全国2018年中考数学真题分类汇编第27讲统计20180919231

合集下载

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。

(完整版)2018年全国有关中考数学试题分类汇编(阅读理解题)及解析

(完整版)2018年全国有关中考数学试题分类汇编(阅读理解题)及解析

2018年全国有关中考数学试题分类汇编(阅读理解题)及解析一、选择题1、 (2007四川眉山)为确保信息安全, 信息需加密传翰,发送方将明文加密为密文传输给接收方, 接收方收到密文后解密还原为明文. 己知某种加密规则为:明文a 、b 对应的密文为2a — b 、2a + b.例如,明文1、2对应的密文是一3、4.当接收方收到密文是 1、7时,解密得到的明文是( ).C A .— 1, 1 B . 1, 3 C . 3, ID . 1, I2、 ( 2007湖南长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容 为密码.有一种密码,将英文26个字母a, b, C ,…,Z (不论大小写)依次对应 1, 2, 3,…,X 126这26个自然数(见表格)•当明码对应的序号X 为奇数时,密码对应的序号 y;当明码2对应的序号X 为偶数时,密码对应的序号 y - 13 .A . gawqB . shxcC . sdriD . love 二、填空题6x 3 0的两实数根,贝U 翌 凶的值为X 1x 22、( 2007四川巴中)先阅读下列材料,然后解答问题:从A, B , C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从 3个元素中选取2个元素组合,记作C ; 口 3.2 1一般地,从m 个元素中选取n 个元素组合,记作:C :m (m 1儿(m n °n (n 1)L 3 2 17 6 5 4 3例:从7个元素中选5个元素,共有C 5321种不同的选法.5 4 3 2 1问题:从某学习小组 10人中选取3人参加活动,不同的选法共有 _种.120a b3、( 2007广东梅州)将4个数a, b, c, d 排成2行、2列,两边各加一条竖直线记成c d1、( 2007四川德阳)阅读材料:设一元二次方程 2ax bx c 0的两根为X 1, X 2,则两根与方程系数之间有如下关系: x 1 x 2-,X 1gx 2 C .根据该材料填空: a a已知X 1 , x 2是方程x 210定义ad bc ,上述记号就叫做2阶行列式.若6,则x答: .2三、解答题1、( 2007浙江临安)阅读下列题目的解题过程:已知a 、b 、c 为 的三边,且满足解:c 2(a 2 b 2) (a 2 b 2)(a 2 b 2) (B )c 2 a 2 b 2(C )ABC 是直角三角形问:(1) 上述解题过程,从哪一步开始出现错误?请写出该步的代号:______________(2 )错误的原因为: ___________________________________________________________(3)本题正确的结论为: _____________ . 解:(1) C ---------------------- 2 分 (2)没有考虑a 2 b 20 ------- 4分(3) ABC 是直角三角形或等腰三角形 --- 6分 2、( 2007云南双柏)阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:a a a 记为a n .如23= 8,此时,3叫做以2为底8n 个的对数,记为log 2 8即log 2 8 3 .一般地,若a n b a 0且a 1,b 0 ,贝U n 叫做以a 为底b 的对数,记为log a b 即log a b n •如34 81,则4叫做以3为底81的对数,记为log 3 81 (即卩log 3 81 4).问题:(1)计算以下各 对数的值:(3分)log 2 4 log 216 log 2 64.(2) 观察(1)中三数4、16、64之间满足怎样的关系式?log 2 4、log 216 > log 2 64之间又满足怎样的关系式? ( 2分)(3) 由(2)的结果,你能归纳出一个一般性的结论吗?(2分)log a M logN __________ a 0且a 1,M 0, N 0(4) 根据幕的运算法则:a n a m a n m 以及对数的含义证明上述结论.(3分)证明:解:(1) log 2 4 2 , log 216 4 , log 2 64 6,log 2 4 + log 216 = log 2 64(3) log a M + log a N = log a (MN),试判断的形状.(2) 4X 16= 64•••从A 点到B 点并禁止经过 C 点的走法数为35- 18= 17种. 10分⑶P(顺利开车到达B 点)=1735则 abiM , a b2 N••• MN a b ia b2a b ib2二 b i + b 2= log a (MN ) 即 log a M + log a N = log a (MN )3、( 2007安徽芜湖)阅读以下材料,并解答以下问题. 完成一件事有两类不同的方案,在第一类方案中有 m 种不同的方法,在第二类方案中有n 种不同的方法•那么完成这件事共有N = m + n 种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有 m 种不同的方法,做第二步有 n 种不同的方法.那么完成这件事共有 N =mxn 种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从 A 点出发向B 点行进这件事(规定必须向北走,…或向东走,.…),会有多种不同的走法,其中从 A 点出发到某些交叉点 的走法数已在图2填出.(1)根据以上原理和图2 的提示, 算出从A 出发到达其余交叉点的走法数,将数字填入图 2的空圆中,并回答从 A 点出发到B 点的走法共有多少种?种........................... 5 分(1)方法一:可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去 它,即得从A 点到B 点,但不经过交叉点 C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从 A 点到C 点,再从C 点到B 点.使用分类 加法计数原理,算出从 A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见 图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3X6= 18种.•••从A 点到B 点但不经过 C 点的走法数为35- 18= 17种.方法二:由于交叉点C 道路施工,禁止通行,故视为相邻道路不通, 可删除与C 点紧相连的线段.运 用分类加法计数原理,算出从 A 点到B 点并禁止通过交叉点 C 的走法有17种.从A 点到各交叉 点的走法数见图4.(4)证明:设 log a M = b ilog a N = b 2(2)运用适当的原理和方法算出从 A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点 C 道路施工,禁止通行.求如任选一种走法,点(无返回)概率是多少?解: 解:(1):完 或向东走,••倒达A 点以外 与其相邻的南 之和.故使用分类加 到达其余各交 答:从A 点到B从 A 点出发能顺利开车到达 B成从A 点到B 点必须向北走,的任意交叉点的走法数只能是 10分法计数原理,由此算出从 A 点叉点的走法数,填表如图 1, 点的走法共有 3517答:任选一种走法,顺利开车到达B点的概率是17•35一AC BC4、(2007江苏连云港)如图1,点C将线段AB分成两部分,如果,那么称点AB AC线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线” 的定义:直线I将一个面积为S的图形分成两部分,这两部分的面积分别为S, , S2,如果§S那么称直线I为该图形的黄金分割线.(1)研究小组猜想:在厶ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是厶ABC 的黄金分割线•你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF // CE,交AC于点F ,连接EF (如图3),则直线EF也是△ ABC 的黄金分割线.请你说明理由.(4)如图4,点E是丫ABCD的边AB的黄金分割点,过点E作EF // AD,交DC于点F,显然直线EF是Y ABCD的黄金分割线.请你画一条Y ABCD的黄金分割线,使它不经过Y ABCD 各边黄金分割点.解:(1)直线CD是厶ABC的黄金分割线•理由如下:设厶ABC的边AB上的高为h •1 1SA ADC—AD 6, S A BDC—BD 6 ,2 2所以S A ADC AD S A BDC BDS AABCAB S A ADC AD(2) 因为三角形的中线将三角形分成面积相等的两部分,此时Si s2-—,所以三角形的中线不可能是该三角形的黄金分割线.s q(3)因为DF // CE ,所以△ DEC和△ FCE的公共边CE上的高也相等,所以有S A DEC S A FCE•设直线EF与CD交于点G •所以S A DGE S A FGC •12分S2S i1S A ABC 2ABgh,又因为点D为边AB的黄金分割点,所以有A2■BD•因此AB AD S A ABCS A BDCS AADC所以,直线CD是厶ABC的黄金分割线. ...............1S| S2-所以S A ADC S四边形AFGD S A FGC因此,直线EF 也是△ ABC 的黄金分割线. ............................. 10分 (4)画法不惟一,现提供两种画法; ............................... 12分画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交 AB ,DC 于M , N 点,则直线 MN 就是Y ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM 连接MN ,则直线MN 就是Y ABCD 的黄金分割线.5、( 2007浙江衢州)请阅读下列材料:问题:如图(2),一圆柱的底面半径为 5dm , BC 是底面直径,求一只蚂蚁从 A 点出发沿圆柱表面 爬行到点C 的最短路线•小明设计了两条路线: 路线1:侧面展开图中的先端 AC •如下图(2)所示: 设路线1的长度为11,则l 12路线2:高线AB +底面直径2设路线2的长度为12,则丨22 211 丨225 25 2252 2• •丨1 1 2 丨1 l 2所以要选择路线2较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为 继续按前面的路线进行计算•请你帮小明完成下面的计算: 所以应选择路线 ____________ (填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为 r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点 A 出发沿圆柱表面爬行到 C 点的路线最短. 解:(1) lj AC 2 AB 2 AC 252225l 22 (AB AC)2(5 2)249又因为S^ ADCS A ABCS A BDC SA ADC,所以SA AEFABCS四边形BEFCSA AEF// NE 交AB 于点M ,AC 2 AB 2BC .如上图(2(AB AC) 25 2200AC 2 521)所示:2(5 10) 25( 28)路线1: l 12 AC 2;路线2: l 22(AB AC)2.2一 2•-11ll 1I 2 (填〉或v )(第4题答图1) (第4题答图2)1dm ,高AB 为成dm ”l22所以要选择路线1较短.AC 2 AB 22 2AC h (r)2122 (AB AC)2 (h 2r)2 Qlj l 22 h 2 ( r)2 (h 2r)2 = r( 2r 4r 4h) = r[( 24)r 4h]4h 2~时,l 12 I 22; 当 r 4 6、( 2007甘肃白银等3市)阅读下边 方法一:教材中方法2Q ax2Q 配方可a(xa((X bx c o,2rb 得:c)2 o|o 4ac kb ?2a c b <°,40b __ ) __ —2 2O ))2 b4a 4ac ,… b ^a. c b 2o o 4a c ” bba 4a Sac 时,lj > I 22;当 r v4兀二次方程求根公式的两种推导方法:方法二:•/ ax 2 + bx + c = 0,• 4a 2x 2 + 4abx + 4ac = 0, • (2ax + b)2= b 2 — 4ac . 当 b 2 — 4ac >0时,4h时,h 2 v I 22. 42b 22ax + b = ±. b 24ac , ••• 2ax =— b ±. b 24ac . b Vb 24ac…x =2a x bb 2a°24a4ac 请回答下列问题2a b 4a 24ac , (1) 两种方法有什么异4同?你认为哪个方法好?(2) x 说说你有什么感想竺 解:(1)都采用配方法2a 方法一是将二次项的系数化为 式•方法一较好. 7、( 2007江苏无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个 圆圈,以下各层均比上一层多一个圆圈,一共堆了 n 层•将图1倒置后与原图1拼成图2的形状, 这样我们可以算出图1中所有圆圈的个数为1 2 3 L n 世 B . 2 1,方法二是将二次项系数变成一个平方 第“层 ■ 4 * 00—0000—00图1 中的圆圈共有12层, 如果图1 正整数1,2,3,4 ,L ,则最底层最左边这个圆圈中的数是 都按图4的方式填上一串连续的整数 之和.解:(1) 67. ................................... 图2 图3 (1)我们自上往下,在每个圆圈中都按图 3的方式填上一串连续的 _; ( 2)我们自上往下,在每个圆圈中 23, 22 , 21, L ,求图4中所有圆圈中各数的绝对值 (2)图4中所有圆圈中共有12 3 L 12咚378个数,2其中23个负数,1个0, 54个正数, 图4中所有圆圈中各数的绝对值之和| 23| | 22| L | 1| 0 1 2 L 54(1 2 3 L 23) (1 2 3 L 54) 276 1485 1761 .8、( 2007鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 _________ ,________ ;(2)如图16 (1),已知格点(小正方形的顶点)0(0,0) , A(3,0) , B(0,4),请你画出以格点为顶点,OA, OB为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16 (2),将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD, DC ,Z DCB 30°•DC 2 BC 2 AC 2,即四边形 ABCD 是勾股四边形求证:DC 2 BC 2 AC 2,即四边形ABCD 是勾股四边形.解:(1) 正方形、长方形、(2) 答案如图所示. fy (3)证明: Q Z CBE 连结EC M .........(填正确一个得1分) 鹫形正确得 1分):Z BCE 60Q Z DCB O o 」 22 2 90o *DC EC DE xC直角梯形•(任选两个均可) 图'16 ■(2) M (3,4)或 M(4,3) •(没有60•A 分(根据图形给分, AC D。

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。

2018年全国各地中考数学真题汇编:统计与概率(山东专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(山东专版)(解析卷)

2018年全国各地中考数学真题汇编(山东专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•淄博)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意解:A、水能载舟,亦能覆舟,是必然事件,故此选项错误;B、只手遮天,偷天换日,是不可能事件,故此选项错误;C、瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D、心想事成,万事如意,是随机事件,故此选项正确.故选:D.2.(2018•烟台)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.3.(2018•东营)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10 20 30 50 100人数 2 4 5 3 1A.众数是100 B.中位数是30 C.极差是20 D.平均数是30解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.4.(2018•济宁)在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6解:A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.5.(2018•烟台)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177 178 178 179 方差0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁解:∵甲、乙、丙、丁4支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.6.(2018•聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.7.(2018•潍坊)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄19 20 21 22 24 26人数 1 1 x y 2 1A.22,3 B.22,4 C.21,3 D.21,4解:∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即,∴x=3、y=2,则这组数据的众数为21,平均数为=22,所以方差为×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,故选:D.8.(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.9.(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、43解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42,故选:B.10.(2018•威海)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.11.(2018•临沂)如表是某公司员工月收入的资料.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为3400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.12.(2018•滨州)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.二.填空题(共4小题)13.(2018•滨州)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.14.(2018•青岛)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2>S乙2(填“>”、“=”、“<”)解:从图看出:乙组数据的波动较小,故乙的方差较小,即S甲2>S乙2.故答案为:>.15.(2018•东营)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.16.(2018•聊城)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.三.解答题(共14小题)17.(2018•青岛)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;18.(2018•泰安)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.19.(2018•青岛)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.20.(2018•枣庄)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<4000 8 a4000≤x<8000 15 0.38000≤x<12000 12 b12000≤x<16000 c 0.216000≤x<20000 3 0.0620000≤x<24000 d 0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.21.(2018•烟台)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.22.(2018•淄博)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时) 6 7 8 9 10 人数 5 8 12 15 10(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?解:(1)观察表格,可知这组样本数据的平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据的平均数为8.34;∵这组样本数据中,9出现了15次,出现的次数最多,∴这组数据的众数是9;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,∴这组数据的中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时的有15人,读书时间是10小时的有10,∴读书时间不少于9小时的有15+10=25人,∴被抽到学生的读书时间不少于9小时的概率是=23.(2018•潍坊)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.解:(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%﹣7=4户,月用水量为5m3的户数为20﹣(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下:a b c d ea (b,a)(c,a)(d,a)(e,a)b (a,b)(c,b)(d,b)(e,b)c (a,c)(b,c)(d,c)(e,c)d (a,d)(b,d)(c,d)(e,d)e (a,e)(b,e)(c,e)(d,e)由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为=.24.(2018•济宁)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.解:(1)该班的人数为=50人,则B基地的人数为50×24%=12人,补全图形如下:(2)D(泗水)所在扇形的圆心角度数为360°×=100.8°;(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为=.25.(2018•威海)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表一周诗词诵背数量3首4首4首6首7首8首人数10 10 15 40 25 20请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.26.(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有10天.27.(2018•聊城)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42 a 15 33 b解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).28.(2018•德州)某学校为了解全校学生对电视节目的喜爱情况(新闻,体育,动画,娱乐,戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).解:(1)这次被调查的学生人数为15÷30%=50人;(2)喜爱“体育”的人数为50﹣(4+15+18+3)=10人,补全图形如下:(3)估计全校学生中喜欢娱乐节目的有1500×=540人;(4)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,恰好选中甲、乙两位同学的有2种结果,所以恰好选中甲、乙两位同学的概率为=.29.(2018•东营)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175 a科普图书 b 0.30小说110 c其他65 d(1)求该校九年级共捐书多少本;(2)统计表中的a=0.35,b=150,c=0.22,d=0.13;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1 2 31 (2,1)(3,1)2 (1,2)(3,2)3 (1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.30.(2018年山东省菏泽市)为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)(1)依据折线统计图,得到下面的表格:射击次序(次) 1 2 3 4 5 6 7 8 9 10甲的成绩(环)8 9 7 9 8 6 7 a 10 8乙的成绩(环) 6 7 9 7 9 10 8 7 b 10其中a=8,b=7;(2)甲成绩的众数是8环,乙成绩的中位数是7环;(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.解:(1)由折线统计图知a=8、b=7,故答案为:8、7;(2)甲射击成绩次数最多的是8环、乙射击成绩次数最多的是7环,甲成绩的众数是8环、乙成绩的众数为7环;(3)甲成绩的平均数为=8(环),所以甲成绩的方差为×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2(环2),乙成绩的平均数为=8(环),所以乙成绩的方差为×[(6﹣8)2+4×(7﹣8)2+(8﹣8)2+2×(9﹣8)2+2×(10﹣8)2]=1.8(环2),故甲成绩更稳定;(4)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种情况,∴恰好选到1男1女的概率为=.。

2018年中考数学分类汇总

2018年中考数学分类汇总

2018年中考数学分类汇总2018年中考数学分类汇总主讲:六枝特区第九中学 汪恒第一章 实数课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(082的相反数是 .4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += .⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______.⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数.4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= .2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,140,3,364,0.31,227,2π,2.161 161 161…,(-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.(06北京)若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7.(06泸州)51-的倒数是 ( )A .51-B .51C .5-D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )A .3B .-1C .5D .-1或39.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21±D .210.(08梅州)下列各组数中,互为相反数的是( )A .2和21B .-2和-21C .-2和|-2|D .2和21 11.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或214.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)A B4. 计算23-的结果是( )A. -9B. 9C.-6D.65.(08巴中)下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A. 5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-p a (其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的绝对值小的.5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.如5÷51×5.【典例精析】例1 计算:⑴(08龙岩)20080+|-1|-3cos30°+ (21)3; ⑵232(2)2sin 60--+.例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2, 求2||4321a b m cd m ++-+的值.输输平乘减若结果否【中考演练】 1. (07盐城)根据如图所示的程序计算, 若输入x 的值为1,则输出y 的值为 .2. 比较大小:73_____1010--. 3.(08江西)计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 124. (08宁夏)下列各式运算正确的是( )A .2-1=-21 B .23=6 C .22·23=26 D .(23)2=265. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( )A. 10 B .20 C .-30 D .186. 计算: ⑴(08南宁)4245tan 21)1(10+-︒+--;⑵(08年郴州)201()(32)2sin 3032--+︒+-;⑶ (08东莞) 01)2008(260cos π-++- .﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,(1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式 课时3.整式及其运算【课前热身】1. 31-x 2y 的系数是 ,次数是 .2.(08遵义)计算:2(2)a a -÷= .3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 4. (08湖州)计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x - 5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b + 6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示连接而成的式子叫做代数式. 2. 代数式的值:用代替代数式里的字母,按照代数式里的运算关系,计算后所得的叫做代数式的值.3. 整式(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做 .(3) 整式:与统称整式.4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类项. 合并同类项的法则是___.5. 幂的运算性质: a m·a n= ; (a m)n= ; a m÷a n=_____;(ab)n= .6. 乘法公式:(1) =ba;(2)(a+b)(a-b) c+)(d+)(=;(3) (a+b)2=;(4)(a-b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1 (08乌鲁木齐)若0a >且2x a =,3y a =,则x y a -的值为( ) A .1- B .1 C .23 D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格: 输入n 3 21—2 —3 … 输出答案11…⑵ 请将题中计算程序用代数式表达出来,并给予化简.n 平+÷-答例3 先化简,再求值:(1) (08江西)x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( ) A.633·x x x = B.422523x x x =+ C.532)(x x =D .222()x y x y +=+﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( )A .18B .12C .9D .7 4. 若3223m n x y x y -与 是同类项,则m + n =____________. 5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中2a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .11 11 2 11 3 3 1 1 4 6 4 1Ⅱ1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++课时4.因式分解【课前热身】1.(06 温州)若x -y =3,则2x -2y = .2.(08茂名)分解因式:3x 2-27= . 3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. (08东莞) 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】例1 分解因式:⑴(08聊城)33222ax y axy ax y +-=__________________. ⑵(08宜宾)3y 2-27=___________________. ⑶(08福州)244x x ++=_________________. ⑷ (08宁波) 221218x x -+= . 例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 . 7.(08中山)分解因式am an bm bn+++=__________;8.(08安徽) 下列多项式中,能用公式法分解因式的是( ) A .x 2-xy B .x 2+xy C .x 2-y 2 D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( ) A .bx ax b a x -=-)( B .222)1)(1(1y x x y x ++-=+- C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(11.计算:(1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程: 解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b a b a -=-+ ② 即222c b a =+ ③ ∴△ABC 为Rt △。

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2018•嘉兴)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D 错误,故选:D.8.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2018•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2018•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2018•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2018•衢州)数据5,5,4,2,3,7,6的中位数是5.解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于 4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2016年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2018•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.21.(2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).。

2018年全国中考数学真题汇编全集(共21套)

2018年全国中考数学真题汇编全集(共21套)

2018年中考数学真题汇编:实数与代数式(解答题21题) 解答题1.计算:.【答案】原式=1-2+2=02.(1)计算:(2)化简:.【答案】(1)解:原式=1+2× -(2- )-4=1+ -2+ -4=(2)解:原式= ==3.(1)计算:(2)化简:【答案】(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+124.(1).(2)化简.【答案】(1)原式(2)解:原式5.(1)计算:(2)解分式方程:【答案】(1)原式= ×3 - × +2- + ,= - +2- + ,=2.(2)方程两边同时乘以x-2得:x-1+2(x-2)=-3,去括号得:x-1+2x-4=-3,移项得:x+2x=-3+1+4,合并同类项得:3x=2,系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。

【答案】(1)原式=4 -2+3-1=4(2)原式= =a-b当a=1,b=2时,原式=1-2=-17.(1)计算:(2)解方程:x2-2x-1=0【答案】(1)解:原式= - -1+3=2(2)解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1= ,x2=8.计算:+-4sin45°+.【答案】原式=9.计算:【答案】原式=2-3+8-1=610.计算:【答案】解:原式= = 11.计算:.【答案】解:原式=4+1-6=-112.计算或化简.(1);(2).【答案】(1)解:()-1+| −2|+tan60°=2+(2- )+=2+2- +=4(2)解:(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+1813.计算:【答案】解:=1+2+=1+2+4=7.14.计算:(π-2)°+4cos30°--(-)-2.【答案】解:原式= ,=-3.15.(1)计算:;(2)化简:.【答案】(1)解:原式=(2)解:原式=16.计算:.【答案】解:原式=2-2× + +1,=2- + +1,=3.17.(1)计算:. (2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1- .18.计算:【答案】解:原式=4-1+2- +2× ,=4-1+2- + ,=5.19.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)(2)解:猜想:,证明:左边= = = =1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,20.对于任意实数、,定义关于“ ”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1)解:(2)解:由题意得∴.21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,如果,则的取值范围为________;(2)如果,求的值;(3)如果,求的值.【答案】(1);(2)解:①当2≤x+2时,即x≥0时,2(x+2)=x+4,解之:x=0②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3(3)解:①当9=x2,且3x-2≥9时。

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。

2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。

3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。

5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

(完整版)2018全国中考数学统计概率题真题汇总,推荐文档

(完整版)2018全国中考数学统计概率题真题汇总,推荐文档
海壁教育 - 2 - 只教 数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中 考
南 宁 | 柳 州 400-070-20 05
【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况, 随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数统计表
学生借阅图书的次数统计图
4上上上上
3上 26% 0上
2上
1上 26%
请你根据统计图表中的信息,解答下列问题:(1)a=,b=
(2)该调查统计数据的中位数是
,众数是
3 请计算扇形统计图中“3 次”所对应扇形的圆心角的度数 4 若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4 次及以上”的人数.
课程
平均数
中位数
众数
海壁教育 - 1 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
A
75.8
m
84.5
B
72.2
70
83
根据以上信息,回答下列问题: 1 写出表中 m 的值 2 在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是 (填“A“或“B“),理由是
海壁教育 - 4 - 只教数学
我们只教数学,不仅有高效学习方法,还有各种题型总结、套路、技巧,助你轻松备战中考 南 宁 | 柳 州 400-070-2005
完整的统计图.
根据所给信息,解答以下问题
1 在扇形统计图中,C 对应的扇形的圆心角是

2018年中考数学真题专题汇编:统计与概率(解析版)

2018年中考数学真题专题汇编:统计与概率(解析版)
三、解答题
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:





的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。

2018年全国有关中考数学试题分类汇编(一次函数)(K12教育文档)

2018年全国有关中考数学试题分类汇编(一次函数)(K12教育文档)

2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年全国有关中考数学试题分类汇编(一次函数)(word版可编辑修改)的全部内容。

2018年全国有关中考数学试题分类汇编(一次函数)一、选择题1所示,那1、(2007福建福州)已知一次函数(1)y a x b =-+的图象如图么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )B A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2)5、(2007浙江宁波)如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C(A )x l =1,x 2=2 (B )x l =—2,x 2=-1 (C )x l =1,x 2=—2 (D)x l =2,x 2=-16、(2007四川乐山)已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )C A.20y -<<B.40y -<<C.2y <-D.4y <-7、(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B图1Oxy图(6)0 2 -4xyOxy AB1- y x =- 2图2A .0B .1C .2D .3二、填空题1、(2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

2018中考数学真题分类汇编解析版9.3.一次函数的应用

2018中考数学真题分类汇编解析版9.3.一次函数的应用

则满足 vt =40+40t,则 t =40(2)①∵ ⎨解得 16≤m ≤25.m ≤ 50 - m .一、选择题二、填空题 1.(2018·杭州,15,4 分)某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地,甲车 8 点出发,如图是其行驶路程 s (千米)随行驶时间 t (小时)变化的图象.乙车 9 点出发,若要在 10 点至 11 点之间(含 10 点和 11 点)追上甲车,则乙车的速度 v (单位:千米/小时)的范围是答案:60≤v≤80,解析:由图可知甲车的速度为 40km/h,设从 9 点后经过 t 小时,乙车恰好追上甲车. 40,题中说明是 10 至 11 点追上,即 1≤t≤2,可得1 ≤v - 40v - 40≤ 2 ,解得 60≤v≤80三、解答题1.(2018· 南充,23,10 分)(本小题满分 10 分)某销售商准备在南充采购一批丝绸,经调查,用 10 000 元采购 A 型丝绸的件数与用 8 000 元采购 B 型 丝绸的件数相等,一件 A 型丝绸进价比一件 B 型丝绸进价多 100 元.(1)求一件 A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进 A 型、B 型丝绸共 50 件,其中 A 型的件数不大于 B 型的件数,且不少于 16 件, 设购进 A 型丝绸 m 件.①求 m 的取值范围.②已知 A 型的售价是 800 元/件,销售成本为 2n 元/件;B 型的售价为 600 元/件,销售成本为 n 元/件,销售成本为 n 元/件.如果 50≤n ≤150,求销售这批丝绸的最大利润 w (元)与 n (元)的函数关系式(每件销售 利润=售价-进价-销售成本).思路分析:(1)利用“采购 A 型丝绸的件数与采购 B 型丝绸的件数相等”列出等量关系.(2)根据题意列出不等式,表示出 w 关于 m 的函数关系,分类讨论.解:(1)设 A 型进价为 x 元,则 B 型进价为(x -100)元,根据题意得:10000 8000=x x - 100 . 解得 x =500,经检验,x =500 是原方程的解. ∴B 型进价为 400 元.答:A 、B 两型的进价分别为 500 元、400 元.⎧m ≥ 16,⎩ ②w =(800-500-2n )m +(600-400-n )(50-m )=(100-n )m +(10000-50n ).当 50≤n <100 时,100-n >0,w 随 m 的增大而增大. 故 m =25 时,w 最大=12500-75n . 当 n =100 时,w 最大=5000.当 100<n ≤150 时,100-n <0,w 随 m 的增大而减小. 故 m =16 时,w 最大=11600-66n .综上所述:w 最大 ⎨5000, = n =100⎪11600-66n , 100<n ≤ 150. , ⎩ 45k + b = 550 ⎩b = 1000( 9 .⎧12500-75n , 50 ≤ n <100 ⎪ ⎩2.(2018·德州,23,12) 为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高 科技设备,每台设备成本价为 30 万元,经过市场调研发现,每台售价为 40 万元时,年销售量为 600 台; 每台售价为 45 万元时,年销售量为 550 台.假定该设备的年销售量 y (单位:台)和销售单价 x (单位: 万元)成一次函数关系.(1)求年销售量 y 与销售单价 x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于 70 万元,如果该公司想获得 10000 万元的年利润,则该 设备的销售单价应是多少万元? 思路分析:(1)额头待定系数法确定一次函数关系式;(2)由每台的利润×销量=总利润,列出方程,求出想获得 10000 万元的年利润减肥的销售单价. 解答过程:解:(1)因为该设备的年销售量 y (单位:台)和销售单价 x (单位:万元)成一次函数关系. 设 y =kx +b (k ≠0) 把每台售价为 40 万元时,年销售量为 600 台;每台售价为 45 万元时,年销售量为 550 台两组对应值代入,⎧40k + b = 600 得 ⎨,⎧k = -10解得 ⎨ . ∴该一次函数为:y =-10x +1000;(2) 因此设备的销售单价为 x ,成本价为 30 万元,则每台的利润为(x -30)万元 由题意,得(x -30)(-10x +1000)=10000, 解得: x = 80, x = 50 .12因为,此设备的销售单价不得高于 70 万元, 所以,x =50.答:该公司想获得 10000 万元的年利润,则该设备的销售单价应是 50 万元. 3. 2018·山东泰安,20, 分)文美书店决定用不多于 20000 元购进甲乙两种图书共 1200 本进行销售.甲、 乙两种图书的进价分别为每本 20 元、14 元,甲种图书每本的售价是乙种图书每本售价的 1.4 倍,若用 1680 元在文美书店可购买甲种图书的本数比用 1400 元购买乙种图书的本数少 10 本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低 3 元,乙种图书售价每本降低 2 元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完) 思路分析:(1)设乙种图书售价每本 x 元,由于甲种图书每本的售价是乙种图书每本售价的 1.4 倍, 故甲种图书售价为每本 1.4x 元.根据等量关系“用 1400 元购买乙种图书的本数减去用 1680 元购买甲种图 书的本数等于 10 本”列出分式方程求解;(2)设甲种图书进货 a 本,总利润 w 元,先构建 w 关于 a 的一次函数,再利用不等式求得 a 的取值 范围,最后利用一次函数的增减性求得书店获得最大利润时(即 w 取得最大值) a 的大小.解答过程:解:(1)设乙种图书售价每本 x 元,则甲种图书售价为每本 1.4x 元. 由题意,得:1400 1680- =10. x 1.4 x解得:x =20.经检验,x =20 是原方程的解.所以,甲种图书售价为每本 1.4×20=28 元.答:甲种图书售价每本 28 元,乙种图书售价每本 20 元.(2)设甲种图书进货 a 本,总利润 w 元,则w =(28-20-3)a +(28-14-2)(1200-a)=a +4800.解答过程:(1)设直线 PQ 的解析式为 y =kx +b ,代入点(0,10)和( 1 ⎧k = -10, ⎪ k + b = ,⎨ 42 ,解得: ⎨ ,故直角 PQ 的解析式为 y =-10x +10, b = 10 ⎪⎩b = 10又∵20a +14×(1200-a)≤20000,解得 a ≤1600 3.∵w 随 a 的的增大的增大,∴当 a 最大时 w 最大. ∴当 a =533 本时 w 最大.此时,乙种图书进货本数为 1200-533=667(本).答:甲种图书进货 533 本,乙种图书进货 667 本时利润最大.4.(2018·临沂市,24,9 分) 甲、乙两人分别从 A ,B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达 B 地后,乙继续前行.设出发 xh 后,两人相距 ykm ,图中折线表示从两人出发至乙到达 A地的过程中 y 与 x 之间的函数关系.根据图中信息,求:(1)点 Q 的坐标,并说明它的实际意义;(2)甲、乙两人的速度.y/km10 PN15 2MO1 4Q 53第 24 题图x/h思路分析:(1)先求出直线 PQ 的函数解析式,然后再求出点 Q 的坐标;由点 Q 位于 x 轴上,并联系 甲乙的位置来描述它的实际意义;(2)由点 M 可知甲已到达点 A ,由总路程为 10km 即可求出甲的速度;再由点 Q 的位置可知甲乙相遇时 的时间,由此建立方程可求出乙的速度.15, )的坐标,得4 2⎧ 115 ⎩当 y =0 时,x =1,故点 Q 的坐标为(1,0),该点表示甲乙两人经过 1 小时相遇.5 5(2)由点 M 的坐标可知甲经过 h 达到 B 地,故甲人的速度为:10km ÷ h =6km /h ;3 3设乙人的速度为 xkm /h ,由两人经过 1 小时相遇,得: 1·(x +6)=10,解得:x =4, 故乙人的速度为 4km /h . 5.(2018· 成都,26,8 分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用 y(元)与种植面积 x(m 2)之间的函数关系如图所示,乙种花卉的种植费 用为每平方米 100 元.(1)直接写出当 0≤x ≤300 和 x>300 时,y 与 x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200 m 2,若甲种花卉的种植面积不少于 200 m 2,且不超过乙种花卉种植面积的 2 倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?当 x>300 时,设 y =k 2x +b ,把点(300,39000),(500,55000) 代入 y =k 2x +b ,得 ⎨ 解得500k + b = 55000. ⎩ ⎩b = 15000.y .⎧⎧思路分析:(1)由图可知,当 0≤x ≤300 时,y 与 x 是正比例函数,设 y =k 1x ,把点(300,39000)代入即可求 得 y =k 1x ;当 x>300 时, 与 x 是一次函数,设 y =k 2x +b ,把点(300,39000),(500,55000) 代入即可求得 y =k 2x +b ; (2) 设甲种花卉种植为 a m 2,则乙种花卉种植(1200-a) m 2,根据题意,列不等式组求得不等式组的解,根据 a 得取值范围,一次函数的性质,分类讨论,确定最佳种植方案解:(1)当 0≤x ≤300 时,设 y =k 1x ,把点(300,39000)代入 y =k 1x ,得 39000=300k 1,解得 k 1=130. ∴y=130x.⎧300k + b = 39000, 2 2⎧k = 80,⎨ 2 ∴y =80x+15000.所以 y = ⎨130x(0 ≤ x ≤ 300),⎩80x + 15000( x > 300).(2)设甲种花卉种植为 a m 2,则乙种花卉种植(1200-a) m 2,根据题意,得∴ ⎨a ≥ 200,⎩ a ≤ 2(1200 - a). 解得 200≤a ≤800.当 200≤a<300 时,W 1=130a+100(1200-a )=30a+120000. 当 a=200 时,W 最小值=126000(元).当 300≤a ≤800 时,W 2=80a+15000+100(1200-a)=135000-20a. 当 a=800 时,W 最小值=119000(元).∵119000<126000,,∴ 当 a=800 时,总费用最低,最低为 119000 元.此时乙种花卉种植面积为 1200-800=400(m 2).所以应分配甲种花卉种植面积为 800 m 2,乙种花卉种植面积为 400 m 2,才能使种植总费用最少,最少总费用为 119000 元.6(2018·无锡市,25,8)一水果店是 A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求 情况,本月初专门为他们准备了 2 600kg 的这种水果,已知水果店每售出 1kg 该水果可获利润 10 元,未 售出的部分每 1kg 将亏损 6 元.以 x (单位:k g ,2 000≤x ≤3 000)表示 A 酒店本月对这种水果的需求量, y (元)表示水果店销售这批水果所获得的利润. (1)求 y 关于 x 的函数表达式; (2)问:当 A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于 22000 元?(2600<x≤3000);⎪(.(2)设其函数关系式为y=kx+b,则⎨,解得⎨,∴y=-0.1x+70;当y=-0.1x+70=5400x+b=30b=70思路分析:(1)由于2000≤x≤3000,根据题意需分2000≤x≤2600和2600<x≤3000两种情况讨论求y关于x的函数表达式;(2)由于表达式是分段函数,故需分2000≤x≤2600和2600<x≤3000两种情况讨论求A酒店本月对这种水果的需求量范围.解答过程:解:(1)当2000≤x≤2600时,y=10x-6(2600-x)=16x-15600;当2600<x≤3000时,⎧16x-15600,2000≤x≤2600)y=2600×10=26000.∴y关于x的函数表达式为y=⎨⎪⎩26000(3)(2)①当2000≤x≤2600时,y=16x-15600≥22000,x≥2350,∴2350≤x≤2600;②当2600<x ≤3000时,y=26000>22000,成立,综上所述:2350≤x≤3000不少于22000.答:当A酒店本月对这种水果的需求量不小于2350kg且不大于3000kg时,该水果店销售这批水果所获的利润不少于22000元.7.(2018江苏宿迁,24,10分)(本小题满分10分)某种型号汽油油箱容量为40L,每行驶100km耗油10L,设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L).(1)求y与x之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱剩余油量不低于油箱容量的14,按此建议,求该辆汽车最多行驶的路程.思路分析:(1)利用油箱内有油40L,每行驶100km耗油10L,进而得出余油量与行驶路程之间的函数关系式即可;(2)根据“油箱剩余油量不低于油箱容量的14”列出不等式求解即可.解:(1)y=40-x10;(2)由题意得:40-x1≥40⨯,解得:x≤300,答该辆汽车最多行驶的路程为300千米.1048.(2018·绍兴,19,8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是邮箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.思路分析:第(1)问通过观察图像可知,函数图象经过点(400,30),因此汽车行驶400千米时,油箱内剩余油量为30升;利用已经行驶的路程乘每千米耗油量,加上剩余的油量,就能算出加满油时油箱的油量;第(2)问结合第一问,利用待定系数法可求函数关系式,再利用函数关系式列方程可以求出已行驶的路程.解答过程:解:(1)由图形可知汽车行驶400千米时,油箱内剩余油量为30升;∵汽车行驶时的耗油量为0.1升/千米,∴行驶400千米的耗油量为400×0.1=40(升),40+30=70(升),∴加满油时油箱的油量为70升.⎧b=70⎧k=-0.1⎩⎩时,解得x=650.((-60t+15(0≤t≤)4.∴s与t的函数关系式为s=⎨tx>7510-x77⎪x>71015 515-x77综上,y关于x的函数关系式为y=-0.1x+70;该汽车在剩余油量5升时,已行驶的路程为650千米. 9.(2018·绍兴,24,14分)如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计)上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式.(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.思路分析:(1)用路程除以速度,即可得所求时间(对照本题计算结果,要注意体会同时发车的上行车、下行车的位置关于BC中点对称这一特征);2)先求出上行车、下行车相遇的时间,再以相遇前、相遇后进行分类讨论求解;3)本题之所以能求出“x满足的条件”,是因为该乘客“可选择走到B站或走到C站乘下行车前往A站”,因此总体上可分为两大类进行研究,即:①走到B站乘下行车;②走到C站乘下行车.解答过程:解:(1)∵5÷30=(或10分钟);11,∴第一班上行车到B站、第一班下行车到C站的用时均为小时66(2)∵3×5÷30=111,∴行驶小时,上行车、下行车将分别到达D站、A站.∵3×5÷(30+30)=,224∴行驶14小时,上行车、下行车相遇.在相遇前:y=15-60t;在相遇后s=60t-15,⎧1⎪11⎪60t-15(≤t≤)⎩42(3)由(2)知同时出发的一对上、下行车的位置关于BC中点对称,设该乘客到达A站总时间为t 分钟.①当x=2.5时,往B站用时30分钟,还需再等下行车5分钟,=30+5+10=45,不合题意.往C站亦然.②当x<2.5时,该乘客只能往B站坐下行车,他离B站x千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5-x)千米.如果能乘上右侧第一辆下行车,则x5-x554≤,解得x≤,∴0<x≤,此时18≤t<20,符合题530777意.⎧5⎪510如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎨,解得<x≤,⎪≤⎩x3014此时27≤t<28,符合题意.77⎧10如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎨,解得<x≤,⎪≤⎩x3051此时35≤t<37,不合题意.77如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎨ 5 - x 10 - x ,解得 4≤x <5,⎪⎩ 5 如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎨ 5 - x 15 - x ,解得 3≤x <4,⎪⎩ 5 ⎪⎩ x + 3 (100 - x ) ≥ 250y综上,如果往 B 站坐下行车,x 应满足 0<x ≤107.③当 x >2.5 时,该乘客需往 C 站坐下行车,离他左边最近的下行车离 B 站是(5-x )千米,离他右边最 近的下行车离 C 站也是(5-x )千米.如果乘上右侧第一辆下行车,则 5- x 5 - x ≤5 30,解得 x ≥5,不合题意.⎧⎪ x < 5≤30此时 30<t ≤32,符合题意.⎧⎪ x < 4≤30此时 42<t ≤44,不合题意.综上,如果往 C 站坐下行车,x 应满足 4≤x <5. 综①、②、③得, x 应满足的条件为 0<x ≤107或 4≤x <5.10.(2018 湖北武汉,20,8 分)用 1 块 A 型钢板可制成 2 块 C 型钢板和 1 块 D 型钢板;用 1 块 B 型钢板 可制成 1 块 C 型钢板和 3 块 D 型钢板.现准备购买 A 、B 型钢板共 100 块,并全部加工成 C 、D 型钢板.要 求 C 型钢板不少于 120 块,D 型钢板不少于 250 块,设购买 A 型钢板 x 块(x 为整数). (1) 求 A 、B 型钢板的购买方案共有多少种?(2) 出售 C 型钢板每块利润为 100 元,D 型钢板每块利润为 120 元.若童威将 C 、D 型钢板全部出售,请你 设计获利最大的购买方案.思路分析:考察与不等式、一次函数相关的利润问题.(1)用 A 型钢板 x 块, B 型钢板(100-x )块分别表示出 C 、D 型钢板的数量,根据 C 型钢板不少于 120 块,D 型钢板不少于 250 块列不等式组;(2)每种钢板的利润乘以每种钢板的块数,求和得到总利润 y ,根据函数的性质求最值. 解答过程:(1)解:(1)设 A 型钢板 x 块,则 B 型钢板有(100-x )块.⎧⎪2 x + 100 - x ≥ 120⎨,解得 20≤x ≤25.又因为 x 为整数,所以 x=20,21,22,23,24,25,购买方案共有 6 种. (2)设全部出售后共获利 y 元,则y=100(2x+100-x )+120【x+3(100-x )】=-140x+46000, 因为 k=140<0,所以 y 随着 x 的增大而减小, 当 x==20 时,y=-140×20+46000=43200 元. 获利最大的方案为购买 A 型 20 块,B 型 80 块. 11.(2018·盐城,24,10 分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 y (米)与时间 t (分钟) 之间的函数关系如图所示. (1)根据图像信息,当 t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段 AB 所表示的函数表达式.(米)2400BAO2460t (分钟)将点 A 、B 的坐标代入表达式得 ⎨,解得: ⎨ , 60k + b = 2400 b = 0( 10 15 20 150 175 90 135( x 2×15x思路分析:(1)当两人出发 24 分时,图像与 x 轴相交即为两人相遇;由图像可知甲步行 60 分时到达图书 馆,即可根据“速度=路程÷时间”计算出甲的速度; 2)先分析出点 A 、B 的坐标,再利用待定系数法确 定函数关系式.解答过程:(1)24,40 v 甲=2400÷60=40(米/分) (2)v 甲+v 乙=2400÷24=100, ∵v 甲=40,∴v 乙=60, ∵2400÷60=40(分),40×40=1600(米),∴A (40,1600) 由图可知:B (60,2400),设线段 AB 所表示的函数表达式为:y =kt +b (k ≠0)⎧40k + b = 1600 ⎧k = 40⎩ ⎩ ∴线段 AB 所表示的函数表达式为:y =40t (40<t <60).12.(2018·天津市,23,10 分) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证 100 元,只限本人当年使用,凭证旅游每次再付费 5 元;方式二:不购买会员证,每次游泳 付费 9 元.设小明计划今年夏季游泳次数为 x (x 为正整数). (I )根据题意,填写下表:游泳次数 (x)方式一的总费用(元) …方式二的总费用(二) … (II )若小明计划今年夏季游泳的总费用为 270 元,选择哪种付费方式,他游泳的次数比较多? (III )当 x >20 时,小明选择哪种付费方式更合算?思路分析:(1)当游泳次数为 20 时,方式一的总费用为:100+5×20=200(元),方式二的总费用为: 9×20=180(元). 当游泳次数为 x 时,方式一的总费用为(100+5x )元,方式二的总费用为 9x 元.(2) 当总费用为 270 元时,分别求出两种付费方式的游泳次数,再进行比较即可; 3)先求出何时两种付费方 式一样合算,再进行分类讨论.解答过程:(I )200,5x+100,180,9x.(II )方式一:5x+100=270,解得 x=34. 方式二:9x=270,解得 x=30. ∵34>30,∴小明选择方式一游泳次数比较多.(III )设方式一与方式二的总费用的差为 y 元, 则 y=(5x+100)﹣9x ,即 y =﹣4x+100. 当 y =0 时,即﹣4x +100=0,解得 x=25.∴当 x =25 时,小明选择这两种方式一样合算. ∵﹣4<0,∴y 随 x 的增大而减小.∴当 20<x <25 时,有 y >0,小明选择方式二更合算; 当 x >25 时,有 y <0,小型选择方式一更合算.13.(2018·湖州市,22,10 分) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向 A ,B 两个果园运送有机化肥,甲,乙两个仓库分别可运出 80 吨和 100 吨有 机化肥;A ,B 两个果园分别需要 110 吨和 70 吨有机化肥,两个仓库到 A ,B 两个果园的路程如下表所示:路程(千米)甲仓库 乙仓库A 果园B 果园15 25 20 20设甲仓库运往 A 果园 x 吨有机化肥,若汽车每吨每千米的运费为 2 元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨) 运费(元)甲仓库 乙仓库 甲仓库 乙仓库A 果园 110-x 2×25(110-x)B 果园x 2×15x(2)设总运费为 y 元,求 y 关于 x 的函数表达式,并求甲仓库运往A 果园多少吨有机化肥时,总运费最 省?最省的总运费是多少元?思路分析:(1)设甲仓库运往 A 果园 x 吨有机化肥,根据题意求得甲仓库运往 B 果园(80-x)吨,乙仓库运往 A 果园(110-x)吨,乙仓库运往 B 果园(x -10)吨,然后根据两个仓库到 A ,B 两个果园的路程完成 表格;(2)根据(1)中的表格求得总运费 y(元)关于 x(吨)的函数关系式,根据一次函数的增减性结合自变量的取 值范围,可知当 x =80 时,总运费 y 最省,然后代入求解即可求得最省的总运费.解答过程:(1)填写表示,如图:运量(吨) 运费(元)甲仓库 乙仓库 甲仓库 乙仓库A 果园 110-x 2×25(110-x)B 果园 80-x x -10 2×20(80-x) 2×20(x -10) (2)y =2×15x +2×25(110-x)+2×20(80-x)+2×20(x -10), 即 y =-20x +8300.在一次函数 y =-20x +8300 中, ∵-20<0,且 10≤x ≤80,当 x =80 时,y 最小=6700(元).即当甲仓库运往 A 果园 80 吨有机化肥时,总运费最省,是 6700 元.14.(2018·南京,25,9) 小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第 16 min回到家中,设小明出发第 t min 时的速度为 v m/min ,离家的距离为 s m ,v 与 t 之间的函数关系如图所 示(图中的空心圈表示不包含这一点).(1)小明出发第 2m i n 时离家的距离为 m ; (2)当 2<t ≤5 时,求 s 与 t 之间的函数表达式; (3)画出 s 与 t 之间的函数图象.思路分析:(1)0-2m i n 时速度为 100 m/min ,100×2=2;(2)当 2<t ≤5 时,速度为 160m/min ,离家的 距离(s )=前面 2 分钟走的路程+后面(t -2)分钟走的路程,即 s=200+160(t -2);(3)前面 5 分钟走的路程为 200+160×3=580,后面 11 分钟走的路程为 80×11=880,则第 5 分钟时,小明离家不是最远.设 t 分钟时, 小明离家最远,此时离家距离为 200+160×3+80(t -5),回家时走的路程为 80(16-t ),由往返路程相等可得 方程,解得 t 及离家最远距离,从而可画出图象.解答过程:(1)200.(2)根据题意,当 2<t ≤5 时,s 与 t 之间的函数表达式为 s=200+160(t -2),即 s=160-120. (3)前面 5 分钟走的路程为 200+160×3=580,后面 11 分钟走的路程为 80×11=880, 则第 5 分钟时,小明离家不是最远.设 t 分钟时,小明离家最远,根据题意得, 200+160×3+80(t -5)=80(16-t ), 解得 t=6.25,80×(16-6.25)=780.s 与 t 之间的函数图像如图所示.100t + 8000 (20 <t ≤50). ⎪⎩b = 32. 综上,y = ⎨∵5400>0,∴当 t =20 时,W 最大 5400×20=108000.往年的行情预测,a 与 t 的函数关系为a = ⎨ y 与 t 的函数关系如图所示. ∴y =t +16. ②当 20<t ≤50 时,设 y =k 2t +b 2,由图象得 ⎨ 解得 ⎨ 2⎩50k + b = 22. ∴y =-t +32. ①当 0≤t ≤20 时,W =10000( t +16)-600t -160000=5400t .⎪⎪15.(2018·荆门,22,10 分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了 10000kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养 10 天的总成本为 166000元;放养 30 天的总成本为 178000 元.设这批小龙虾放养 t 天后的质量为 ak g ,销售单价为 y 元/k g ,根据⎧10000(0 ≤t ≤20), ⎩(1)设每天的养殖成本为 m 元,收购成本为 n 元,求 m 与 n 的值; (2)求 y 与 t 的函数关系式;(3)如果将这批小龙虾放养 t 天后一次性出售所得利润为 W 元,问该龙虾养殖大户将这批小龙虾放养多少天 后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)y/(元/kg)28 22 162050 t /天第 22 题图思路分析:(1)根据“放养 10 天的总成本为 166000 元;放养 30 天的总成本为 178000 元”列方程组求解; (2)利用待定系数法求两条线段的解析式;(3)分 20 天前和 20 天后两种情况列函数解析式求解.⎧10m + n = 166000, ⎧m = 600,解:(1)依题意得 ⎨ 解得 ⎨⎩30m + n = 178000. ⎩n = 160000.⎧b = 16,⎧k = 3 ,(2)①当 0≤t ≤20 时,设 y =k 1t +b 1,由图象得 ⎨ 1解得 ⎨ 1 5 ⎩20k 1 + b 1 = 28.⎪⎩b = 16.135⎧20k + b = 28, ⎧k = - 1 ,2 2 5 2 2 215⎧ 3 t + 16(0≤t ≤20), ⎪ 5 ⎪- 1 t + 32(20<t ≤50). ⎩ 5(3)W =ya -mt -n .35=②当20<t≤50时,W=(-15t+32)(100t+8000)-600t-160000=-20t2+1000t+96000=-20(t-25)2+108500.∵-20<0,抛物线的开口向下,∴当t=25时,W最大=108500.∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018·怀化市,20,10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B 两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数关系式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.思路分析:(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围(注意取整),再根据(1)得出的y与x的函数关系式,利用一次函数的增减性,结合自变量的取值即可得出费用最省的方案.解答过程:解:(1)由题知y=90x+70(21-x),整理得y与x的函数关系式为y=20x+1470(0≤x≤21,且x为整数);(2)由(1)知y=20x+1470,∴y随x的增大而增大,∵21-x<x,∴x>10.5,∴x的最小整数值为11,∴当x=11时,y最小=20×11+1470=1690,此时21-x=10.综上,费用最省的方案是:购买A种树苗11棵,购买B种树苗10棵,该方案所需费用为1690元.第11页共11页。

各地2018年中考数学试卷分类汇编统计专题(pdf,含解析)

各地2018年中考数学试卷分类汇编统计专题(pdf,含解析)

【分析】根据平均数的定义计算即可; 【解答】解:由题意 (3+4+5+x+6+7)=5, 解得 x=5, 故选:B. 【点评】本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题,属于中考基础题. 10.(2018•上海•4 分)据统计,某住宅楼 30 户居民五月份最后一周每天实行垃圾分类的户数依次是:27, 30,29,25,26,28,29,那么这组数据的中位数和众数分别是( A.25 和 30 B.25 和 29 C.28 和 30 D.28 和 29 )
2 2 2 2

2. (2018·湖北随州·3 分)某同学连续 6 次考试的数学成绩分别是 85,97,93,79,85,95,则这组数 据的众数和中位数分别为( )
A.85 和 89 B.85 和 86 C.89 和 85 D.89 和 86 【分析】根据众数、中位数的定义即可判断; 【解答】解:将数据重新排列为 79.85.85.93.95.97, 则这组数据的中位数为 故选:A. 【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列 后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位数.众数是次数出现最多的数; =89,众数为 85
则这 5 天中,A 产品平均每件的售价为( A.100 元 B.95 元 C.98 元 D.97.5 元
【分析】根据加权平均数列式计算可得. 【解答】解:由表可知,这 5 天中,A 产品平均每件的售价为 =98(元/件) , 故选:C. 【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义及其计算公式. 5.(2018•江苏淮安•3 分)若一组数据 3.4.5.x、6.7 的平均数是 5,则 x 的值是( A.4 B.5 C.6 D.7 )

2018年全国各地中考数学真题汇编(二)(含答案)

2018年全国各地中考数学真题汇编(二)(含答案)

2018年中考数学真题汇编:分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1C. x>1D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

2018全国中考数学真题分类汇编

2018全国中考数学真题分类汇编

2018中考数学真题分类汇编考点1 有理数.....................................3-20考点2 无理数与实数...............................21-34考点3 代数式.....................................35-65考点4 整式.......................................66-88考点5 因式分解...................................89-97考点6 分式.......................................98-115考点7 二次根式...................................116-126 考点8 一元一次方程...............................127-126 考点9 二元一次方程组.............................137-169 考点10 一元二次方程..............................170-198 考点11 分式方程..................................199-229 考点12不等式与不等式组...........................230-254 考点13 平面直角坐标系与函数基础知识...............255-290 考点14 一次函数..................................291-340 考点15 反比例函数...............................341-405考点16 二次函数...................................406-458 考点17相交线与平行线..............................459-491 考点18 三角形和角平分线............................492-509 考点19等腰三角形、等边三角形和直角三角形..........510-524 考点20 全等三角形.................................525-559 考点21 勾股定理...................................560-576考点22 多边形.....................................577-587 考点23平行四边形.................................588-612 考点24 矩形.......................................613-633 考点25 菱形.......................................634-655 考点26 正方形.....................................656-674 考点27圆的有关概念................................675-707 考点28 与圆有关的位置关系..........................708-730 考点29 切线的性质和判定............................731-800 考点30 弧长和扇形面积..............................801-826 考点31 尺规作图...................................827-871 考点32 命题与证明..................................872-892 考点33 图形的对称.................................893-935 考点34 图形的平移和旋转...........................936-967 考点35相似三角形..................................968-1024 考点36锐角三角函数和解直角三角形................1025-1076 考点37 投影与视图................................1077-11022018中考数学试题分类汇编:考点1 有理数一.选择题(共28小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7) C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000=6.5×104,故选:B.19.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.20.(2018•天津)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.21.(2018•宜昌)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.22.(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.23.(2018•烟台)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:82.7万亿=8.27×1013,故选:C.24.(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2075亿用科学记数法表示为:2.075×1011.故选:B.25.(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.26.(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选:A.27.(2017•通辽)近似数5.0×102精确到()A.十分位B.个位C.十位D.百位【分析】根据近似数的精确度求解.【解答】解:近似数5.0×102精确到十位.故选:C.28.(2018•河南)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.二.填空题(共16小题)29.(2018•达州)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为 5.5×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.30.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101131.(2018•泰州)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.32.(2018•湘西州)﹣2018的绝对值是2018.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:201833.(2018•张家界)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.34.(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为10℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:6﹣(﹣4),=6+4,=10℃.故答案为:1035.(2018•香坊区)将数字37000000用科学记数法表示为 3.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:37000000=3.7×107.故答案为:3.7×107;36.(2018•玉林)计算:6﹣(3﹣5)=8.【分析】直接利用去括号法则进而计算得出答案.【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8.故答案为:8.37.(2018•无锡)﹣2的相反数的值等于2.【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于2.故答案是:2.38.(2018•云南)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.39.(2018•哈尔滨)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10840.(2018•德州)计算:|﹣2+3|=1.【分析】根据有理数的加法解答即可.【解答】解:|﹣2+3|=1,故答案为:141.(2018•邵阳)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2.【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.42.(2018•南京)写出一个数,使这个数的绝对值等于它的相反数:﹣1.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣143.(2018•云南)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.44.(2018•宁波)计算:|﹣2018|=2018.【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.三.解答题(共2小题)45.(2018•湖州)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N 的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N 的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.2018中考数学试题分类汇编:考点2无理数与实数一.选择题(共24小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•南通模拟)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.3.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.4.(2018•黔南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.5.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.6.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.7.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.8.(2018•广州)四个数0,1,,中,无理数的是()A.B.1 C.D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.9.(2018•玉林)下列实数中,是无理数的是()A.1 B.C.﹣3 D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:1,﹣3,是有理数,是无理数,故选:B.10.(2018•聊城)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.12.(2018•黄石)下列各数是无理数的是()A.1 B.﹣0.6 C.﹣6 D.π【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.13.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.14.(2018•荆门)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.15.(2018•眉山)绝对值为1的实数共有()A.0个 B.1个 C.2个 D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.16.(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.17.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.18.(2018•常德)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.19.(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.20.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.21.(2018•淄博)与最接近的整数是()A.5 B.6 C.7 D.8【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.22.(2018•南京)下列无理数中,与4最接近的是()A. B. C. D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.23.(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.24.(2018•重庆)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】首先利用二次根式的乘法化简,进而得出答案.【解答】解:(2﹣)•=2﹣2=﹣2,∵4<<5,∴2<﹣2<3,故选:B.二.填空题(共10小题)25.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.26.(2017•恩施州)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.27.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b=﹣1.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.28.(2018•上海)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.29.(2017•西藏)下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有②③(填序号).【分析】根据无理数的定义即可判断;【解答】解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③30.(2018•襄阳)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.31.(2018•昆明)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.32.(2018•陕西)比较大小:3<(填“>”、“<”或“=”).【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,=10,∴3<.33.(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【解答】解:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.34.(2018•烟台)(π﹣3.14)0+tan60°=1+.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.三.解答题(共8小题)35.(2018•怀化)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.36.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.37.(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2+1+3﹣3=3.38.(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.39.(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.40.(2018•娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.41.(2018•连云港)计算:(﹣2)2+20180﹣.【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.42.(2018•桂林)计算: +(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.2018中考数学试题分类汇编:考点3 代数式一.选择题(共25小题)1.(2018•齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018•大庆)某商品打七折后价格为a元,则原价为()A.a元 B.a元 C.30%a元 D.a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018•河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018•临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)。

2018年全国中考数学试题分类汇编考点集锦

2018年全国中考数学试题分类汇编考点集锦

676
考点 33 命题与证明 . ...............................................
713
考点 34 图形的对称 . ..............................................
730
考点 35 图形的平移和旋转 . ........................................
766
考点 36 相似三角形 . ...............................................
793
考点 37 锐角三角函数和解直角三角形 ................................
840
考点 38 投影与视图 . ..............................................
579
考点 30 切线的性质和判定 . .........................................
598
考点 31 弧长和扇形面积 . ...........................................
655
考点 32 尺规作图 . .........................................................................................
26
考点 4 整式 .......................................................
51
考点 5 因式分解 . ..................................................

2018年中考数学试题分类汇编 统计

2018年中考数学试题分类汇编 统计

..10,15,10,17,18,20 .对于这组数据,下列说法错误的是S 50统计一.选择题1.(2018 安徽)某校九年级(1)班全体学生 2018 年初中毕业体育考试的成绩统计如下表:成绩(分)人数(人) 352 395 426 446 458 487 506根据上表中的信息判断,下列结论中错误的是A .该班一共有 40 名同学B .该班学生这次考试成绩的众数是 45 分C .该班学生这次考试成绩的中位数是 45 分D .该班学生这次考试成绩的平均数是 45 分 2.(2018 广东)3. 一组数据 2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为 4,选 B 。

3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数 量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为.. A .平均数是 15 B .众数是 10 C .中位数是 17 D .方差是 4434.(湖南常德)某村引进甲乙两种水稻良种,各选 6 块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为 550kg/亩,方差分别为 S 2=141.7 ,2=433.3 ,甲乙则产量稳定,适合推广的品种为: A 、甲、乙均可 B 、甲 C 、乙 D 、无法确定【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为 B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7 名同学积极捐出自己的零 花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元) ,20,50,30,25,50,55, 这组数据的众数和中位数分别是( C ). A .50 元,30 元 B .50 元,40 元 C .50 元,50 元 D .55 元,50 元6. )(2018•益阳)某小组 5 名同学在一周内参加家务劳动的时间如下表所示,关于“劳动 时间”的这组数据,以下说法正确的是( ) 劳动时间(小时) 3 3.5 4 4.5 人 数 1 1 2 1A.中位数是4,平均数是3.75 C.中位数是4,平均数是3.8B.众数是4,平均数是3.75 D.众数是2,平均数是3.8考点:中位数;加权平均数;众数.分析:根据众数和中位数的概念求解.解答:解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.点评:本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.7.(呼和浩特).以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为各月手机销售总额统计图三星手机销售额占该手机店当月手机销售总额的百分比统计图A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A.1B.43C.0D.29.( (二.填空题1.(2018•厦门)已知一组数据 1,2,3,…,n (从左往右数,第 1 个数是 1,第 2 个数是 2,第 3 个数是 3,依此类推,第n 个数是 n ).设这组数据的各数之和是 s ,中位数是 k ,则 s = nk(用只含有 k 的代数式表示).2.(2018•梅州)在“全民读书月”活动中,小明调查了班级里40 名同学本学期计划购买课 外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题: 直 接填写结果)(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生 1000 人,根据样本数据,估计本学期计划购买课外书花费 50 元的学 生有 人.人数12 10 8 6 4 220 30 50 80 100 费用/元考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用 1000 乘以本学期计划购买课外书花费 50 元的学生所占 的比例即可求解. 解答:解:(1)众数是:30 元,故答案是:30 元; (2)中位数是:50 元,故答案是:50 元; (3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费 50 元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中 得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计 图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里 40 名同学本学期计划购买课外书的 花费情况,并将结果绘制成如图所示的统计图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(分类)第27讲统计知识点1 调查方式的选择知识点2 总体、个体、样本、样本容量知识点3 频数与频率知识点4 平均数、中位数、众数知识点5 方差知识点6 从统计图表中获取信息知识点1 调查方式的选择(2018重庆A卷)答案:C3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工(2018重庆B卷)答案:D4.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查(2018贵阳)答案:D4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调查知识点2 总体、个体、样本、样本容量(2018内江)答案:C9. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析在这个问题中,样本是指A . 400B .被抽取的400名考生 C. 被抽取的400名考生的中考数学成绩 D .内江市2018年中考数学成绩知识点3 频数与频率 (2018贵阳)11.某班 50 名学生在 2018 年适应性考试中,数学成绩在 100~110 分这个分数段 的频率为 0.2,则该班在这个分数段的学生为 10 人.(2018上海)知识点4 平均数、中位数、众数 (2018宜宾)答案:78.811.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为 分.78丙78丙丙74丙82丙丙76丙80丙丙丙丙丙丙丙丙丙丙(2018·德州) 答案:A5.已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是( ) x A .7 B .6 C.5 D .4(2018·成都)答案:B7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃(2018金华丽水)答案:6.9%13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 ▲ .2013~2017年国内生产总值增长速度统727.58.5(2018衢州)答案:512.数据5,5,4,2,3,7,6的中位数是________·(2018上海)(2018重庆A 卷)答案:23.4万 15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。

(2018重庆B 卷)答案:3415.某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是 个.(2018泰安)答案:B5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个): 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( )A .42,42B .43,42C .43,43D .44,43(2018泸州)6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄 13 14 15 16 17 人数12231则这些学生年龄的众数和中位数分别是( )A.16,15B.16,14C.15,15D.14,15(2018衡阳)答案:0.614.某公司有10名工作人员,他们的月工资情况如下表,根据表中信息,该公司工作人员的月工资的众数是 . 职务 经理 副经理 类职员A 类职员B 类职员C 人数1 2 2 4 1 月工资/(万元/人) 21.20.80.60.4(2018常德)答案:112.一组数据是3,,2,4,1,0,的中位数是 . 3-1-(2018娄底)答案:B2.一组数据-3,2,2,0,2,1的众数是( ) A .-3 B .2 C .0 D .1(2018岳阳)6.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92(2018连云港)答案:B4.一组数据2,1,2,5,3,2的众数是 A .1 B .2 C .3 D .5(2018沈阳)(2018南京)21. 随机抽取某理发店一周的营业额如下表(单位:元): 星期一 星期二 星期三 星期四 星期五 星期六 星期日 合计 540680760640960220017807560(1)求该店本周的日平均营业额;(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额. 解:(1)该店本周的日平均营业额为(元).756071080÷=(2)用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理.答案不唯一,下列解法供参考,例如,用该店本周星期一到星期日的日平均营业额估计当月的营业总额为(元). 10803032400⨯=(2018无锡)答案:C7.某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应的销售量y (件)的全部数据如下表: 售价x (元/件) 90 95 100 105 110 销量y (件)110100806050则这5天中,A 产品平均每件的售价为( ) A.100元 B.95元 C.98元 D.97.5元(2018宿迁)答案:39. 一组数据:2,5,3,1,6,则这组数据的中位数是 ▲ .(2018赤峰)(2018资阳)(2018永州)4551545245446.已知一组数据,,,,,,则这组数据的众数、中位数分别为()4548444545515253A., B., C., D.,(2018株洲)答案:8.412.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是 .(2018盐城)答案:B6.一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.8(2018呼和浩特)(2018武汉)答案:D4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40(2018桂林)答案:D8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6(2018桂林)答案:8415.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.(2018德阳)答案:D(2018广东)答案:B4.数据1、5、7、4、8的中位数是()A.4B.5C.6D.7(2018山西)答案:C5. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单 位:万件)太原市 大同市 长治市晋中市 运城市临汾市 吕梁市 3303.78 332.68302.34 319.79 725.86 416.01 338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件(2018随州)答案:A(2018宁波)答案:C8.若一组数据4,1,7,,5的平均数为4,则这组数据的中位数为( ) x A .7 B .5 C .4 D .3(2018台州)5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A .18分,17分B .20分,17分C .20分,19分D .20分,20分(2018温州)答案:C4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A.9分 B.8分 C.7分 D.6分(2018温州)答案:313.一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为 . x(2018咸宁)19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数12345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?解:(1)3,3,表示这部分出行学生在这天约有一半人使用共享单车的次数在3次以上(含3次).(2)(次)25182********5184283232151110≈+++++⨯+⨯+⨯+⨯+⨯+⨯=x 答:这天部分出行学生平均每人使用共享单车约2次. (3)(人)28+18+51500=75611+15+23+28+18+5⨯答 :估计这天使用共享单车次数在3 次以上(含3次)的学生有765人.(2018广州)20.(本小题满分10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生,为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10为居民一周内使用共享单车的次数分别为:17 ,12 ,15 ,20 ,17 ,0 ,26 ,17 ,9.(1)这组数据的中位数是__________,众数是___________. (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数。

相关文档
最新文档