2017函数的最值与导数学案.doc

合集下载

导数与函数的极值、最值(经典导学案及练习答案详解)

导数与函数的极值、最值(经典导学案及练习答案详解)

§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案一、教学目标1. 让学生理解函数的最大值和最小值的概念,并掌握求解函数最大值和最小值的方法。

2. 让学生掌握导数的定义和性质,并能运用导数求解函数的极值。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 求解函数最大值和最小值的方法。

3. 导数的定义和性质。

4. 运用导数求解函数的极值。

5. 实际问题中的应用。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数的定义和性质,运用导数求解函数的极值。

2. 教学难点:导数的运算规则,运用导数求解复杂函数的最大值和最小值。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。

2. 使用多媒体课件辅助教学,提高学生的学习兴趣。

3. 引导学生通过合作、探究、实践等方式,提高解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引入函数的最大值和最小值的概念。

2. 讲解:讲解求解函数最大值和最小值的方法,并举例演示。

3. 练习:让学生独立完成练习题,巩固所学知识。

4. 讲解:讲解导数的定义和性质,并举例演示。

5. 练习:让学生独立完成练习题,巩固所学知识。

6. 讲解:讲解如何运用导数求解函数的极值,并举例演示。

7. 练习:让学生独立完成练习题,巩固所学知识。

8. 讨论:分组讨论实际问题,运用所学知识解决问题。

9. 总结:对本节课的内容进行总结,回答学生提出的问题。

10. 作业:布置作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题:评估学生在练习题中的表现,检验学生对知识的掌握程度。

3. 实际问题解决:评估学生在讨论实际问题时的表现,检验学生运用知识解决问题的能力。

4. 作业:评估学生的作业完成情况,检验学生对知识的掌握程度。

七、教学资源1. 教材:《数学分析》2. 多媒体课件3. 练习题4. 实际问题案例八、教学进度安排1. 第一课时:介绍函数的最大值和最小值的概念,讲解求解方法。

高中数学《函数极值,最值与导数》导学案

高中数学《函数极值,最值与导数》导学案

数学选修2-2导学案
二、认识新知 (一)、导数与极值
问题:如图表示跳水运动员,高度h 随时间t 变化的函

的图象
结论:
由图象我们知道,)(t h 在a t =处有极大值,此时:
函数)(t h 在a 处0)(='a h ,在a t =的附近 当 0>t 时,函数h(t)单调递增,0)(>'t h ; 当 0<t 时,函数h(t)单调递减, 0)(<'t h 。

2
() 4.9 6.510h t t t =-++
思考:
【问题】:对于任意的一般函数)(x f ,如果在某一点处有 极值,在该点处,导数有什么规律? 请大家观察下列图象回答一下问题:
问题1:函数)(x f y =在点b a ,的函数值与这些点附近的点 的函数值有什么关系?
问题2:函数)(x f y =在点b a ,处的导数是多少? 问题3:在点b a ,处函数)(x f y =的导数有什么规律?
结论:
1、在点a 处函数)(x f y =有极小值,此时: ①:点a 附近的点的函数值都大于)(a f ②:0)(='a f
③:在a 点的左侧0)(<'x f ,右侧0)(>'x f。

3《函数的最值与导数》(教案)

3《函数的最值与导数》(教案)

3.3.3《函数的最值与导数》(教案)[学习目标](设计意图:使学生明确本节课要达到的目标)1.能够区分函数的极值与最值;2.会求闭区间上函数的最大(小)值(其中多项式函数一般不超过三次).[使用说明与学法指导]1.上课前一天用20分钟阅读课本P96-P97,牢记基础知识,掌握基本题型,独立完成学案.2.上课前收回学案检查预习情况.A 类学生要求完成全部内容,B 类学生完成[温故知新]、[合作探究]、[方法总结],C 类学生要求完成[温故知新]、[合作探究].自学时要求学生列出问题的思路、要点,明确自己的疑问,以备小组合作讨论解决.3. 合作探究要求:人人参与,热烈讨论,大声表达自己的思想;组长控制好节奏,先一对一分层讨论,再小组内集中讨论;没解决的问题组长记录好,准备质疑.4.展示要求:口头展示,声音洪亮清楚;书面展示要分层次、要点化,书写认真规范;非展示同学巩固基础知识、整理落实学案,做好记录;不浪费一分钟,组长做好安排和检查.5.点评要求:先点评对错,再点评思路方法,应该注意的问题,力争进行必要的变形拓展;其他同学认真倾听、积极思考、记好笔记、大胆质疑.[温故知新] (设计意图:巩固导数的应用,为探讨新问题做铺垫)1.函数单调性与导数的关系设函数y=f (x )在其定义域的某个子区间D 内可导,; .2.极值的判定(1) 0'()f x 由正变负,那么0x 是 (2) 0'()f x 由负变正,那么0x 是 .3.求函数 f (x ) 的极值点和极值的步骤:4.预习作业:求函数31()443f x x x =-+,的极值,并画函数的大致图象. (设计意图:复习极值的求法,同时也为探讨新知中例题做铺垫)[背景引入] “西气东输”工程是我国距离最长、口径最大的输气管道,西起塔里木盆地的轮南,东至上海.实现了将新疆塔里木油田、吐哈油田丰富的油气资源输送到能源紧缺的华东华南地区,对于促进我国能源结构和产业结构调整,改善人民生活水平,推动和加快新疆及西部地区经济发展具有重大的战略意义. 问题:位于哈密地区伊吾县境内的全国大型煤化工及煤制天然气产业基地广汇新能源公司扩建工程需要一批天然气球形罐.已知半径为r 米的高压球形罐制造成本是212r π元,存储1立方高压天然气利润为2元,如何设计可以盈利?半径多大时可以使利润最大?(最大半径为10米)(设计意图:提高学生实际问题意识,形成“数学是有用的”这一课改理念,培养学生爱祖国爱新疆的情感,也为探究新知提供案例)(2)()0f x '<⇒(1)()0f x '>⇒“西气东输”工程示意图哈密郑州[合作探究] 1. 观察右边一个定义在区间[a ,b ]上的函数y =f (x )的图象:发现图中__________是极小值,______是极大值,在区间上的函数的最大值是______,最小值是_______.探究1: 函数在闭区间上的最大(小)值在哪些地方产生呢?探究2: 如果没有给出函数图象,怎样才能判断出最小值和最大值呢?(设计意图:与前面求极值的例题相互对应,便于区分极值和最值的概念)[方法总结]设函数f (x )在[a ,b ]上连续,求f (x )在[a ,b ]上的最大值与最小值的步骤如下:(1) ;(2) .总结:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值[自主探究] (设计意图:鼓励学生自己独立思考区分极值和最值)探究1:函数的极值和最值有什么区别和联系?探究2:函数f (x )在开区间(a ,b )内有最值吗?若f (x )在(a ,b )内有唯一的极值,则此极值与最值有什么关系?“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性. ⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一,也可能没有⑶若有唯一的极值,则此极值必是函数的最值⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.结论:1.一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.2.函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)[分层作业] 1.必做作业:课本P98练习2,4,P99第5题(写作业本上)2. (2013大纲版.文)已知函数(1)求当a =,讨论函数f (x )的单调性;(2)当2a =-时,对于任意的 ,都有 成立,求m 的取值范围.(设计意图:针对不同层次的学生布置不同作业,照顾学生个体差异,使有明显差异的各类学生都能在各自原有基础上得到实实在在的进步与提高) 31()443f x x x 2.求函数在[0,3]上的最大值与最小值.=-+32()331f x x ax x =+++[0,)x ∈+∞()f x m ≤[小组评价] 请根据评价标准公正地投票选出今天表现优秀的小组和同学.1.优秀小组: 优秀个人:2.存在的问题:(1)(2)(3)(设计意图:采用激励机制,提升学生个人能力,增强学生集体荣誉感,实现共同进步)[习题设计](1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______. (2)已知]3,4[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______. 例2.已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数a 的值;(2)求)(x f 在[-2,2]上的最大值.由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.总结:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值[课堂练习]1. 下列说法正确的是( ) (知识点1、2,易)A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2. 函数)(x f y =在区间],[b a 上的最大值是M ,最小值是m ,若m M =,则)('x f ( )A.等于0B.大于0C.小于0D.以上都有可能 (知识点3,易)3. 函数()cos ,[0,]2f x x x x π=+∈的最大值为( ) A.0 B.6π C.3π D.2π (知识点3,中)4. 在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如右图),做成一个无盖的方底箱子,箱底边长为多少时?箱子容积最大?最大容积是多少?(知识点3,中)(为下节做铺垫)5. 设a 为实数,函数3()3,[2,3]f x x x a x =-++∈-(知识点4,难)(1)求()f x 的极值;(2)当a 在什么范围内取值时,曲线()y f x =与x 轴总有交点.[课后反思]本节课我的设计想突出三个特点:信息化特色、学生主体特色、问题背景化特色.所以引入、例题设计、图像演示都相应的做了精心的准备,取得了一些效果.不足之处是由于对学生不是很了解(不是自己的学生),学生程度也参差不齐,上课有些内容没有展开讲.以后要注意多了解学情,与学生积极沟通,精心设计每个环节,争取更完美.。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案章节一:函数的导数与最大值1. 教学目标:让学生理解导数的定义和性质。

让学生学会使用导数来求函数的最大值。

2. 教学内容:导数的定义和性质。

利用导数求函数的最大值。

3. 教学步骤:引入导数的定义和性质,进行讲解和示例。

介绍利用导数求函数的最大值的方法,并进行讲解和示例。

章节二:函数的导数与最小值1. 教学目标:让学生理解导数的定义和性质。

让学生学会使用导数来求函数的最小值。

2. 教学内容:导数的定义和性质。

利用导数求函数的最小值。

3. 教学步骤:引入导数的定义和性质,进行讲解和示例。

介绍利用导数求函数的最小值的方法,并进行讲解和示例。

章节三:函数的单调性与最大值1. 教学目标:让学生理解函数的单调性。

让学生学会利用函数的单调性来求函数的最大值。

2. 教学内容:函数的单调性。

利用函数的单调性来求函数的最大值。

3. 教学步骤:引入函数的单调性,进行讲解和示例。

介绍利用函数的单调性来求函数的最大值的方法,并进行讲解和示例。

章节四:函数的单调性与最小值1. 教学目标:让学生理解函数的单调性。

让学生学会利用函数的单调性来求函数的最小值。

2. 教学内容:函数的单调性。

利用函数的单调性来求函数的最小值。

3. 教学步骤:引入函数的单调性,进行讲解和示例。

介绍利用函数的单调性来求函数的最小值的方法,并进行讲解和示例。

章节五:实际问题中的最大(小)值问题1. 教学目标:让学生学会将实际问题转化为函数的最大(小)值问题。

让学生学会利用导数和函数的单调性来解决实际问题中的最大(小)值问题。

2. 教学内容:实际问题转化为函数的最大(小)值问题的方法。

利用导数和函数的单调性来解决实际问题中的最大(小)值问题。

3. 教学步骤:介绍实际问题转化为函数的最大(小)值问题的方法,并进行讲解和示例。

介绍利用导数和函数的单调性来解决实际问题中的最大(小)值问题的方法,并进行讲解和示例。

章节六:利用导数求函数的最大值和最小值1. 教学目标:让学生能够熟练运用导数求解函数的最大值和最小值。

函数最值与导数教案

函数最值与导数教案

函数最值与导数教案一、教学目标1. 了解函数的最值以及如何求最值;2. 掌握函数的定义域与值域的概念;3. 理解导数的概念以及导数与函数最值之间的关系。

二、教学内容1. 函数的最值- 定义:函数的最值是指函数在定义域内取得的最大值和最小值;- 求解:可以通过以下步骤求解函数的最大值与最小值:- 求函数的导数,并求导数为零的点;- 将这些点代入函数,得到函数的最值。

2. 定义域和值域- 定义域:函数能够取值的实数集合,符号表示为D(f);- 值域:函数所有可能的值所组成的集合,符号表示为R(f)。

3. 导数与函数最值- 导数的定义:表示函数在某一点的变化率,符号表示为f'(x)或y';- 最值与导数的关系:函数的最值通常发生在导数为零的点处,即函数的临界点;- 当导数为零且导数变号时,这些点是函数的极大值或极小值;- 当导数不存在时,函数可能有极值。

三、教学步骤1. 引入函数的最值概念并解释其含义;2. 介绍定义域和值域的概念;3. 讲解导数的概念以及导数与函数最值之间的关系;4. 示范如何求解函数的最值,并进行练;5. 练题的讲解与解答;6. 总结教学内容,并进行小结。

四、教学资源1. 教材:数学教科书;2. 手写板或白板;3. 计算器;4. 练题。

五、教学评估1. 学生练题的完成情况;2. 群体性测验:让学生回答关于函数最值与导数的选择题。

六、教学扩展1. 知识延伸:介绍最值的应用场景,如优化问题中的最优解;2. 拓展练:提供更复杂的函数求最值的练;3. 案例分析:以实际问题为例,分析函数最值与导数的应用。

七、教学反思通过本课的教学,学生能够理解函数的最值概念,掌握函数的定义域和值域的计算方法,并能够运用导数求解函数的最值。

在教学过程中,可以适当引入一些实际问题和案例分析,以增加学生对知识的兴趣和理解程度。

函数的最值与导数预习学案

函数的最值与导数预习学案

函数的最值与导数课前预习学案预习目标1.借助函数图像,直观地理解函数的最大值和最小值概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件.3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤.预习内容1.最大值和最小值概念;2.函数最大值、最小值与极大值、极小值的区别与联系;3.连续函数在闭区间上求最值的步骤.提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案学习目标1.借助函数图像,直观地理解函数的最大值和最小值概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件.3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤.学习重难点:导数与函数单调性的关系.学习过程(一)知识回顾1.极大值、极小值的概念:2.求函数极值的方法:(二)探究一例1 求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值.你能总结一下,连续函数在闭区间上求最值的步骤吗?变式:1 求下列函数的最值: (1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______.(2)已知]2,1[,26)(2∈--=x x x x f ,则函数的最大值为______,最小值为______.(3)已知]3,3[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______.(4)]2,1[,3)(3∈-=x x x x f 则函数的最大值为______,最小值为______. 变式:2 求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=探究二:例2 已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数的值;(2)求在[-2,2]上的最大值.(三)反思总结请同学们归纳利用导数求连续函数在闭区间上求最值的步骤.(四)当堂检测1.下列说法中正确的是( )A .函数若在定义域内有最值和极值,则其极大值便是最大值,极小值便是最小值B .闭区间上的连续函数一定有最值,也一定有极值C .若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值D .若函数在定区间上有最值,则最多有一个最大值,一个最小值,但若有极值,则可有多个极值2.函数|1|-=x y ,下列结论中正确的是( )A .有极小值0,且0也是最小值B .有最小值0,但0不是极小值C .有极小值0,但0不是最小值D .因为在处不可导,所以0即非最小值也非极值3.函数a ax x x f --=3)(3在内有最小值,则的取值范围是( )A .10<≤aB .10<<aC .11<<-aD .210<<a4.函数]4,0[,)(∈=-x xe x f x 的最小值是( )A .0B .e 1C .44eD .22e 课后练习与提高1.给出下面四个命题:(1)函数]1,1[,452-∈+-=x x x y 的最大值为10,最小值为49-; (2)函数]4,2[,1422∈+-=x x x y 的最大值为17,最小值为1;(3)函数]3,3[,123-∈-=x x x y 的最大值为16,最小值为-16;(4)函数]2,2[,123-∈-=x x x y 无最大值,无最小值.其中正确的命题有( )A .1个B .2个C .3个D .4个2.函数]2,2[,14)(2-∈+=x x x x f 的最大值是__________,最小值是_____________.3.函数),2[,3+∞∈+=x xx y 的最小值为____________. 4.已知m m x x x f (62)(23+-=为常数),在[-2,2]上有最大值3,求函数在区间[-2,2]上的最小值.说一说,这节课你学到了什么?。

函数的最值与导数的教学设计

函数的最值与导数的教学设计

函数的最值与导数的教学设计教学设计:函数的最值与导数一、教学目标:1.理解函数的最值的概念和意义;2.掌握求解函数最值的方法;3.理解导数的概念和意义;4.掌握使用导数求解函数极值的方法。

二、教学准备:1.教师准备:教材、黑板、彩色粉笔、示意图;2.学生准备:课本、笔、纸。

三、教学过程:1.引入(10分钟)教师先在黑板上画一个函数的图像,然后进行以下提问:(1)你知道什么是函数的最值吗?可以举一个例子吗?(2)如何求解函数的最大值和最小值呢?引导学生回忆起求解函数极值时的方法。

2.探究函数的最值(15分钟)教师通过示意图和具体例子引导学生进行研究,步骤如下:(1)首先,给定一个函数的图像,让学生思考如何确定函数的最值。

(2)引导学生观察函数图像的上升和下降趋势,从而找到最大值和最小值对应的点。

(3)让学生根据所给示意图中的函数图像进行练习,求解函数的最值。

3.总结求解函数最值的方法(10分钟)让学生自己总结求解函数最值的方法,教师进行点评和补充,强调以下几点:(1)函数最值是指函数图像中的最高点和最低点沿y轴的坐标;(2)找到函数图像上升和下降的趋势,根据趋势确定最值对应的点;(3)通过观察函数图像的凹凸性,判断最值的位置。

4.引入导数的概念(15分钟)(1)教师先在黑板上写出函数的定义:y=f(x)。

(2)然后,引导学生思考如果函数在特定点处的斜率可以表示函数在该点的特性。

(3)通过几个具体例子,教师解释导数的概念和含义:导数描述了函数图像在特定点处的斜率或变化率。

5.导数与函数的极值(15分钟)(1)引导学生思考是否可以通过求导数的方法来确定函数的极值。

(2)教师给出一组函数的图像,并让学生通过观察导数的变化情况来确定函数的极值点。

(3)通过几个具体例子,教师讲解使用导数求解函数极值的方法:a.求导,找到导函数的零点,即函数的驻点;b.比较函数的驻点和定义域的端点,确定函数的最值。

6.总结导数求解函数极值的方法(10分钟)让学生自己总结导数求解函数极值的方法,教师进行点评和补充,强调以下几点:(1)导数可以用来判断函数在特定点的增减性,从而确定极值点;(2)导数为0的点称为驻点,驻点可能是函数的极值点;(3)比较驻点和定义域的端点,确定最值位置。

高中数学《函数的最值与导数(1)》导学案

高中数学《函数的最值与导数(1)》导学案

第一章 导数及其应用 1.3.3函数的最值与导数(第1课时)一、学习目标1.理解函数最大值和最小值的概念.2.掌握求在闭区间[a ,b ]上连续函数f (x )的最大值和最小值的思想方法和步骤.3.掌握函数极值与最值的区别与联系.【重点、难点】求在闭区间[a ,b ]上连续函数f (x )的最大值和最小值的思想方法和步骤;二、学习过程【情景创设】观察下面函数()y f x =在区间[],a b 上的图象, 回答:(1) 在哪一点处函数()y f x =有极大值和极小值?(2) 函数()y f x = 在[],a b 上有最大值和最小值吗?如果有, 最大值和最小值分别是什么?【导入新课】问题1:函数的最值函数的最值分为函数的最大值与最小值,函数的最大值和最小值是一个整体性概念, 最大值 必须是整个区间上所有函数值中的最大者, 最小值 必须是整个区间上的所有函数值中的最小者.问题2:函数的最值与极值的区别(1)函数的最大值、最小值是比较整个定义域内的函数值得出的,极大值、极小值是比较 极值点 附近的函数值得出的;(2)函数的极值可以有多个,但最值只能有 一 个;(3)极值只能在区间内取得,最值可以在 端点 处取得;(4)有极值未必有最值,有最值也未必有极值;(5)极值有可能成为最值,最值只要不在端点处取得,那么最值必定是 极值 .问题3:求函数f (x )在[a ,b ]上的最值的步骤:(1)求f (x )在开区间(a ,b )内所有使 f'(x )=0 的点.(2)计算函数f (x )在区间内使f'(x )=0的所有点及 端点 的函数值,其中最大的一个为 最大值 ,最小的一个为 最小值 .【典例分析】例1.求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=]3,2[-∈x例2.求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标:1. 让学生理解函数最大值和最小值的概念,并能运用导数求解一些简单函数的最大值和最小值。

2. 培养学生运用数学知识解决实际问题的能力。

3. 让学生掌握利用导数研究函数的单调性,从而求解函数的最值。

二、教学内容:1. 函数最大值和最小值的概念。

2. 利用导数求解函数的最大值和最小值。

3. 利用导数研究函数的单调性。

三、教学重点与难点:1. 教学重点:利用导数求解函数的最大值和最小值,以及利用导数研究函数的单调性。

2. 教学难点:如何判断函数在某个区间内的单调性,以及如何求解分段函数的最大值和最小值。

四、教学方法与手段:1. 采用讲授法,讲解函数最大值和最小值的概念,以及利用导数求解最值的方法。

2. 利用多媒体课件,展示函数图像,帮助学生直观地理解函数的最值和单调性。

3. 采用案例分析法,分析实际问题,引导学生运用数学知识解决实际问题。

五、教学过程:1. 导入新课:回顾导数的基本概念,引导学生思考如何利用导数求解函数的最值。

2. 讲解函数最大值和最小值的概念,解释其在实际应用中的意义。

3. 讲解利用导数求解函数最值的方法,引导学生掌握判断函数单调性的技巧。

4. 利用多媒体课件,展示函数图像,让学生直观地理解函数最值和单调性之间的关系。

5. 案例分析:分析实际问题,引导学生运用导数求解函数最值,巩固所学知识。

6. 课堂练习:布置一些有关函数最值的练习题,让学生独立完成,检测学习效果。

8. 布置作业:布置一些有关函数最值的课后作业,巩固所学知识。

六、教学案例与分析:1. 案例一:求函数f(x) = x^2 4x + 5 的最大值和最小值。

分析:求导数f'(x) = 2x 4,令f'(x) = 0,得到x = 2。

将x = 2 代入原函数,得到f(2) = 1。

函数在x = 2 处取得最小值1。

2. 案例二:求函数g(x) = (x 1)^2 在区间[0, 3] 上的最大值和最小值。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

一、教学目标1. 让学生理解函数的最大值和最小值的概念,掌握函数的最大值和最小值的求解方法。

2. 让学生掌握导数的定义,了解导数在研究函数单调性、极值等方面的应用。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 利用导数求函数的最大值和最小值。

3. 函数的单调性及其与导数的关系。

4. 函数的极值及其与导数的关系。

5. 实际问题中的最大值和最小值问题。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数在研究函数单调性、极值等方面的应用。

2. 教学难点:利用导数求函数的最大值和最小值的具体步骤,理解导数与函数单调性、极值之间的关系。

四、教学方法与手段1. 采用讲解、例题、练习、讨论相结合的教学方法。

2. 使用多媒体课件,直观展示函数图像,帮助学生理解函数的最大值、最小值和导数之间的关系。

五、教学过程1. 引入:通过生活中的实例,如购物、optimization problems等,引导学生思考函数的最大值和最小值问题。

2. 讲解:讲解函数的最大值和最小值的概念,介绍利用导数求函数最大值和最小值的方法。

3. 例题:挑选典型例题,引导学生运用导数求解函数的最大值和最小值。

4. 练习:学生自主练习,巩固求解函数最大值和最小值的方法。

5. 讨论:分组讨论,分享解题心得,互相学习。

6. 总结:对本节课的内容进行总结,强调导数在研究函数单调性、极值等方面的重要性。

7. 作业:布置相关作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂练习:监测学生在课堂上的学习效果,通过练习题目的完成情况了解学生对函数最大值和最小值概念以及导数应用的掌握程度。

2. 课后作业:评估学生对课堂所学知识的吸收情况,作业应包括不同难度的题目,以检测学生的理解力和应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力,以及他们能否运用所学知识解决实际问题。

19选修1-1利用导数研究函数的极值和最值-学生版

19选修1-1利用导数研究函数的极值和最值-学生版

1第1页共12页教学辅导教案1.已知函数f(x)=x3+x-16,直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.2.设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.求曲线y=f(x)在点(1,f(1))处的切线方程.3.已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0,求a的取值范围.[问题1]求下列函数的极值:(1)f (x )=13x 3-x 2-3x +3;(2)f (x )=ln x x.[问题2] 已知函数f (x )=x 3-3ax 2+2bx 在点x =1处的极小值为-1,试确定a ,b 的值,并求f (x )的单调区间.[问题3]已知a 为实数,函数f (x )=-x 3+3x +a .(1)求函数f (x )的极值,并画出其图象(草图);(2)当a 为何值时,方程f (x )=0恰好有两个实数根?[问题4]求下列各函数的最值:(1)f (x )=-x 3+3x ,x ∈[-3,3];(2)f (x )=x 2-54x(x <0=.[问题5]已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值,并求f(x)在[-2,2]上的最大值.[问题6]设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(1)求f(x)的最小值h(t);(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.知识点一.函数极值的概念函数y=f (x)的图象如图所示.思考1 函数在x =a 点的函数值与这点附近的函数值有什么大小关系?【解析】函数在点x =a 的函数值比它在点x =a 附近的其他点的函数值都小.思考2 )(a f '为多少?在点x =a 附近,函数的导数的符号有什么规律?【解析】)(a f '=0,在点x =a 附近的左侧)(x f '<0,右侧)(x f '>0.思考3 函数在x =b 点处的情况呢?【解析】函数在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,)(b f '=0,且在点x =b 附近的左侧)(x f '>0,右侧)(x f '<0.归纳总结:(1)极小值点与极小值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,)(a f '=0;而且在点x =a 附近的左侧)(x f '<0,右侧)(x f '>0.则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)极大值点与极大值函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,)(b f '=0;而且在点x =b 附近的左侧)(x f '>0,右侧)(x f '<0.则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值. 极大值点 、 极小值点 统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )极值的方法解方程)(x f '=0,当)(0x f '=0时,(1)如果在x 0附近的左侧)(x f ' > 0,右侧)(x f ' < 0,那么f (x 0)是极大值.(2)如果在x 0附近的左侧)(x f ' < 0,右侧)(x f ' > 0,那么f (x 0)是极小值.知识点三 函数的最值思考1 如图,观察区间[a ,b ]上函数f (x )的图象,你能找出它的极大值、极小值吗?1.下列四个函数中,能在x =0处取得极值的是( )①y =x 3;②y =x 2+1;③y =cos x -1;④y =2xA .①②B .②③C .③④D .①③2.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( )A .1B .2C .3D .43.函数y =3x 3-9x +5的极大值为________.4.已知函数f (x )=x 3+ax 2+3x -9,若f (x )在x =-3时取得极值,则a =________.5.求下列函数的极值:(1)f (x )=x 3-12x ;(2)f (x )=sin x +12x ,x ∈(0,2π).6.函数f (x )=x 3-3x (|x |<1)( )A .有最大值,但无最小值B .有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值7.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1B.π2-1 C .π D .π+18.函数y =x ex 在[0,2]上的最大值为________. 9.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a =________. 10.已知a 为实数,f (x )=(x 2-4)(x -a ).(1)求导数f ′(x );(2)若f ′(-1)=0,求f (x )在[-2,2]上的最大值和最小值.知识点一 求函数极值的步骤:①求方程f ′(x )=0在函数定义域内的所有根;②用f ′(x )=0的根将定义域分成若干小区间,列表;③由f ′(x )在各个小区间内的符号,判断f ′(x )=0的根处的极值情况.(2)表格给出了当x 变化时y ′,y 的变化情况,表格直观清楚,容易看出具体的变化情况,并且能判断出是极大值还是极小值,最后得出函数的极大值、极小值.知识点二 已知函数最值求参数,可先求出函数在给定区间上的极值及函数在区间端点处的函数值,通过比较它们的大小,判断出哪个是最大值,哪个是最小值,结合已知求出参数,进而使问题得以解决.知识点三 有关恒成立问题,一般是转化为求函数的最值问题.求解时首先要确定函数,看哪一个变量的范围已知,以已知范围的变量为自变量确定函数.一般地,若不等式a ≥f (x )恒成立,则a 的取值范围是a ≥f (x )max ;若不等式a ≤f (x )恒成立,则a 的取值范围是a ≤f (x )min .【典例1】若a ≠0,试求函数f (x )=-23ax 3-x 2+a 2x 2+2ax 的单调区间与极值.[变式1]设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0,求函数的单调区间与极值.[典例2]已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.[变式2]已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.若对x>0,方程f(x)=-2c2有解,求c的取值范围.1.函数f(x)=2-x2-x3的极值情况是()A.有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值又有极小值2.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-33.设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点4.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( )A .(-1,2)B .(-3,6)C .(-∞,-1)∪(2,+∞)D .(-∞,-3)∪(6,+∞)5.对于函数f (x )=x 3-3x 2,给出命题:①f (x )是增函数,无极值;②f (x )是减函数,无极值;③f (x )的单调递增区间为(-∞,0),(2,+∞),单调递减区间为(0,2); ④f (0)=0是极大值,f (2)=-4是极小值.其中正确的命题有( )A .1个B .2个C .3个D .4个6.已知函数f (x )=ax 3+bx 2+c ,其导数f ′(x )的图象如图所示,则函数的极小值是________.7.函数f (x )=a +ln x x(a ∈R)的极大值为________. 8.已知函数f (x )=x 4+9x +5,则f (x )的图象在(-1,3)内与x 轴的交点的个数为________.9.下列说法正确的是( )A .函数在其定义域内若有最值与极值,则其极大值便是最大值,极小值便是最小值B .闭区间上的连续函数一定有最值,也一定有极值C .若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值D .若函数在给定区间上有最值,则有且仅有一个最大值、一个最小值,但若有极值,则可有多个极值10.函数f (x )=2x -cos x 在(-∞,+∞)上( )A .无最值B .有极值C .有最大值D .有最小值11.函数f (x )=2x +1x,x ∈(0,5]的最小值为( ) A .2 B .3C.174 D .22+1212.函数f (x )=x 3-x 2-x +a 在区间[0,2]上的最大值是3,则a 的值为( )A .3B .1C .2D .-113.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )1.已知函数f (x )=a x2+2ln x ,若当a >0时,f (x )≥2恒成立,则实数a 的取值范围是________.2.已知函数f (x )=x 3+ax 2+2,且f (x )的导函数f ′(x )的图象关于直线x =1对称.(1)求导函数f ′(x )及实数a 的值;(2)求函数y =f (x )在[-1,2]上的最大值和最小值.3.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值;(2)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0恒成立.。

精品导学案:函数的最值与导数

精品导学案:函数的最值与导数

精品导学案:3. 3.3函数的最值与导数课前预习学案一、预习目标1.借助函数图像,直观地理解函数的最大值和最小值概念。

2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。

3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。

二、预习内容1.最大值和最小值概念2.函数最大值、最小值与极大值、极小值的区别与联系3.连续函数在闭区间上求最值的步骤三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容课内探究学案一、学习目标1.借助函数图像,直观地理解函数的最大值和最小值概念。

2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。

3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。

学习重难点:导数与函数单调性的关系。

二、学习过程 (一)知识回顾:1. 极大值、极小值的概念:2.求函数极值的方法:(二)探究一:例1.求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值。

你能总结一下,连续函数在闭区间上求最值的步骤吗?变式:1 求下列函数的最值:(1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______。

(2)已知]2,1[,26)(2∈--=x x x x f ,则函数的最大值为______,最小值为______。

(3)已知]3,3[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______。

(4)]2,1[,3)(3∈-=x x x x f 则函数的最大值为______,最小值为______。

变式:2 求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=探究二:例2.已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数a 的值;(2)求)(x f 在[-2,2]上的最大值。

函数的最值与导数教案

函数的最值与导数教案

函数的最值与导数教案导数是微积分中非常重要的概念,它在函数的最值问题中有着重要的应用。

在教授函数的最值与导数的过程中,我们可以通过引入实际问题、图形分析和计算等多种方法来帮助学生理解和掌握这一知识点。

一、引入实际问题为了让学生更好地理解函数的最值与导数的概念,可以通过引入一些实际问题来展开教学。

例如,我们可以以汽车行驶问题为例,假设一个汽车在一段时间内的行驶路程与时间的关系可以用函数来表示。

我们可以让学生思考,如何通过这个函数来确定汽车在这段时间内的行驶距离的最大值或最小值。

这样,学生就可以通过思考这个问题来认识到函数的最值与导数之间的关系。

二、图形分析三、导数的定义在图形分析之后,我们可以引入导数的定义,并通过具体的例子来讲解导数的计算方法和意义。

我们可以以函数的最大值和最小值为例,讲解如何通过导数来确定函数的最值点。

我们可以让学生计算函数在极值点的导数,然后通过导数的正负来判断极值点是最大值还是最小值。

同时,我们还可以让学生通过对导数的计算,来确定函数的最大值或最小值的具体数值。

四、练习题与解答在讲解完导数的定义之后,我们可以通过一些练习题来帮助学生巩固所学内容。

我们可以选择一些经典的函数最值问题,并通过计算导数来解答这些问题。

例如,我们可以让学生计算一个函数的导数,并通过导数的计算结果来确定其最大值或最小值。

同时,我们还可以给出一些函数最值问题,然后让学生自行计算函数的导数,并通过导数的计算结果来求解这些问题。

通过引入实际问题、图形分析和计算练习等多种教学方法,可以帮助学生更好地理解和掌握函数的最值与导数的概念。

同时,我们还可以通过丰富的例子和练习题,来增加学生对函数最值与导数的应用能力。

通过灵活运用这些教学方法,相信学生会对函数的最值与导数有一个更加深入的理解。

19选修1-1 利用导数研究函数的极值和最值(教案教学设计导学案)

19选修1-1 利用导数研究函数的极值和最值(教案教学设计导学案)

个性化教学辅导教案单调递增单调递减单调递增单调递增单调递减单调递减单调递增单调递减单调递减单调递增单调递增单调递减单调递减单调递增单调递减单调递减单调递增单调递减【例2】已知函数f (x )=x 3+ax 2+bx +c ,且当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a ,b ,c 的值.解:f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b . ∵x =-1时函数取得极大值,x =3时函数取得极小值,∴-1,3是方程f ′(x )=0的根,即为方程3x 2+2ax +b =0的两根.故⎩⎨⎧-1+3=-2a 3,(-1)×3=b3,解得⎩⎪⎨⎪⎧a =-3,b =-9.∴f (x )=x 3-3x 2-9x +c . ∵x =-1时取得极大值7, ∴(-1)3-3(-1)2-9(-1)+c =7. ∴c =2.∴函数f (x )的极小值为f (3)=33-3×32-9×3+2=-25.【例3】 a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根?有没有可能无实根?解:令f (x )=x 3-3x 2,则f (x )的定义域为R , 由f ′(x )=3x 2-6x =0, 得x =0或x =2,所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4. 如图所示,故当a >0或a <-4时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根; 当-4<a <0时,原方程有三个不等实根; 由图象可知,原方程不可能无实根.【例4】求函数f (x )=13x 3-4x +4在[0,3]上的极值及最大值与最小值.解:f ′(x )=x 2-4=(x +2)(x -2), 令f ′(x )=0,解得x 1=-2(舍去),x 2=2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x(0,2)2(2,3)3单调递减单调递增单调递增单调递减单调递减单调递增单调递增单调递减单调递增单调递增单调递减单调递增单调递增单调递减单调递增单调递减单调递增单调递减。

函数的最值和导数教案

函数的最值和导数教案

§函数的最值与导数一、教学目标知识与技能:1.借助函数图像,直观地理解函数的最大值和最小值概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件.3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤.过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣.二、教学重点难点教学重点:利用导数研究函数最大值、最小值的问题;教学难点:利用导数研究函数最大值、最小值的问题.三、教学过程函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距.需要教师指导并借助动画给予直观的认识.五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习.六、课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案.七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性. 提问1.极大值: 一般地,设函数f (x )在点x0附近有定义,如果对x0附近的所有的点,都有f (x )<f (x0),就说f (x0)是函数f (x )的一个极大值,记作y 极大值=f (x0),x0是极大值点.2.极小值:一般地,设函数f (x )在x0附近有定义,如果对x0附近的所有的点,都有f (x )>f (x0).就说f (x0)是函数f (x )的一个极小值,记作y 极小值=f (x0),x0是极小值点.3.极大值与极小值统称为极值.4.判别f (x0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.5.求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ).(2)求方程f ′(x )=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值.(二)情景导入、展示目标设计意图:步步导入,吸引学生的注意力,明确学习目标.1.函数的最大值和最小值:在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.(1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.2.利用导数求函数的最值步骤:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.(三)合作探究、精讲点拨例1 求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值. (引导学生得出解题思路:求导 → 令f ' (x )>0,得函数单调递增区间,令f ' (x )<0,得函数单调递减区间 → 求极值,求端点值,下结论)变式:1 求下列函数的最值:(1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______.(2)已知]2,1[,26)(2∈--=x x x x f ,则函数的最大值为______,最小值为______.(3)已知]3,3[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______.(4)]2,1[,3)(3∈-=x x x x f 则函数的最大值为______,最小值为______. 设计变式1及竞赛活动可以激发学生的学习热情,让他们学会比较,并深刻体验导数法的优越性.变式:2 求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=(学生上黑板解答)设计变式2且让学生上黑板解答可以规范解题格式探究二:例2 已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数的值;(2)求在[-2,2]上的最大值.多媒体展示探究思考题.在学生分组实验的过程中教师巡回观察指导. (课堂实录)(四)反思总结,当堂检测教师组织学生反思总结本节课的主要内容,并进行当堂检测.设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正.(课堂实录)(五)发导学案、布置预习设计意图:布置下节课的预习作业,并对本节课巩固提高.教师课后及时批阅本节的延伸拓展训练.九、板书设计1.函数的最大值和最小值2.利用导数求函数的最值步骤:例1 求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值. 例2 已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数的值;(2)求在[-2,2]上的最大值.十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方.课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的.在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十一、学案设计(见下页)。

函数的最值与导数教学设计

函数的最值与导数教学设计

函数的最值与导数教学设计导数是微积分中的一个重要概念,对于理解和研究函数的性质和变化规律起着至关重要的作用。

而函数的最值是函数在定义域内取得的最大值和最小值,求解函数的最值是微积分中一个重要的应用问题。

本篇教学设计将围绕函数的最值与导数展开,通过理论知识的讲解、实际问题的解决和问题讨论的形式,让学生深刻理解函数的最值与导数的概念和性质。

一、教学目标1.理解函数的最值概念,能够准确判定函数的最值存在与求解函数最值的方法。

2.理解导数的概念,能够准确计算函数的导数。

3.理解导数与函数最值之间的关系,能够应用导数理论解决函数最值问题。

4.培养学生的分析问题能力和解决问题的能力。

二、教学过程1.引入引导学生回忆最值的概念,提出一个实际问题,如:研究市场上一种产品的价格随时间变化的规律,要确定什么时候是最佳购买时间?引导学生讨论这个问题的解决思路。

2.理论讲解2.1函数的最值讲解函数的最大值和最小值的概念,并给出定义。

引导学生思考是否函数一定存在最大值和最小值,这个问题可以通过绘制函数图像进行讨论。

2.2导数的概念引入导数的概念,给出导数的定义。

通过图像展示和实例计算,解释导数对应于函数的变化率和切线的斜率。

2.3导数与函数的最值讲解导数与函数的最值之间的关系。

引导学生思考为什么在函数取得最值的点,导数等于零(可能是极大值或极小值)。

3.计算实例给出一些具体函数,引导学生计算函数的导数并分析函数的最值。

例题1:求函数f(x)=2x^3-3x^2的最大值和最小值。

例题2:设函数g(x)=x^3-3x+1,求g(x)在[-2,2]上的最大值和最小值。

4.分组讨论把学生分成小组,组内讨论以下问题:(1)在什么条件下,函数的最值可以通过导数求解?(2)函数导数为零时,函数一定存在最值吗?(3)函数存在最值时,导数一定等于零吗?5.综合练习提供一系列函数,让学生综合应用函数最值与导数的知识,解决一些复杂的函数最值问题。

《函数的最大(小)值与导数》教学设计

《函数的最大(小)值与导数》教学设计

《函数的最大(小)值与导数》教学设计《函数的最大(小)值与导数》教学设计《函数的最大(小)值与导数》教学设计1、知识与技能(1)理解闭区间上函数存在最值的定理和函数的极值和最值的区别与联系;(2)掌握用导数求函数在[a,b]上的最值的方法。

2、过程与方法结合学生已学知识,理解从特殊到一般的数学思想和归纳的数学方法,尝试分类讨论的数学思想。

3、情感态度价值观通过教学活动,培养学生仔细观察、善于思考、勇于创新的科学素养;通过引导探究,开发学生的学习潜能,逐步培养学生养成运用数形结合、函数与方程、分类讨论等数学思想方法思考问题、解决问题的习惯。

教学重难点教学重点:利用导数求函数的最大值和最小值的方法。

教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系;求最值的方法。

教学准备1.学生的学习准备:复习131和132两节内容,预习133内容。

2.教师的教学准备:教学内容的合理设计,多媒体制作。

3教学方法与手段:启发引导,合作探究,利用计算机多媒体辅助教学。

教学过程导入过程一.复习引入、预习检查、总结疑惑1师提问:单调性与导数;极值的求解步骤生:回答问题设计意图:温故而知新,为最值的导入作铺垫。

2检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

教学步骤(重难点突破的过程、巩固方法)函数的最大(小)值与导数教学设计一.复习引入、预习检查、总结疑惑二.新讲授问题探究(师:PPT展示,引导学生观察图象,提出问题;生:通过观察与比较发现规律,回答问题)(用问题串的形式让学生体会从特殊到一般的过程,提高自身归纳总结的能力)【问题3】函数的极大值和极小值是否就是函数的最大值与最小值?【探究】变化图象端点函数值的大小,观察最值的变化。

“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的;而“极值”是个局部概念,是比较极值点附近函数值得出的;⑵函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个;⑶最值可以在区间的端点处取得,而极值只能在定义域内部取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.三.典例分析例2 求函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值.解: f′(x)=3x2-4x令f′(x)=0,有3x2-4x=0,解得x=0,34当x变化时,f′(x)、f(x)的变化情况如下表:x-1(-1,0)3434,242f′(x) +-+f(x)-2函数的最大(小)值与导数教学设计1函数的最大(小)值与导数教学设计-27函数的最大(小)值与导数教学设计1从上表可知,最大值是1,最小值是-2点评:注意比较求函数最值与求函数极值的不同.变式1:求函数f(x)=x3-2x2+1+2x在区间[-1,2]上的最值.提示:导函数函数值恒大于零,原函数单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.3 函数的最值与导数
【学习目标】
是多少?最小值是多少?
2.函数的最大值、最小值与函数的极大值和极小值的区别与联系是什么?能列表的应采用列表的方法.
3.利用导数求函数的最大值和最小值的方法是什么?
4.利用导数求函数的最值步骤是什么?
5.不等式恒成立问题,常常转化为求函数的最值,f(x)≥c对x∈R 恒成立,常怎么转化? f(x)≤c对x∈R恒成立,常怎么转化?【自主检测】
1.下列说法正确的是( )
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b ]上的最大值是M ,最小值是m,若M=m, 则f ′(x) ( )
A.等于0
B.大于0
C.小于0
D.以上都有可能
【典型例题】
例1.(1)求()31443f x x x =-+在[]0,3的最大值与最小值;
(2)求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值;
(3)求函数x x x y -+=23在闭区间]1,2[-上的最大值与最小值.
例2.已知函数f (x )=x 3+ax 2+bx +c 在x =-23
与x =1时都取得极值
(1)求a 、b 的值与函数f (x )的单调区间;
(2)若对x ∈[]12-,,不等式f (x )<c 2恒成立,求c 的取值范围. 【课堂检测】
1. 设()326f x ax ax b =+-在区间12[-,]
上的最大值为3,最小值为29-, 且a>b,则 ( )
A .2,29a b =-=-
B .2,3a b ==
C .3,2a b ==
D .2,3a b =-=-
2. 已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,求此函数在[-2,2]上的最小值__________________.
4.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值,并画出函数的图像.
【总结提升】
1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点。

相关文档
最新文档