高二数学学案:函数的最值与导数
导数与函数的极值、最值(经典导学案及练习答案详解)
§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
高中数学1-1 3.3.3 函数的最值与导数 教案
函数的最值与导数一、教学目标1.知识和技能目标(1)使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;并且能理解函数最值与极值的区别和联系;(2)理解可导函数的最值存在的可能位臵;(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)通过函数图象的直观,让学生发现函数极值与最值的关系,掌握利用导数求函数最值的方法.(2)在学习过程中,观察、归纳、表述、交流、合作,最终形成认识. [来源:学科网ZXXK](3)培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.3.情感态度和价值观目标(1)渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。
(2)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 二、教学重点。
难点教学重点:利用导数求函数的最大值和最小值的方法. 教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 三、学情分析对于求函数的最值,高中学生在高一阶段的必修一的学习已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 四、教学方法师生互动探究式教学 五、教学过程教师引入:我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果0x 是函数()y f x =的极大(小)值点,那么在点0x 附近找不到比()0f x 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个值最大,哪个值最小.如果0x 是函数的最大(小)值,那么()0f x 不小(大)于函数()y f x =在相应区间上的所有函数值六、自主学习x 3x 2x 1baxOy观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .1.结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.说明:⑴如果在某一区间上函数()y f x =的图像是一条连续不断的曲线,则称函数()y f x =在这个区间上连续.(可以不给学生讲)⑵给定函数的区间必须是闭区间,在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;(3)在闭区间上的每一点必须连续,即函数图像没有(4)函数)(x f在闭区间[]b a,上连续,是)(x f在闭区间[]b a,上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值"与“极值"的区别和联系⑴最值"是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;[来源:学#科#网Z#X#X#K](3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3.利用导数求函数的最值步骤:[来源:学。
高中数学备课教案函数与导数的求极值与最值
高中数学备课教案函数与导数的求极值与最值高中数学备课教案:函数与导数的求极值与最值导读:本教案将介绍高中数学中函数与导数的求解方法,特别是在求取函数的极值与最值时的应用。
通过明确的步骤和实例演算,帮助学生掌握解题的技巧与方法。
一、函数的极值与最值概述函数的极值与最值是函数中的关键概念之一,它们对于函数的特性和性质的研究具有重要意义。
在数学中,极大值和极小值统称为极值。
极大值是指函数在某一区间内取得的最大值,而极小值则是函数在某一区间内取得的最小值。
二、求解函数极值与最值的基本方法1. 导数法求极值使用导数法求解函数极值的基本步骤如下:(1)求取函数的导数;(2)将导数置为零,得到关于自变量的方程;(3)解方程得到关键点;(4)利用关键点和区间端点进行函数值的比较,确定极值。
2. 导数法求最值求解函数最值的方法与求解极值类似,但在步骤(4)时需要根据函数的单调性进行判断,进而确定函数的最值。
三、实例演算现通过实例来演算函数的极值与最值的求解过程。
例1:已知函数 f(x) = x^3 - 3x^2 + 2x + 1,在闭区间[-1, 3]上求函数的极值和最值。
解:(1)求导数:f'(x) = 3x^2 - 6x + 2;(2)令导数等于零:3x^2 - 6x + 2 = 0;(3)解方程得到关键点:x = 1 ± √3;(4)利用关键点和区间端点进行比较:将x = -1, 1 ± √3, 3代入函数f(x),得到函数值:f(-1) = 7,f(1 - √3) ≈ -2.732,f(1 + √3) ≈ 0.732,f(3) = 31;因此,函数在x = -1和x = 3处取得极大值,极大值为7和31;函数在x = 1 - √3处取得极小值,极小值为-2.732;函数在x = 1 + √3处取得极大值,极大值为0.732。
通过以上实例演算,我们可以看出,通过求导数、解方程和比较函数值的方式,可以得到函数的极值和最值。
高中选修2《函数的最大小值与导数》教案设计
课题:函数的最大(小)值与导数---导数在研究函数中的应用教材:普通高中课程标准实验教科书人教版A版选修2-2 一.【教学目标】1.知识目标(1)理解函数的最值与极值的区别和联系。
(2)掌握用导数法求函数的最大值与最小值的方法和步骤。
2.能力目标(1)通过在教师引导下学生自主探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础。
(2)培养学生的数学语言表达和数学符号表示能力。
3.情感和价值目标(1)让学生感受数学问题探索的乐趣和成功的喜悦,激发学生学习数学的兴趣和信心。
(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。
二.【教学重点、难点】1.教学重点:利用导数求函数的最大值和最小值。
2.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别和联系。
三.【教学方法与手段】1. 教学方法:启发探究式教学法2. 教学手段:多媒体、实物投影 四.【教学过程】 【复习引入】复习:函数极大值、极小值是怎样定义的?函数最大值、最小值又是怎样定义的?【设计意图】通过复习前面所学的极值的概念,也通过展现学生作业中出现的书写形式:把极大值)(x f 写成max )(x f ,从而回顾函数最值的概念。
为后面探索最值与极值的关系作了铺垫。
【探究新知】观察图中定义在闭区间[]b a ,上的函数)(x f 的图象。
图中哪些是极大值,哪些是极小值 你能找出所给函数的最大值和最小值吗? 答:2()f x 是极大值,)(1x f 与3()f x 是极小值。
)(b f 是最大值,3()f x 是最小值观察所给的4个图像,探究:函数的最值与极值有什么关系?【设计意图】让学生观察所给出的函数图像,讨论函数最值与极值的联系与区别,同时让学生发表各自的见解。
在学生讨论的过程中可以作适当的提示。
比如:1)闭区间[]b a,上的函数)(xf的最值一定存在吗?个数是多少?那极值?2)函数最值可以在哪里取得?函数极值可以在哪里取得?3)函数的极值与最值之间有没有必然的联系?小结1:函数的最值与极值之间的联系与区别:(1)整体与局部的关系函数的最值是一个整体性概念,是比较整个定义域内的所有函数值得出,具有绝对性;函数的极值是一个局部性概念,是比较极值点左右的函数值得出的,具有相对性。
3《函数的最值与导数》(教案)
3.3.3《函数的最值与导数》(教案)[学习目标](设计意图:使学生明确本节课要达到的目标)1.能够区分函数的极值与最值;2.会求闭区间上函数的最大(小)值(其中多项式函数一般不超过三次).[使用说明与学法指导]1.上课前一天用20分钟阅读课本P96-P97,牢记基础知识,掌握基本题型,独立完成学案.2.上课前收回学案检查预习情况.A 类学生要求完成全部内容,B 类学生完成[温故知新]、[合作探究]、[方法总结],C 类学生要求完成[温故知新]、[合作探究].自学时要求学生列出问题的思路、要点,明确自己的疑问,以备小组合作讨论解决.3. 合作探究要求:人人参与,热烈讨论,大声表达自己的思想;组长控制好节奏,先一对一分层讨论,再小组内集中讨论;没解决的问题组长记录好,准备质疑.4.展示要求:口头展示,声音洪亮清楚;书面展示要分层次、要点化,书写认真规范;非展示同学巩固基础知识、整理落实学案,做好记录;不浪费一分钟,组长做好安排和检查.5.点评要求:先点评对错,再点评思路方法,应该注意的问题,力争进行必要的变形拓展;其他同学认真倾听、积极思考、记好笔记、大胆质疑.[温故知新] (设计意图:巩固导数的应用,为探讨新问题做铺垫)1.函数单调性与导数的关系设函数y=f (x )在其定义域的某个子区间D 内可导,; .2.极值的判定(1) 0'()f x 由正变负,那么0x 是 (2) 0'()f x 由负变正,那么0x 是 .3.求函数 f (x ) 的极值点和极值的步骤:4.预习作业:求函数31()443f x x x =-+,的极值,并画函数的大致图象. (设计意图:复习极值的求法,同时也为探讨新知中例题做铺垫)[背景引入] “西气东输”工程是我国距离最长、口径最大的输气管道,西起塔里木盆地的轮南,东至上海.实现了将新疆塔里木油田、吐哈油田丰富的油气资源输送到能源紧缺的华东华南地区,对于促进我国能源结构和产业结构调整,改善人民生活水平,推动和加快新疆及西部地区经济发展具有重大的战略意义. 问题:位于哈密地区伊吾县境内的全国大型煤化工及煤制天然气产业基地广汇新能源公司扩建工程需要一批天然气球形罐.已知半径为r 米的高压球形罐制造成本是212r π元,存储1立方高压天然气利润为2元,如何设计可以盈利?半径多大时可以使利润最大?(最大半径为10米)(设计意图:提高学生实际问题意识,形成“数学是有用的”这一课改理念,培养学生爱祖国爱新疆的情感,也为探究新知提供案例)(2)()0f x '<⇒(1)()0f x '>⇒“西气东输”工程示意图哈密郑州[合作探究] 1. 观察右边一个定义在区间[a ,b ]上的函数y =f (x )的图象:发现图中__________是极小值,______是极大值,在区间上的函数的最大值是______,最小值是_______.探究1: 函数在闭区间上的最大(小)值在哪些地方产生呢?探究2: 如果没有给出函数图象,怎样才能判断出最小值和最大值呢?(设计意图:与前面求极值的例题相互对应,便于区分极值和最值的概念)[方法总结]设函数f (x )在[a ,b ]上连续,求f (x )在[a ,b ]上的最大值与最小值的步骤如下:(1) ;(2) .总结:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值[自主探究] (设计意图:鼓励学生自己独立思考区分极值和最值)探究1:函数的极值和最值有什么区别和联系?探究2:函数f (x )在开区间(a ,b )内有最值吗?若f (x )在(a ,b )内有唯一的极值,则此极值与最值有什么关系?“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性. ⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一,也可能没有⑶若有唯一的极值,则此极值必是函数的最值⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.结论:1.一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.2.函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)[分层作业] 1.必做作业:课本P98练习2,4,P99第5题(写作业本上)2. (2013大纲版.文)已知函数(1)求当a =,讨论函数f (x )的单调性;(2)当2a =-时,对于任意的 ,都有 成立,求m 的取值范围.(设计意图:针对不同层次的学生布置不同作业,照顾学生个体差异,使有明显差异的各类学生都能在各自原有基础上得到实实在在的进步与提高) 31()443f x x x 2.求函数在[0,3]上的最大值与最小值.=-+32()331f x x ax x =+++[0,)x ∈+∞()f x m ≤[小组评价] 请根据评价标准公正地投票选出今天表现优秀的小组和同学.1.优秀小组: 优秀个人:2.存在的问题:(1)(2)(3)(设计意图:采用激励机制,提升学生个人能力,增强学生集体荣誉感,实现共同进步)[习题设计](1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______. (2)已知]3,4[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______. 例2.已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数a 的值;(2)求)(x f 在[-2,2]上的最大值.由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.总结:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值[课堂练习]1. 下列说法正确的是( ) (知识点1、2,易)A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2. 函数)(x f y =在区间],[b a 上的最大值是M ,最小值是m ,若m M =,则)('x f ( )A.等于0B.大于0C.小于0D.以上都有可能 (知识点3,易)3. 函数()cos ,[0,]2f x x x x π=+∈的最大值为( ) A.0 B.6π C.3π D.2π (知识点3,中)4. 在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如右图),做成一个无盖的方底箱子,箱底边长为多少时?箱子容积最大?最大容积是多少?(知识点3,中)(为下节做铺垫)5. 设a 为实数,函数3()3,[2,3]f x x x a x =-++∈-(知识点4,难)(1)求()f x 的极值;(2)当a 在什么范围内取值时,曲线()y f x =与x 轴总有交点.[课后反思]本节课我的设计想突出三个特点:信息化特色、学生主体特色、问题背景化特色.所以引入、例题设计、图像演示都相应的做了精心的准备,取得了一些效果.不足之处是由于对学生不是很了解(不是自己的学生),学生程度也参差不齐,上课有些内容没有展开讲.以后要注意多了解学情,与学生积极沟通,精心设计每个环节,争取更完美.。
高二数学函数最大(小)值与导数导学案
课题1.函数的最大(小)值与导数(理科)课型:新讲课编号08姓名等级时间 2015-3-09主备人:二年级数学组备课组长段长署名使用说明及方法指导:1、课前达成预习教案,掌握基此题型;2、仔细限时规范书写,课上小组合作商讨,答疑解惑。
3、 A、 B 层所有掌握, C 层选做。
学习目标:1.理解最值的观点,认识函数的最值与极值的差别和联系.2.会用导数求在给定区间上函数的最大值、最小值.学习重、难点:1.相关函数的最值问题. (要点 )2.最值常与函数的极值以及函数的值域等联合考察.3.最值与函数的极值. (易混点 )使用说明及方法指导:1、预习课本 P29—31,联合函数极值弄清两则的差别与联系2、把课本记好此后在做本教案,不理解的部分做好标志温故夯基. 求函数f(x)的极值第一解方程f′ (x)= 0.当 f′ (x0)= 0 时,(1) 假如在 x0邻近的左边 ____________ ,右边 ___________,那么 f( x0)是函数的 _________;(2) 假如在x0邻近的左边 ____________ ,右边 __________ ,那么f( x0)是函数的 _________知新益能函数 f (x)在闭区间 [a, b]上的最值假如在区间 [a, b]上函数 y= f(x)的图象是一条连续不停的曲线,则该函数在[a , b] 上一定能够取得 _________ 和 _________ ,并且函数的最值必在_________或 _______处获得.问题研究在区间 [ a, b]上,函数y= f(x)的图象是一条连续不停的曲线,在[a, b]上一定存在最值和极值吗?合作研究:研究一:求已知函数的最值求函数 y= f(x)在 [a, b]上的最值的步骤以下:(1)求函数 y= f(x)在 (a, b)内的极值;(2)将函数y= f(x)的各极值与端点处的函数值f(a), f(b)比较,此中最大的一个是最大值,最小的一个是最小值.例 1、求以下函数在给定区间上的最值:(1)f(x)= 2x3- 3x2- 12x+ 5, x∈ [- 2,3];ππ(2)f(x)= sin2x- x, x∈ [-2,2].. 【思路点拨】要求区间[a,b]上函数的最值,只需求出函数在(a,b)内的极值,最后与端点处函数值比较大小即可.【解】(1)f′ (x)= 6x2- 6x- 12,令 f′ (x)= 0,则 6x2- 6x- 12= 0,即 x2- x- 2= 0,解得 x1=- 1, x2= 2.∵f(- 1)= 12, f(2)=- 15, f(- 2)= 1, f(3)=- 4,∴函数 f(x)= 2x3- 3x2- 12x+ 5在 x∈ [- 2,3]上的最大值为12,最小值为- 15.2)f′ (x)= 2cos2x- 1,令 f′ ( x)=0,π πππ3ππ3π又 x∈ [-,],得 x=±,∵ f()=-, f(-)=-+,226626626ππππππ又 f( )=-, f (- )=,∴ [f(x)] max=, [ f(x)]min=- .222222【思想总结】求解函数在固定区间上的最值,在娴熟掌握求解步骤的基础上,还须注意以下几点:(1)对函数进行正确求导;(2)研究函数的单一性,正确确立极值和端点函数值;(3)比较极值与端点函数值大小时,有时需要利用作差或作商,甚至要分类议论.变式训练1求以下各函数的最值.(1)f(x)=- x4+ 2x2+ 3, x∈ [- 3,2];-x x(2)f(x)= e-e,x∈ [0,a],a为正常数.研究二、已知函数的最值求参数已知函数的最大值或最小值,也可利用导数,采纳待定系数法,列出字母系数的方程或方程组,解出字母系数,从而求出函数的分析式,从而能够研究函数的其余性质.例 2、 f(x)= ax3- 6ax2+ b(a>0) , x∈ [ - 1,2]的最大值为 3,最小值是- 29,求 a、 b 的值.【思路点拨】可先对 f(x)求导,确立 f(x)在 [-1,2]上的单一性及最值,再成立方程从而求得a, b 的值.【解】f′ (x)= 3ax2- 12ax= 3a(x2- 4x).令 f ′ (x)= 0,得 x= 0, x= 4,∵ x∈ [- 1,2],∴ x= 0.∵a>0,∴ f(x), f′ (x)随 x 变化状况以下表:x(- 1,0)0(0,2)f′ (x)+0-f(x)↗最大值 3↘∴当 x= 0时, f(x)取最大值,∴ b= 3.又 f (2)= 8a- 24a+ 3=- 16a+ 3,f(- 1)=- 7a+ 3>f(2) ,∴当 x= 2 时,f(x)取最小值,- 16a+ 3=- 29,∴a= 2,∴ a= 2, b= 3.【思想总结】此题属于逆向研究题型.解这类问题的基本方法是待定系数法.从逆向思想出发,实现由已知向未知的转变,最后落脚在比较极值与端点值大小上,从而解决问题.变式训练2设2<a<1,函数 f(x)= x3-3ax2+ b(- 1≤ x≤ 1)32的最大值为1,最小值为-6,求常数 a, b. 2研究 3、与最值相关的恒成立问题不等式恒成即刻求参数的取值范围问题是一种常有的题型, 这类题型的解法有多种,此中最常用的方法就是分别参数,而后转变为求函数的最值问题, 在求函数最值时,能够借助导数求解.( C )例 3、已知 f(x)= x 3- 1x 2- 2x + 5,当 x ∈ [- 1,2]时, f(x)<m 恒成2立,务实数 m 的取值范围. 【思路点拨】把 m>f(x)恒成立,转变为求f(x)在 [- 1,2]上的最大值,只需m 大于此最大值即可.【解】∵ f(x)= x 3- 1 x 2- 2x + 5,∴ f ′ (x)= 3x 2- x - 2.2令 f ′ (x)= 0,即 3x 2- x -2= 0,∴ x =1,或 x =- 2. 3x- 22 (-2, 1) 1(1,2)21(- 1,- 3)- 3 3f ′ (x)+ 0 -0 + f(x)11 ↗157 ↘ 7 ↗72272∴当 x =-2时, f(x)获得极大值 f - 2 =522;3 3 27当 x = 17 = 11 = 7.时, f(x)获得极小值 f(1) = .又 f( -1) , f(2)2 2∴ f(x)在 x ∈ [- 1,2]上的最大值为 f (2)= 7, ∴要使 f(x)<m 恒成立,需 f(x)max <m ,即 m>7. ∴所务实数 m 的取值范围是 (7,+∞ ). 【思想总结】 相关恒成立问题,一般是转变为求函数的最值问题.求解时要确立这个函数,看哪一个变量的范围已知,即函数是以已知范围的变量为自变量的函数.一般地, λ≥ f(x)恒成立 ? λ≥ [f(x)]max ; λ≤ f(x)恒成立 ? λ≤ [f(x)] min .变式训练 3、已知函数 f(x)= ax 4ln x + bx 4 -c( x>0) 在 x = 1 处获得极值- 3- c , 此中 a , b , c 为常数.若对随意 x>0,不等式 f(x) ≥- 2c 2 恒成立,求 c 的取 值范围.当堂检测:1.函数 f(x)= x 3-3x + 3,当 x ∈ - 3, 5 时,函数 f( x)的最小值是 ()2 233B .- 5C . 1D.89A. 882.函数 f(x)= 1x 3- 2x 2 在 [- 1,5] 上()332A .有最大值 0,无最小值B .有最大值 0,最小值- 332D .既无最大值也无最小值C .有最小值- 3 ,无最大值 你3.若函数 f(x) =- x 3+ 3x 2+ 9x + a 在区间 [ - 2,- 1]上的最大值为 2,则它在该区间上的最小值为()A .- 5B . 7C . 10D .-194.已知函数 f(x)、g(x)均为 [a ,b] 上的可导函数,在[a ,b]上连续且 f ′ (x)<g ′ (x),则 f(x)-g(x)的最大值为 ( )A . f(a)- g(a)B . f(b)- g(b)C .f(a)- g(b)D .f(b)- g(a)5.设函数f(x)= ax 3- 3x + 1(x ∈ R ),若关于随意的 x ∈ (0,1] 都有f(x) ≥ 0 成立,则实数 a 的取值范围为 ________.6.设 a ∈ R ,函数 f(x)= ax 3- 3x 2,若函数 g(x)=f(x)+ f ′ (x) ,x∈ [0,2] 在 x = 0 处获得最大值,则 a 的取值范围是 ________.( B )7.若方程 3x 4- 4mx 3+ 1= 0 没有实数根,务实数 m 的取值范围.( C ) 8.已知函数 f(x)=1+ln x1x ,若函数在区间a , a +2 (此中a>0)上存在最大值,务实数a 的取值范围.你曾落 的泪,最 都会 成阳光,照亮脚下的路。
高中数学:《导数与函数的最大值、最小值》教学设计
高中数学教案Senior high school mathematics teaching plan人教A版数学选修2-2第一章第2节___________________________________________________________ 教材分析本节在学习了用导数处理函数的单调性与极值的基础上,利用导数的方法来解决函数的最值问题,并利用导数的方法解决实际生活中的一些最优化问题。
在讲授本课内容时,要让学生体会导数在处理最值问题中的特点。
培养学生数形结合的数学思想,函数与方程的思想,化归与转化的思想。
学情分析函数的最大值、最小值问题在必修模块中已经有所涉及,主要是在函数和不等式等章节中体现。
以前学习最值时要求比较低,学生掌握的方法比较局限。
本节内容在学生掌握了用导数求函数的单调性和极值的基础上,用导数的方法来处理最值的问题,进一步处理一些实际生活中的最优化问题。
从学生的知识准备上来讲,明确函数()=在区间[,]y f xa b上存在最值,且最值是函数在此区间上的极值或者端点处的函数值。
明确极值是函数的局部性质,最值是函数的整体性质,由局部到整体,由旧的知识生发新的知识,从极值的概念自然过渡到最值的概念,并总结出函数()=在区间[,]y f xa b上最值的求解步骤。
基于学生的情况教师可以通过具体的问题让学生观察、归纳,进而发现结果。
在用导数的方法求最值时,解方程、不等式也是本节的一个重要内容,应该引导学生养成良好的解题习惯。
教学目标分析1。
知识与技能:(1)理解函数最值的概念、最值与极值的关系;(2)掌握用导数的方法求函数的最值;(3)通过建立函数模型,掌握用求导的方法解决实际生活中的一些最优化问题。
2。
过程与方法:(1)体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、猜想、归纳、概括的能力;(2)从函数的图像出发,结合函数的单调性与函数的极值,发现函数()y f x=在区间[,]a b上的最值与函数在该区间上的极值及区间端点函数值的关系,从而用导数的方法解决最值问题。
数学教案导数复习函数的极值与最值,导数的综合运用
数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
函数的最值与导数预习学案
函数的最值与导数课前预习学案预习目标1.借助函数图像,直观地理解函数的最大值和最小值概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件.3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤.预习内容1.最大值和最小值概念;2.函数最大值、最小值与极大值、极小值的区别与联系;3.连续函数在闭区间上求最值的步骤.提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案学习目标1.借助函数图像,直观地理解函数的最大值和最小值概念.2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件.3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤.学习重难点:导数与函数单调性的关系.学习过程(一)知识回顾1.极大值、极小值的概念:2.求函数极值的方法:(二)探究一例1 求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值.你能总结一下,连续函数在闭区间上求最值的步骤吗?变式:1 求下列函数的最值: (1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______.(2)已知]2,1[,26)(2∈--=x x x x f ,则函数的最大值为______,最小值为______.(3)已知]3,3[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______.(4)]2,1[,3)(3∈-=x x x x f 则函数的最大值为______,最小值为______. 变式:2 求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=探究二:例2 已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数的值;(2)求在[-2,2]上的最大值.(三)反思总结请同学们归纳利用导数求连续函数在闭区间上求最值的步骤.(四)当堂检测1.下列说法中正确的是( )A .函数若在定义域内有最值和极值,则其极大值便是最大值,极小值便是最小值B .闭区间上的连续函数一定有最值,也一定有极值C .若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值D .若函数在定区间上有最值,则最多有一个最大值,一个最小值,但若有极值,则可有多个极值2.函数|1|-=x y ,下列结论中正确的是( )A .有极小值0,且0也是最小值B .有最小值0,但0不是极小值C .有极小值0,但0不是最小值D .因为在处不可导,所以0即非最小值也非极值3.函数a ax x x f --=3)(3在内有最小值,则的取值范围是( )A .10<≤aB .10<<aC .11<<-aD .210<<a4.函数]4,0[,)(∈=-x xe x f x 的最小值是( )A .0B .e 1C .44eD .22e 课后练习与提高1.给出下面四个命题:(1)函数]1,1[,452-∈+-=x x x y 的最大值为10,最小值为49-; (2)函数]4,2[,1422∈+-=x x x y 的最大值为17,最小值为1;(3)函数]3,3[,123-∈-=x x x y 的最大值为16,最小值为-16;(4)函数]2,2[,123-∈-=x x x y 无最大值,无最小值.其中正确的命题有( )A .1个B .2个C .3个D .4个2.函数]2,2[,14)(2-∈+=x x x x f 的最大值是__________,最小值是_____________.3.函数),2[,3+∞∈+=x xx y 的最小值为____________. 4.已知m m x x x f (62)(23+-=为常数),在[-2,2]上有最大值3,求函数在区间[-2,2]上的最小值.说一说,这节课你学到了什么?。
学案1:3.2 导数与函数的单调性、极值、最值
3.2 导数与函数的单调性、极值、最值【导学目标】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).【重点知识梳理】1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.【高频考点突破】考点一利用导数研究函数的单调性例1 已知函数f (x )=e x -ax -1.(1)求f (x )的单调增区间;(2)是否存在a ,使f (x )在(-2,3)上为减函数,若存在,求出a 的取值范围,若不存在,请说明理由.【拓展提高】(1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解.【变式探究】(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为_____________________.(2)已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调递增函数,则a 的取值范围是________.考点二 利用导数求函数的极值例2 (2014·福建)已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x .【拓展提升】(1)导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.【变式探究】 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.【拓展提升】(1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.【变式探究】 已知函数f (x )=(x -k )e x .(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.【真题感悟】1.(2015高考江苏)已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),23()23,1()3,(+∞--∞ ,求c 的值.2.(2014·广东卷) 曲线y =e -5x +2在点(0,3)处的切线方程为________.3.(2014·江西卷) 若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.4.(2014·江西卷) 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R).(1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围.5.(2014·全国卷) 曲线y =x e x-1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .16.(2014·新课标全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .37.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]8.(2013·广东卷) 若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________.9.(2013·江西卷) 设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.10.(2013·北京卷) 设L 为曲线C :y =ln x x在点(1,0)处的切线. (1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方.11.(2013·全国卷) 若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3]D .[3,+∞)【提升训练】1.与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ).A .2x -y +3=0B .2x -y -3=0C .2x -y +1=0D .2x -y -1=02.若函数h (x )=2x -k x +k 3在(1,+∞)上是增函数,则实数k 的取值范围是( ). A .[)2,-+∞B .(2,+∞)C .(-∞,-2)D .(-∞,2)3.函数f (x )=(4-x )e x 的单调递减区间是( ).A .(-∞,4)B .(-∞,3)C .(4,+∞)D .(3,+∞)4.函数f (x )=ax 3+bx 在x =1a处有极值,则ab 的值为( ) A .2 B .-2 C .3 D .-35.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ).A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)6.已知函数f (x )的定义域为[-1,5],部分对应值如下表.f (x )的导函数y =f ′(x )的图象如图所示.下列关于函数f (x )的命题:①函数y =f (x )是周期函数;②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y =f (x )-a 有4个零点.其中真命题的个数有 ( ).A .4B .3C .2D .17.函数y =x -2sin x 在[0,π]上的递增区间是________.8.函数f (x )=x 3-3x 2+1在x =________处取得极小值.9.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.10.已知函数y =-13x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________.11.设函数f (x )=ax 3-3x 2,(a ∈R ),且x =2是y =f (x )的极值点,求函数g (x )=e x ·f (x )的单调区间.12.已知函数f (x )=a ln x -ax -3(a ∈R).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+2'()2m x f x ⎡⎤+⎢⎥⎣⎦ 在区间(t,3)上总不是单调函数,求m 的取值范围.答案例1【变式探究】【答案】(1)(2,2a)(2)(0,3]例2【变式探究】例3【解析】 由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0, 所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间[ln(2a ),1]上单调递增.于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是 g (0)=1-b ;当12<a <e 2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ;当a ≥e 2时,g (x )在[0,1]上的最小值是 g (1)=e -2a -b .【变式探究】(2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,f (x )在[0,k -1]上单调递减,在[k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ;当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-e k -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e.【真题感悟】1.(2015高考江苏分)【答案】(1)当时, 在上单调递增;当时, 在,上单调递增,在上单调递减; 当时, 在,上单调递增,在上单调递减. (2)0a =()f x (),-∞+∞0a >()f x 2,3a ⎛⎫-∞- ⎪⎝⎭()0,+∞2,03a ⎛⎫- ⎪⎝⎭0a <()f x (),0-∞2,3a ⎛⎫-+∞ ⎪⎝⎭20,3a ⎛⎫- ⎪⎝⎭1.c =2.(2014·广东卷)【答案】y =-5x +3 【解析】 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.3.(2014·江西卷)【答案】(-ln 2,2) 【解析】 设点P 的坐标为(x 0,y 0),y ′=-e -x .又切线平行于直线2x +y +1=0,所以-e-x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).4.(2014·江西卷)【解析】(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0. 所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x 1-2x <0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 5.(2014·全国卷)【答案】C 【解析】 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x-1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x-1在点(1,1)处的切线斜率是2. 6.(2014·新课标全国卷Ⅱ)【答案】D【解析】 y ′=a -1x +1,根据已知得,当x =0时,y ′=2,代入解得a =3. 7.(2013·新课标全国卷Ⅰ)【答案】D 【解析】若x ≤0,|f (x )|=|-x 2+2x |=x 2-2x ,x =0时,不等式恒成立,x <0时,不等式可变为a ≥x -2,而x -2<-2,可得a ≥-2;若x >0,|f (x )|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax ,可得a ≤ln (x +1)x 恒成立,令h (x )=ln (x +1)x ,则h ′(x )=x x +1-ln (x +1)x 2,再令g (x )=x x +1-ln(x +1),则 g ′(x )=-x (x +1)2<0,故g (x )在(0,+∞)上单调递减,所以g (x )<g (0)=0,可得h ′(x )=x x +1-ln (x +1)x 2<0,故h (x )在(0,+∞)上单调递减,x →+∞时,h (x )→0, 所以h (x )>0,a ≤0.综上可知,-2≤a ≤0,故选D.8.(2013·广东卷)【答案】-1【解析】 ∵y ′=k +1x,∴y ′|x =1=k +1=0,故k =-1. 9.(2013·江西卷)【答案】2【解析】 f (e x )=x +e x ,利用换元法可得f (x )=ln x +x ,f ′(x )=1x+1,所以f ′(1)=2. 10.(2013·北京卷)【解析】(1)设f (x )=ln x x ,则f ′(x )=1-ln x x 2. 所以f ′(1)=1.所以L 的方程为y =x -1.(2)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线L 的下方等价于g (x )>0(x >0,x ≠1). g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln x x 2. 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增.所以g (x )>g (1)=0(x >0,x ≠1).所以除切点之外,曲线C 在直线L 的下方.11.(2013·全国卷)【答案】D【解析】 f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12 ,+∞上恒成立,由于y =1x 2-2x 在⎝⎛⎭⎫12,+∞上单调递减,所以y <3,故只要a ≥3. 【提升训练】1.【解析】设切点坐标为(x 0,x 20),则切线斜率为2x 0, 由2x 0=2得x 0=1,故切线方程为y -1=2(x -1),即2x -y -1=0.【答案】D2.【解析】由条件得h ′(x )=2+k x 2=2x 2+k x 2≥0在(1,+∞)上恒成立,即k ≥-2x 2在(1,+∞)上恒成立,所以k ∈[)2,-+∞.【答案】A3.【解析】f ′(x )=-e x +(4-x )·e x =e x (3-x ),令f ′(x )<0,由于e x >0,∴3-x <0,解得x >3.【答案】D4.【解析】f ′(x )=3ax 2+b ,由f ′⎝⎛⎭⎫1a =3a ⎝⎛⎭⎫1a 2+b =0,可得ab =-3.故选D. 【答案】D5.【解析】不等式(x -1)f ′(x )≥0等价于1010'()0'()0x x f x f x -≥-≤⎧⎧⎨⎨≥≤⎩⎩或可知f (x )在(-∞,1)上递减,(1,+∞)上递增,或者f (x )为常数函数,因此f (0)+f (2)≥2f (1).【答案】C6.【答案】D7.【解析】y ′=1-2cos x ,令1-2cos x ≥0,得cos x ≤12,解得2k π+π3≤x ≤2k π+53π,k ∈R ,又0≤x ≤π,∴π3≤x ≤π. 【答案】⎣⎡⎦⎤π3,π8.【解析】f ′(x )=3x 2-6x ,令f ′(x )=0,得x 1=0,x 2=2,当x ∈(-∞,0)时,f ′(x )>0, 当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0,显然当x =2时f (x )取极小值.【答案】29.【答案】(-∞,0)10.【解析】y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立,∴Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,∴-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.【答案】(-∞,-1)∪(3,+∞)11.【解析】f ′(x )=3ax 2-6x =3x (ax -2).因为x =2是函数y =f (x )的极值点.所以f ′(2)=0,即6(2a -2)=0,因此a =1,经验证,当a =1时,x =2是函数f (x )的极值点,所以g (x )=e x (x 3-3x 2),g ′(x )=e x (x 3-3x 2+3x 2-6x )=e x (x 3-6x )=x (x +6)(x -6)e x .因为e x >0,所以y =g (x )的单调增区间是(-6,0)和(6,+∞);单调减区间是(-∞,-6)和(0,6).12.【解析】 (1)根据题意知,f ′(x )=()1a x x- (x >0), 当a >0时,f (x )的单调递增区间为(0,1],单调递减区间为(1,+∞);当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1];当a =0时,f (x )不是单调函数.(2)∵f ′(2)=-a 2=1,∴a =-2, ∴f (x )=-2ln x +2x -3.∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,且g ′(0)=-2,由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,∴-373<m <-9.。
数学教案导数复习函数的极值与最值,导数的综合运用
数学教案-导数复习函数的极值与最值,导数的综合运用一、教学目标:1. 理解函数的极值与最值的概念,掌握求解函数极值与最值的方法。
2. 熟练运用导数性质,解决实际问题中的最值问题。
3. 提高学生分析问题和解决问题的能力,培养学生的逻辑思维和数学素养。
二、教学内容:1. 函数的极值与最值概念。
2. 求解函数极值与最值的方法。
3. 导数在实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的极值与最值的概念,求解方法及实际应用。
2. 教学难点:导数在实际问题中的综合运用。
四、教学方法与手段:1. 采用问题驱动法,引导学生主动探究函数极值与最值的问题。
2. 利用多媒体课件,展示函数图像,直观地引导学生理解极值与最值的概念。
3. 结合实际问题,运用导数求解最值问题,培养学生的应用能力。
五、教学过程:1. 导入新课:复习函数的极值与最值概念,引导学生回顾求解方法。
2. 知识讲解:讲解求解函数极值与最值的方法,结合实例进行分析。
3. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
4. 案例分析:结合实际问题,运用导数求解最值问题,培养学生的应用能力。
6. 作业布置:布置课后作业,巩固所学知识,提高学生的自主学习能力。
教案将继续编写后续章节,敬请期待。
六、教学评估:1. 课堂练习环节,通过学生解答练习题的情况,评估学生对函数极值与最值概念的理解以及求解方法的掌握程度。
2. 案例分析环节,通过学生分析实际问题、运用导数求解最值问题的过程,评估学生的应用能力和逻辑思维。
3. 课后作业的完成情况,评估学生对课堂所学知识的巩固程度和自主学习能力。
七、教学反思:1. 根据教学评估的结果,反思教学过程中是否存在不足,如有需要,调整教学方法,以提高教学效果。
2. 针对学生的掌握情况,针对性地进行辅导,解决学生在学习过程中遇到的问题。
3. 结合学生的反馈,优化教学内容,使之更符合学生的学习需求。
八、课后作业:1. 复习本节课所学的函数极值与最值的概念及求解方法。
精品导学案:函数的最值与导数
精品导学案:3. 3.3函数的最值与导数课前预习学案一、预习目标1.借助函数图像,直观地理解函数的最大值和最小值概念。
2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。
3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。
二、预习内容1.最大值和最小值概念2.函数最大值、最小值与极大值、极小值的区别与联系3.连续函数在闭区间上求最值的步骤三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容课内探究学案一、学习目标1.借助函数图像,直观地理解函数的最大值和最小值概念。
2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。
3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。
学习重难点:导数与函数单调性的关系。
二、学习过程 (一)知识回顾:1. 极大值、极小值的概念:2.求函数极值的方法:(二)探究一:例1.求函数1431)(3+-=x x x f 在[0,3]上的最大值与最小值。
你能总结一下,连续函数在闭区间上求最值的步骤吗?变式:1 求下列函数的最值:(1)已知]1,31[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______。
(2)已知]2,1[,26)(2∈--=x x x x f ,则函数的最大值为______,最小值为______。
(3)已知]3,3[,27)(3-∈-=x x x x f ,则函数的最大值为______,最小值为______。
(4)]2,1[,3)(3∈-=x x x x f 则函数的最大值为______,最小值为______。
变式:2 求下列函数的最值:(1)26)(2++=x x x f (2)3126)(x x x f +-=探究二:例2.已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37,(1)求实数a 的值;(2)求)(x f 在[-2,2]上的最大值。
函数的最值与导数教案
函数的最值与导数教案导数是微积分中非常重要的概念,它在函数的最值问题中有着重要的应用。
在教授函数的最值与导数的过程中,我们可以通过引入实际问题、图形分析和计算等多种方法来帮助学生理解和掌握这一知识点。
一、引入实际问题为了让学生更好地理解函数的最值与导数的概念,可以通过引入一些实际问题来展开教学。
例如,我们可以以汽车行驶问题为例,假设一个汽车在一段时间内的行驶路程与时间的关系可以用函数来表示。
我们可以让学生思考,如何通过这个函数来确定汽车在这段时间内的行驶距离的最大值或最小值。
这样,学生就可以通过思考这个问题来认识到函数的最值与导数之间的关系。
二、图形分析三、导数的定义在图形分析之后,我们可以引入导数的定义,并通过具体的例子来讲解导数的计算方法和意义。
我们可以以函数的最大值和最小值为例,讲解如何通过导数来确定函数的最值点。
我们可以让学生计算函数在极值点的导数,然后通过导数的正负来判断极值点是最大值还是最小值。
同时,我们还可以让学生通过对导数的计算,来确定函数的最大值或最小值的具体数值。
四、练习题与解答在讲解完导数的定义之后,我们可以通过一些练习题来帮助学生巩固所学内容。
我们可以选择一些经典的函数最值问题,并通过计算导数来解答这些问题。
例如,我们可以让学生计算一个函数的导数,并通过导数的计算结果来确定其最大值或最小值。
同时,我们还可以给出一些函数最值问题,然后让学生自行计算函数的导数,并通过导数的计算结果来求解这些问题。
通过引入实际问题、图形分析和计算练习等多种教学方法,可以帮助学生更好地理解和掌握函数的最值与导数的概念。
同时,我们还可以通过丰富的例子和练习题,来增加学生对函数最值与导数的应用能力。
通过灵活运用这些教学方法,相信学生会对函数的最值与导数有一个更加深入的理解。
高中数学_函数的极值与导数教学设计学情分析教材分析课后反思
函数极值与导数的教学设计一、教材分析1、教材的地位和作用本节是整个中学数学对函数研究的进一步深化。
在此之前学生已经掌握了导数的基本概念,初步具备了运用导数研究函数的能力,这为《函数的最值与导数》奠定了坚实的基础,具有承上启下的作用。
本节课用导数的方法来研究函数的性质,是对函数研究的深化与提升。
同时本节教材是贯彻实施素质教育,充分体现新课标精神,培养学生探究能力很好的教学载体,有利于培养学生用观察、比较、分析、归纳等方法解决一些实际问题。
2.教学目标:(1) 知识与能力:①掌握函数极值的定义,了解可导函数极值点的必要条件和充分条件;②掌握利用导数求不超过三次多项式函数极值的一般方法;③通过对比原函数的增减和导函数的正负,利用函数的图像,给函数的极值以直观的验证。
(2)过程与方法:培养学生观察,分析,探究,归纳得出数学概念和规律的学习能力。
(3)情感态度与价值观:培养学生层层深入、一丝不苟研究事物的科学精神;体会数学中的局部与整体的辨证关系.3.教学重、难点本着新课程标准的教学理念和考试大纲的要求,针对教学内容的特点,我确立了如下的教学重点、难点:教学重点:掌握求可导函数的极值的一般方法.教学难点:1、 0x 为函数极值点与)(0x f =0的逻辑关系2、将知识和方法内化为技能。
二、学情分析学生已经初步学习了运用导数去研究函数,但还不够深入,因此在学习上还有一定困难。
本节课能进一步提高学生运用导数研究函数的能力,让学生体会导数的工具作用。
三、教法、学法分析(一)教法分析根据本节课的特点,为了提高教学效率,让学生在轻松的环境下获得直观的感受,使数学的课堂富有趣味性,采用师生互动探究式教学,遵循“教师为主导、学生为主体”的原则,结合高中学生的求知心理和已有的认知水平开展教学。
由于学生对极限和导数的知识学习还十分的有限(大学里还将继续学习),因此教学中更重视的是从感性认识到理性认识的探索过程,而略轻严格的理论证明,教师的主导作用和学生的主体作用都必须得到充分发挥.利用多媒体辅助教学.电脑演示动画图形,直观形象,便于学生观察.幻灯片打出重要结论,清楚明了,节约时间,提高课堂效率.(二)学法分析1. 采用体验学习及问题探究的学习方式,通过学生亲历教师预设的各种问题情境,引导学生开展创造性的学习活动,不但使学生主动掌握知识,而且要培养的独立探究能力和态度。
高中数学_函数的最值和导数教学设计学情分析教材分析课后反思
教课方案【课本教材内容剖析】本节教材知识间的前后联系,以及在讲堂教课中的地位与作用:导数是一个特别函数,它的引出和定义一直贯衣着函数思想。
导数已经由前几年不过在解决问题中的协助地位上涨为剖析和解决问题时的不行缺乏的工具。
所以函数问题波及高中数学比许多的知识点和数学思想方法。
导数作为研究函数的一种重要工具,在学习时应惹起我们教师和学生的充分重视。
本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值以后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,能够解决科技、经济、社会中的一些怎样使成本最低、产量最高、效益最大等实质问题.本节教材还有一个重要的教育功能,那就是培育学生的研究精神,体验自主学习的成功欢乐.【讲堂教课三维目标】1.知识和技术目标( 1).使学生理解函数的最大值和最小值的看法,并且能理解函数最值与极值的差别和联系( 2)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标( 1)经过函数图象的直观,让学生发现函数极值与最值的关系,(2)在学习过程中,察看、概括、表述、沟通、合作,最后形成认识.(3)培育学生的数学能力,能够自己发现问题,剖析问题并最后解决问题.3.感情态度和价值观目标(1)浸透数形联合的思想,领会导数在求函数最值中的优胜性,优化学生的思想质量。
(2)提高学生的数学能力,培育学生的创新精神、实践能力和理性精神.【教课要点、难点和要点点】1.教课要点:会求闭区间上的连续函数的最大值和最小值.2.教课难点:发现闭区间上的连续函数 f (x)的最值只可能存在于极值点处或区间端点处;即理解函数的最大值、最小值与函数的极大值和极小值的差别与联系.3.教课要点点本节课打破难点的要点是:经过合作研究的方式,让学生在运动变化的过程中经过察看、比较,发现结论.【教课过程】一本知识复习回首:1、极大值、极小值的看法:、节知课的 2.求函数极值的步骤:识教复学3.函数最值定义回首复惯用导数求极值的思,习大回致按照创:回设顾旧情知创境设,情铺境,垫铺垫导导入入——合作学习有,探索新知有——指导应用,鼓励创新yo复习回首,导入新课( 1)函数的极值定义yx0x ox0x设函数 f(x)在点x0邻近有定义,假如对x0 邻近的全部点,都,则 x0 叫做函数的f(x0)是函数f(x)的一个极大值;设函数 f(x)在点x0邻近有定义,假如对x0 邻近的全部点,都,则 x0 叫做函数的f(x0)是函数f(x)的一个极小值;( 2)函数极值的步骤(3) 函数最值的定义函数最值研究路和方法。
高中数学第三章.2函数的极值与导数学案含解析
3.3.2 函数的极值与导数[提出问题]如图是函数y=f(x)的图象.问题1:y=f(x)在x=a处的导数f′(a)等于多少?提示:f′(a)=0.问题2:当x=a时,f(x)取最大值吗?提示:不是,但f(a)比x=a附近的函数值都大.问题3:在x=a附近两侧导数f′(x)的符号有什么特点?提示:在x=a附近左侧f′(x)>0,右侧f′(x)<0.问题4:当x=d时,请回答以上问题.提示:①f′(d)=0;②不是,但f(d)比x=d附近的函数值都小;③在x=d附近左侧f′(x)<0,右侧f′(x)>0.[导入新知]1.极值点与极值(1)极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极大值点和极小值点统称为极值点,极大值和极小值统称为函数的极值.2.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.[化解疑难]1.对极值概念的理解(1)函数的极值是一个局部概念,是某个点的函数值与它附近的函数值比较是最大的或是最小的.(2)在定义域的某个区间内极大值或极小值并不唯一,也可能极值不存在,并且极大值与极小值之间无确定的大小关系.2.极值与极值点辨析(1)函数的极值点是指函数取得极值时对应点的横坐标,而不是点;极值是函数在极值点处取得的函数值,即函数取得极值时对应点的纵坐标.(2)极值点一定在区间的内部,端点不可能为极值点.利用导数求函数的极值[例1] (1)f (x )=13x 3-x 2-3x +3;(2)f (x )=ln xx .[解] (1)f ′(x )=x 2-2x -3. 令f ′(x )=0,得x 1=3,x 2=-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1 (-1,3) 3 (3,+∞)f ′(x ) + 0 - 0 + f (x )单调递增143单调递减-6单调递增故当x =-1时,函数取得极大值,且极大值为f (-1)=3;当x =3时,函数取得极小值,且极小值为f (3)=-6.(2)函数f (x )=ln xx的定义域为(0,+∞),且f ′(x )=1-ln xx2.令f ′(x )=0,得x =e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,e) e (e ,+∞)f ′(x ) + 0 - f (x )单调递增1e单调递减故当x =e 时,函数取得极大值,且极大值为f (e)=1e .无极小值.[类题通法](1)求函数极值的步骤:①求方程f ′(x )=0在函数定义域内的所有根; ②用f ′(x )=0的根将定义域分成若干小区间,列表;③由f ′(x )在各个小区间内的符号,判断f ′(x )=0的根处的极值情况.(2)表格给出了当x 变化时y ′,y 的变化情况,表格直观清楚,容易看出具体的变化情况,并且能判断出是极大值还是极小值,最后得出函数的极大值、极小值.[活学活用] 求下列函数的极值: (1)f (x )=-x 3+12x +6; (2)f (x )=2xx 2+1-2. 解:(1)f ′(x )=-3x 2+12=-3(x +2)(x -2). 令f ′(x )=0, 解得x 1=-2,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2 (-2,2) 2 (2,+∞)f ′(x ) - 0 + 0 - f (x )单调递减-10单调递增22单调递减当x =-2时,f (x )有极小值,并且极小值为f (-2)=-10; 当x =2时,f (x )有极大值,并且极大值为f (2)=22. (2)函数f (x )的定义域为R. f ′(x )=2x 2+1-4x 2x 2+12=-2x -1x +1x 2+12.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1 (-1,1) 1 (1,+∞)f ′(x ) - 0 + 0 - f (x )单调递减-3单调递增-1单调递减1.已知函数极值求参数[例2] 1,试确定a ,b 的值,并求f (x )的单调区间.[解] 由已知f ′(x )=3x 2-6ax +2b , ∴f ′(1)=3-6a +2b =0.① 又∵f (1)=1-3a +2b =-1,② 由①②解得a =13,b =-12,∴f (x )=x 3-x 2-x .由此得f ′(x )=3x 2-2x -1=(3x +1)(x -1), 令f ′(x )>0,得x <-13或x >1;令f ′(x )<0,得-13<x <1,∴f (x )在x =1的左侧f ′(x )<0, 右侧f ′(x )>0,即f (x )在x =1处取得极小值, 故a =13,b =-12,且f (x )=x 3-x 2-x .它的单调递增区间是⎝⎛⎭⎪⎫-∞,-13和(1,+∞);单调递减区间是⎝ ⎛⎭⎪⎫-13,1.[类题通法] 已知函数极值,确定函数的解析式中的参数时,注意以下两点: (1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.[活学活用]已知函数f (x )=x 3+ax 2+bx +c ,且当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a ,b ,c 的值.解:f (x )=x 3+ax 2+bx +c ,f ′(x )=3x 2+2ax +b . ∵x =-1时函数取得极大值,x =3时函数取得极小值,∴-1,3是方程f ′(x )=0的根,即为方程3x 2+2ax +b =0的两根.故⎩⎪⎨⎪⎧-1+3=-2a 3,-1×3=b3,解得⎩⎪⎨⎪⎧a =-3,b =-9.∴f (x )=x 3-3x 2-9x +c . ∵x =-1时取得极大值7, ∴(-1)3-3(-1)2-9(-1)+c =7. ∴c =2.∴函数f (x )的极小值为f (3)=33-3×32-9×3+2=-25.函数极值的综合应用[例3] 已知(1)求函数f (x )的极值,并画出其图象(草图); (2)当a 为何值时,方程f (x )=0恰好有两个实数根? [解] (1)由f (x )=-x 3+3x +a , 得f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1. 当x ∈(-∞,-1)时,f ′(x )<0; 当x ∈(-1,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )的极小值为f (-1)=a -2; 极大值为f (1)=a +2.由单调性、极值可画出函数f (x )的大致图象,如图所示.(2)结合图象,当极大值a +2=0时,有极小值小于0, 此时曲线f (x )与x 轴恰有两个交点, 即方程f (x )=0恰有两个实数根,所以a =-2满足条件;当极小值a -2=0时,有极大值大于0, 此时曲线f (x )与x 轴恰有两个交点, 即方程f (x )=0恰好有两个实数根, 所以a =2满足条件.综上,当a =±2时,方程恰有两个实数根. [类题通法]用求导的方法确定方程根的个数,是一种很有效的方法.它通过函数的变化情况,运用数形结合思想来确定函数图象与x 轴的交点个数,从而判断方程根的个数.[活学活用]a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根?有没有可能无实根?解:令f (x )=x 3-3x 2,则f (x )的定义域为R , 由f ′(x )=3x 2-6x =0, 得x =0或x =2,所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4. 如图所示,故当a >0或a <-4时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根; 当-4<a <0时,原方程有三个不等实根; 由图象可知,原方程不可能无实根.5.求含参数的函数的极值[典例] (12分)若a ≠0,试求函数f (x )=-23ax 3-x 2+a 2x 2+2ax 的单调区间与极值.[解题流程][活学活用]设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0,求函数的单调区间与极值.解:f′(x)=-x2+2x+m2-1. 令f′(x)=0,得到x=1-m或x=1+m.因为m >0, 所以1+m >1-m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,1-m )1-m (1-m,1+m )1+m (1+m ,+∞)f ′(x ) - 0 + 0 - f (x )单调递减极小值单调递增极大值单调递减m,1+m ).函数f (x )在x =1-m 处取得极小值f (1-m )=-23m 3+m 2-13;函数f (x )在x =1+m 处取得极大值f (1+m )=23m 3+m 2-13.[随堂即时演练]1.下列四个函数中,能在x =0处取得极值的是( ) ①y =x 3;②y =x 2+1;③y =cos x -1;④y =2xA .①②B .②③C .③④D .①③解析:选B ①④为单调函数,不存在极值.2.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( )A .1B .2C .3D .4解析:选B 由函数极值的定义和导函数的图象可知,f ′(x )在(a ,b )上与x 轴的交点个数为4,但是在原点附近的导数值恒大于零,故x =0不是函数f (x )的极值点,其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.3.函数y =3x 3-9x +5的极大值为________. 解析:y ′=9x 2-9.令y ′=0,得x =±1. 当x 变化时,y ′,y 的变化情况如下表:单调递增单调递减单调递增答案:114.已知函数f (x )=x 3+ax 2+3x -9,若f (x )在x =-3时取得极值,则a =________. 解析:f ′(x )=3x 2+2ax +3, 由题意知-3是3x 2+2ax +3=0的根, 解3×(-3)2+2a ×(-3)+3=0, 得a =5,经检验a =5时符合题意. 答案:55.求下列函数的极值: (1)f (x )=x 3-12x ;(2)f (x )=sin x +12x ,x ∈(0,2π).解:(1)函数的定义域为R ,f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =-2或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增当x =2时,函数有极小值f (2)=-16. (2)f ′(x )=cos x +12,令f ′(x )=cos x +12=0,得cos x =-12.又∵x ∈(0,2π), ∴x =2π3或x =4π3.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递 增单调递 减单调递 增当x =4π3时,f (x )取极小值2π3-32.[课时达标检测]一、选择题1.函数f (x )=2-x 2-x 3的极值情况是( ) A .有极大值,没有极小值 B .有极小值,没有极大值 C .既无极大值也无极小值 D .既有极大值又有极小值解析:选D f ′(x )=-2x -3x 2,令f ′(x )=0有x =0或x =-23.当x <-23时,f ′(x )<0;当-23<x <0时,f ′(x )>0;当x >0时,f ′(x )<0.从而在x =0时,f (x )取得极大值,在x =-23时,f (x )取得极小值.2.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3 D .-1,-3 解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.3.设函数f (x )=x e x,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点解析:选D 求导得f′(x)=e x+x e x=e x(x+1),令f′(x)=e x(x+1)=0,解得x=-1.易知x=-1是函数f(x)的极小值点.4.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( ) A.(-1,2)B.(-3,6)C.(-∞,-1)∪(2,+∞)D.(-∞,-3)∪(6,+∞)解析:选D f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.5.对于函数f(x)=x3-3x2,给出命题:①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的单调递增区间为(-∞,0),(2,+∞),单调递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有( )A.1个B.2个C.3个 D.4个解析:选B f′(x)=3x2-6x.令f′(x)=3x2-6x>0,得x>2或x<0;令f′(x)=3x2-6x<0,得0<x<2.∴函数f(x)在区间(-∞,0)和(2,+∞)上单调递增,在区间(0,2)上单调递减.当x=0和x=2时,函数分别取得极大值0和极小值-4.故①②错,③④对.二、填空题6.已知函数f(x)=ax3+bx2+c,其导数f′(x)的图象如图所示,则函数的极小值是________.解析:由题图可知,当x<0时,f′(x)<0;当0<x <2时,f ′(x )>0.故x =0时函数f (x )取极小值f (0)=c .答案:c7.函数f (x )=a +ln x x(a ∈R)的极大值为________. 解析:f ′(x )=1-a +ln x x 2, 令f ′(x )=0,得x =e1-a , 当x <e1-a 时,f ′(x )>0; 当x >e 1-a 时,f ′(x )<0,所以函数的极大值为f (e1-a )=1e 1-a =e a -1. 答案:e a -18.已知函数f (x )=x 4+9x +5,则f (x )的图象在(-1,3)内与x 轴的交点的个数为________.解析:因为f ′(x )=4x 3+9,当x ∈(-1,3)时,f ′(x )>0,所以f (x )在(-1,3)上单调递增.又f (-1)=-3<0,f (0)=5>0,所以f (x )在(-1,3)内与x 轴只有一个交点.答案:1三、解答题9.已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.解:(1)f ′(x )=3x 2-3a =3(x 2-a ).当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调递增区间为(-∞,+∞); 当a >0时,由f ′(x )>0, 解得x <-a 或x >a ,由f ′(x )<0, 解得-a <x <a ,∴当a >0时,f (x )的单调递增区间为(-∞,-a ),(a ,+∞),单调递减区间为(-a ,a ).(2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0,解得a =1.∴f (x )=x 3-3x -1,f ′(x )=3x 2-3.由f ′(x )=0,解得x =-1或x =1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合图象可知m 的取值范围是(-3,1).10.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝ ⎛⎭⎪⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).。
函数的最值与导数教学设计
四、课堂练习
1.下列说法正确的是(D)
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.在闭区间 上函数 的图像是一条连续不断的曲线,那么函数 在 上必有最大值与最小值.
2、求 在 的最大值=0;最小值=-40。
2、讨论:在闭区间 函数 的“最值”与“极值”的关系
引导学生归纳结果,并将最值与极值的关系准确的表示出来。
①、“最值”是整体概念;而“极值”是个局部概念.
②、从个数上看,一个函数在给定的闭区间 上的最值是唯一的;而极值可能有多个,也可能只有一个,还可能一个都没有;
③、在极值点 处的导数 =0,而最值点不一定,最值有可能在极值点取得,也可能在端点处取得。
主要教学方法类比探究式教学教学模式参与式教学手段与教函数的最大小值与导数作业设计课本p99习题33教学反思知识板书例题板书练习板书练习板书武威第三中学集体备课教学设计续页教学过程教师活动学生活动补充修改一温故知新提问
函数的最值与导数教学设计(总5页)
武威第三中学集体备课教学设计首页
编写时间: 年 月 日 学期 总第 课时授课者
【设计意图】总结规律,得出结论。
5.归纳方法:
由上面函数 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
【设计意图】培养学生总结归纳的能力,让学生知道最值的一般求解方法。
三、例题巩固
例1.(课本例5)求 在 的最大值与最小值
解:由例4可知,在 上,当 时,
【设计意图】检查学生对本节知识的掌握情况。
五、小结作业
高中数学(函数的最值导数在研究函数中的应用)学案北师大版必修2 学案
某某省某某市西夏墅中学高中数学《函数的最值导数在研究函数中的应用》学案北师大版必修2一、学习目标1、 了解函数最值与极值的区别和联系,会用导数求在给定区间上的函数的最大值、最小值。
2、 通过函数图象的直观,让学生发现函数极值与最值的关系,掌握利用导数求函数最值的方法。
3、 渗透数形结合的思想,体会导数在求函数最值中的一般性和有效性。
二、学习重点、难点利用导数求函数的最值三、课堂导航(一) 复习引入 求函数214()33f x x x =--在5,32⎡⎤-⎢⎥⎣⎦上的最值。
(二) 学生活动 求函数314()33f x x x =--在5,32⎡⎤-⎢⎥⎣⎦上的最值。
此函数在区间5,02⎡⎤-⎢⎥⎣⎦,5,22⎡⎤--⎢⎥⎣⎦上的最值情况又怎样呢?(三) 建构数学求函数()f x 在区间[],a b 上的最值的方法:(四)数学应用例1 求下列函数在区间5,32⎡⎤-⎢⎥⎣⎦上的最值 (1)314()33f x x x =+-(2)314()33f x x x =--- (3)314()33f x x x =-+-小结:思考:设函数329()62f x x x x a =-+-,若方程()0f x =有且仅有一个实根,则a 的取值X 围为 。
(提示:结合此函数的草图)(五)课堂练习1. 求下列函数在所给的区间上的最值:(1)[]1,0,22x y x x -=∈+ (2)1cos ,,222y x x x ππ⎡⎤=-∈-⎢⎥⎣⎦用已知函数32()f x x ax b =++的图像上一点P (1,0)且在点P 处的切线与直线3x+y=0平行。
(1) 求f(x)的表达式;(2) 求函数f(x)在区间[0,t]上的最大和最小值(其中0<t<3);关于x 的方程f(x)=c 在区间[1,3]上恰有2个相异的实根,求c 的取值X 围(六)回顾小结 1、 用导数求函数最值的方法; 2、 一元三次函数图像的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数y=2x3-3x2-12x+5在[0,3]上的最小值是______的最大值为_____;最小值为_______.
【课后反思】
【达标检测】
1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)为()
A.等于0B.大于0 C.小于0D.以上都有可能
2.函数y= ,在[-1,1]上的最小值为()
A.0B.-2C.-1D.
3.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?
课题
§3.3.3函数的最大小值与导数(第3课时)
【导学过程】
探究一:最值的概念(最大值与最小值)
观察下面函数 在区间 上的图象,回答:
(1)在哪一点处函数 有极大值和极小值?
(2)函数 在 上有最大值和最小值吗?如果有,
最大值和最小值分别是什么?
探究二:利用导数求函数的最值
求函数 在区间 内的最大值和最小值