复变函数与积分变换(苏变萍、陈东立编)第一章答案
复变函数与积分变换 苏变萍_1_1.1
1.复数及其代数运算
(1)复数的概念 称 z x i y 为复数. 记 x Re( z ) , y Im( z )
实部 虚数单位 虚部
z i y 称为纯虚数 ; z x 视为实数 x .
z1 x1 i y1 与 z x i y 相等 x1 x2 , y1 y2.
1.1 复数
3. 复数四则运算的几何意义
复数加法、减法运算的几何 意义如图1.3所示 复数 z 的三角表达式为:
z r (cos isin )
复数 z 的指数表达式为:
(图1.3)
z r e 这里 Arg z
i
1.1 复数
例1.2 求 i, 2, 1 3i 的三角表达式, 指数表达式 . 解: i e
z1 ( z2 z3 ) ( z1 z2 ) z3
分配律 z1 ( z2 z3 ) z1 z2 z1 z3
1.1 复数
对复数的运算仍有以下事实:
0 z 0 1 z 1 z 1 z z 若 z1 z2 0 则 z1 与 z 2 至少有一个为零,反之亦然. z0 z
(3) | z || x | | y |
| x || z |, | y || z |
(4) | z1 z2 || z1 | | z2 | (5) | z1 z2 || z1 | | z2 | (6) | z1 z2 | | z1 | | z2 |
1.1 复数
由实轴的正向到向量 z 之间的夹角 称为复数 z 的 辐角, 记作 Arg z 显然 Arg z 有无穷多个值, 其中每两个值相差 2 π 的
π i( 2 kπ ) 2
π π cos i sin 2 2
复变函数与积分变换第一章习题解答
。
n
2) R(
3) 事实上
罕 P(z) =X+iY=X- i Y; 可 = 霄芦 (因)
P(z)
立 +a,, P( 司=a。了"+a1 产+···+a,
4
l 3. 如果 z =e;r, 试证明
1 (1) z" +— = 2cosnt ; n z
II
·+anz n = 页 =a +a1 z+a产 +··
习题 一 解答
1. 求下列复数的实部与虚部 、 共辄复数 、 模与辐角 。
(l)
解 所以
(1)
3+2i
1
(2)
-:--—
1
3+2i
1
3�2i
言, 叫卢}飞, 2 =�(言) +(-卢『 = =卢
(3+2i), ImL : 2J
=-
1 =—(32i) (3+2iX3-2i) 13
3-2i
1
1- 1
3i
(2)
(1+i)6;
J�(2e一气 �32e一l坛"
( 3) 划 ;
1 一3
l I 、 i
=32[cos(-子 )+isin(-子)]=-16"3-16i
(2)
(I+i)'= [ �(i+i )J
=(高冗/4)6 = 8e31ri12 = -8i。 .J3
2
) 4 (
(3)
卢= (ei1t+2k于= eirr (2k+l)/6,k = 0,1,2,3,4,5 。
复变函数与积分变换习题答案
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
复变第一章作业答案
A.1 复数与复变函数(第一章)1.1 复数1.选择题 (1) Re()iz =( B )(A )Re()iz - (B )Im()z - (C )Im()z (D )Im()iz (2) 下列对任意复数z 均成立的等式为( A )(A )22zz= (B )()22zz=(C )()22arg arg z z = (D )()22Re Re z z =(3) 复数2z =所属区域为( B )(A )01z << (B )0arg 2z π≤≤ (C )12z << (D )11z i>- (4) 设复数z 满足:arg(2)3z π+=,且5a r g (2)6z π-=,则z =(A )(A )1- (B )i(C )12- (D )12i +2. 将下例函数化为三角表达式和指数表达式 (1) i +1 解 因 2|1|=+i ,ππk i Arg 24)1(+=+,0,1,2,k =±±所以,1cos 2sin 244i k i k ππππ⎫⎛⎫⎛⎫+=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎭24i k ππ⎛⎫+ ⎪⎝⎭=(2) i解 cos 2sin 222i k i k ππππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22k e ππ+=,0,1,2,k =±±(3) 21i -解 241cos 2sin 2244k i k i k ππππππ--⎫⎛⎫⎛⎫=-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 0,1,2,k =±±3. 证明:当1z<时,()2Im 12z z -+<.证 因()()222Im 1Im 12z z x iy x y i xy -+=-++-+=22y xy y xy +≤+,又因1y z ≤=<,且22221x y x y z ⋅≤+=<,所以,()2Im 12z z -+<4. 填空题(1) 设8214z i i i =-+,则复数z x iy =+的形式为 13i -复数z 的模为辐角主值为 arctan3-(2) 设121i z i-=+,则其实部为12-虚部为32-共轭复数为1322i-+(3) 设复数5z i =-,则其三角形式5cos sin 22i i ππ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭指数形式 25i eπ⎛⎫- ⎪⎝⎭(4) 当z 满足12z i =+条件时,21zz +是实数. (5) 设811i z i -⎛⎫= ⎪+⎝⎭,则663322z z +-的值为___1__5.选择题(1) 设12z i =+,则3Im z =( A )(A )-2 (B )1 (C )8 (D )14(2) 设)2z i =-,则100501z z ++的值为( A ) (A )i - (B )i (C )1 (D )-16.计算下例各题的值(1) 8(1)i -+解8833(1)cos 2sin 244i k i k ππππ⎤⎫⎛⎫⎛⎫-+=+++⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎭⎦()()()42cos 616sin 616k i k ππππ=+++16=(2) 13(1)i + 解132244(1)sin )33k k i i ππππ+++=+,0,1,2k =解()()16cos 2sin 2k i k ππππ=+++⎡⎤⎣⎦=22cos sin 66k k i ππππ++⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 0,1,,6k =(4) 10(1)-解10(1)-102cos 2sin 233k i k ππππ-⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=1010102cos sin 33i ππ-⎛--⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=()1121--+1.2 复变函数7. 选择题 (1) 12(1)-=( D )(A )无定义 (B )-1 (C )cos()2k ππ+(D )sin()2i k ππ+(2) 方程()2Re 1z =所代表的曲线为( C )(A )圆周 (B )椭圆 (C )双曲线 (D )抛物线 (3) 下例正确的是( D )(A )()Ln z 在1z =-处无定义 (B )(1)0Ln -= (C )(1)Ln -的虚部等于π (D )(1)Ln -的实部等于0(4) 若z e 为纯虚数,则z 有( C )(A )Re()0z = (B )Im()z k π=(C )Im()2z k ππ=+ (D )Im()2z π=(5) 下例中为单值函数的为( A )(A )rg a z (B )rg A z (C(D )求z 的值 (1) 23iz e π-= 8.解 2223333cos sin 33i ii i z e e ee i ππππ⎛⎫-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2312e ⎛=- ⎝⎭(2) 211z e -=解 因211z e -=,有211z Ln -=,所以,()11ln 112z iArg =++=()()1122i k π+ 0,1,2,k =±±(3)(1)z Ln =解(1)z Ln =()ln 11iArg =+ln 223i k ππ⎛⎫=+-+ ⎪⎝⎭0,1,2,k =±±(4) ln(1)z i =-解 ln(1)z i =-()1ln 1arg 1ln 224i i i i π⎛⎫=-+-=+- ⎪⎝⎭9. 选择题 (1) 设函数1z e i =-则Im z =( C )(A )4π- (B )4π (C )24k ππ- (D)24k ππ+(2) 设0y >,则sin()iy 的模为( D )(A )2y ye e i -- (B )2y ye e i -- (C )2y ye e -- (D )2y ye e --(3) 设{}01D z z =<<,则D 为( B )(A )无界区域 (B )复连通域(C )单连通域 (D )闭区域(4) 下例正确的是( D )(A )z e 为单调函数. (B )z e 为有界函数.(C )z e 为多值函数. (D )z e 为周期函数.10. 判断正误(1) 因为12(1)i i +<+,所以12(1)i i +<+. ( × )(2)sin ,cos z z为有界函数. ( × )(3)2()2Ln z Lnz=.( × )(4) {}Re()D z z z=≤所表示的为整个复平面.( √ )11. 计算下例各值(1) (1)i i + 解()1ln22124(1)i i k iLn i ii eeππ⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭+==12ln 242k i eππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=,0,1,2,k =±±(2)解))l n 11221i A r g i k eπ+===,0,1,2,k =±±(3) 32(1)-解 (3233ln2212322(1i k Ln eeππ⎛⎫⎛⎫++ ⎪- ⎪⎝⎭⎝⎭-==()()3l n 232i k ee ππ+=⋅=±12. 计算下例各值(1) cos(2)i -解 ()(2)(2)12121cos(2)22i i i i i ie e i e e ---+--+-==+ 11cos 2sin 222e e e e i --+-=⋅+⋅(2) sin i解1s i n 22i i i i e e e e i ii ⋅-⋅---==(3) ()tan 2Arc i解()()221211t a n 2l n 22122323ii i i A r c i L n L n i k i ππ+-⎡⎤=-=-=-++⎢⎥-⎣⎦1ln322i k π⎛⎫=++ ⎪⎝⎭0,1,2,k =±±。
复变函数与积分变换课后习题答案详解
…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数参考答案(1-8章)
复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。
(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。
提示:本题注意到2(1)2i i −=−,2(1)2i i +=。
则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。
(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。
提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。
(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。
(5)2122lim1z zz z z z →+−−=−32。
提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。
(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。
提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。
连接0,2z +,2z −的三角形为Rt Δ。
因此推出向量2z =,2arg 3z π=,即1z =−+。
本题也可以利用代数法来做。
2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。
复变函数习题第一章答案
即 x 2 + ( y + 2)2 ≥ 1. 点 z 的轨迹表示以 z = −2i 为圆心,以1为半径的圆的外面. (3) 设 z = x + iy , 由 Re(z + 2) = −1得, x + 2 = −1 , 即 x = −3 . 点 z 的轨迹表示 x = −3 这条直线. (4) 设 z = x + iy , 则 iz = i(x − iy) = y + ix ,
(4) Re(i z) = 3 ; (6) z + 3 + z + 1 = 4 ; (8) 0 < arg z < π .
解 (1) 设 z = x + iy ,则由 z + 2 − 3i = 5 得 (x + 2) + i( y − 3) = 5 , 即 (x + 2)2 + ( y − 3)2 = 25 .
3
3
所以 (−1 + i 3)10 = 210 (cos 20π + i sin 20π )
3
3
= 1024(cos 2π + i sin 2π )
3
3
= −27(cos(−π ) + i sin(−π )) ,
所以
3 − 27 = 3 27 (cos( − π + 2kπ ) + i cos( − π + 2kπ )) (k = 0,1,2) ,
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
(完整版)复变函数与积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换(修订版-复旦大学)课后的第一章习题答案
习题一1. 用复数的代数形式a +ib 表示下列复数.①解i4πππecos i sin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy ) ① :∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y ax a y z a z ax y ax a yx a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222R e z a x a y z a x a y---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++.②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i 33iz x y x y x y xy xy x y x x yxyy x y x y x xy x y y=+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3zxxy=-,()323Im 3zxy y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02=⎝⎭. ④解:∵()()(()2332313131i 28⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴R e 12=⎝⎭, Im 02=⎝⎭.⑤解: ∵()()1,2i 211i,k n k n k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()R e i 1kn=-,()Im i 0n=;当21n k =+时,()R e i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++==()()()()()()2i 32i 2i 32i 2i 32i 47i++=+⋅+=-⋅-=-④解:1i 1i 222++==()1i 11i 222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222R e z z z w w z w wz z w z w w zwz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222zw z w z w z w z w++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z wzz w w-=-⋅+()22222z wz w zw++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w zz w w z w-=-⋅-=--=-⋅-⋅+()222Re zz w w=-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e50255i θ⋅--===其中8πarctan19θ=-.②解:e i i θ⋅=其中π2θ=.π2ei i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi38π116πe--+=⋅⑤解:32π2πcos i sin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos i sin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i932π2πcos i sin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosi sin0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos i sini 6622=+=z . 2551cosπi sin πi6622=+=-z3991cosπi sinπi 6622=+=--z⑵-1的三次根解:()()132π+π2ππcos πi sin πcosi sin0,1,233k k k ++=+=∴1ππ1cosi sin3322=+=+z2cos πi sin π1=+=-z3551cosπi sinπ3322=+=--z⑶的平方根.πi4e 22⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e 6cos i sin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos i sin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πi sin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z-+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=。
最新复变函数第一章答案
第一章 复数与复变函数1.1计算下列各式:(1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+(2) ;(1)(2)i i i -- 解:2(13)3.(1)(2)2213101010i i i i i i i i i i i i +-====+----+- (3) 1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y y i z x iy x y x y x y-+--++-+-===++++++++++ 1.2 将直线方程220(0)ax by c a b ++=+≠写成复数形式.[提示: 记.x iy z +=] 解: 由,22z z z z x y i+-== 代入直线方程,得 ()()0,22()20,()()20,0,,2.a b z z z z c iaz az bi z z c a bi z a bi z c Az Az B A a ib B c ++-+=+--+=-+++=++==+=故其中1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b c az z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+=1.4 求下列复数的模与辐角主值.(1) 2;i -解: 2i -== 11arg(2)arctan arctan .22i --==- (2) 13;i -+解: 13i -+== 3arg(13)arctanarctan 3.1i ππ-+=+=-- 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+解: sin cos 1,i αα+=故sin cos cos()sin().22i i ππαααα+=-+- (2) sin cos .66i ππ-- 解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=- sin cos 66i ππ--=2222cos()sin()cos()sin .3333i i ππππ-+-=- 1.6 利用复数的三角表示计算下列各式:(1) 31();2解: 由乘幂公式知3cos3()sin 3() 1.33i ππ⎡⎤=⋅-+-=-⎢⎥⎣⎦(2)解: 因32222),4i i π-+=-+=所以由开方公式知3838sin ),0,1,2,3.1616k k i k ππ++=+= 1.7 指出满足下列各式的点z 的轨迹是什么曲线? (1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周. (2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=-若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.1.8 用参数方程表示下列各曲线.(1) 连接1i +与14i --的直线段;解: 法一:由直线段的复参数方程直接得 211()()[14(1)](1)1(25),01z t z z t z i i t i i i t t =-+=---+++=++--≤≤法二:由直线段的实参数方程间接得平面上连接点(1,1)与(1,4)--的直线段,其参数方程可写为: 1(11),011(41),x t t y t =+--⎧≤≤⎨=+--⎩故其复数形式的参数方程为: 12(15)1(25),01z t i t i i t t =-+-=++--≤≤ (2) 试证0Re limz z z →不存在. 证: 000Re limlim ,z x y z x z x iy →→→=+令,y kx =则上述极限为1,1ki +随k 变化而变化,因而极限不存在.全国2009年4月高等教育自学考试英语语法试题课程代码:00831一、单项选择题(本大题共20小题,每小题1分,共20分)Choose the best answer from the choices given and put the letters A, B, C or D in the brackets.1.——Did you hear what she said? ( )——Well, I heard her say something, but I ______.So I don ’t know exactly what she said.A .would not listenB .were not listeningC .had not listenedD .shouldn ’t listen2.When I got to the top of the mountain, the sun ______.()A.shoneB.shinesC.has shoneD.was shining3.The building suddenly collapsed while it ______ down.()A.pulledB.had been pulledC.was being pulledD.was pulled4.Most of my saving ______ in stocks.()A.has been investedB.is being investedC.have investedD.have been invested5.The manager insisted that the chief engineer ______ testing the new model immediately.()A.startB.startsC.startedD.will start6.Great as Newton was, many of his principles ______ and modified by contemporary scientists。
复变函数第一章习题答案~
显然 z ≠ 0时,tan(Argzபைடு நூலகம்) =
由此得 :
z2 + z1 ≤ z2 + z1 z2 − z1 ≥ z2 − z1
( 三角不等式)
还容易看出 z = z , argz = -arg z . 3.复数的三角表示 根据 x = r cos θ , y = r sin θ 可以得到 z = r (cos θ + i sin θ ). 上式称为复数的三角表 示. 4. 复数的指数表示 由欧拉公式 e iθ = cos θ + i sin θ 可以得到复数的指数表示式: z = re iθ . 5.复数的球面表示 (1) 南极、北极的定义
θ
1
θ + 2π
n
1
+ i sin
θ + 2π
n
)
θ + 4π
n
θ + 4π
n
)
wn−1 = r n (cos
θ + 2(n−1)π
n
+ i sin
θ + 2(n−1)π
n
)
1.任一非零复数开 n 次方,有且仅有 n 个不同的根; 2.它们均匀分布在以原点为中心 r n 为半径的圆周上.
1
π π + 2kπ + 2kπ 8 4 4 4 wk = 1 + i = 2 ( cos + isin ) 4 4 ( k = 0,1, 2, 3) (见图)
本讲小结: 1、复数的各种表示法 2、复数的四则运算、共轭运算
§3
1.乘积与商
设
复数的乘幂与方根
z1 = r1 (cos θ1 + i sin θ 1 ) = r1e iθ1 , z2 = r2 (cos θ 2 + i sin θ 2 ) = r2 e iθ 2 ,
复变函数与积分变换练习册参考答案
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠
令
5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2
。
6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =
复变函数习题解答(第1章)
复变函数习题解答(第1章)p44第一章习题(一)[ 13, 16, 17 , 20]13. 试证arg z ( -π arg z ≤π )在负实轴(包括原点)上不连续,除此而外在z平面上处处连续.记f(z) = arg z,D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0},D1 = { z∈ | Re(z) 0},D2 = { z∈ | Im(z) 0},D3 = { z∈ | Im(z) 0}.(1) 首先,f(z)在原点无定义,故f(z)在原点处不连续.(2) 设a∈ ,且a 0.则f(a) = π.考察点列z n = | a | (cos(1/n-π)+ i sin(1/n-π)),n∈ +.显然,-π 1/n-π≤π,故f(z n) = 1/n-π.而lim n→∞z n = lim n→∞( | a | (cos(1/n-π)+ i sin(1/n-π)) ) = a,但lim n→∞f(z n) = lim n→∞(1/n-π) = -π≠f(a).故f(z)在a处不连续.(3) 下面证明f(z)在D1, D2, D3这三个区域上都连续.设z = x + i y,x, y∈ .(3.1) 在D1上,f(z) = arctan(y/x),因arctan(y/x)是{(x, y)∈ 2 | x 0 }上的二元连续函数,故f(z)是D1上的连续函数.(3.2) 在D2上,f(z) = arccot(x/y),因arccot(x/y)是{(x, y)∈ 2| y 0 }上的二元连续函数,故f(z)是D2上的连续函数.(3.3) 在D3上,f(z) = arccot(x/y) -π,因arccot(x/y) -π是{(x, y)∈ 2 | y 0 }上的二元连续函数,故f(z)是D3上的连续函数.(4) 最后证明f(z)是D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0}上的连续函数.?a∈D,因为D = D1?D2?D3,故存在k (k = 1, 2, 3),使得a∈D k.因D k是开集故存在r 0,使得U r(a) = { z∈ | | z Ca | r } ?D k.根据(3),f(z)在D k上是连续的,故?ε 0,?η 0,使得?z∈D k,当| zCa | η时,| f(z) -f(a) | ε.设δ= min { r, η},则?z∈D,当| zCa | δ时,z∈U r(a) ?D k,又因| zCa | δ η,故必有| f(z) -f(a) | ε.所以,f在a处连续.由a的任意性,f(z)是上的连续函数.[连续性部分的证明可以用几何的方法,而且写起来会简单些.但我们之所以选择这个看起来很复杂的方法,是可以从这里看出θ(z) = arg(z)作为(x, y)的二元函数,在D1, D2, D3上都有很明显的可导的表达式,因此它在区域D上不仅是连续的,而且是连续可导二元函数:θx = y/(x2 + y2),θy = -x/(x2 + y2).证明中的第四部分并不是多余的,这是因为若f在两个集合A, B上都连续(即使它们有公共的部分),一般说来,并不能保证f在两个集合A?B上也连续.问题:若f在区域A, B上都连续,且A ?B ≠?,问f在A?B 上是否必连续?] 16. 试问函数f(z) = 1/(1 Cz )在单位圆| z | 1内是否连续?是否一致连续?(1) f(z)在单位圆| z | 1内连续.因为z在内连续,故f(z) = 1/(1 Cz )在\{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | 1内连续.(2) f(z)在单位圆| z | 1内不一致连续.令z n= 1 C 1/n,w n= 1 C 1/(n + 1),n∈ +.则z n, w n都在单位圆| z | 1内,| z n-w n | → 0,但| f(z n)-f(w n)| = | n - (n + 1) | = 1 0,故f(z)在单位圆| z | 1内不一致连续.[也可以直接用实函数f(x) = 1/(1 Cx )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈ | Im(z) = 0, 0 Re(z) 1 }上的限制即可.]17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.(?) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,则?ε 0,?N∈ +,使得?n N,有| z n -z0| ε.此时有| x n -x0| ≤ | z n -z0| ε;| y n -y0| ≤ | z n -z0| ε.故实数列{x n}及{y n}分别以x0及y0为极限.(?) 若实数列{x n}及{y n}分别以x0及y0为极限,则?ε 0,?N1∈ +,使得?n N1,有| x n -x0| ε/2;?N2∈ +,使得?n N2,有| y n -y0| ε/2.令N = max{N1, N2},则?n N,有n N1且n N2,故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| ε/2 + ε/2 = ε.所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.当z0≠∞时,结论是否正确?(1) ?ε 0,?K∈ +,使得?n K,有| z n -z0| ε/2.记M = | z1-z0 | + ... + | z K-z0 |,则当n K时,有| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n≤M/n + (n-K)/n (ε/2) ≤M/n + ε/2.因lim n→∞ (M/n) = 0,故?L∈ +,使得?n L,有M/n ε/2.令N = max{K, L},则当n K时,有23 | (z 1 + z 2 + ... + z n )/n - z 0 | ≤ M /n + ε /2 ε /2 + ε /2 = ε.所以,lim n →∞ (z 1 + z 2 + ... + z n )/n = z 0.(2) 当z 0 ≠ ∞时,结论不成立.这可由下面的反例看出.例:z n = (-1)n n ,n ∈ +.显然lim n →∞ z n = ∞.但?k ∈ +,有(z 1 + z 2 + ... + z 2k )/(2k ) = 1/2,因此数列{(z 1 + z 2 + ... + z n )/n }不趋向于∞.[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]p45第一章习题(二)[ 6, 8, 9, 11, 12 ]6. 设| z | = 1,试证:| (a z + b )/(b * z + a * ) | = 1.(z *表示复数z 的共轭)此题应该要求b * z + a * ≠ 0.| a z + b | = | (a z + b )* | = | a * z * + b * | = | a * z * + b * | | z | = | (a * z * + b *) z | = | a * z * z + b * z | = | a * | z |2 + b * z | = | b * z + a * |.故| (a z + b )/(b * z + a * ) | = 1.8. 试证:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件为1*****w z w z w z = 0.两个三角形同向相似是指其中一个三角形经过(一系列的)旋转、平移、位似这三种初等几何变换后可以变成另一个三角形(注意没有反射变换).例如z'z 312我们将采用下述的观点来证明:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件是:将它们的一对对应顶点都平移到原点后,它们只相差一个位似旋转.记f 1(z ) = z - z 1 (将z 1变到0的平移);f 3(z ) = z - w 1 (将0变到w 1的平移);那么,三角形z 1z 2z 3与三角形w 1w 2w 3同向相似4 ? 存在某个绕原点的旋转位似变换f 2(z ) = z 0 z ,使得f 2 ( f 1(z k )) = f 3(w k ),(k = 2, 3),其中z 0∈ \{0}? 存在z 0∈ \{0},使得z 0(z k - z 1) = w k - w 1,(k = 2, 3) ? (w 2 - w 1)/(z 2 - z 1) = (w 3 - w 1)/(z 3 - z 1)? 13131212w w z z w w z z ----= 0? 111***-*****12w w z z w w z z ----= 011*****w z w z w z = 0.[证完]9. 试证:四个相异点z 1, z 2, z 3, z 4共圆周或共直线的充要条件是(z 1 C z 4)/(z 1 C z 2) : (z 3 C z 4)/(z 3 C z 2)为实数.在平面几何中,共线的四个点A , B , C , D 的交比定义为(A , B ; C , D ) = (AC /CB ) : (AD /DB ).这是射影几何中的重要的不变量.类似地,在复平面上,(不一定共线的)四个点z 1, z 2, z 3, z 4的交比定义为[z 1z 2, z 3z 4] = (z 1 C z 3)/(z 2 C z 3) : (z 1 C z 4)/(z 2 C z 4).本题的结论是说:复平面上四个点共圆或共线的充要条件是其交比为实数.(?) 分两种情况讨论(1) 若(z 1 C z 4)/(z 1 C z 2)为实数,则(z 3 C z 4)/(z 3 C z 2)也是实数.设(z 1 C z 4)/(z 1 C z 2) = t ,t ∈ .则z 4 = (1 C t )z 1 + t z 2,故z 4在z 1, z 2所确定的直线上,即z 1, z 2, z 4共线.因此,同理,z 1, z 2, z 3也共线.所以,z 1, z 2, z 3, z 4是(2) 若(z 1 C z 4)/(z 1 C z 2)为虚数,则(z 3 C z 4)/(z 3 C z 2)也是虚数.故Arg ((z 1 C z 4)/(z 1 C z 2)) ≠ k π,Arg ((z 3 C z 4)/(z 3 C z 2)) ≠ k π.而Arg ((z 1 C z 4)/(z 1 C z 2)) C Arg ((z 3 C z 4)/(z 3 C z 2)) = Arg ((z 1 C z 4)/(z 1 C z 2) : (z 3 C z 4)/(z 3 C z 2)) = k π.注意到Arg ((z C z 4)/(z C z 2)) = Arg ((z 4 C z )/(z 2 C z ))是z 2 C z 到z 4 C z 的正向夹角,若Arg ((z 1 C z 4)/(z 1 C z 2)) = Arg ((z 3 C z 4)/(z 3 C z 2)),则z 1, z 3在z 2, z 4所确定的直线的同侧,且它们对z 2, z 4所张的角的大小相同,故z 1, z 2, z 3, z 4是共圆的.若Arg ((z 1 C z 4)/(z 1 C z 2)) = Arg ((z 3 C z 4)/(z 3 C z 2)) + π,则z 1, z 3在z 2, z 4所确定的直线的异侧,且它们对z 2, z 4所张的角的大小互补,故z 1, z 2, z 3, z 4也是共圆的.(?) 也分两种情况讨论(1) 若z1, z2, z3, z4是共线的,则存在s, t∈ \{0, 1},使得z4 = (1 Cs)z3 + s z2,z4 = (1 Ct)z1 + t z2,那么,z3Cz4 = s (z3 Cz2),即(z3Cz4)/(z3Cz2) = s;而z1Cz4 = t (z1 Cz2),即(z1Cz4)/(z1Cz2) = t,所以,(z1Cz4)/(z1Cz2) : (z3Cz4)/(z3Cz2) = t/s∈ .(2) 若z1, z2, z3, z4是共圆的,若z1, z3在z2, z4所确定的直线的同侧,那么,Arg ((z4Cz1)/(z2Cz1)) = Arg ((z4Cz3)/(z2Cz3))因此(z4Cz1)/(z2Cz1) : (z4Cz3)/(z2Cz3)是实数.也就是说(z1Cz4)/(z1Cz2) : (z3Cz4)/(z3Cz2)是实数.若z1, z3在z2, z4所确定的直线的异侧,则Arg ((z4Cz1)/(z2Cz1)) + Arg ((z2Cz3)/(z4Cz3)) = (2k + 1)π,故Arg ((z1Cz4)/(z1Cz2) : (z3Cz4)/(z3Cz2))= Arg ((z1Cz4)/(z1Cz2)) C Arg ((z3Cz4)/(z3Cz2))= Arg ((z1Cz4)/(z1Cz2)) + Arg ((z3Cz2)/(z3Cz4))= Arg ((z4Cz1)/(z2Cz1)) + Arg ((z2Cz3)/(z4Cz3)) = (2k + 1)π,所以,(z1Cz4)/(z1Cz2) : (z3Cz4)/(z3Cz2)仍为实数.[证完]这个题目写的很长,欢迎同学们给出更简单的解法.11. 试证:方程| z -z1 |/| z -z2 | = k ( 0 k ≠ 1,z1≠z2 )表示z平面的一个圆周,其圆心为z0,半径为ρ,且z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.到两定点距离成定比的点的轨迹是圆或直线.当比值不等于1时,轨迹是一个圆,这个圆就是平面几何中著名的Apollonius 圆.设0 k ≠ 1,z1≠z2,z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.?z∈ ,| z -z0 | = ρ?| z - (z1 -k2 z2)/(1-k2)| = k | z1 -z2|/| 1-k2 |?| z(1-k2)- (z1 -k2 z2) | = k | z1 -z2 |?| (z -z1) -k2 (z-z2)| = k | z1 -z2|?| (z -z1)/k-k (z-z2) | = | z1 -z2|?| (z -z1)/k-k (z-z2) | = | (z -z1)- (z-z2) |?| (z -z1)/k-k (z-z2) |2 = | (z -z1) - (z-z2) |2?| z -z1 |2/k2 + k2 | z-z2 |2 = | z -z1 |2 + | z-z2 |2?(1/k2 - 1)| z -z1 |2 = (1-k2 ) | z-z2 |2?| z -z1 |2/k2 = | z-z2 |2?| z -z1 |/| z-z2 | = k.[证完]直接地双向验证,可能需要下面的结论,其几何意义非常明显的.命题:若复数z, w≠ 0,则| | z | w /| w| - | w| z /| z| | = | w -z |.证明:我们用z*表示复数z的共轭.| | z | w /| w| - | w| z /| z| |2= | | z | w /| w| |2 + | | w| z /| z| |2- 2Re[( | z | w /| w|) (| w| z /| z|)* ]= | z |2 + | w|2- 2Re( w z* ) = | w -z |2.5或更直接地,| | z | w /| w| - | w| z /| z| |= | | z | w /| w| - | w| z /| z| | | z*/| z| | | w*/| w| |= | (| z | w /| w| - | w| z /| z|) (z*/| z|) (w*/| w|) |= | (| z | (z*/| z|) - | w| (w*/| w|)) | = | w -z |.12. 试证:Re(z) 0 ? | (1 -z)/(1 + z) | 1,并能从几何意义上来读本题.Re(z) 0 ?点z在y轴右侧?点z在点-1和点1为端点的线段的垂直平分线的右侧?点z在点-1和点1为端点的线段的垂直平分线的与1同侧的那一侧?点z到点-1的距离大于点z到点1的距离?|1 + z | | 1 -z | ?| (1 -z)/(1 + z) | 1.不用几何意义可以用下面的方法证明:设z = x + i y,x, y∈ .| (1 -z)/(1 + z) | 1 ?|1 + z | | 1 -z | ?|1 + z |2 | 1 -z |2? 1 + z2 + 2Re(z) 1 + z2- 2Re(z) ?Re(z) 0.[由本题结论,可知映射f(z) = (1 -z)/(1 + z)必然把右半平面中的点映射到单位圆内的点.并且容易看出,映射f(z)把虚轴上的点映射到单位圆周上的点.问题:f(z)在右半平面上的限制是不是到单位圆的双射?f(z)在虚轴上的限制是不是到单位圆周的双射?]???-?±≠≥?≤≡??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞????? ?∏∑? ⊥∠ √§ψ∈???????∠?????§ #?→←↑↓?∨∧??????∑ΓΦΛΩ??m∈ +,?m∈ +,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε 0,∑u n,∑n≥ 1u n,m∈ ,?ε 0,?δ 0,?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。