f(x)在这两个区间内单调递减;当x=4,或x=1时,f′(x)=0,这两点比较特殊,我们称它们为“临界点”.综上,函数f(x)图象的大致形状如图所示.反思与感悟本题具有一定的开放性,图象不唯一,只要能抓住问题的本质,即在相应区间上的单调性符合题意就可以了.跟踪训练1 函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.解f′(x)图象的大致形状如下图:注:图象形状不唯一.例2 求下列函数的单调区间:(1)f(x)=2x3+3x2-36x+1;(2)f(x)=sin x-x(0<x<π);(3)f(x)=3x2-2ln x;(4)f(x)=3tx-x3单调递减区间是(-3,2).(2)f′(x)=cos x-1≤0恒成立,故函数f(x)的单调递减区间为(0,π)(3)函数的定义域为(0,+∞),f′(x)=6x-2x=2·3x2-1x.令f′(x)>0,即2·3x2-1x>0,解得-33<x<0或x>33.又∵x>0,∴x>33.令f′(x)<0,即2·3x2-1x<0,解得x<-33或0<x<33.又∵x>0,∴0<x<33.∴f(x)的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3t-3x2.令f′(x)≥0时,得3t-3x2≥0,即t≥x2,∴当t≤0时,无解;当t>0时,函数的单调递增区间是[-t,t].令f′(x)≤0时,得3t-3x2≤0,即t≤x2,当t≤0时,f′(x)≤0恒成立,函数的单调递减区间是(-∞,+∞);当t >0时,函数的单调递减区间是(-∞,-t ],[t ,+∞).综上所述,当t ≤0时,函数的单调减区间是(-∞,+∞),无单调增区间;当t >0时,函数的单调增区间是[-t ,t ],单调减区间是(-∞,-t ],[t ,+∞). 反思与感悟 求函数的单调区间的具体步骤是(1)优先确定f (x )的定义域;(2)计算导数f ′(x );(3)解f ′(x )>0和f ′(x )<0;(4)定义域内满足f ′(x )>0的区间为增区间,定义域内满足f ′(x )<0的区间为减区间. 跟踪训练2 求下列函数的单调区间: (1)f (x )=x 2-ln x ;(2)f (x )=x 3-x 2-x .又∵x >0,∴x >22,∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫22,+∞;由f ′(x )<0得x <-22或0<x <22,又∵x >0,∴0<x <22, ∴函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,22.(2)f ′(x )=3x 2-2x -1=(3x +1)(x -1).由f ′(x )>0得x <-13或x >1;由f ′(x )<0得-13<x <1,故函数f (x )的单调递增区间为(-∞,-13)和(1,+∞),单调递减区间为(-13,1).探究点二 函数的变化快慢与导数的关系思考 我们知道导数的符号反映函数y =f (x )的增减情况,怎样反映函数y =f (x )增减的快慢呢?能否从导数的角度解释变化的快慢呢?例3 如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.解(1)→B,(2)→A,(3)→D,(4)→C.反思与感悟通过函数图象,不仅可以看出函数的增减,还可以看出函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢后,我们就能根据函数图象大致画出导函数的图象,反之也可行.跟踪训练3 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是( )【答案】 D(三)当堂达标1.函数f (x )=x +ln x 在(0,6)上是( )A .单调增函数B .单调减函数C .在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D .在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数【答案】 A【解析】 ∵f ′(x )=1+1x>0,∴函数在(0,6)上单调递增.2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【答案】 D【解析】 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 3.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】 A【解析】 f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.4.函数y =12x 2-ln x 的单调递减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)【答案】 A5.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为 6x -y +7=0.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.【解析】 (1)由y =f (x )的图象经过点P (0,2),知d =2, ∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c . 由在点M (-1,f (-1))处的切线方程为6x -y +7=0, 知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0.解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2. 故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).6.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性.(2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x ) <0,解得-1<x <3. 所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数. 五、小结(1)函数导数与单调性的关系:0)(>'x f 时,增函数;0)(<'x f 时,减函数.用导数去研究函数的单调性比用定义法更为简便.(2)本节课中,用导数方法去研究函数单调性问题是中心,灵活应用导数法去解题是目的,适当的见识与练习是达到目的最佳手段,数形结合是应使学生养成的良好思维习惯. 六、作业。
“导数在研究函数单调性中的应用”的教学设计与反思
用导 数研 究 函数 的单 调性 , 会 求 不超 过 三 次 的 多
项式 函数 的单 调 区间. ( 2 ) 通 过 实例 , 借 助 几 何 直 观探 索并 了解 函 数 的单调 性与 导数 的关 系 ; 通 过初 等 方 法 与 导数 方法 在研究 函数 性 质 过程 中 的 比较 , 体 会 导数 在 研究 函数性 质 中的一般 性 和有效 性.
若 在 区间 D上 f ( z) <0 , 则- 厂 ( ) 在 区间 D
一
0
—
上 是减 函数.
.
r |一
/
1
师: 很好, 你 能 用 函 数单 调 性 的 定 义 给 出证
明吗 ?
图 2
图 1
老 师先 让 学生 在 草稿 纸 上试 证 , 然 后 在学 生
的关 系.
对 于 函数 , ( z) = = = l o g  ̄ x, V z∈ ( 0 , +C x 3 ) ,
, ( z)一 一 < 0 ・
3 教 学过 程
3 . 1 问 题 导 入
问题 1 作 出下 列 函数 的图象 :
( 1 ) f ( x) 一z 。 ; ( 2 ) f ( x ) 一l o g  ̄ X .
生: 图 1中的切线 斜率 为正 , 图 2中的切线斜
率为 负. 师: 回顾 导数 的几何 意义 , 说 明了什 么?
生: 函数 , ( ) 一z 在 区 间( 一。 。 , +。 。 ) 上 的 导数 为正 ; 函数 f ( x) -l o g  ̄ z在 区间 ( 0 , +c × 。 ) 上
1
( 1 ) f( x)一z+ ; ( 2 ) f( x)一 - z 。 e .
导数在研究函数中的应用
导数在研究函数中的应用导数作为微积分的重要概念,在研究函数中应用广泛。
导数的概念最早由牛顿和莱布尼茨独立提出,它描述了函数变化的速率。
导数的定义是函数在其中一点的变化率,表示函数在这一点附近的斜率。
在函数研究中,导数的应用主要体现在以下几个方面:1.切线和法线:导数可以用来求解函数曲线上其中一点的切线和法线。
切线是函数曲线在其中一点上切过该点的直线,而法线是与切线相垂直的直线。
利用导数的定义,我们可以确定函数曲线上其中一点的斜率,进而得到其切线和法线的方程。
2.极值与拐点:导数可以帮助我们找到函数的极值点和拐点。
在函数的极值点上,导数等于零。
根据这个性质,我们可以利用导数来确定函数的极大值和极小值点。
此外,导数还可以帮助我们确定函数上的拐点,即函数曲线由凸向上转为凹向上或由凹向上转为凸向上的点。
3.函数的单调性:导数还可以帮助我们研究函数的单调性。
如果函数在一些区间上的导数恒大于零(或恒小于零),那么函数在该区间上是递增的(或递减的)。
通过分析函数的导数,我们可以确定函数在一些区间上是递增还是递减。
4.函数的凹凸性:导数还可以用来确定函数的凹凸性。
如果函数在一些区间上的导数恒大于零,那么函数在该区间上是凸的;如果函数在一些区间上的导数恒小于零,那么函数在该区间上是凹的。
通过分析函数的导数的变化情况,我们可以确定函数的凹凸区间。
5.近似计算:导数还可以用于近似计算。
在很多实际问题中,函数的导数可以用来近似表示函数在其中一点的变化率。
通过导数近似表示函数的变化率,我们可以很方便地进行问题求解和计算。
总之,导数在研究函数中的应用非常广泛,涵盖了函数的局部性质、全局性质以及近似计算等方面。
通过对导数的研究,我们可以全面了解函数的变化规律和特性,为解决实际问题提供了有力的工具。
导数在研究函数中的应用
导数在研究函数中的应用学习目标:1.会从几何直观了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件(导数在极值点两端异号)和充分条件();会用导数求函数的极大值、极小值(多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(多项式函数一般不超过三次)重难点:利用导数判断函数的单调性;会求一些函数的极值与最值。
函数极值与最值的区别与联系.利用导数在解决函数问题时有关字母讨论的问题.知识点一:函数的单调性(一)导数的符号与函数的单调性:一般地,设函数在某个区间内有导数,则在这个区间上,①若,则在这个区间上为增函数;②若,则在这个区间上为减函数;③若恒有,则在这一区间上为常函数.反之,若在某区间上单调递增,则在该区间上有恒成立(但不恒等于0);若在某区间上单调递减,则在该区间上有恒成立(但不恒等于0).注意:1.因为导数的几何意义是曲线切线的斜率,故当在某区间上,即切线斜率为正时,函数在这个区间上为增函数;当在某区间上,即切线斜率为负时,函数在这个区间上为减函数;即导函数的正负决定了原函数的增减。
2.若在某区间上有有限个点使,在其余点恒有,则仍为增函数(减函数的情形完全类似)。
即在某区间上,在这个区间上为增函数;在这个区间上为减函数,但反之不成立。
在某区间上为增函数在该区间;在某区间上为减函数在该区间。
在区间(a,b)内,(或)是在区间(a,b)内单调递增(或减)的充分不必要条件!例如:而f(x)在R上递增.3.只有在某区间内恒有,这个函数在这个区间上才为常数函数.4.注意导函数图象与原函数图象间关系.(二)利用导数求函数单调性的基本步骤:1. 确定函数的定义域;2. 求导数;3. 在定义域内解不等式,解出相应的x的范围;当时,在相应区间上为增函数;当时在相应区间上为减函数.或者令,求出它在定义域内的一切实数根。
高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用—单调性说课稿2 苏教版选修2-2
导数在研究函数中的应用—单调性一、教材分析本节课,是苏教版选修2-2第一章第3节课。
它承接导数的定义和运算,开启了导数在函数中应用的研究,是导数应用的基础知识,地位重要.二、学情分析学生前面已经学习了导数的定义和简单函数四则运算的导数公式,尤其是已经有了“割线逼近切线”这种数学思想,这为本节课提供了充分的思想方法准备.并且,在本节课开头设置的三个问题中,有的问题可以用单调性定义解决,有些通过观察可以直接判断,而有些则并不能一眼看出单调性,这就触动学生要寻找新的解题方法,探索新的思路。
通过数学问题的导引,带领学生走进课堂.在实际教学中,考虑到学生比较容易局限于观察图象,得出结论,缺乏严谨的推理。
事实上,图象只能提供直观感受,并不能作为说理依据。
教师就要引导学生共同思考:怎样从已有的单调性的定义中,找出合理、可行、有效的方法。
师生共同观察、思考、猜想、证明,最终得出结论,比较圆满地完成一个数学知识的学习过程,体验数学发现的乐趣,拓宽师生的数学视野.三、教学目标1 .探索并了解函数的单调性和函数导数的关系;2.比较初等方法与导数方法在研究函数性质过程中的异同,体现导数方法在研究函数性质中的一般性和有效性.四、教学重点、难点我认为本节课的重点是从单调性的定义出发,逐步建立单调性与导数之间的关系。
其间,既有代数变形,又有图形直观;既有大胆的猜想,又有严密推理。
教师和学生在这些思想方法之间灵活穿梭、切换,既有激烈地思想交锋,又有严密地逻辑推理,让看似平静的课堂充满了智慧的碰撞。
五、教学方法与教学手段教师从课本章头图引入课题,自然地把导数和单调性结合起来。
教师通过设置问题串,从“会”到“不会”,激发学生学习兴趣,展开探究。
教师利用多媒体PPT和几何画板,动态演示,确定研究方向,最终得出结论。
六、教学过程教师为了能够真正体现“要提高学生独立获取数学知识,并用数学语言表达问题的能力”这个新课程理念,设计了10个环节。
导数在研究函数单调性中的应用
导数在研究函数单调性中的应用
导数是数学中一个重要的概念,它是有关函数特性的一种数学工具。
本文将介绍这一概念在研究函数单调性中的应用。
首先,我们需要了解什么是函数单调性。
函数单调性是指函数在给定的区间内是严格单调递增或者严格单调递减的性质。
因此,这一性质被广泛用于数学上的研究以及实际应用中。
而对于如何判断函数的单调性,导数就起着重要的作用。
一般来说,函数在一个给定区间内,若函数在此区间内的导数恒大于或等于零,则可以断定该函数是严格单调递增的;反之,若函数在此区间内的导数恒小于或等于零,则可以断定该函数是严格单调递减的。
此外,当函数在给定区间内的导数恒等于零时,则可以断定该函数在此区间内的单调性不确定。
除此之外,导数还可以作为函数的一种视角,来分析函数的极值问题。
实际上,当函数的导数恒等于零时,就有可能函数拥有极值点;当函数的导数在给定区间内都大于零,则可以断定该函数在此区间内无极值;反之,若函数的导数在给定区间内小于零,则该函数在此区间内有且只有一个极值点。
另外,导数也可以用来衡量函数的变化,包括函数的变化率、函数的变化速度等。
例如,若函数的导数等于零,则函数没有变化,也就是函数没有变化率;若函数的导数大于零,则函数在此区间内是增长函数,函数增长越快,导数越大,即函数变化率越大;反之,若函数的导数小于零,则函数在此区间内是减少函数,函数减小越快,导
数越小,即函数变化率越小。
总之,导数作为函数单调性研究的重要工具,可以帮助我们分析函数性质,衡量函数的变化。
因此,正确理解和掌握导数知识,对分析函数研究以及应用具有重要意义。
导数在研究函数中的应用
导数在研究函数中的应用导数是微积分中的重要概念,它在研究函数中有着广泛的应用。
导数可以描述函数在某一点上的变化率,帮助我们理解函数的性质以及解决实际问题。
本文将从几个方面介绍导数在函数研究中的应用。
一、函数的极值问题导数在研究函数的极值问题中起着重要的作用。
通过求函数的导数,我们可以得到函数的驻点和拐点,从而确定函数的极值。
具体来说,当函数的导数为零或不存在时,该点可能是函数的极值点。
通过求导数并求解方程,我们可以求得这些驻点,然后用二阶导数的符号判断它们是极大值还是极小值。
这个过程在求解最优化问题、优化生产过程中都有着广泛的应用。
二、函数的图像与性质导数可以帮助我们研究函数的图像和性质。
通过求导数,我们可以得到函数的增减性和凹凸性。
具体来说,当导数大于零时,函数是增函数;当导数小于零时,函数是减函数。
而二阶导数的正负可以判断函数的凹凸性,当二阶导数大于零时,函数是凹函数;当二阶导数小于零时,函数是凸函数。
通过分析导数和二阶导数的变化,我们可以画出函数的图像,并对函数的性质进行准确的描述。
三、函数的近似计算导数在函数的近似计算中有着重要的应用。
当函数的表达式很复杂或很难求解时,我们可以通过导数来近似计算函数的值。
具体来说,我们可以利用导数的定义公式f'(x) = lim(h->0) (f(x+h)-f(x))/h 来计算函数在某一点的导数,然后通过导数的值和函数在该点的值来估计函数在附近点的值。
这种方法在数值计算、机器学习等领域中被广泛应用。
四、函数的最优化问题导数在函数的最优化问题中也有着重要的应用。
通过求函数的导数,我们可以找到函数的驻点,从而求解函数的最值。
具体来说,当函数在某一点的导数为零或不存在时,该点可能是函数的最值点。
通过求导数并求解方程,我们可以求得这些驻点,然后通过二阶导数的符号判断它们是极大值还是极小值。
这个方法在经济学、工程学等领域中常常用来解决最优化问题。
导数在函数的研究中有着广泛的应用。
高中数学选修2《导数在研究函数中的应用》课件
或
x>1
时,
f (x)>0,
-
1 3
x
1
时,
∴ 函数在 (-∞,
f (x)<0.
- 13) 或 (1,
+∞) 上是增函数,
在
(
-
1 3
,
1)上是减函数.
4. 证明函数 f(x)=2x3-6x2+7 在 (0, 2) 内是减函数.
证明: f (x)=6x2-12x,
解不等式 6x2-12x<0 得 0<x<2,
函数是增函数.
例2. 判断下列函数的单调性, 并求出单调区间: (1) f(x)=x3+3x;
(2) f(x)=x2-2x-3;
(3) f(x)=sinx-x, x(0, p);
(4) f(x)=2x3+3x2-24x+1.
y
解: (3) f (x) = cosx-1,
解不等式 cosx-1>0 得
果 f(x)<0, 那么函数 y=f(x)在
这个区域内单调递减.
例1. 已知导函数 f (x) 的下列信息:
当 1<x<4 时, f (x)>0;
当 x>4, 或 x<1 时, f (x)<0;
当 x=4, 或 x=1 时, f (x)=0.
试画出函数 f(x) 图象的大致形状.
解: 在区间 (1, 4) 内, f (x)>0,
解不等式 6x2+6x-24>0 得
x
-
1 2
-
17 2
,
或
x
-
1 2
+
1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2
1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第1.3.1节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。
“导数在研究函数单调性中的应用”的教学设计与反思
“导数在研究函数单调性中的应用”的教学设计与反思导数在研究函数单调性中的应用是高中数学中一个重要的知识点,也是学生学习微积分的必备内容之一、在教学设计中,我们可以结合具体的例子和实际问题,引导学生深入理解导数在研究函数单调性中的应用,并通过实际练习来加深他们的理解和掌握能力。
一、教学设计1.引入导入:通过一个简单的例子引入导数在研究函数单调性中的应用,让学生了解本节课的主题和学习目标。
2.理论讲解:介绍导数与函数单调性的关系,包括导数的定义、函数单调性的概念和判别方法等内容,让学生理解导数在研究函数单调性中的作用。
3.例题演练:选择一些形式简单、观念清晰的例题,让学生通过计算导数和分析函数的增减性来解决相关问题,掌握导数在研究函数单调性中的应用。
4.拓展练习:设计一些拓展性的综合题目,让学生灵活运用所学知识解决具体问题,培养他们的综合分析和解决问题的能力。
5.评价反思:及时对学生的学习情况进行评价和反馈,引导他们总结经验、查漏补缺,提高学习效果。
二、教学反思1.教学内容选择:在设计教学内容时,要根据学生的实际情况选择恰当的例题和练习题,既要符合课程要求,又要考虑学生自身的学习水平和能力,避免过于复杂或简单,确保教学效果。
2.教学方法运用:导数在研究函数单调性中的应用是一个相对抽象的概念,需要通过具体的例子和实践操作来引导学生理解和掌握。
因此,在教学过程中要采用灵活多样的教学方法,如教师讲解、学生自主探究、示范演练等,以提高学生的学习积极性和主动性。
4.课堂互动与反馈:在教学过程中要注重课堂互动和学生反馈,鼓励学生积极参与讨论和思考,及时纠正他们的错误和不完整理解,帮助他们建立正确的学习观念和方法,提高学习效果。
总之,导数在研究函数单调性中的应用是高中数学中一个重要的知识点,通过科学合理的教学设计和实施,可以有效提高学生的学习兴趣和掌握能力,促进他们对微积分知识的深入理解和应用。
希望我们的教学设计和反思能够对相关教师有所启发和帮助。
1.3 1函数单调性与导数 导学案 (教师版)
§1.3导数在研究函数中的应用1.3.1函数的单调性与导数内容要求 1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间.知识点1函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x) ≥0单调递减f′(x)≤0常函数f′(x)=0【预习评价】思考在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?提示必要不充分条件.知识点2利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【预习评价】函数f(x)=13-x2-3x+2的单调增区间是________.3x解析 f ′(x )=x 2-2x -3,令f ′(x )>0,解得x <-1或x >3,故f (x )的单调增区间是(-∞,-1),(3,+∞). 答案 (-∞,-1),(3,+∞)题型一 利用导数判断(或证明)函数的单调性【例1】 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.证明 f ′(x )=x cos x -sin x x 2,又x ∈⎝ ⎛⎭⎪⎫π2,π,则cos x <0,∴x cos x -sin x <0, ∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.规律方法 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>0(或<0),则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥0(或≤0).【训练1】 证明:函数f (x )=ln xx 在区间(0,e)上是增函数. 证明 ∵f (x )=ln xx ,∴f ′(x )=x ·1x -ln x x 2=1-ln x x 2.又0<x <e ,∴ln x <ln e =1. ∴f ′(x )=1-ln xx 2>0,故f (x )在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间 【例2】 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1; (2) f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ; (4) f (x )=x 3-3tx .解 (1) f ′(x )=6x 2+6x -36.由f ′(x )>0得6x 2+6x -36>0,解得x <-3或x >2; 由f ′(x )<0解得-3<x <2.故f (x )的增区间是(-∞,-3),(2,+∞);减区间是(-3,2). (2)f ′(x )=cos x -1.因为0<x <π,所以cos x -1<0恒成立, 故函数f (x )的单调递减区间为(0,π). (3)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x . 令f ′(x )>0,即2·3x 2-1x >0, 解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0, 解得x <-33或0<x <33. 又∵x >0,∴0<x <33.∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3x2-3t.令f′(x) >0,得3x2-3t>0,即x2>t,∴当t≤0时,f′(x)>0恒成立,函数的增区间是(-∞,+∞);当t>0时,由x2>t解得x>t或x<-t;由f′(x)<0解得-t<x<t,函数f(x)的增区间是(-∞,-t)和(t,+∞),减区间是(-t,t).综上,当t≤0时,f(x)的增区间是(-∞,+∞);当t>0时,f(x)的增区间是(-∞,-t),(t,+∞),减区间是(-t,t).规律方法求函数的单调区间的具体步骤:(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间.【训练2】求函数f(x)=x3+3x的单调区间.解方法一函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3⎝⎛⎭⎪⎫x2-1x2.由f′(x)>0,解得x<-1或x>1.由f′(x)<0,解得-1<x<1,且x≠0.所以函数f(x)的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,0),(0,1).方法二函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3(x2-1x2);令f′(x)=0,得x=±1.当x 变化时,f ′(x )与f (x )的变化情况如下表: x (-∞,-1)-1 (-1,0) (0,1) 1 (1,+∞)f ′(x )+0 --0 + f (x ) 单调递增Z -4单调递减] 单调递减]4单调递增Z0),(0,1).方向1 已知函数的单调性求参数的取值范围【例3-1】 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.解 f ′(x )=2x -a x 2=2x 3-ax 2.要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].方向2利用函数的单调性证明不等式【例3-2】已知a,b为实数,且b>a>e,其中e为自然对数的底,求证:a b>b a.证明当b>a>e时,要证a b>b a,只要证b ln a>a ln b,即只要证ln aa>ln bb.构造函数y=ln xx(x>0),则y′=1-ln xx2.因为当x>e时,y′=1-ln xx2<0,所以函数y=ln xx在(e,+∞)内是减函数.又因为b>a>e,所以ln aa >ln bb.故a b>b a.规律方法(1)已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围.(2)“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.【训练3】若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m的取值范围.解f′(x)=3x2+2x+m.因为f(x)是R上的单调函数,所以f′(x)≥0恒成立或f′(x)≤0恒成立.因为二次项系数3>0,所以只能有f′(x)≥0恒成立.因此Δ=4-12m≤0,故m≥13.当m =13时,使f ′(x )=0的点只有一个x =-13,也符合题意.故实数m 的取值范围是⎣⎢⎡⎭⎪⎫13,+∞.课堂达标1.函数f (x )=x +ln x 在(0,6)上是( ) A.增函数 B.减函数C.在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D.在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数解析 ∵f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 答案 A2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 答案 D3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A.[1,+∞)B.a =1C.(-∞,1]D.(0,1)解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1. 答案 A4.函数y =x 2-4x +a 的增区间为______,减区间为______. 解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2). 答案 (2,+∞) (-∞,2)5.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析 f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间,所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞),所以ax 2+2x -1≥0在(0,+∞)内有解. ①当a >0时,y =ax 2+2x -1为开口向上的抛物线,ax 2+2x -1≥0在(0,+∞)内恒有解;②当a <0时,y =ax 2+2x -1为开口向下的抛物线, 若ax 2+2x -1≥0在(0,+∞)内恒有解,则⎩⎨⎧Δ=4+4a ≥0,x =-1a >0,解得-1≤a <0, 而当a =-1时,f ′(x )=x 2-2x +1x =(x -1)2x ≥0,不符合题意,故-1<a <0;③当a =0时,显然符合题意.综上所述,a 的取值范围是(-1,+∞). 答案 (-1,+∞)课堂小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.基础过关1.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)解析 f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,即(x -2)e x >0,解得x >2,故选D. 答案 D2.y =x ln x 在(0,5)内的单调性是( ) A.单调递增 B.单调递减C.在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增D.在⎝ ⎛⎭⎪⎫0,1e 内单调递增,在⎝ ⎛⎭⎪⎫1e ,5内单调递减解析 函数的定义域为(0,+∞).y ′=ln x +1,令y ′>0,得x >1e ;令y ′<0,得0<x <1e .所以函数y =x ln x 在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增.答案 C3.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( ) A.增函数 B.减函数 C.常数D.既不是增函数也不是减函数解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 答案 A4.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.解析 函数y =f (x )为减函数的区间,反映在图象上图象是下降的. 答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)5.当x >0时,f (x )=x +2x 的单调递减区间是________.解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2.由f ′(x )<0且x >0得0<x < 2. 答案 (0,2)6.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).7.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.解 由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.令函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为x =13,开口向上的抛物线,故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.故t的取值范围是[5,+∞).能力提升8.已知函数f(x)在定义域R上为增函数,且f(x)<0,则g(x)=x2f(x)在(-∞,0)内的单调情况一定是()A.单调递减B.单调递增C.先增后减D.先减后增解析因为函数f(x)在定义域R上为增函数,所以f′(x)≥0.又因为g′(x)=2xf(x)+x2f′(x),所以当x∈(-∞,0)时,g′(x)>0恒成立,所以g(x)=x2f(x)在(-∞,0)内单调递增.答案 B9.已知函数y=xf′(x)的图象如图所示,选项中的四个图象中能大致表示y=f(x)的图象的是()解析由题图可知,当x<-1时,xf′(x)<0,所以f′(x)>0,此时原函数为增函数,图象应是上升的;当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当0<x <1时,xf ′(x )<0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当x >1时,xf ′(x )>0,所以f ′(x )>0,此时原函数为增函数,图象应是上升的.由上述分析可知选C.答案 C10.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,故f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,故k ≥1,即k 的取值范围是[1,+∞).答案 [1,+∞)11. 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数.又f (-x )=(-x )3-2(-x )+e -x -1e -x =-⎝ ⎛⎭⎪⎫x 3-2x +e x -1e x =-f (x ),故f (x )为奇函数.由f (a -1)+f (2a 2)≤0得,f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12. 答案 ⎣⎢⎡⎦⎥⎤-1,12 12.已知函数f (x )=ln x -f ′(1)x +1-ln 2,试求f (x )的单调区间.解 由f (x )=ln x -f ′(1)x +1-ln 2,x ∈(0,+∞),得f ′(x )=1x -f ′(1).令x =1,则f ′(1)=1-f ′(1),∴f ′(1)=12,f ′(x )=1x -12.由f ′(x )>0,即1x -12>0,得0<x <2;由f ′(x )<0,即1x -12<0,得x >2.故f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞).创新突破13.已知函数f (x )=x 3+ax 2+x +1,a ∈R .(1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围. 解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3).当Δ>0,即a >3或a <-3时,令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33. 故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R 上单调递增.(2)由(1),知只有当a >3或a <-3时,f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数, 所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).。
导数在研究函数中的应用
摘 要
导数是研究函数性质的一个重要工具,我们可以利用导数来求函数的单调性,极值点,最值点,另外可以利用导数找函数的零点和构造简单的函数。函数是描述客观世界变化规律的重要数学模型。研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的。通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解。下面,我们运用导数研究函数的性质,通过对函数的单调性与导数的关系的研究、如何利用导数来求函数的极值与函数的最大值和最小值的一般方法、导数与函数的零点以及利用导数研究任意性、存在性以及参数的取值问题,我们可以从中体会导数在研究函数中的应用。通过对导数在研究函数中的应用的学习,为我们学习和研究函数奠定了良好的基础。
y- =f’( )(x- )
例1:曲线y=x(3 )在点(1,1)处的切线方程为:y=4x-3
解析:第一步,首先求函数y=x(3 )的导函数y’
y’=3 ,接下来把 =1代入y’,有f’ )= y’( =1)=4,从而可知在 =1处切线方程的斜率为4,最后将斜率f’ )和点(1,1)代入切线方程y- =f’( )(x- )
f’(xo)= = 。
从导数的这一定义出发,我们知道导数f’(xo)表示
函数f(x)在x=xo处的瞬时变化率,反映了函数f(x)在x=xo附近的变化情况,接着可以明确导数的几何意义:
曲线y= f(x)在点(xo,f(xo))处切线的斜率。
二、导数的性质
通过对导数相关定义和几何意义出发研究导数的性质。
二、函数的单调性与导数
判断函数f(x)的单调性时,常常借助f’(x)的符号来判断
一般地,函数的单调性与其导函数的正负有如下关系:
在某个区间(a,b)内,如果f’(x)>0,那么函数y=f(x)在这个区间内単调递増;如果f’(x)<0,那么函数y= f(X)在这个区间内单调递減.
高中数学《导数在研究函数中的应用》教案新人教A版选修
高中数学《导数在研究函数中的应用》教案新人教A版选修教案目录:一、教材分析二、教学目标三、教学重难点四、教学方法五、教学过程一、教材分析本节课的内容是高中数学选修模块中导数在研究函数中的应用部分。
这部分内容是在学生已经掌握了导数的基本概念、求导法则和导数的应用基础上进行讲解的。
教材通过引入实际问题,引导学生利用导数研究函数的单调性、极值和最值等问题,培养学生的数学应用能力。
二、教学目标1. 理解导数在研究函数单调性、极值和最值等方面的应用。
2. 学会利用导数解决实际问题,提高数学应用能力。
3. 培养学生的逻辑思维能力和团队协作能力。
三、教学重难点1. 重点:导数在研究函数单调性、极值和最值等方面的应用。
2. 难点:如何利用导数解决实际问题,找到合适的切线方程。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究导数在研究函数中的应用。
2. 通过实例分析,让学生了解导数在实际问题中的作用。
3. 利用多媒体辅助教学,直观展示函数图像和切线方程。
4. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾导数的基本概念、求导法则,引导学生关注导数在研究函数中的应用。
2. 知识讲解:讲解导数在研究函数单调性、极值和最值等方面的应用,引导学生理解并掌握相关概念。
3. 实例分析:选取实际问题,让学生利用导数解决,体会导数在实际问题中的作用。
4. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
5. 小组讨论:组织学生进行小组讨论,分享解题心得,培养团队协作能力。
7. 课后作业:布置课后作业,巩固所学知识,提高学生的自主学习能力。
六、教学评价1. 学生对导数在研究函数单调性、极值和最值等方面的理解程度。
2. 学生能否灵活运用导数解决实际问题。
3. 学生的小组协作能力和团队意识。
七、教学反思在教学过程中,教师应时刻关注学生的学习情况,发现问题时应及时调整教学策略。
教师还应注重培养学生的逻辑思维能力和团队协作能力,提高学生的实际问题解决能力。
导数在函数研究中的应用
导数在函数研究中的应用主要体现在以下几个方面:
1. 判断函数的单调性:通过求导数,可以判断函数在某个区间上的单调性。
如果导数大于零,则函数在该区间上单调递增;如果导数小于零,则函数在该区间上单调递减。
2. 寻找函数的极值:当导数等于零的点称为极值点,函数在该点取得极值。
通过求导数并令其等于零,可以找到函数的极值点。
3. 判断函数的凹凸性:通过求二阶导数,可以判断函数的凹凸性。
如果二阶导数大于零,则函数在该区间上凹;如果二阶导数小于零,则函数在该区间上凸。
4. 解决最优化问题:通过求导数,可以找到函数的最小值或最大值。
例如,在经济学中,可以使用导数来求解边际成本、边际收益等最优化问题。
5. 应用于物理学:在物理学中,导数是研究运动和力学的重要工具。
例如,速度是位移对时间的导数,加速度是速度对时间的导数。
因此,知道这些概念可以帮助我们更好地理解物体的运动和力学。
6. 应用于工程学:在工程学中,构造函数和导数是设计和优化产品和系统的重要工具。
例如,可以使用导数来优化工程材料的强度和刚度。
7. 应用于统计学:在统计学中,一些重要概念如概率密度函数和累积分布函数也可以使用导数来求解。
总之,导数是数学中非常重要的概念,它在许多领域中都有广泛的应用。
导数在研究函数中的应用教学设计
导数在研究函数中的应用教学设计1.3.1函数的单调性与导数海南农垦加来高级中学:邓柏林函数的单调性与导数教学设计(让学生先作图,再根据flash动画,归纳出定理)定理:一般地,函数y=f(x)在某个区间(a,b)内1) 如果恒有f′(x)>0,那么y=f(x)在这个区间(a,b)单调递增;2) 如果恒有f′(x)<0,那么y=f(x)在这个区间(a,b)单调递减。
注意:①应正确理解“ 某个区间” 的含义,它必是定义域内的某个子区间。
②如果在某个区间内恒有f /(x)=0 ,则f(x) 为常数函数.函数单调性与导数的教学设计说明邓柏林“函数单调性与导数”是人教版《普通高中课程标准实验教科书数学》选修2-2第一章《导数及其应用》的内容。
本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。
由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性。
我觉得教学设计的根本目的是创设一个有效的教学系统,这样的教学系统不是随意出现的而是教师精心创设的,没有有效的教学设计就不可能保证教学的效果和质量。
教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。
教学设计的首要任务就是明确教学目标,实际上教学目标是教学设计的灵魂和统帅,将指引后续教学设计的方向,决定后续教学设计的具体工作。
在制定教学目标的时候,我觉得要把握以下几点:第一,把握教学要求,不求一步到位。
函数单调性是高中阶段刻划函数变化的一个最基本的性质。
在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用运算的性质研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。
导数在研究函数中的应用 精品教案
《导数在研究函数中的应用》【教材分析】导数及其应用内容分为三部分:1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数。
在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法。
【考纲解读】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极值,会求闭区间上函数的最值。
3.会利用导数解决某些实际问题。
【教学目标】1.能熟练应用导数的几何意义求解切线方程2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学重点】理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学难点】原函数和导函数的图像“互译”,解决一些恒成立问题【学 法】本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。
【教 法】数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。
【授课类型】复习课【教学过程】一、要点梳理温馨提醒:若函数y =f (x )在(a ,b )内单调递增,则f ′(x )≥0,而f ′(x )>0是y =f (x )1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下的关系: 如果__________,那么函数y =f (x )在这个区间单调递增;如果____________,那么函数y =f (x )在这个区间单调递减; f ′(x )>0 f ′(x )<0在(a ,b )内单调递增的充分不必要条件.2.函数的极值与导数函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧___f ′(x )<0_______,右侧__ f ′(x )>0_____,则点a 叫做函数y =f (x )的__极小值点___,f (a )叫函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧__ f ′(x )>0_____,右侧___f ′(x )<0_______,则点b 叫做函数y =f (x )的极大值点,f (b )叫函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.温馨提醒:导数为0的点不一定是极值点,只有在该点两侧导数的符号相反,即函数在该点两侧的单调性相反时,该 点 才是函数的极值点,另一方面,极值点处的导数 也不一定 为0,还要考察函数在该点处的导数是否存在.3.函数的最值与导数假设函数y =f(x)在闭区间[a ,b]上的图象是一条_连续不间断的曲线,则该函数在[a ,b]上一定能够取得最大值与最小值.若函数在(a ,b)内是可导 的,该函数的 最 值必在极值点或区间端点处取得.温馨提醒:最值与极值的区别与联系:(1)“极值”是个局部概念,是一些较邻近的点之间的函数值 大小的比较,具有相对性;“最值”是个整体概念,是整个 定 义域上的最大值和最小值,具有绝对性.(2)最值和极值都不一定存在,若存在,函数在其定义域上 的最值是唯一的,而极值不一定唯一.二、课前热身1.(2012·高考陕西卷)设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.(2012·高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1]C .[1,+∞)D .(0,+∞)3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( )A .11或18B .11C .18D .17或184.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 5.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 答案:1.D; 2.B; 3.C; 4.-173 5.3 三、例题讲解考点一:利用导数研究函数的单调性例1、已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R.(1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当t >0时,求f (x )的单调区间.【解】(1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6.所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x .(2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t 2. 方法感悟:(1)导数法证明函数f (x )在(a ,b )内的单调性的步骤:①求f ′(x );②确认f ′(x )在(a ,b )内的符号;③作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.(2)导数法求函数单调区间的一般步骤:①确定函数f (x )的定义域;②求导数f ′(x );③在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;④根据(3)的结果确定函数f (x )的单调区间.考点二:由函数的单调性求参数的取值范围因为t >0,则-t <t 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间是(-∞,-t ),⎝⎛⎭⎫t 2,+∞;f (x )的单调递减区间是⎝⎛⎭⎫-t ,t 2.例2、(2014·安徽合肥市质量检测)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数,求实数a 的取值范围.【解】(1)设f (x )图象上任一点的坐标为P (x ,y ),点P 关于点A(0,1)的对称点P ′(-x ,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x. (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,方法感悟:函数单调性确定参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.考点三:利用导数研究函数的极值(最值)例3、(2013·高考福建卷)已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.【解】函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A(1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. 又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 对任意的x ∈[1,2]恒成立. 注意到函数r (x )=3x +1x 在[1,2]上单调递增, 故r (x )min =r (1)=4. 于是2a ≤4,a ≤2.即实数a 的取值范围是(-∞,2].(2)由f′(x)=1-ax=x-ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.方法感悟:(1)求函数f(x)极值的步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)求函数f(x)在[a,b]上的最大值和最小值的步骤:①求函数在(a,b)内的极值;②求函数在区间端点的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【课堂小结】1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数【布置作业】练习册60练 p19【板书设计】课题一、要点梳理三、例题讲解二、课前热身四、课堂小结【教学反思】以题目引导教学,让学生先有所思,思有所获,获有所感。
导数在研究函数中的应用
导数在研究函数中的应用导数是微积分中的一个基本概念,它描述了函数在其中一点的变化率。
由于函数在不同点的变化率是函数的重要性质之一,所以导数在研究函数中有着广泛的应用。
下面将从几个方面探讨导数在研究函数中的应用。
首先,导数可以用来求函数的最值。
在实际问题中,我们经常需要找到一个函数的最大值或最小值,这些最值往往代表了问题中的其中一种最优解。
通过计算函数的导数,我们可以找到函数在哪些点取得最大值或最小值,从而解决问题。
例如,在经济学中,我们利用导数来确定一个企业的生产量,以使其利润最大化。
在物理学中,我们利用导数来确定一个物体在何时达到最大速度。
其次,导数可以用来求函数的图像特征。
函数的导数可以描述函数在每一点的斜率,从而揭示函数的图像特征。
通过函数的导数,我们可以确定函数在哪些点上是递增的、递减的,从而得到函数的增减性质。
我们可以通过导数的符号和零点来确定函数的极值点和拐点,从而得到函数的凹凸性质。
例如,在物理学中,我们可以通过求一个物体的位移函数的导数来确定物体的速度函数。
进一步地,我们可以通过速度函数的导数来确定物体的加速度函数。
此外,导数还可以用来进行近似计算。
在很多实际问题中,往往难以通过精确计算来得到一个准确的结果。
然而,通过导数的概念,我们可以通过局部线性化来得到一个近似结果。
也就是说,我们可以用一个线性函数来替代原函数,从而得到一个较好的近似结果。
这种近似计算方法被广泛应用于物理、工程等领域。
例如,在计算器中,我们可以通过导数的近似计算方法来快速地计算一个函数的值。
最后,导数还可以用来研究函数的变化趋势。
函数的导数可以描述函数的变化趋势,它可以告诉我们函数在一些点上的变化速率。
通过导数的大小和正负号,我们可以确定函数是递增还是递减,从而得到函数的趋势。
例如,在金融学中,我们可以通过计算股票价格的导数来判断股票市场的走势。
总之,导数在研究函数中有着广泛的应用。
通过求函数的导数,我们可以求函数的最值,研究函数的图像特征,进行近似计算,以及研究函数的变化趋势。
导数在研究函数中的应用教学设计(秦霞)
普通高中课程标准实验教科书数学选修2-21.3.1单调性江苏省南通中学秦霞【教学内容解析】1.导数这个概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一。
2.单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性.3.这节课我们是在学习了导数的平均变化率、瞬时变化率、导数的定义和几何意义之后,试图通过导数来研究函数的单调性,为研究单调性提供了更一般的方法,是后面学习函数的极值、最值的知识铺垫、能力基础和方法指导。
起到了承上启下、完善建构、拓展提升的作用。
4.教学重点:导数与函数单调性的关系的探索和发现;利用导数研究函数的单调性.这节课将结合例题研究二次函数、三次函数以及三角函数的单调性。
【教学目标设置】1.借助几何直观,通过实例归纳函数的单调性与导数的关系;2.理解并掌握利用导数判断函数单调性的方法,会用导数求函数单调区间;3.通过用定义与用导数在研究函数单调性时的两种方法的比较,体会导数方法在研究函数性质中的一般性和有效性,同时感受和感悟数学自身发展的一般规律.【学生学情分析】1. 已有的知识储备:(1)本节课的授课对象是南通中学高二年级的学生,他们在经历了高一一学年的数学学习后,已经基本了解高中数学的基本思想和研究方法,具备了一定的发现问题、探究问题、分析问题和解决问题的能力。
(2)学生已经掌握了基本初等函数的图象特征和基本性质,而且已经掌握了导数的定义、导数的计算以及其几何意义,已经具备了用导数探究函数单调性的知识储备。
存在问题:将导数与函数单调性联系起来,学生的抽象概括能力还不够;解决方法:需引导学生通过不断探究,数学联想,逐步得出导数研究函数单调性的结论。
2. 教学难点:发现和揭示导数与函数单调性的关系;并利用导数研究函数的单调性.突破策略:课堂中引导学生通过探究、验证、回归逐步得出导数研究函数单调性的结论,再结合例题研究二次函数、三次函数以及三角函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数单调性的定义:
函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 ∈G 且 x 1< x 2 时
1)都有 f ( x 1 ) < f ( x 2 ), f ( x ) 在G 上是增函数; 则
2)都有 f ( x 1 ) > f ( x 2 ), f ( x ) 在G 上是减函数; 则
3.求函数单调区间的步骤:
(1)求定义域; (2)求导数 f ( x ); (3)解不等式 f ( x ) 0或 f ( x ) 0;
' ' '
( 4)结合定义域写出单调区 间。
如果函数具有相同单调性的单调区间不止一个, 这些单调区间要用“,”、“和”字连接, 而不能用“ ”、“或”连接。
注: (1)函数的单调性是对某个区间而言的,它是个局部概
念。单调区间是定义域的子集。 (2)单调区间:针对自变量x而言的。 若函数在此区间上是增函数,则为单调递增区间;
若函数在此区间上是减函数,则为单调递减区间。
2.函数单调性与其导数的关系:
在某个区间 a , b 内,对于函数 y f ( x )来说, 若 f ' ( x ) 0, 则函数在这个区间内单 调递增;
若f ( x ) 0, 则函数在这个区间内单 调递减;
'
若 f ' ( x ) 0, 则函数在这个区间内为 常数函数。
注:
(1)若函数f(x)在(a,b)内可导,则f在(a,b)内递增(递减) 的充要条件是f’(x) ≥ 0(f’(x) ≤ 0),x∈ (a,b) (2) f’(x) > 0是f(x)在(a,b)内递增的充分不必要条件; f’(x) < 0是f(x)在(a,b)内递减的充分不必要条件
eg1 已知导函数 f (x) 的下列信息: 当1 < x < 4 时, f ( x) 0;
当 x > 4 , 或 x < 1时, f ( x) 0; 当 x = 4 , 或 x = 1时, f ( x) 0. 试画出函数 f (x) 的图象的大致形状.
y
y f (x)
0
1
' '
1 17 2
或x
1 17 2
;
1 17 1 17 令 f ( x ) 0解得, x ; 2 2 1 17 1 17 , 函数的递增区间是 , , ; 2 2 1 17 1 17 递减区间是 , 2 2
eg3 如图, 水以常速(即单位时间内注入水的体积相同)注 入下面四种底面积相同的容器中, 请分别找出与各容器对应 的水的高度h与时间t的函数关系图象.
(C) (B) (A) (D)
h
h
h t (B)
h
O
(A)tOOt (C)O
t (D)
一般地, 如果一个函数在某一范围内导数
的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上 或向下); 反之, 函数的图象就“平缓”一些. 如图,函数 y f (x) 在 (0, b) 或 (a,0)内的图 象“陡峭”,在 ,) (b 或 , a) ( 内的图象“平 缓”.
4
x
eg2 判断下列函数的单调性, 并求出单调区间:
(1) f ( x) x 3x;
3
(2) f ( x) x 2 x 3;
2
(3) f ( x) sin x x, x (0, );
(4) f ( x) 2 x 3x 24 x 1.
3 2
( 4 )解:由题意得, f ' ( x ) 6 x 2 6 x 24 6 ( x 2 x 4 ) 令 f ( x ) 0解得, x