2019-2020年高考数学二轮复习专题02函数与导数教学案文

合集下载

2019-2020年高考数学复习导数及应用教案

2019-2020年高考数学复习导数及应用教案

2019-2020年高考数学复习导数及应用教案•知识结构内容提炼、思想方法归纳:导数及其应用这部分内容,在近几年的高考中已成为一个热点,试题比重在逐年增加,题型从选择题、填空题到解答题均有涉及.选择题、填空题主要考查本章的基本公式和基本方法的应用,如求函数的导数,切线的斜率,函数的单调区间、极值、最值;解答题一般为导数的应用,主要考查利用导数判断函数的单调性,在应用题中用导数求函数的最大值和最小值学习导数的概念要结合其实际背景以帮助理解,要熟记常用的导数公式,掌握函数四则运算的求导法则和复合函数的求导法则,会求简单初等函数的导数化归转化思想与分类讨论思想是本章内容的重要数学思想,把不熟悉的转化为熟悉的,把不规范的转化为规范的甚至模式化的问题,将是复习本章内容的基本思维模式用函数和方程的思想指导本章的学习.在导数应用的许多问题中都蕴含着函数和方程关系,用函数和方程的思想加以指导,禾U于问题的解决•正确理解函数极值的概念.确定函数的极值应从几何直观入手,理解可导函数在其定义域上的单调性与函数极值的相互关系,掌握利用导数判断函数极值的基本方法.准确、深刻地理解函数最值的概念,揭示函数最值与极值的联系与区别.(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念;(2)闭区间上的连续函数一定有最值,开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值则可能不止一个,也可能没有极值;⑷如果函数不在闭区间[a,b]上可导,则确定函数的最值时,不仅要比较该函数各导数为零的点与端点处的值,还要比较函数在定义域内不可导的点处的值;(5)在解决实际应用问题中,如果函数在区间内只有一个极值点,那么要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值进行比较。

2019-2020年高考数学二轮复习 专题2 函数与导数 第1讲 函数的图象与性质 理

2019-2020年高考数学二轮复习 专题2 函数与导数 第1讲 函数的图象与性质 理

2019-2020年高考数学二轮复习专题2 函数与导数第1讲函数的图象与性质理函数的定义域、值域及解析式1.(xx江西卷)函数y=ln(1-x)的定义域为( B )(A)(0,1) (B)[0,1) (C)(0,1] (D)[0,1]解析:由题意知解得0≤x<1.故选B.2.设函数f(x)=则满足f(x)≤2的x的取值范围是( D )(A)[-1,2] (B)[0,2](C)[1,+∞) (D)[0,+∞)解析:当x≤1时,由21-x≤2,知x≥0,即0≤x≤1.当x>1时,由1-log2x≤2,知x≥,即x>1,所以满足f(x)≤2的x的取值范围是[0,+∞).3.(xx吉安一模)若幂函数f(x)的图象经过点(3,),则函数g(x)=+f(x)在[,3]上的值域为( A )(A)[2,] (B)[2,](C)(0,] (D)[0,+∞)解析:设f(x)=xα,因为f(x)的图象过点(3,),所以3α=,解得α=-.所以f(x)=.所以函数g(x)=+f(x)=+=+,当x∈[,3]时,在x=1时,g(x)取得最小值g(1)=2,在x=3时,g(x)取得最大值g(3)=+=,所以函数g(x)在x∈[,3]上的值域是[2,].故选A.函数的图象及其应用4.(xx安徽“江淮十校”十一月联考)函数y=f(x)=的大致图象是( B )解析:由函数解析式可得f(x) 为偶函数,且当|x|≤1时,x2+y2=1(y≥0),因为y≥0,所以图象取x轴上方部分;当x>1时,f(x)=,其图象在第一象限单调递减,所以选B.5.(xx广西柳州市、北海市、钦州市模拟)若f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(-1,1]内g(x)=f(x)-mx-m有两个零点,则实数m的取值范围为( D )(A)[0,) (B)[,+∞)(C)[0,) (D)(0,]解析:当x∈(-1,0)时,x+1∈(0,1),由题意可得,f(x)=-1=-1,所以f(x)=因为g(x)=f(x)-mx-m有两个零点,所以y=f(x)与y=mx+m的图象有两个交点,两函数图象如图,结合图象可知,0<m≤时,两函数图象有两个交点.6.(xx山西三模)函数f(x)=若方程f(x)=mx-恰有四个不相等的实数根,则实数m的取值范围是.解析:方程f(x)=mx-恰有四个不相等的实数根可化为函数f(x)=与函数y=mx-的图象有四个不同的交点,作函数f(x)=与函数y=mx-的图象如下,由题意,C(0,-),B(1,0),故k BC=.当x>1时,f(x)=ln x,f′(x)=,设切点A的坐标为(x1,ln x1),则=,解得x1=,故k AC=,结合图象可得,实数m的取值范围是(,).答案:(,)函数的性质及其应用7.(xx北京卷)下列函数中为偶函数的是( B )(A)y=x2sin x (B)y=x2cos x(C)y=|ln x| (D)y=2-x解析:A选项,记f(x)=x2sin x,定义域为R,f(-x)=(-x)2sin(-x)=-x2sin x=-f(x),故f(x)为奇函数;B选项,记f(x)=x2cos x,定义域为R,f(-x)=(-x)2cos(-x)=x2cos x=f(x),故f(x)为偶函数;C选项,函数y=|ln x|的定义域为(0,+∞),不关于原点对称,故为非奇非偶函数;D选项,记f(x)=2-x,定义域为R,f(-x)=2-(-x)=2x=,故f(x)为非奇非偶函数.故选B.8.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)= .解析:由题意f(-1)=2×(-1)2+1=3,又f(x)为奇函数,所以f(1)=-f(-1)=-3.答案:-39.(xx湖南卷)若f(x)=ln(e3x+1)+ax是偶函数,则a= .解析:由偶函数的定义可得f(-x)=f(x),即ln(e-3x+1)-ax=ln(e3x+1)+ax,所以2ax=-ln e3x=-3x,所以a=-.答案:-10.已知函数f(x)在R上满足=0(λ≠0),且对任意的实数x1≠x2(x1>0,x2>0)时,有>0成立,如果实数t满足f(ln t)-f(1)≤f(1)-f(ln ),那么t的取值范围是.解析:根据已知条件及偶函数、增函数的定义可知f(x)是偶函数,且在(0,+∞)上是增函数, 所以由f(ln t)-f(1)≤f(1)-f(ln )得f(ln t)≤f(1),所以|ln t|≤1,-1≤ln t≤1,所以≤t≤e,所以t的取值范围为[,e].答案:[,e]11.(xx广西河池模拟)设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=()1-x,则下列命题:①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x-3.其中正确命题的序号是.解析:由已知条件得f(x+2)=f(x),则f(x)是以2为周期的周期函数,所以①正确.当-1≤x≤0时,0≤-x≤1,f(x)=f(-x)=()1+x,函数y=f(x)的图象如图所示,由图象知②正确,③不正确.当3<x<4时,-1<x-4<0,f(x)=f(x-4)=()x-3,因此④正确.答案:①②④12.(xx郑州模拟)已知函数f(x)在实数集R上具有下列性质:①直线x=1是函数f(x)图象的一条对称轴;②f(x+2)=-f(x);③当1≤x1<x2≤3时,[f(x2)-f(x1)]·(x2-x1)<0,则f(xx),f(xx),f(xx)从大到小的顺序为.解析:由f(x+2)=-f(x)得f(x+4)=f(x),所以f(x)的周期是4,所以f(xx)=f(3),f(xx)=f(0),f(xx)=f(1).因为直线x=1是函数f(x)图象的一条对称轴,所以f(xx)=f(0)=f(2).由1≤x1<x2≤3时,[f(x2)-f(x1)]·(x2-x1)<0,可知当1≤x≤3时,函数单调递减,所以f(xx)>f(xx)>f(xx).答案:f(xx)>f(xx)>f(xx)一、选择题1.(xx湖南卷)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( A )(A)f(x)= (B)f(x)=x2+1(C)f(x)=x3(D)f(x)=2-x解析:因为y=x2在(-∞,0)上是单调递减的,故y=在(-∞,0)上是单调递增的,又y=为偶函数,故A正确;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.故选A.2.(xx临沂模拟)函数y=f(x)=ln ()的图象大致是( A )解析:因为函数y=ln (),所以x+sin x≠0,所以x≠0,故函数的定义域为{x|x≠0}.再根据y=f(x)的解析式可得f(-x)=ln ()=ln ()=f(x),故函数f(x)为偶函数,故函数的图象关于y轴对称,排除B,D.当x∈(0,1)时,因为0<sin x<x<1,所以0<<1,所以函数y=ln ()<0,故排除C,只有A满足条件,故选A.3.(xx开封二模)已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=30.3·f(30.3),b=(logπ3)·f(logπ3),c=(log3)·f(log3),则 a,b,c的大小关系是( B )(A)a>b>c (B)c>a>b(C)c>b>a (D)a>c>b解析:因为当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,即[xf(x)]′<0,所以g(x)=xf(x)在(-∞,0)上是减函数.又因为函数y=f(x-1)的图象关于点(1,0)对称,所以函数y=f(x)的图象关于点(0,0)对称,所以函数y=f(x)是定义在R上的奇函数,所以g(x)=xf(x)是定义在R上的偶函数,所以g(x)=xf(x)在(0,+∞)上是增函数.又因为30.3>1>logπ3>0>log3=-2,2=-log3>30.3>1>logπ3>0,所以(-log3)f(-log3)>30.3·f(30.3)>(logπ3)·f(logπ3),即(log3)f(log3)>30.3·f(30.3)>(log π3)·f(logπ3),即c>a>b.故选B.4.(xx武汉市2月调研)若函数f(x)=在[2,+∞)上有意义,则实数a的取值范围为( C )(A){1} (B)(1,+∞)(C)[1,+∞) (D)[0,+∞)解析:由函数f(x)在[2,+∞)上有意义,得ax-2≥0在[2,+∞)上恒成立,则解得a≥1,故选C.5.(xx鹰潭二模)已知函数f(x)=+xxsin x在x∈[-t,t]上的最大值为M,最小值为N,则M+N 的值为( B )(A)0 (B)4032 (C)4030 (D)4034解析:记g(x)=,则g(x)==xx+,记p(x)=,则p(-x)==.因为函数y=xxsin x是奇函数,它在[-t,t]上的最大值与最小值互为相反数,所以最大值与最小值的和为0.又因为y=xx x+1是[-t,t]上的增函数,所以M+N=xx++xx+=4032,故选B.6.(xx西安模拟)已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)=若f(2-x2)>f(x),则x的取值范围是( C )(A)(-∞,-2)∪(1,+∞) (B)(-∞,1)∪(2,+∞)(C)(-2,1) (D)(1,2)解析:因为g(x)是定义在R上的奇函数,且当x<0时,g(x)=-ln(1-x),所以当x>0时,-x<0,g(-x)=-ln(1+x),即当x>0时,g(x)=ln(1+x),因为函数f(x)=所以函数f(x)=可判断f(x)=在(-∞,+∞)上单调递增,因为f(2-x2)>f(x),所以2-x2>x,解得-2<x<1,故选C.7.已知定义在R上的函数f(x)满足:f(x)=且f(x+2)=f(x),g(x)=,则方程f(x)=g(x)在区间[-5,1]上的所有实根之和为( C )(A)-5 (B)-6 (C)-7 (D)-8解析:由题意知g(x)===2+,函数f(x)的周期为2,则函数f(x),g(x)在区间[-5,1]上的图象如图所示.由图形可知函数f(x),g(x)在区间[-5,1]上的交点为A,B,C,易知点B的横坐标为-3,若设C 的横坐标为t(0<t<1),则点A的横坐标为-4-t,所以方程f(x)=g(x)在区间[-5,1]上的所有实数根之和为-3+(-4-t)+t=-7.8.设f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”.若函数f(x)=ln(e x+t)为“倍缩函数”,则t的范围是( D ) (A)(,+∞) (B)(0,1)(C)(0,] (D)(0,)解析:因为函数f(x)=ln(e x+t)为“倍缩函数”,所以存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],因为函数f(x)=ln(e x+t)为增函数,所以即即方程e x-+t=0有两个不等的正根,即解得t的范围是(0,).9.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( C )(A)(1,10) (B)(5,6)(C)(10,12) (D)(20,24)解析:因为f(x)=因此可以画出其图象.设f(a)=f(b)=f(c)=k.则由图象可知y=k与y=f(x)有三个互不相等的实根时,k∈(0,1), 即f(a)=|lg a|=-lg a=lg=k,即a=.f(b)=lg b=k,即b=10k.所以ab=×10k=1.f(c)=-+6=k,所以c=12-2k.又因为k∈(0,1),所以c∈(10,12),所以abc∈(10,12),故选C.10.(xx开封模拟)将边长为2的等边△PAB沿x轴正方向滚动,某时刻P与坐标原点重合(如图),设顶点P(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2];②f(x)是周期函数;③f(-1.9)<f(π)<f(xx).其中正确的说法个数为( C )(A)0 (B)1 (C)2 (D)3解析:根据题意画出顶点P(x,y)的轨迹,如图所示.轨迹是一段一段的圆弧组成的图形.从图形中可以看出,①f(x)的值域为[0,2],正确;②f(x)是周期函数,周期为6,②正确;③由于f(-1.9)=f(4.1),f(xx)=f(3);而f(3)<f(π)<f(4.1),所以f(-1.9)>f(π)>f(xx);故③不正确;11.(xx山东潍坊市一模)对于实数m,n定义运算“⊕”:m⊕n=设f(x)=(2x-1)⊕(x-1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是( A ) (A)(-,0) (B)(-,0)(C)(0,) (D)(0,)解析:由2x-1≤x-1,得x≤0,此时f(x)=(2x-1)⊕(x-1)=-(2x-1)2+2(2x-1)(x-1)-1=-2x, 由2x-1>x-1,得x>0,此时f(x)=(2x-1)⊕(x-1)=(x-1)2-(2x-1)(x-1)=-x2+x,所以f(x)=(2x-1)⊕(x-1)=作出函数的图象可得,要使方程f(x)=a(a∈R)恰有三个互不相等的实数根x1,x2,x3,不妨设x1<x2<x3,则0<x2<<x3<1,且x2和x3关于x=对称,所以x2+x3=2×=1,则x2+x3≥2,等号取不到,所以0<x2x3<.当-2x=时,解得x=-,所以-<x1<0,因为0<x2x3<,所以-<x1·x2·x3<0,即x1·x2·x3的取值范围是(-,0),故选A.二、填空题12.(xx安徽卷)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为.解析:函数y=|x-a|-1的大致图象如图所示,所以若直线y=2a与函数y=|x-a|-1的图象只有一个交点,只需2a=-1,可得a=-.答案:-13.(xx江苏卷)已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为.解析:由|f(x)+g(x)|=1可得f(x)+g(x)=±1,即g(x)=-f(x)±1,则原问题等价于函数y=g(x)与y=-f(x)+1或y=g(x)与y=-f(x)-1的图象的交点个数问题,在同一坐标系中作出y=g(x),y=-f(x)+1及y=-f(x)-1的图象,如图,由图可知,函数y=g(x)的图象与函数y=-f(x)+1的图象有2个交点,与函数y=-f(x)-1的图象有2个交点,则方程|f(x)+g(x)|=1实根的个数为4.答案:414.(xx四川宜宾市二诊)如果y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.给出下列命题:①函数y=sin x具有“P(a)性质”;②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(xx)=1;③若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y=f(x)在(-2,-1)上单调递减,在(1,2)上单调递增;④若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,则函数y=f(x)是周期函数.其中正确的是(写出所有正确命题的编号).解析:①因为sin (x+π)=-sin x=sin (-x),所以函数y=sin x具有“P(a)性质”,所以①正确;②因为奇函数y=f(x)具有“P(2)性质”,所以f(x+2)=f(-x)=-f(x),所以f(x+4)=f(x),周期为4,因为f(1)=1,所以f(xx)=f(3)=-f(1)=-1,所以②不正确;③因为函数y=f(x)具有“P(4)性质”,所以f(x+4)=f(-x),所以f(x)的图象关于x=2对称,即f(2-x)=f(2+x),因为图象关于点(1,0)成中心对称,所以f(2-x)=-f(x),即f(2+x)=-f(-x),所以得出f(x)=f(-x),f(x)为偶函数,因为图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,所以图象也关于点(-1,0)成中心对称,且在(-2,-1)上单调递减, 根据偶函数的对称性得出在(1,2)上单调递增,故③正确;④因为具有“P(0)性质”和“P(3)性质”,所以f(x)=f(-x),f(x+3)=f(-x)=f(x),所以f(x)为偶函数,且周期为3,故④正确.答案:①③④。

2019-2020年高考数学第二轮专题复习教案函数的性质及其应用人教版

2019-2020年高考数学第二轮专题复习教案函数的性质及其应用人教版

2019-2020年高考数学第二轮专题复习教案函数的性质及其应用人教版考情动态分析函数是高中数学中的重要内容,函数的观点和方法贯穿整个高中数学的全过程,函数也是一条纽带,它把中学数学各个分支紧紧地连在一起,特别是新教材中的导数的涉入,使函数的内容更加充实、方法更加灵活,自然就成为高考的重点和热点.近几年高考试题中函数部分占有相当大的比重,所考查的内容主要有函数的定义域、值域、奇偶性、单调性、周期性、反函数以及函数图象的变换等.其中多项式函数(含二次函数)、指数函数、对数函数仍是重点考核的内容.高考主要涉及:①直接通过具体函数考查某些性质;②以导数为工具围绕函数、不等式、方程综合考查;③函数与解析几何、数列等内容结合在一起,以曲线方程的变换、参数范围的探求及最值问题等综合性强的新颖试题.如xx年高考试题中的3、5、7、9题,xx年高考试题(江苏卷)中的8、11、22题,xx年高考试题(江苏卷)中的2、13、15、17、22题.二轮复习时要注意引导学生用函数的思想和方法去看待问题、解决问题,并揭示其内在联系.纵观近几年来的高考试题,以基础层次或中档难度的试题考查函数的图象,特别是图象的平移、对称变换,充分体现了图象在解题中的作用(数形结合的思想).以中等难度、组合形式一题多角度考查函数的性质预计成为新的热点或方向.函数极易与不等式、方程、最值、参数的取值范围的探求及数形结合、解析几何综合在一起编拟综合性较强的高档解答题来测试对函数思想方法的理解与灵活运用,考查等价转化及数形结合、分类讨论等解题策略的理解和掌握程度.§1.1 函数的性质考点核心整合函数的性质主要体现在五个方面:1.能使函数式有意义的实数x的集合称为函数的定义域.确定函数定义域时,常从以下几个方面考虑:(1)分式的分母不等于0;(2)偶次根式被开方数大于等于0;(3)对数式的真数大于零,底数大于0且不等于1;(4)指数为0时,底数不等于0.定义域经常和判定函数的奇偶性、求函数单调区间、求参数范围或解函数相关不等式相关联,在函数有意义的条件下转化求解.2.函数的值域在函数y= f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域.确定函数的值域的原则:(1)当函数y = f(x)用表格给出时,函数的值域是指表格中实数y的集合;(2)当函数y = f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y 的集合;(3)当函数y = f (x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; (4)当函数由实际问题给出时,函数的值域由实际问题的实际意义确定.值域的求法比较多,注意选择不同条件的适用性.如:判别式法、三角代换法、反函数法、不等式法、单调性法、图象法、数形结合法、导数法.值域往往与实际问题中的最优值或数列问题相关联. 3.函数的奇偶性如果对于函数y = f (x )定义域内的任意一个x ,都有f (-x ) = – f (x )[ f (-x ) = f (x )] ,那么函数f (x )就叫做奇函数(偶函数).在此定义中,只有当函数定义域在数轴上所表示的区间关于原点对称,这个函数才可能具有奇偶性,然后再作判断. 4.函数的单调性函数的单调性是函数的又一个重要性质.给定区间D 上的函数f (x ),若对于任意x 1、x 2∈D ,当x 1<x 2时,都有f (x 1)<f (x 2) [f (x 1)>f (x 2)],则称在区间D 上为单调函数.反映在图象上,若函数f (x )是区间D 上的增(减)函数,则图象在D 上的部分从左向右是上升(下降)的.或如果函数f(x)在给定区间(a ,b )上恒有f '(x )>0[f '(x )<0],则称f (x )在区间(a ,b )上是增(减)函数,(a ,b )为f (x )的单调增(减)区间. 5.函数的周期性设函数y = f (x ),x ∈D ,如果存在非零常数T ,使得任何x ∈D ,都有f (x + T ) = f (x ),则函数f (x )为周期函数,T 为y = f (x )的一个周期.周期性往往和单调性、奇偶性、函数的图象及其解析式相关联出现.注意从代数变换角度分析. 考题名师诠释【例1】设函数f (x ) = - x1 + |x |(x ∈R ),区间M = [a ,b ](a <b ),集合N = {y |y = f (x ),x ∈M },则使M = N 成立的实数对(a ,b )A .0个B .1个C .2个D 解析 由f (-x ) = -f (x ),可得f (x ) = - x1 + |x |是奇函数,故f (x )的图象关于原点成中心对称.当x >0时,f (x ) = -x1 + x,据此可以作出f (x )在x ∈R 上的图象(如图所示).观察f (x )的图象可知,f (x )在R 上是减函数,要使M = [a ,b ](a <b )与N = {y |y = f (x ),x ∈M }相等,必须a <0,b >0(由图可知a 、b 同号显然不能满足题意).故有⎩⎨⎧ f (a ) = b ,f (b ) = a .即⎩⎨⎧ - a 1 - a = b , - b 1 - b = a .,解得a = b = 0,与题设a <b 矛盾,从而不存在满足题意的实数对(a ,b ),应选A .答案 A评述 本题为存在性问题,它融函数的定义域、值域、奇偶性、单调性及函数图象于一炉,颇有新意,解题时要善于从函数表达式中捕捉函数的性质,通过考察函数图象的特征来处理问题,这就需要我们有较强的数形转化能力.【例2】已知函数f (x ) = 13x 3 + 12ax 2+ 2bx + c 在(0,1)内取得极大值,在(1,2)内取得极小值,求b - 2a - 1的取值范围. 解 f '(x ) = x 2+ ax + 2b .依题意,方程x 2+ ax + 2b = 0的一个根大于0且小于1,另一个根大于1且小于2.于是⎪⎪⎩⎪⎪⎨⎧>'<'>'0)2(0)1(0)0(f f f ,即⎪⎪⎩⎪⎪⎨⎧<++>++>012020b a b a b不等式组表示的平面区域如右图所示,其中A (-2,1),B (-1,0),D (1,2). 设C (a ,b )为可行域(阴影部分)内任一点,而b - 2a - 1的几何意义为直线CD 的斜率. 由图可知k BD >k CD >k AD ,故 14<b - 2a - 1<1.评述 通过对函数f (x )求导,将f (x )在(0,1)内取得极大值、在(1,2)内取得极小值的问题转化为研究二次方程f '(x ) = x 2+ ax + 2b = 0根的分布问题,利用二元一次不等式组的几何背景,联系斜率公式,运用数形结合的数学思想求得取值范围. 深化拓展若此题条件不变,结论改为:求a 2+ b 2的取值范围. 答案:1<a 2+ b 2<5【例3】设偶函数f (x )在区间[a ,b ]上是增函数(b >a >0),试判断F (x ) = (12)f (x ) – x在区间[-b ,-a ]上的单调性,并加以证明.解 ∵f (x )是偶函数,且在[a ,b ]上单调递增.∴f (x )在[-b ,-a ]上单调递减,f (x ) - x 在[-b ,-a ]上单调递减. 故F (x ) = (12)f (x ) - x在[-b ,-a ]上单调递增.证明:设-b ≤x 1<x 2≤-a ,a ≤-x 2<-x 1≤b ,∴F (x 1)F (x 2) = (12)f (x 1) - x 1(12)f (x 2) - x 2 = (12)f (x 1) – f (x 2) + (x 2 – x 1) = (12)f (–x 1) – f (–x 2) + (x 2 – x 1). ∵f (x )在上[a ,b ]单调递增,f (–x 1)>f (–x 2),∴f (–x 1) – f (–x 2) + (x 2 – x 1)>0.∴0<(12)f (–x 1) – f (–x 2) + (x 2 – x 1)<1.∴F (x 1)F (x 2)<1.故F (x 1)<F (x 2).∴F (x )为[-b ,-a ]上的增函数. 评述 本题是采用定义法证明函数的单调性,也是最通用的方法,此外还有利用基本函数性质递推、导数法等方法.【例4】(xx 年上海模拟)已知集合M D 上满足下列性质的函数的全体:对于定义在D 中的任何两个自变量x 1、x 2(x 1≠x 2),都有|f (x 1) – f (x 2)|<|x 1 – x 2|成立. (1)当D = R 时,f (x ) = x cos+ sin[∈(0,π)]是否属于M D ,为什么? (2)当D = R +时,试证明函数f (x ) = ax(0<a <1)不属于M D .(3)是否存在一个集合D R +时,使得函数f (x ) = a x(0<a <1)属于M D ?给出你的结论,并说明理由.(1)解 设任意x 1、x 2∈R (x 1≠x 2),|f (x 1) – f (x 2)| = |( x 1 – x 2)cos| = |cos|| x 1 – x 2|,∵∈(0,π),∴|cos|∈[0,1). 又∵| x 1 – x 2|>0,∴|f (x 1) – f (x 2)|<| x 1 – x 2|成立. 故f (x ) = x cos+ sin ,∈(0,π)属于M D .(2)证明 当D = R +时,f (x ) = a x(0<a <1)不属于M D . 举例:令x 1 = a n,x 2 =a n + 1(n ∈N *),此时| x 1 – x 2| = |a n – a n + 1| = an (n + 1)<a . 而|f (x 1) – f (x 2)| = |n – (n + 1)| = 1>a ,则|f (x 1) – f (x 2)|>| x 1 – x 2|. ∴f (x ) = ax(0<a <1)不属于M D .(3)解 存在一个集合D R +,使f (x ) = a x(0<a <1)属于M D .设x 1、x 2∈R +,且x 1≠x 2. 若|f (x 1) – f (x 2)| = |a x 1 – a x 2|=a | x 1 – x 2|x 1x 2<| x 1 – x 2|成立,∵| x 1 – x 2|>0,∴只需x 1x 2>a 成立.故存在D = (a ,+∞)时,任取x 1、x 2∈(a ,+∞)都有|f (x 1) – f (x 2)|<| x 1 – x 2|成立. ∴存在一个集合D R +,使f (x ) = a x(0<a <1)属于M D . (注:D 的存在是不唯一的,对于的非空子集均正确) 考能提升训练 一、选择题1.(xx 年全国卷Ⅰ,理7)设b >0,二次函数y = ax 2+ bx + a 2– 1的图象为下列之一,则a 的值为……………………… ( ) A .1B .-1C .-1-52D .-1+52(1) (2) (3) (4)2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>0,f (2) = (a + 1)(2a – 3),则a 的取值范围是…………………………………………………… ( ) A .a <32B .a <32且a ≠-1C .a >32或a <-1D .-1<a <323.(xx 年黄冈模拟)设函数f (x ) = log a x (a >0且a ≠1),若f (x 1x 2…x xx ) = 8,则f (x 12) + f (x 22)+ … + f (x xx 2)的值等于………………………………… ( ) A .4B .8C .16D .2log a 84.函数在y = a x 在[0,1]上的最大值与最小值之和为3,则a 等于………………( ) A .12B .2C .4D .145.(xx 年全国卷Ⅰ,8)设0<a <1,函数f (x ) = log a (a 2x– 2a x– 2),则使f (x )<0的x的取值范围是 A .(-∞,0) B .(0,+∞) C .(-∞,log a 3) D .(log a 3,+∞)二、填空题6.(xx 年北京海淀模拟)函数y = x 2的图象F 按向量a = (3,-2)平移得到F',则F' 的解析式为 .7.已知f (x )是R 上的奇函数,且f (12 - x ) = f (12 + x ),则f (1) + f (2) + f (3) = .三、解答题8.已知函数y = 12log a (a 2x )·log a (ax )(2≤x ≤4)的最大值是0,最小值是- 18,求a 的值.9.已知f (x )是定义在[-1,1]上的奇函数,当a 、b ∈[-1,1],且a + b ≠0时,有f (a ) + f (b )a + b>0.(1)判断函数f (x )的单调性,并给以证明;(2)若f (1) = 1,且f (x )≤m 2– 2bm + 1对所有x ∈[-1,1],b ∈[-1,1],恒成立,求实数m 的取值范围.10.(xx 年山东卷,19)已知x = 1是函数f (x ) = mx 3– 3(m + 1)x 2+ nx + 1的一个极值点,其中m 、n ∈R ,m <0.(1)求m 与n 的关系表达式; (2)求f (x )的单调区间;(3)当x ∈[-1,1]时,函数y = f (x )的图象上任意一点的斜率恒大于3m ,求m 的取值范围.简明参考答案一、1.B 2.D 3.C 4.B 5.C 二、6.y = x 2– 6x + 7 7.0三、8.129.(1)增函数,证明略;(2)m ∈(-∞,-2]∪{0}∪[2,+∞). 10.(1)n = 3m + 6;(2)f (x )在(-∞,1 + 2m ),(1,+∞)上单调递减,在(1 + 2m,1)上单调递增;(3)-43<m <0.。

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文

高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。

2019高考数学二轮练习精品教学案专项02函数与导数(教师版)

2019高考数学二轮练习精品教学案专项02函数与导数(教师版)

2019高考数学二轮练习精品教学案专项02函数与导数(教师版)【2018考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y x x =====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型〔指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型〕的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四那么运算法那么,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值〔多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值〔多项式函数一般不超过三次);会用导数解决某些实际问题。

【知识络构建】【重点知识整合】【一】函数、基本初等函数的图象与性质1、函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性、特别注意定义域含0的奇函数f(0)=0;(3)周期性:f(x+T)=f(x)(T≠0),那么称f(x)为周期函数,T是它的一个周期、2、对称性与周期性的关系(1)假设函数f(x)的图象有两条对称轴x=a,x=b(a≠b),那么函数f(x)是周期函数,2|b-a|是它的一个正周期,特别地假设偶函数f(x)的图象关于直线x=a(a≠0)对称,那么函数f(x)是周期函数,2|a|是它的一个正周期;3、函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换、4、指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y=a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况、【二】函数与方程、函数的应用1、函数的零点方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标、所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点、2、二分法用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c;第三步:计算f(c):(1)假设f(c)=0,那么c就是函数的零点;(2)假设f(a)·f(c)<0,那么令b=c(此时零点x0∈(a,c));(3)假设f(c)·f(b)<0,那么令a=c(此时零点x0∈(c,b));(4)判断是否达到精确度ε:即假设|a-b|<ε,那么得到零点近似值a(或b);否那么重复(2)~(4)、3、函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域、其解题步骤是:(1)阅读理解,审清题意:分析出什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答、【三】导数在研究函数性质中的应用及定积分1、导数的几何意义4、闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者、5、定积分与曲边形面积(1)曲边为y =f (x )的曲边梯形的面积:在区间[a ,b ]上的连续的曲线y =f (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛a b |f x |d x .当f (x )≥0时,S =⎠⎛a b f (x )d x ;当f(x)<0时,S =-⎠⎛a b f (x )d x . (2)曲边为y =f (x ),y =g (x )的曲边形的面积:在区间[a ,b ]上连续的曲线y =f (x ),y =g (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛a b|f (x )-g (x )|d x .当f (x )≥g (x )时,S =⎠⎛a b [f (x )-g (x )]d x ;当f (x )<g (x )时,S =⎠⎛ab[g (x )-f (x )]d x . 【高频考点突破】考点【一】函数及其表示函数的三要素:定义域、值域、对应关系.两个函数当且仅当它们的三要素完全相同时才表示同一个函数,定义域和对应关系相同的两个函数是同一函数、1、求函数定义域的类型和相应方法(1)假设函数的解析式,那么这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可、(2)对于复合函数求定义域问题,假设f (x )的定义域[a ,b ],其复合函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出、(3)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义、2、求f (g (x ))类型的函数值应遵循先内后外的原那么;而对于分段函数的求值、图像、解不等式等问题,必须依据条件准确地找出利用哪一段求解;特别地对具有周期性的函数求值要用好其周期性.例1、函数f (x )=11-x +lg(1+x )的定义域是 ( )A 、(-∞,-1)B 、(1,+∞)C 、(-1,1)∪(1,+∞)D 、(-∞,+∞)【变式探究】设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧ g x +x +4,x <g x ,g x -x ,x ≥g x .那么f (x )的值域是 ( )A 、[-94,0]∪(1,+∞)B 、[0,+∞)C 、[-94,+∞)D 、[-94,0]∪(2,+∞)解析:令x <g (x ),即x 2-x -2>0,解得x <-1或x >2.令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2.故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2x <-1或x >2,x 2-x -2-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f (12)≤f (x )≤f (-1),即-94≤f (x )≤0.故函数f (x )的值域是[-94,0]∪(2,+∞)、答案:D考点【二】函数的图像作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换、 例2、函数y =x 2-2sin x 的图像大致是 ( )【变式探究】函数y =x ln(-x )与y =x ln x 的图像关于 ( )A 、直线y =x 对称B 、x 轴对称C 、y 轴对称D 、原点对称考点【三】函数的性质1、单调性是函数的一个局部性质,一个函数在不同的区间上可以有不同的单调性、判两个增(减)函数的和函数仍为增(减)函数等、2、函数的奇偶性反映了函数图像的对称性,是函数的整体特性、利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径、例3、对于函数f (x )=asinx +bx +c (其中,a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是 ()A 、4和6B 、3和1C 、2和4D 、1和2考点四二次函数的图像与性质:(1)二次函数y =ax 2+bx +c (a ≠0)的图像是抛物线①过定点(0,c );②对称轴为x =-b 2a ,顶点坐标为(-b 2a ,4ac -b 24a )、(2)当a >0时,图像开口向上,在(-∞,-b 2a ]上单调递减,在[-b2a ,+∞)上单调递增,有最小值4ac -b 24a ;当a <0时,图像开口向下,在(-∞,-b 2a ]上单调递增,[-b2a ,+∞)上单调递减,有最大值4ac -b 24a .例4、函数f (x )=x 2+2ax +2,x ∈[-5,5]、(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数、解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5],∴x =1时,f (x )取得最小值1;x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图像的对称轴为直线x =-a ,∵y =f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5.故a 的取值范围是(-∞,-5]∪[5,+∞)、【变式探究】设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),那么f (x 1+x 2)= ()A 、-b 2aB 、-b aC 、c D.4ac -b 24a【方法技巧】求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指的是对称轴.考点五指数函数、对数函数及幂函数指数函数与对数函数的性质:1、对于两个数都为指数或对数的大小比较:如果底数相同,直接应用指数函数或对数函数的单调性比较;如果底数与指数(或真数)皆不同,那么要增加一个变量进行过渡比较,或利用换底公式统一底数进行比较、2、对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时,首先要考虑定义域,其次再利用性质求解.例5、函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有 ()A 、10个B 、9个C 、8个D 、1个解析:画出两个函数图像可看出交点有10个、答案:A考点六函数的零点1、函数的零点与方程根的关系:函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图像与函数y =g (x )的图像交点的横坐标、2、零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根、例6、函数f (x )=x -cos x 在[0,+∞)内 ()A 、没有零点B 、有且仅有一个零点C 、有且仅有两个零点D 、有无穷多个零点【变式探究】在以下区间中,函数f (x )=e x +4x -3的零点所在的区间为 ()A 、(-14,0)B 、(0,14)C 、(14,12)D 、(12,34)解析:因为f (14)=e 14+4×14-3=e 14-2<0,f (12)=e 12+4×12-3=e 12-1>0,所以f (x )=e x+4x -3的零点所在的区间为(14,12)、 答案:C【方法技巧】函数零点(即方程的根)的确定问题,常见的有①数值的确定;②所在区间的确定;③个数的确定、解决这类问题的常用方法有解方程、根据区间端点函数值的符号数形结合,尤其是那些方程两边对应的函数类型不同的方程多以数形结合求解.考点七函数的应用例7、如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R )、E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量、当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少、①当0<c ≤103时,y 是关于v 的减函数、故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v 的增函数,故当v =c 时,y min =50c .【变式探究】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成,该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时、(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数;(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少、法二:由(1)y =150⎝ ⎛⎭⎪⎫x +1 600x (0<x ≤50)令f (x )=x +1 600x (0<x ≤50),f ′(x )=1-1 600x 2,那么x ∈(0,40)时,f ′(x )<0,f (x )单调递减,那么x ∈(40,50)时,f ′(x )>0,f (x )单调递增;∴x =40时,f (x )取最小值80,y min =12000.故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少、【方法技巧】应用函数知识解应用题的步骤(1)正确地将实际问题转化为函数模型,这是解应用题的关键,转化来源于对条件的综合分析、归纳与抽象,并与熟知的函数模型相比较,以确定函数模型的种类、(2)用相关的函数知识,进行合理设计,确定最正确解题方案,进行数学上的计算求解、(3)把计算获得的结果带回到实际问题中去解释实际问题,即对实际问题进行总结作答、 考点八利用导数求切线导数的几何意义:(1)函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0)、(2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0)、(3)导数的物理意义:s ′(t )=v (t ),v ′(t )=a (t )、例8、曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是()A 、-9B 、-3C 、9D 、15【方法技巧】求曲线y =f (x )的切线方程的类型及方法(1)切点P (x 0,y 0),求切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程;(2)切线的斜率k ,求切线方程:设切点P (x 0,y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)切线上一点(非切点),求切线方程:设切点P (x 0,y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率、列方程(组)解得x 0,再由点斜式或两点式写出方程.考点九、利用导数研究函数的单调性函数的单调性与导数的关系:在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减、例9、设a >0,讨论函数f (x )=ln x +a (1-a )x 2-2(1-a )x 的单调性、解:由题知a >0,x >0,f ′(x )=2a 1-a x 2-21-a x +1x, 令g (x )=2a (1-a )x 2-2(1-a )x +1,(1)当a =1时,g (x )=1>0,f ′(x )>0, 故f (x )在(0,+∞)上单调递增;(2)当0<a <1时,g (x )的图像为开口方向向上的抛物线,Δ=[-2(1-a )]2-8a (1-a )=4(1-a )(1-3a )假设13≤a <1,Δ≤0,g (x )≥0,f ′(x )≥0,仅当a =13,x =32时取等号, ∴f (x )在(0,+∞)上单调递增;综上,当0<a <13时,f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减; 当13≤a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减、其中x1=1-a -1-a 1-3a 2a 1-a ,x 2=1-a +1-a 1-3a2a 1-a . 考点10、利用函数单调性求极值1.假设在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)为函数f (x )的极大值;假设在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)为函数f (x )的极小值、2、设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,那么f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得、例10、设f (x )=-13x 3+12x 2+2ax .(1)假设f (x )在(23,+∞)上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值、解:(1)由f ′(x )=-x 2+x +2a =-(x -12)2+14+2a ,当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a ; 令29+2a >0,得a >-19.所以,当a >-19时,f (x )在(23,+∞)上存在单调递增区间、【方法技巧】1、利用导数研究函数的极值的一般步骤 (1)确定定义域、 (2)求导数f ′(x )、(3)①假设求极值,那么先求方程f ′(x )=0的根,再检验f ′(x )在方程根左、右值的符号,求出极值、(当根中有参数时要注意分类讨论根是否在定义域内)②假设极值大小或存在情况,那么转化为方程f ′(x )=0根的大小或存在情况,从 而求解、2、求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 【难点探究】难点一函数的性质的应用例1、设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,那么f (1)=() A 、-3B 、-1 C 、1D 、3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,那么f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________、【点评】函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的实际通过变换函数的解析式或者的函数关系,推证函数的性质,根据函数的性质解决问题、此题第(2)小题中,实际上就是用条件给出了这个函数,解决问题的基本思路有两条:一条是把这个函数在整个定义域上的解析式求出,然后再求解具体的函数值;一条是推证函数的性质,把求解的函数值转化到函数解析式的区间上的函数值、此题根据对任意t ∈R 都有f (t )=f (1-t )还可以推证函数y =f (x )的图象关于直线x =12对称,函数又是奇函数,其图象关于坐标原点对称,这样就可以画出这个函数在⎣⎢⎡⎦⎥⎤-12,32上的图象,再根据周期性可以把这个函数的图象拓展到整个定义域上,进而通过函数的图象解决求指定的函数值,研究这个函数的零点等问题,在复习中要注意这种函数图象的拓展、【变式探究】设偶函数f (x )对任意x ∈R ,都有f (x +3)=-1f x ,且当x ∈[-3,-2]时,f (x )=4x ,那么f (107.5)=()A 、10B.110C 、-10D 、-110 【答案】B【解析】根据f (x +3)=-1f x ,可得f (x +6)=-1fx +3=-1-1fx=f (x ),所以函数y =f (x )的一个周期为6.所以f (107.5)=f (108-0.5)=f (-0.5)=f (0.5)=f (-2.5+3)=-1f-2.5=110.难点二函数的图象的分析判断例2、函数f (x )=ax m (1-x )n在区间[0,1]上的图象如图2-1所示,那么m ,n 的值可能是()图2-1A 、m =1,n =1B 、m =1,n =2C 、m =2,n =1D 、m =3,n =1 【答案】B【点评】函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力、利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。

高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

高考数学二轮复习第一篇专题二函数与导数第2讲导数的简单应用教案文

第2讲导数的简单应用1.(2018·全国Ⅰ卷,文6)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( D )(A)y=-2x (B)y=-x (C)y=2x (D)y=x解析:法一因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f'(x)=3x2+1,f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二因为f(x)=x3+(a-1)x2+ax为奇函数,所以f'(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f'(x)=3x2+1,所以f'(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.2.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:因为f(x)=2x2-e|x|,x∈[-2,2]是偶函数,又f(2)=8-e2∈(0,1),故排除A,B.设g(x)=2x2-e x,则g'(x)=4x-e x.又g'(0)<0,g'(2)>0,所以g(x)在(0,2)内至少存在一个极值点,所以g(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C.故选D.3.(2018·全国Ⅱ卷,文13)曲线y=2ln x在点(1,0)处的切线方程为.解析:因为y'=,y'x=1=2,所以切线方程为y-0=2(x-1),即y=2x-2.答案:y=2x-24.(2017·全国Ⅰ卷,文14)曲线y=x2+在点(1,2)处的切线方程为.解析:f(x)=x2+,f(1)=2.f'(x)=2x-,f'(1)=1.所以y=x2+在(1,2)处的切线方程为y-f(1)=f'(1)(x-1),y-2=x-1,即x-y+1=0.答案:x-y+1=05.(2015·全国Ⅱ卷,文16)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .解析:法一因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1.又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0,由得ax2+ax+2=0,因为Δ=a2-8a=0,所以a=8.法二因为y'=1+,所以y'|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),所以y=2x-1,又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0.因为y'=2ax+(a+2),所以令2ax+a+2=2,得x=-,代入y=2x-1,得y=-2,所以点-,-2在y=ax2+(a+2)x+1的图象上,故-2=a×-2+(a+2)×-+1,所以a=8.答案:86.(2017·全国Ⅲ卷,文21)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.(1)解:f(x)的定义域为(0,+∞),f'(x)=+2ax+2a+1=.若a≥0,因为x∈(0,+∞)时,f'(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,因为x∈0,-时,f'(x)>0,当x∈-,+∞时,f'(x)<0,故f(x)在0,-上单调递增,在-,+∞上单调递减.(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f-=ln--1-, 所以f(x)≤--2等价于ln--1-≤--2,即ln-++1≤0,设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0,所以当x>0时,g(x)≤0,从而当a<0时,ln-++1≤0,即f(x)≤--2.7.(2015·全国Ⅱ卷,文21)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解:(1)f(x)的定义域为(0,+∞),f'(x)=-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈0,时,f'(x)>0;当x∈,+∞时,f'(x)<0.所以f(x)在0,上单调递增,在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln +a1-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).1.考查角度(1)考查导数的几何意义的应用,包括求曲线的切线方程、根据切线方程求参数值等;(2)考查导数在研究函数性质中的应用,包括利用导数研究函数性质判断函数图象、利用导数求函数的极值和最值、利用导数研究不等式与方程等.2.题型及难易度选择题、填空题、解答题均有,其中导数几何意义的应用为中等难度偏下,其他问题均属于较难的试题.(对应学生用书第11~13页)导数的几何意义【例1】(1)(2018·山东日照校际联考)已知f(x)=e x(e为自然对数的底数),g(x)=ln x+2,直线l是f(x)与 g(x) 的公切线,则直线l的方程为( )(A)y=x或y=x-1(B)y=-ex或y=-x-1(C)y=ex或y=x+1(D)y=-x或y=-x+1(2)(2018·河南南阳一中三模)经过原点(0,0)作函数f(x)=x3+3x2图象的切线,则切线方程为;(3)(2018·黑龙江省哈尔滨九中二模)设函数f(x)=(x-a)2+(ln x2-2a)2.其中x>0,a∈R,存在x0使得f(x0)≤成立,则实数a的值为.解析:(1)设切点分别为(x1,),(x2,ln x2+2),因为f'(x)=e x,g'(x)=,所以==,所以=,所以(x2-1)(ln x2+1)=0,所以x2=1或x2=,因此直线l的方程为y-2=1·(x-1)或y-1=e·x-,即y=ex或y=x+1.故选C.(2)因为f'(x)=3x2+6x.设切点为P(x0,y0),切线斜率为k,则把①,③代入②得切线方程为y-(+3)=(3+6x0)(x-x0),④又切线过(0,0),所以-(+3)=-x0(3+6x0),解得,x0=0或x0=-.代入④式得切线方程为y=0或9x+4y=0.(3)由题意,问题等价于f(x)min≤.而函数f(x)可看作是动点M(x,ln x2)与N(a,2a)之间距离的平方,动点M在函数y=2ln x的图象上,N在直线y=2x的图象上,问题转化为直线与曲线的最小距离.如图,由y=2ln x得y'==2,得x=1,所以曲线上点M(1,0)到直线y=2x的距离最小,为d=,所以f(x)≥.又由题意,要使f(x0)≤,则f(x0)=,此时N恰好为垂足,由k MN===-,解得a=.答案:(1)C (2)y=0或9x+4y=0 (3)(1)求切线方程的关键是求切点的横坐标,使用切点的横坐标表达切线方程,再根据其他已知求解;(2)两曲线的公切线的切点未必是同一个点,可以分别设出切点横坐标,使用其表达切线方程,得出的两方程表示同一条直线,由此得出方程解决公切线问题;(3)从曲线外一点P(m,n)引曲线的切线方程,可设切点坐标为(x0,f(x0)),利用方程=f'(x0)求得x0后得出切线方程;(4)一些距离类最值,可以转化为求一条直线上的点到一条曲线上的点的最小值,此时与已知直线平行的曲线的切线到已知直线的距离即为其最小值.热点训练1:(1)(2018·辽宁省辽南协作校一模)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )(A)y=-2x+3 (B)y=x(C)y=3x-2 (D)y=2x-1(2)(2018·安徽皖南八校4月联考)若x,a,b均为任意实数,且(a+2)2+(b-3)2=1,则(x-a)2+(ln x-b)2的最小值为( )(A)3(B)18(C)3-1 (D)19-6(3)(2018·天津部分区质量调查二)曲线y=ae x+2的切线方程为2x-y+6=0,则实数a的值为.解析:(1)由f(x)=2f(2-x)-x2+8x-8,可得f(2-x)=2f(x)-(2-x)2+8-8x,即f(2-x)=2f(x)-x2-4x+4,将其代入f(x)=2f(2-x)-x2+8x-8,可得f(x)=4f(x)+8-8x-2x2-x2+8x-8,即f(x)=x2,故f'(x)=2x,因为f(1)=1,所以切线方程为y-1=2(x-1),即y=2x-1.故选D.(2)由题意可得,其结果应为曲线y=ln x上的点与以C(-2,3)为圆心,以1为半径的圆上的点的距离的平方的最小值,可以求曲线y=ln x上的点与圆心C(-2,3)的距离的最小值,在曲线y=ln x上取一点M(m,ln m),曲线y=ln x在点M处的切线的斜率为k'=,从而有k CM·k'=-1,即·=-1,整理得ln m+m2+2m-3=0,解得m=1,所以点(1,0)满足条件,其到圆心C(-2,3)的距离为d==3,故其结果为(3-1)2=19-6,故选D.(3)根据题意,设曲线y=ae x+2与2x-y+6=0的切点的坐标为(m,ae m+2),其导数y'=ae x+2,则切线的斜率k=ae m+2,又由切线方程为2x-y+6=0,即y=2x+6,则k=ae m+2=2,则切线的方程为y-ae m+2=ae m+2(x-m),又由ae m+2=2,则切线方程为y-2=2(x-m),即y=2x-2m+2,则有-2m+2=6,可解得m=-2,则切点的坐标为(-2,2),则有2=a×e(-2)+2,所以a=2.答案:(1)D (2)D (3)2导数研究函数的单调性考向1 确定函数的单调性【例2】(2018·河南洛阳第三次统一考试)已知函数f(x)=(x-1)e x-x2,其中t∈R.(1)函数f(x)的图象能否与x轴相切?若能,求出实数t,若不能,请说明理由;(2)讨论函数f(x)的单调性.解:(1)由于f'(x)=xe x-tx=x(e x-t).假设函数f(x)的图象与x轴相切于点(x0,0),则有即显然x0≠0,将t=>0代入方程(x0-1)-=0中,得-2x0+2=0.显然此方程无实数解.故无论t取何值,函数f(x)的图象都不能与x轴相切.(2)由于f'(x)=xe x-tx=x(e x-t),当t≤0时,e x-t>0,当x>0时,f'(x)>0,f(x)单调递增,当x<0时,f'(x)<0,f(x)单调递减;当t>0时,由f'(x)=0得x=0或x=ln t,①当0<t<1时,ln t<0,当x>0时,f'(x)>0,f(x)单调递增,当ln t<x<0时,f'(x)<0,f(x)单调递减,当x<ln t,f'(x)>0,f(x)单调递增;②当t=1时,f'(x)≥0,f(x)单调递增;③当t>1时,ln t>0,当x>ln t时,f'(x)>0,f(x)单调递增,当0<x<ln t时,f'(x)<0,f(x)单调递减,当x<0时,f'(x)>0,f(x)单调递增.综上,当t≤0时,f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;当0<t<1时,f(x)在(-∞,ln t),(0,+∞)上是增函数,在(ln t,0)上是减函数;当t=1时,f(x)在(-∞,+∞)上是增函数;当t>1时,f(x)在(-∞,0),(ln t,+∞)上是增函数,在(0,ln t)上是减函数.确定函数单调性就是确定函数导数为正值、为负值的区间,基本类型有如下几种:(1)导数的零点是确定的数值,只要根据导数的零点划分定义域区间,确定在各个区间上的符号即可得出其单调区间;(2)导数零点能够求出,但含有字母参数时,则需要根据参数的不同取值划分定义域区间,再确定导数在各个区间上的符号;(3)导数存在零点,但该零点无法具体求出,此时一般是根据导数的性质、函数零点的存在定理确定导数零点的大致位置,再据此零点划分定义域区间,确定导数在各个区间上的符号.考向2 根据单调性求参数范围【例3】(1)(2018·吉林大学附中四模)已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是( )(A)0,(B),(C),+∞(D)0,(2)(2018·云南昆明5月适应考)已知函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是( )(A)-e (B)e (C)-(D)4e2(3)(2018·安徽合肥三模)若函数f(x)=x+-aln x在区间[1,2]上是非单调函数,则实数a 的取值范围是( )(A),(B),+∞(C),+∞(D),解析:(1)因为f(x)=(x2-2ax)e x,所以f'(x)=(2x-2a)e x+(x2-2ax)e x=e x(x2+2x-2ax-2a).因为f(x)在[-1,1]上是单调减函数,所以f'(x)=e x(x2+2x-2ax-2a)≤0.即x2+2x-2ax-2a≤0.法一设g(x)=x2+2x-2ax-2a,根据二次函数的图象可知,只要即可,解得a≥,所以实数a的取值范围是,+∞.故选C.法二由x2+2x-2ax-2a≤0,得x2+2x≤2a(x+1).当x=-1时,-1≤0恒成立,当(-1,1]时,a≥,a≥,a≥(x+1)-,令h(x)=(x+1)-,可知h(x)=(x+1)-在(-1,1]上为增函数,所以h(x)max=h(1)=,即a≥,所以实数a的取值范围是,+∞.故选C.(2)因为函数f(x)=(x2-2x)e x-aln x(a∈R),所以f'(x)=e x(x2-2x)+e x(2x-2)-=e x(x2-2)-.因为函数f(x)=(x2-2x)e x-aln x(a∈R)在区间(0,+∞)上单调递增,所以f'(x)=e x(x2-2)-≥0在区间(0,+∞)上恒成立,即≤e x(x2-2),亦即a≤e x(x3-2x)在区间(0,+∞)上恒成立,令h(x)=e x(x3-2x),所以h'(x)=e x(x3-2x)+e x(3x2-2)=e x(x3-2x+3x2-2)=e x(x-1)(x2+4x+2), 因为x∈(0,+∞),所以x2+4x+2>0.因为e x>0.所以令h'(x)>0,可得x>1.所以函数h(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h(x)min=h(1)=e1(1-2)=-e.所以a≤-e,则a的最大值为-e.故选A.(3)因为f(x)=x+-aln x,所以f'(x)=1--=,因为f(x)在区间[1,2]上是非单调函数,所以f'(x)=0在[1,2]上有解,即x2-ax-a=0在[1,2]上有解,所以x2=a(x+1)在[1,2]上有解,令g(x)=x2,x∈[1,2],h(x)=a(x+1),x∈[1,2],由图象易知,两函数图象在[1,2]上有交点时,≤a≤,即≤a≤.故选D.函数f(x)在区间D上单调递增(减),等价于在区间D上f'(x)≥0(≤0)恒成立;函数f(x)在区间D上不单调,等价于在区间D上f'(x)存在变号零点.考向3 函数单调性的简单应用【例4】(1)(2018·东北三省三校二模)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f(x)+1,则下列正确的是( )(A)f(2 018)-ef(2 017)>e-1(B)f(2 018)-ef(2 017)<e-1(C)f(2 018)-ef(2 017)>e+1(D)f(2 018)-ef(2 017)<e+1(2)(2018·辽宁省大连八中模拟)设函数f(x)在R上存在导函数f'(x),对任意的实数x都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f'(x)+<4x.若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是( )(A)-,+∞ (B)-,+∞(C)[-1,+∞) (D)[-2,+∞)(3)(2018·湖南永州市一模)已知定义在R上的可导函数f(x)的导函数为f'(x),若对于任意实数x有f'(x)+f(x)>0,且f(0)=1,则不等式e x f(x)>1的解集为( )(A)(-∞,0)(B)(0,+∞)(C)(-∞,e)(D)(e,+∞)解析:(1)法一设g(x)=,则g'(x)=.因为f'(x)>f(x)+1,所以f'(x)-f(x)-1>0,所以g'(x)>0在R上恒成立,所以g(x)=在R上单调递增.所以g(2 018)>g(2 017),所以>,所以f(2 018)+1>ef(2 017)+e,所以f(2 018)-ef(2 017)>e-1.故选A.法二构造特殊函数f(x)=e x-2,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-2)-e(e2 017-2)=2e-2,结合2e-2>e-1可知f(2 018)-ef(2 017)>e-1,排除B选项,结合2e-2<e+1可知f(2 018)-ef(2 017)<e+1,排除C选项,构造特殊函数f(x)=e x-100,该函数满足f'(x)>f(x)+1,而f(2 018)-ef(2 017)=(e2 018-100)-e(e2 017-100)=100e-100,结合100e-100>e+1可知f(2 018)-ef(2 017)>e+1,排除D选项,故选A.(2)令F(x)=f(x)-2x2,则F(-x)=f(-x)-2x2,所以F(x)+F(-x)=f(x)-[4x2-f(-x)]=0,故F(x)为奇函数.当x<0时,F'(x)=f'(x)-4x<-<0,所以F(x)在(-∞,0)上是减函数,而f(0)=0-f(-0),所以f(0)=0.故F(x)为减函数.因为f(m+1)=F(m+1)+2(m+1)2,f(-m)=F(-m)+2m2,所以F(m+1)+2(m+1)2≤F(-m)+2m2+4m+2,所以F(m+1)≤F(-m),所以m+1≥-m,所以m≥-.故选A.(3)令g(x)=e x f(x),故g'(x)=e x[f(x)+f'(x)],由f'(x)+f(x)>0可得,g'(x)>0,所以函数g(x)在R上单调递增,又f(0)=1,所以g(0)=1,所以不等式e x f(x)>1的解集为(0,+∞).故选B.函数单调性的简单应用主要有两个方面:(1)根据函数的单调性,比较函数值的大小;(2)根据函数的单调性解函数不等式.解题的基本思路是根据已知条件和求解目标,构造函数,通过构造的函数的单调性得出结论.常见的构造函数类型为乘积型h(x)g(x)和商形,具体的如xf(x),e x f(x),,tan x·f(x)等,视具体情况而定.热点训练2:(1)(2018·安徽江南十校二模)y=f(x)的导函数满足:当x≠2时,(x-2)[f(x)+2f'(x)-xf'(x)]>0,则( )(A)f(4)>(2+4)f()>2f(3)(B)f(4)>2f(3)>(2+4)f()(C)(2+4)f()>2f(3)>f(4)(D)2f(3)>f(4)>(2+4)f()(2)(2018·河北石家庄二模)定义在(0,+∞)上的函数f(x)满足xf'(x)ln x+f(x)>0(其中f'(x)为f(x)的导函数),若a>1>b>0,则下列各式成立的是( )(A)a f(a)>b f(b)>1 (B)a f(a)<b f(b)<1(C)a f(a)<1<b f(b)(D)a f(a)>1>b f(b)(3)(2018·黑龙江哈师大附中三模)若函数f(x)=2x+sin x·cos x+acos x在(-∞,+∞)上单调递增,则a的取值范围是( )(A)[-1,1] (B)[-1,3](C)[-3,3] (D)[-3,-1](4)(2018·天津河北区二模)已知函数f(x)=x2-ax+(a-1)ln x,其中a>2.①讨论函数f(x)的单调性;②若对于任意的x1,x2∈(0,+∞),x1≠x2,恒有>-1,求a的取值范围.(1)解析:令g(x)=,则g'(x)=,因为当x≠2时,(x-2)[f(x)-(x-2)f'(x)]>0,所以当x>2时,g'(x)<0,即函数g(x)在(2,+∞)上单调递减,则g()>g(3)>g(4),即>>,即2(+2)f()>2f(3)>f(4).故选C.(2)解析:构造函数g(x)=x f(x),x∈(0,+∞),两边取自然对数得ln g(x)=f(x)ln x,求导得g'(x)=f'(x)ln x+,得g'(x)=[xf'(x)ln x+f(x)].因为x>0,所以x f(x)>0,即g(x)>0,所以g'(x)>0.即g(x)在(0,+∞)上单调递增.又因为a>1>b>0,所以g(a)>g(1)>g(b),所以a f(a)>1>b f(b).故选D.(3)解析:因为f(x)=2x+sin x·cos x+acos x,所以f'(x)=2+cos 2x-asin x=-2sin2x-asin x+3,设sin x=t,-1≤t≤1,令g(t)=-2t2-at+3,因为f(x)在(-∞,+∞)上递增,所以g(t)≥0在[-1,1]上恒成立,因为二次函数图象开口向下,所以⇒-1≤a≤1,a的取值范围是[-1,1].故选A.(4)解:①由题意得函数f(x)的定义域为(0,+∞),因为f(x)=x2-ax+(a-1)ln x,所以f'(x)=x-a+=,令f'(x)=0,得x=1或x=a-1,因为a>2,所以a-1>1.由f'(x)>0,解得0<x<1或x>a-1,由f'(x)<0,解得1<x<a-1.所以函数f(x)的单调递增区间为(0,1),(a-1,+∞),单调递减区间为(1,a-1).②设x1>x2,则不等式>-1等价于f(x1)-f(x2)>x2-x1.即f(x1)+x1>f(x2)+x2,令g(x)=f(x)+x=x2-(a-1)x+(a-1)ln x,则函数g(x)在x∈(0,+∞)上为增函数.所以g'(x)=x-(a-1)+≥0在(0,+∞)上恒成立,而x+≥2,当且仅当x=,即x=时等号成立.所以2≥a-1,因为a>2,所以4(a-1)≥(a-1)2,即a2-6a+5≤0,所以1≤a≤5,而a>2,所以2<a≤5.所以实数a的取值范围是(2,5].导数研究函数的极值、最值考向1 导数研究函数极值【例5】(1)(2018·河南中原名校质检二)已知函数f(x)=2f'(1)ln x-x,则f(x)的极大值为( )(A)2 (B)2ln 2-2 (C)e (D)2-e(2)(2018·黑龙江哈三中一模)设函数f(x)=ln x+ax2+bx,若x=1是函数f(x)的极大值点,则实数a的取值范围是( )(A)-∞,(B)(-∞,1)(C)[1,+∞)(D),+∞(3)(2018·河南高三最后一模)若函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为( )(A)(-e2,-e) (B)-∞,-(C)-∞,- (D)(-∞,-e)解析:(1)f(x)=2f'(1)ln x-x,则f'(x)=2f'(1)-1,令x=1得f'(1)=2f'(1)-1,所以f'(1)=1,则f(x)=2ln x-x,f'(x)=-1=,所以函数在(0,2)上单调递增,在(2,+∞)上单调递减,则f(x)的极大值为f(2)=2ln 2-2,故选B.(2)f'(x)=+2ax+b=(x>0),因为x=1是函数f(x)的极大值点,所以f'(1)=0即b=-(2a+1),所以f'(x)==,当a≤0时,因为2ax-1<0,所以若0<x<1,则f'(x)>0,若x>1时,则f'(x)<0,所以x=1是函数f(x)的极大值点,符合题意; 当a>0时,若x=1是函数f(x)的极大值点,则需1<,即0<a<,综上a<.故选A.(3)因为f(x)=e x-aln x+2ax-1,所以f'(x)=e x-+2a,令e x-+2a=0,得a=,再令g(x)=(x>0),因为函数f(x)=e x-aln x+2ax-1在(0,+∞)上恰有两个极值点,所以g(x)=a有两个零点,又g'(x)=-(x>0),令g'(x)>0,得0<x<1,且x≠;令g'(x)<0,得x>1,所以函数g(x)在0,,,1上单调递增,在(1,+∞)上单调递减,由于g(1)=-e,因为y=g(x)与y=a有两个交点,根据数形结合法可得,a<-e,即a∈(-∞,-e).故选D.(1)可导函数的极值点是其导数的变号零点,在零点处“左负右正”的为极小值点、“左正右负”的为极大值点;(2)根据极值点的个数确定参数范围的问题可以转化为其导数零点个数的问题讨论.考向2 导数研究函数最值【例6】(1)(2018·陕西榆林四模)设实数m>0,若对任意的x≥e,不等式x2ln x-m≥0恒成立,则m的最大值是( )(A)(B)(C)2e (D)e(2)(2018·河北武邑中学质检二)已知函数f(x)=ax-cos x+b的图象在点,f处的切线方程为y=x+.①求a,b的值;②求函数f(x)在-,上的最大值.(1)解析:不等式x2ln x-m≥0⇔x2ln x≥m⇔xln x≥⇔ln xe ln x≥,设f(x)=xe x(x>0),则f'(x)=(x+1)e x>0,所以f(x)在(0,+∞)上是增函数,因为>0,ln x>0,所以≤ln x,即m≤xln x对任意的x≥e恒成立,此时只需m≤(xln x)min,设g(x)=xln x(x≥e),g'(x)=ln x+1>0(x≥e),所以g(x)在[e,+∞)上为增函数,所以g(x)min=g(e)=e,所以m≤e,m的最大值为e.故选D.(2)解:①因为f(x)=ax-cos x+b,所以f'(x)=a+sin x.又f'=a+1=,f=a+b=×+,解得a=,b=3.②由①知f(x)=x-cos x+.因为f'(x)=+sin x,由f'(x)=+sin x>0,得-<x≤,由f'(x)=+sin x<0得,-≤x<-,所以函数f(x)在-,-上单调递减,在-,上单调递增.因为f-=,f=π,所以f(x)max=f=π.(1)闭区间[a,b]上图象连续的函数其最值在极值和端点值的比较中找到;(2)在区间D上如果f(x)有唯一的极大(小)值点,该点也是函数的最大(小)值点.热点训练3:(1)(2018·福建南平5月质检)若函数g(x)=mx+在区间(0,2π)上有一个极大值和一个极小值,则实数m的取值范围是( )(A)(-e-2π,) (B)(-e-π,e-2π)(C)(-eπ,) (D)(-e-3π,eπ)(2)(2018·黔东南州一模)若函数f(x)=xln x-a有两个零点,则实数a的取值范围为( )(A)-,1(B),1(C)-,0(D)-,+∞(3)(2018·河北唐山三模)已知a>0,f(x)=,若f(x)的最小值为-1,则a等于( )(A)(B)(C)e (D)e2解析:(1)函数g(x)=mx+,求导得g'(x)=m+.令f(x)=m+,f'(x)=.易知,在0,上,f'(x)<0,f(x)单调递减;在,上,f'(x)>0,f(x)单调递增;在,2π上,f'(x)<0,f(x)单调递减.且f(0)=m+1,f=m-,f=m+,f(2π)=m+e-2π.有f<f(2π),f(0)>f.根据题意可得解得-e-2π<m<.故选A.(2)函数定义域为(0,+∞),由f(x)=xln x-a=0得xln x=a,令g(x)=xln x,则g'(x)=ln x+1,由g'(x)>0得x>,由g'(x)<0得,0<x<,所以函数g(x)在0,上单调递减,在,+∞上单调递增,所以当x=时,g(x)取得极小值即最小值,g=-,又当x→0时,g(x)→0,作出g(x)的图象如图,所以要使f(x)=xln x-a有两个零点,即方程xln x=a有两个不同的根,即函数g(x)和y=a有两个交点,所以-<a<0,选C.(3)由f(x)=,得f'(x)==,令g(x)=e x+ax+a,则g'(x)=e x+a>0,则g(x)在(-∞,+∞)上为增函数,又g(-1)=>0,所以存在x0<-1,使g(x0)=0,即f'(x0)=0,所以+ax0+a=0,①函数f(x)在(-∞,x0)上为减函数,在(x0,+∞)上为增函数,则f(x)的最小值为f(x0)==-1,即x0=--a,②联立①②可得x0=-2,把x0=-2代入①,可得a=.故选A.【例1】(1)(2018·河南高三最后一模)已知函数f(x)=4x2的图象在点(x0,4)处的切线为l,若l也与函数g(x)=ln x(0<x<1)的图象相切,则x0必满足( )(A)<x0<(B)0<x0<(C)<x0<1 (D)1<x0<(2)(2018·广西三市第二次调研)若曲线C1:y=x2与曲线C2:y=(a>0)存在公共切线,则a的取值范围为( )(A)(0,1) (B)1,(C),2(D),+∞(3)(2018·重庆綦江区5月调研)设函数f(x)=|e x-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围为( )(A)-,(B),1(C)-3,-(D)(-3,1)解析:(1)由于f'(x)=8x,f'(x0)=8x0,所以直线l的方程为y=8x0(x-x0)+4=8x0x-4.因为l也与函数g(x)=ln x(0<x<1)的图象相切,令切点为(m,ln m),g'(x)=,所以l的方程为y=x+ln m-1,因此有又因为0<m<1,所以1-4<0,x0>,4=1+ln x0+ln 8,令h(x)=4x2-ln x-ln 8-1x>,h'(x)=8x-=>0,所以h(x)=4x2-ln x-ln 8-1是,+∞上的增函数. 因为h=1-ln 4<0,h(1)=3(1-ln 2)>0,所以x0∈,1.故选C.(2)C1在点(x1,y1)处的切线为y-=2x1(x-x1),即y=2x1x-,①C2在点(x2,y2)处的切线为y=x+(1-x2),②设①②是同一条切线,则④÷③,得=1-x2,所以x1=2(x2-1),代入③得a=,因为a>0,所以x2>1,以下求函数u(x2)=的值域:u'(x2)==, 令u'(x2)=0得x2=2,在x2∈(1,2)内,u'(x2)<0,u(x2)单调递减, 在x2∈(2,+∞)内,u'(x2)>0,u(x2)单调递增,所以u(x2)min=u(2)=,当x2→+∞时,u(x2)→+∞,所以u(x2)的值域为,+∞,所以a≥.故选D.(3)f(x)=|e x-e2a|=f'(x)=若存在x1<x2,使得f'(x1)f'(x2)=-1,则必有-1<x1<2a<x2<3-a,由-1<2a<3-a得-<a<1,由-1<x1<2a<x2<3-a得2a-1<x1+x2<a+3,由f'(x1)f'(x2)=-1得x1+x2=0,所以2a-1<0<a+3,得-3<a<,综上可得-<a<.故选A.【例2】(1)(2018·江西重点中学协作体二联)已知定义在[e,+∞)上的函数f(x)满足f(x)+xln xf'(x)<0且f(2 018)=0,其中f'(x)是函数f(x)的导函数,e是自然对数的底数,则不等式f(x)>0的解集为( )(A)[e,2 018) (B)[2 018,+∞)(C)(e,+∞)(D)[e,e+1)(2)(2018·江西六校联考)已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f'(x)<2f(x),则f(1)∶f(2)的取值范围为( )(A)(e,2e) (B),(C)(e,e3) (D),(3)(2018·陕西咸阳二模)已知定义在R上的函数 f(x) 的导函数为f'(x),且f(x)+f'(x)>1,设a=f(2)-1,b=e[f(3)-1],则a,b的大小关系为( )(A)a<b (B)a>b(C)a=b (D)无法确定解析:(1)设g(x)=ln x·f(x),当x∈[e,+∞)时,g'(x)=+ln xf'(x)=<0,所以g(x)在[e,+∞)上是减函数,又g(2 018)=ln 2 018f(2 018)=0,所以g(x)>0的解集为[e,2 018),又此时ln x≥1,所以f(x)>0,即f(x)>0的解集为[e,2 018).故选A.(2)令g(x)=,h(x)=,则g'(x)=>0,h'(x)=<0,所以g(1)<g(2),h(1)>h(2),所以<,>,所以<<.选D.(3)令g(x)=e x f(x)-e x,则g'(x)=e x[f(x)+f'(x)]-e x=e x[f(x)+f'(x)-1]>0.即g(x)在R上为增函数.所以g(3)>g(2),即e3f(3)-e3>e2f(2)-e2,整理得e[f(3)-1]>f(2)-1,即a<b.故选A.【例3】(2018·华大新高考联盟4月质检)设函数f(x)=x-,a∈R且a≠0,e为自然对数的底数.(1)求函数y=的单调区间;(2)若a=,当0<x1<x2时,不等式f(x1)-f(x2)>恒成立,求实数m的取值范围. 解:(1)y=1-,y'==-,->0⇔<0.①当a>0时,<0⇒<0⇒0<x<2;②当a<0时,<0⇒>0⇒x<0或x>2.综上,①当a>0时,函数y=的增区间为(0,2),减区间为(-∞,0),(2,+∞);②当a<0时,函数y=的增区间为(-∞,0),(2,+∞),减区间为(0,2).(2)当0<x1<x2时,f(x1)-f(x2)>⇔f(x1)-f(x2)>-⇔f(x1)->f(x2)-,即函数g(x)=f(x)-=x-·-在(0,+∞)上为减函数,g'(x)=1-+=≤0,em≤(x-1)e x-ex2,令h(x)=(x-1)e x-ex2,h'(x)=e x+(x-1)e x-2ex=xe x-2ex=x(e x-2e)=0⇒e x=2e⇒x=ln 2e.当x∈(0,ln 2e)时,h'(x)<0,h(x)为减函数;当x∈(ln 2e,+∞)时,h'(x)>0,h(x)为增函数.h(x)的最小值为h(ln 2e)=(ln 2e-1)·e ln 2e-eln22e=2eln 2-e(ln 2+1)2=-eln22-e.所以em≤-eln22-e⇒m≤-1-ln22,所以m的取值范围是(-∞,-1-ln22].【例4】(2018·陕西西工大附中六模)若存在两个正实数x,y,使得等式3x+a(2y-4ex)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )(A)(-∞,0)(B)0,(C),+∞(D)(-∞,0)∪,+∞解析:因为3x+a(2y-4ex)(ln y-ln x)=0,所以3x+a(2y-4ex)ln =0,所以3+2a-2e ln =0,令t=,则t>0,所以3+2a(t-2e)ln t=0,所以(t-2e)ln t=-,设g(t)=(t-2e)ln t,则g'(t)=ln t+1-,而[g'(t)]'=+.故g'(t)为增函数,因为g'(e)=0,所以当t=e时,g(t)min=g(e)=-e,所以-≥-e,即≤e.当a<0时,不等式成立;当a>0时,得a≥;当a=0时,由原等式易知不符合题意.所以a<0或a≥.故选D.(对应学生用书第13页)【典例】(2018·全国卷Ⅲ,文21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.评分细则:(1)解:f'(x)=,2分f'(0)=2.3分因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.5分(2)证明:当a≥1时,f(x)+e≥(x2+x-1+e x+1)e-x.6分令g(x)=x2+x-1+e x+1,7分则g'(x)=2x+1+e x+1.9分当x<-1时,g'(x)<0,g(x)单调递减;当x>-1时,g'(x)>0,g(x)单调递增.11分所以g(x)≥g(-1)=0.因此f(x)+e≥0.12分【答题启示】(1)导数解答题的基础是正确求出函数的导数,这是解题的起始,一定要细心处理,不要“输在起跑线上”.(2)导数证明不等式基本技巧是构造函数、利用函数的单调性、最值得出所证不等式.。

2019高考数学大二轮复习 专题2 函数与导数 第1讲 基础小题部分课件 理PPT

2019高考数学大二轮复习 专题2 函数与导数 第1讲 基础小题部分课件 理PPT

时y=(x-1)2的图象在y=logax的图象的下方,只需(2- 1)2≤loga2,即loga2≥1,解得1<a≤2,故实数a的取值范围 是(1,2].故选A.
答案:A
1.由函数解析式辨识图象 通过观察函数解析式的形式从而了解函数图象的特点,在识别上可以采用特殊的 原则,去寻找特殊点和特殊位置.
2.(函数值)(2018·高考全国卷Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1
-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=
()
A.-50
B.0
C.2
D.50
解析:∵f(x)是奇函数,∴f(-x)=-f(x),
∴f(1-x)=-f(x-1).由f(1-x)=f(1+x),
∴-f(x-1)=f(x+1),∴f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),
∴函数f(x)是周期为4的周期函数.
由f(x)为奇函数得f(0)=0.
又∵f(1-x)=f(1+x), ∴f(x)的图象关于直线x=1对称, ∴f(2)=f(0)=0,∴f(-2)=0. 又f(1)=2,∴f(-1)=-2, ∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0, ∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0= 2.故选C. 答案:C
2.函数图象变换的四种形式 (1)平移变换(上加下减,左加右减) y=f(x)的图象― 向―左―右――平―移―a―a>―0―个―单―位―长―度→y=f(x+a)(y=f(x-a))的图象,

2019高考数学二轮复习精品资料专题02 函数与导数教学案(学生版)精品文档19页

2019高考数学二轮复习精品资料专题02 函数与导数教学案(学生版)精品文档19页

2019高考数学二轮复习精品资料专题02 函数与导数教学案(学生版)【2019考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y xx=====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题。

【知识网络构建】【重点知识整合】一、函数、基本初等函数的图象与性质1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f(0)=0;(3)周期性:f(x+T)=f(x)(T≠0),则称f(x)为周期函数,T是它的一个周期.2.对称性与周期性的关系(1)若函数f(x)的图象有两条对称轴x=a,x=b(a≠b),则函数f(x)是周期函数,2|b -a|是它的一个正周期,特别地若偶函数f(x)的图象关于直线x=a(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;3.函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y=a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况.二、函数与方程、函数的应用1.函数的零点方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.二分法用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c;第三步:计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(3)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b));(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).3.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答.三、导数在研究函数性质中的应用及定积分4.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.5.定积分与曲边形面积(1)曲边为y =f (x )的曲边梯形的面积:在区间[a ,b ]上的连续的曲线y =f (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab|f x |d x .当f (x )≥0时,S =⎠⎛a b f (x )d x ;当f(x)<0时,S =-⎠⎛ab f (x )d x .(2)曲边为y =f (x ),y =g (x )的曲边形的面积:在区间[a ,b ]上连续的曲线y =f (x ),y =g (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )-g (x )|d x .当f (x )≥g (x )时,S =⎠⎛a b [f (x )-g (x )]d x ;当f (x )<g (x )时,S =⎠⎛ab [g (x )-f (x )]d x .【高频考点突破】 考点一、函数及其表示函数的三要素:定义域、值域、对应关系.两个函数当且仅当它们的三要素完全相同时才表示同一个函数,定义域和对应关系相同的两个函数是同一函数.1.求函数定义域的类型和相应方法(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可.(2)对于复合函数求定义域问题,若已知f (x )的定义域[a ,b ],其复合函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出.(3)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义. 2.求f (g (x ))类型的函数值应遵循先内后外的原则;而对于分段函数的求值、图像、解不等式等问题,必须依据条件准确地找出利用哪一段求解;特别地对具有周期性的函数求值要用好其周期性.考点二、函数的图像作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换.例2、函数y =x2-2sin x 的图像大致是 ( )【变式探究】函数y =x ln(-x )与y =x ln x 的图像关于 ( )A .直线y =x 对称B .x 轴对称C .y 轴对称D .原点对称考点三、函数的性质考点四 二次函数的图像与性质:(1)二次函数y =ax 2+bx +c (a ≠0)的图像是抛物线 ①过定点(0,c );②对称轴为x =-b 2a ,顶点坐标为(-b 2a ,4ac -b 24a).(2)当a >0时,图像开口向上,在(-∞,-b 2a ]上单调递减,在[-b2a ,+∞)上单调递增,有最小值4ac -b24a;当a <0时,图像开口向下,在(-∞,-b 2a ]上单调递增,[-b2a ,+∞)上单调递减,有最大值4ac -b24a.例 4、已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.【变式探究】设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-b aC .cD.4ac -b 24a【方法技巧】求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指的是对称轴.考点五 指数函数、对数函数及幂函数 指数函数与对数函数的性质:值域 (0,+∞) (-∞,+∞) 不变性恒过定点(0,1)恒过定点(1,0)1.对于两个数都为指数或对数的大小比较:如果底数相同, 直接应用指数函数或对数函数的单调性比较;如果底数与指数(或真数)皆不同,则要增加一个变量进行过渡比较,或利用换底公式统一底数进行比较.考点六 函数的零点1.函数的零点与方程根的关系:函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图像与函数y =g (x )的图像交点的横坐标.2.零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.例6、 函数f (x )=x -cos x 在[0,+∞)内 ( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点【方法技巧】函数零点(即方程的根)的确定问题,常见的有①数值的确定;②所在区间的确定;③个数的确定.解决这类问题的常用方法有解方程、根据区间端点函数值的符号数形结合,尤其是那些方程两边对应的函数类型不同的方程多以数形结合求解.考点七 函数的应用例7、如图,长方体物体 E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.【变式探究】某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).(3)导数的物理意义:s′(t)=v(t),v′(t)=a(t).例8、曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是 ( )A.-9 B.-3C.9 D.15【变式探究】已知直线y=x+a与曲线f(x)=ln x相切,则a的值为________.【方法技巧】求曲线y=f(x)的切线方程的类型及方法(1)已知切点P(x0,y0),求切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率.列方程(组)解得x0,再由点斜式或两点式写出方程.考点九、利用导数研究函数的单调性函数的单调性与导数的关系:在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.例9、设a >0,讨论函数f (x )=ln x +a (1-a )x 2-2(1-a )x 的单调性. 【方法技巧】1.利用导数研究函数的极值的一般步骤 (1)确定定义域. (2)求导数f ′(x ).(3)①若求极值,则先求方程f ′(x )=0的根,再检验f ′(x )在方程根左、右值的符号, 求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况,从 而求解.2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较, 其中最大的一个是最大值,最小的一个是最小值. 【难点探究】难点一 函数的性质的应用例1、设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.【变式探究】设偶函数f (x )对任意x ∈R,都有f (x +3)=-1f x,且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)=( )A .10 B.110 C .-10 D .-110难点二 函数的图象的分析判断例2、函数f (x )=ax m (1-x )n在区间[0,1]上的图象如图2-1所示,则m ,n 的值可能是( )图2-1A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1【点评】 函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。

2019高考数学二轮复习 基础回扣(二)函数与导数课件 理

2019高考数学二轮复习 基础回扣(二)函数与导数课件 理

[对点专练 13] 函数 f(x)=ax3-x2+x-5 在 R 上是增函数, 则 a 的取值范围是________.
[答案] a≥13
14.函数的极值 导数为零的点并不一定是极值点,例如:函数 f(x)=x3,有 f′(0)=0,但 x=0 不是极值点. [对点专练 14] 函数 f(x)=14x4-13x3 的极值点是________.
2a. [对点专练 8] 对于函数 f(x)定义域内任意的 x,都有 f(x+2)
=- 1 ,若当 fx
2<x<3
时,f(x)=x,则
f(2012.5)=________.
[答案] -25
9.一元二次方程实根分布 先观察二次项系数,Δ 与 0 的关系,对称轴与区间关系及有 穷区间端点函数值符号,再根据上述特征画出草图. 尤其注意若原题中没有指出是“二次”方程、函数或不等 式,要考虑到二次项系数可能为零的情形. [对点专练 9] 若关于 x 的方程 ax2-x+1=0 至少有一个正 根,则 a 的范围为________. [答案] -∞,14
2
(-∞,2).
在研究函数问题时,不论什么情况,首先要考虑函数的定义 域,这是研究函数的最基本原则.
[对点专练 2]
(1)若 f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则 a
的取值范围是( )
A.[1,2)
B.[1,2]
C.[1,+∞) D.[2,+∞)
(2)已知函数 f(x)=13ex,x≥2
还要对函数式化简整理,但必须注意使定义域不受影响.
[ 对 点 专 练 4]
f(x)

lg1-x2 |x-2|-2

________

2020版高考数学二轮复习第三部分教材知识重点再现回顾2函数与导数学案文

2020版高考数学二轮复习第三部分教材知识重点再现回顾2函数与导数学案文

回顾2 函数与导数[必记知识]函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇函数(都有f(-x)=f(x)=f(|x|)成立,则f(x)为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值:若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期.指数与对数式的运算公式a m·a n=a m+n;(a m)n=a mn;(ab)m=a mb m(a,b>0).log a(MN)=log a M+log a N;log a错误!=log a M-log a N;log a M n=n log a M;a log a N=N;log a N=错误!(a〉0且a≠1,b〉0且b≠1,M>0,N〉0).指数函数与对数函数的对比区分表解析y=a x(a>0且a≠1)y=log a x(a>0且a≠1)式图象定义域R(0,+∞)值域(0,+∞)R单调性0〈a<1时,在R上是减函数;a〉1时,在R上是增函数0〈a<1时,在(0,+∞)上是减函数;a〉1时,在(0,+∞)上是增函数方程的根与函数的零点(1)方程的根与函数零点的关系由函数零点的定义,可知函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(2)函数零点的存在性如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)〈0,那么函数f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的实数根.导数公式及运算法则(1)基本导数公式c′=0(c为常数);(x m)′=mx m-1(m∈Q);(sin x)′=cos x;(cos x)′=-sin x;(a x)′=a x ln a(a〉0且a≠1);(e x)′=e x;(log a x)′=错误!(a〉0且a≠1);(ln x)′=错误!.(2)导数的四则运算(u±v)′=u′±v′;(uv)′=u′v+uv′;错误!′=错误!(v≠0).导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在此区间上的极值与其端点值中的“最大值";函数f(x)在一闭区间上的最小值是此函数在此区间上的极值与其端点值中的“最小值”.[必会结论]函数单调性和奇偶性的重要结论(1)当f(x),g(x)同为增(减)函数时,f(x)+g(x)则为增(减)函数.(2)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性.(3)f(x)为奇函数⇔f(x)的图象关于原点对称;f(x)为偶函数⇔f(x)的图象关于y轴对称.(4)偶函数的和、差、积、商是偶函数,奇函数的和、差是奇函数,积、商是偶函数,奇函数与偶函数的积、商是奇函数.(5)定义在(-∞,+∞)上的奇函数的图象必过原点即有f(0)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学二轮复习专题02函数与导数教学案文一.考场传真1. 【xx 年普通高等学校招生全国统一考试(湖南卷)文科】已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A.4B.3C.2D.12. 【xx 年普通高等学校招生全国统一考试(安徽卷文科)】定义在上的函数满足.若当时., 则当时,=________________.3. 【xx 年普通高等学校招生全国统一考试(四川卷)文科】设函数(,为自然对数的底数).若存在使成立,则的取值范围是( )(A ) (B ) (C ) (D )4. 【xx 年全国高考统一考试天津数学(文)卷】设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足, 则( ) (A) (B) (C)(D)5.【xx年普通高等学校招生全国统一考试(湖南卷)文科】函数的图像与函数的图像的交点个数为()A.0B.1C.2D.36. 【xx年高考新课标Ⅱ数学(文)卷】若存在正数x使2x(x-a)<1成立,则a 的取值范围是()(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)7. 【xx年普通高等学校招生全国统一考试(广东卷)文科】若曲线在点处的切线平行于轴,则.8. 【xx年普通高等学校招生全国统一考试(安徽卷文科)】已知函数有两个极值点,若,则关于的方程的不同实根个数为(A)3 (B) 4(C) 5 (D) 6如图则有3个交点,故选A.二.高考研究【考纲要求】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数与对数函数()互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.7.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背最②理解导数的几何意义.(2)导数的运算①能根据导数定义求函数y=C(C为常数),y=x,y=,y=的导数。

②能利用下面给出的基本初等函效的导数公式和异数的四则运算法则求简单函数的导数. 常见基本初等函数的导数公式:(C)=0(C为常数); =n,nN.;=cosx; =-sinx;=;=ln a(a>0,且a1);=;=(a>0,且a1)(3):导数在研究函致中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。

(4)生活中的优化问题会利用导数解决某些实际问题【命题规律】函数是高中数学教学内容的知识主干,是高考考察数学思想、方法、能力和素质的主阵地,而且函数的观点及其思想方法贯穿于整个数学教学的全过程,导数是研究函数的有力工具,高考对函数的考察更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式等,体现出高考的综合热点.函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择、填空又有解答题,而且不同难易程度的题目都有,低档难度题一般只涉及函数本身内容,中、高档难度的题多为综合程度较高的题,或者与其他知识的结合,或者是多种思想方法的渗透,近年来高考强化了函数与其他知识(函数、方程、不等式、数列等)的渗透,加大了以函数为载体的多方法、多能力的综合程度,解决该类问题要注意函数与方程、转化与化归、分类讨论思想的应用.一.基础知识整合 1.函数的奇偶性:(2)图象特征:函数是偶函数图像关于轴对称;函数是奇函数图像关于原点对称.(3)奇函数在其定义域内关于原点对称的两个区间上的单调性相同,且如果在处有定义,有,即其图像过原点(0,0).,偶函数在其定义域内关于原点对称的两个区间上的单调性相反,且,这样就可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的途径,切记!2.函数的单调性判断方法:(1)定义法:对于定义域内某一个区间D 内任意的,且,若 在D 上单调递增;若在D 上单调递减.(2)导数法:若函数在某个区间D 可导,如果,那么函数在区间D 内单调递增;如果,那么函数在区间D 内单调递减.(3)图像法:先作出函数的图像,再根据图像的上升或下降,从而确定单调区间. (4),若都是增函数,则在其公共定义域内是增函数;若 都是减函数,则在其公共定义域内是减函数.,若是增函数,是减函数,则在其公共定义域内是增函数;若是减函数,是增函数,则在其公共定义域内是减函数.同时要充分利用函数的奇偶性、函数的周期性、函数图象的直观性分析转化,函数的单调性往往与不等式的解、方程的解等问题交汇,要注意这些知识的综合运用. 3.函数的图像:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像.的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象4.周期性:(1)定义:对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,都成立,那么就把函数叫做周期函数,不为零的常数叫做这个函数的周期.(3)函数的奇偶性、对称性、周期性,知二断一.例:是奇函数,且最小正周期是2,则,所以关于(1,0)对称.是偶函数,且图象关于对称,则,所以周期是2.5.指数函数、对数函数、幂函数的性质:幂函数图象永远过(1,1),且当时,在时,单调递增;当时,在 时,单调递减. 6.函数与方程(1)方程有实根函数的图象与轴有交点函数有零点.(2)如果函数在区间上的图象是连续不断的一条曲线,并且有那么,函数在区间内有零点,即存在,使得f (c) = 0,这个c 也就是方程f (x) = 0的根(5)函数的零点就是函数的图象与轴有交点的横坐标,所以往往利用导数结合极值和单调性画出函数大致图像,并结合零点存在定理判断零点所在的区间.7.导数的几何意义(1)函数在点处的导数就是曲线在点处的切线的斜率,则(2)函数在点处的切线方程为'000()()()y f x f x x x -=-.(3)在关于函数图象的切线问题中,如果涉及确定参数值的问题,首先设切点,然后注意三个条件的使用,其一切点在切线上,其二切点在曲线上,其三切线斜率. 8.导数与单调性的关系(1)若函数在某个区间D 可导, 在区间D 内单调递增;在区间D 内单调递减. (2) 若函数在某个区间D 可导,在区间D 内单调递增;在区间D 内单调递减.(3)若求单调区间,只需在函数的定义域内解不等式或,或者可以画导函数 的图像,通过判断的符号确定单调区间(尤其对于含参数的函数单调性问题可以简化解题过程).(4)若已知单调性确定参数的范围,一种方法是结合基本函数图像或熟悉的函数的图象求解;另一种方法是转化为或恒成立.9.导数和函数极值、最值的关系 (1)求极值的步骤:①先求的根(定义域内的或者定义域端点的根舍去);②分析两侧导数的符号:若左侧导数负右侧导数正,则为极小值点;若左侧导数正右侧导数负,则为极大值点.(4)求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的基础上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域. 二.高频考点突破 考点1 函数及其表示 【例1】【内蒙古赤峰市全市优质高中xx 届高三摸底考试(文)】已知函数22l o g (1)1,1(),1x x f x x x --+<⎧=⎨≥⎩,若,则.【例2】【xx 年普通高等学校招生全国统一考试(广东卷)文科】函数的定义域是( )A .B .C .D .【例3】【xx 年普通高等学校招生全国统一考试(福建卷)文科】已知函数()32,0,4tan ,0,2x x f x f f x x ππ⎧<⎛⎫⎪⎛⎫==⎨ ⎪ ⎪-≤≤⎝⎭⎝⎭⎪⎩则________ .【规律方法】1、若已知解析式求函数定义域,只需列出使解析式有意义的不等式(组)即可.2、对于复合函数求定义域问题,若已知的定义域,则复合函数的定义域由不等式得到.3、对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解.【举一反三】【浙江省绍兴市第一中学xx届高三上学期回头考】已知则的值等于.考点2 函数的图象【例1】【山西省山大附中xx届高三9月月考数学文】已知函数则的大致图象是()【例2】【xx年普通高等学校招生全国统一考试(山东卷)】函数的图象大致为【例3】【浙江省温州市十校联合体xx届高三10月测试数学试题(文科)】方程有三个不相等的实根,则k的取值范围是 ( )A. B. C. D.【规律方法】1.正确的作图必须做到:①熟练掌握常见的一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数及形如的函数图象;②掌握图象变换的方法来简化作图过程. 2.正确的识图是解题的关键,在观察和分析图象时,要注意图象的分布和变化趋势,要结合函数的性质,或者特殊点,以及函数值的正负来判断.【举一反三】【广东省广州市执信、广雅、六中xx届高三10月三校联考(文)】函数的图像大致是( )考点3 函数的性质【例1】【安徽省示范高中xx 届高三上学期第一次联考数学(文)】已知函数,(且)是上的减函数,则的取值范围是( ) A . B . C . D .【例2】【广东省广州市海珠区xx 届高三入学摸底考试数学文】已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为 ( )【例3】【江西省xx 届高三新课程适应性考试文科数学】函数的定义域为,对定义域中任意的,都有,且当时,,那么当时,的递减区间是( ) A . B . C . D .【规律方法】重视对函数概念和基本性质的理解,包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、图像变换、基本初等函数(载体),研究函数的性质要注意分析函数解析式的特征,同时要注意图象(形)的作用,善于从形的角度研究函数的性质.【举一反三】【吉林市普通中学xx 学年度高中毕业班摸底测试文】设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为,则实数的取值范围是( ) A. B. C. D.考点4 指数函数、对数函数、幂函数【例1】.【广东省广州市海珠区xx 届高三入学摸底考试数学文】0.220.20.2log 2,log 3,2,0.2a b c d ====,则这四个数的大小关系是 ( ).【例2】【xx 年普通高等学校招生全国统一考试(浙江卷)文科】已知,函数,若,则( ) A 、 B 、 C 、 D 、【例3】【江苏省南京市xx届高三9月学情调研】已知函数()32log,031108,333x xf xx x x⎧<<⎪=⎨-+≥⎪⎩,若存在实数、、、,满足,其中,则的取值范围是.【规律方法】1、对数函数的定义域为,指数函数的值域.2、熟练掌握指数、对数的运算性质以及指对互化;熟练掌握指数函数、对数函数的图象和性质,当底数的范围不确定时要分类讨论.3.注意利用指数函数、对数函数、幂函数的图像灵活运用数形结合思想解题. 【举一反三】【宁夏银川一中xx 届高三年级第一次月考文科】函数⎩⎨⎧>+-≤-=1,341x ,22)(2x x x x x f 的图象与函数的图象的公共点个数是 个考点5 函数的零点 【例1】【江西省xx 届高三新课程适应性考试文科数学】已知函数是周期为2的周期函数,且当时,,则函数的零点个数是( ) A .9 B .10 C .11 D .12【例2】【湖北省重点中学xx届高三10月阶段性统一考试(文)】函数的一个零点在区间内,则实数的取值范围是 .【例3】【吉林省白山市第一中学xx届高三8月摸底考试文】已知定义在R上的偶函数f(x)满足:∀x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,f(x)=-2(x-3)2.若函数y=f(x)-log a(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为()A.(0,)B.(0,)C.(1,)D.(1,)【规律方法】1、确定函数的零点所在的区间:第一种方法是解方程的根;第二种方法是如果方程容易解出,可转化为两个函数交点横坐标问题,通过检验交点左侧和右侧函数值的大小关系,进而得出两点所在的区间;第三种方法是利用零点存在定理.2.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.3、方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.【举一反三】【江苏省扬州中学xx学年高三开学检测】设函数,函数的零点个数为.考点6 函数模型及其应用【例1】【xx年普通高等学校招生全国统一考试(上海卷)文】甲厂以千米/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是元.(1)求证:生产千克该产品所获得的利润为;(2)要使生产千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.【例2】【成都外国语学校xx级高三开学检测试卷】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)【规律方法】解与函数有关的应用题一般程序为:审题建模求解反馈,审题就是理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;关键一步是设定变量,寻找其内在的等量关系或者不等关系,然后准确建立相关的函数解析式(标明定义域),再应用函数、方程、不等式和导数的有关知识加以综合解决.【举一反三】【宁夏银川一中xx届高三年级第一次月考文科】有两个投资项目、,根据市场调查与预测,A 项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.考点7 导数的运算及其意义【例1】【河北省唐山市xx学年度高三年级摸底考试文科】曲线在点处的切线方程为 .【例2】【江西省xx届高三新课程适应性考试文科数学】已知函数,若存在满足的实数,使得曲线在点处的切线与直线垂直,则实数的取值范围是()A. B. C. D.【规律方法】1.导数的几何意义是.2.从近几年的高考试题来看,利用导数的几何意义求曲线在某点处的切线方程以及与切线有关的问题是高考的热点问题,解决该类问题必须熟记导数公式,明确导数的几何意义,切点既在曲线上,又在切线上.【举一反三】已知点在曲线上,为曲线在点处切线的倾斜角,则的取值范围是()A. B. C. D.考点8 导数的应用(单调性、极值、最值)【例1】【湖北省荆州中学xx届高三年级第一次质量检测数学】设函数的导函数为,对任意都有成立,则()A. B.C. D. 与的大小不确定【例2】【湖北省重点中学xx届高三10月阶段性统一考试(文)】已知函数,若对于任意的,,函数在区间上单调递减,则实数的取值范围是()A. B. C. D.【例3】【xx届吉林市普通高中高中毕业班复习检测】已知,,在处的切线方程为+--πyx126=3318(Ⅰ)求的单调区间与极值;(Ⅱ)求的解析式;(III)当时,恒成立,求的取值范围.首先证明在恒成立.【规律方法】1、利用对于确定函数求单调区间问题,先求定义域,然后解解不等式和定义域求交集得单调递增区间;解不等式和定义域求交集得单调递减区间.2、对于含参数的函数求单调区间问题,转化为判断导函数符号,可结合函数图象判断.3、求函数的极值,先求的根,再和函数定义域比较,如果落在定义域外或者落在定义域端点,此时函数单调,无极值;当落在定义域内时,将定义域分段,分别考虑两侧导数是否异号,从而判断是否有极值.4、求函数的最值和求极值类似,先求的根,如果落在定义域外或者落在定义域端点,此时函数单调,利用单调性求最值;当落在定义域内时,将定义域分段,分别考虑两侧导数是否异号,从而判断函数大致图象,从而求最值. 【举一反三】【江西师大附中高三年级xx 开学考试】 已知函数311()ln (,0).33f x x a x a R a =--∈≠ (Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(III)若对任意的,都有成立,求的取值范围.三.错混辨析1.忽视函数的定义域出错【例1】函数的单调递增区间是()A. B. C. D.2.概念不清致误【例2】已知在处有极值为10,则的值=__________.3.导数和单调性关系理解不清【例3】已知区间是增函数,求实数a的取值范围.一.原创预测1.【高考改编题】设是定义域为的函数,且满足,在区间上,,其中且,若,则______.2.设函数(其中).(1) 当时,求函数的单调区间和极值;(2) 证明:当时,函数在上有且只有一个零点.当变化时,的变化如下表:3.已知函数21()ln ()2f x x a x a R =-∈ 若在x=2时取得极值,求a 的值; 求的单调区间; 求证:当时,.2019-2020年高考数学二轮复习专题04平面向量教学案文一.考场传真1. 【xx 年全国高考新课标(I )】已知两个单位向量,的夹角为,,若,则_____.2.【xx年普通高等学校统一考试江苏卷】设、分别是的边,上的点,,. 若(为实数),则的值是 .3. 【xx年普通高等学校招生全国统一考试(辽宁卷)】已知点,则与向量同方向的单位向量为()(A)(B)(C)(D)4. 【xx年普通高等学校招生全国统一考试(湖南卷)】已知是单位向量,若向量满足--=则的取值范围是()c a b c1,A. B.C. D.5. 【xx年高考新课标Ⅱ数学卷】已知正方形ABCD的边长为2,E为CD的中点,则 =_______.6.【xx年普通高等学校招生全国统一考试(安徽卷)】若非零向量满足,则夹角的余弦值为_______.7.【xx年全国高考统一考试天津数学卷】在平行四边形ABCD中, AD= 1, , E为CD的中点. 若, 则AB的长为 .8.【xx年普通高等学校招生全国统一考试(浙江卷)】设为单位向量,非零向量12,,b xe ye x y R=+∈、若的夹角为,则的最大值等于_______.9.【xx年普通高等学校招生全国统一考试(广东卷)】设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数和,使;③给定单位向量和正数,总存在单位向量和实数,使;④给定正数和,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是A.1 B.2 C.3 D.4二.高考研究1.考纲要求:掌握向量的加法和减法,掌握实数与向量的积,解两个向量共线的充要条件,解平面向量基本定,解平面向量的坐标概念,掌握平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处有关长度、角度和垂直问题,掌握向量垂直的条件。

相关文档
最新文档