三角恒等变换公式重点

合集下载

三角恒等变换的公式

三角恒等变换的公式

三角恒等变换的公式
三角恒等变换是指三角形的三条边和几何形状特性保持不变,但边上的相对边角距离发生变化的一种变换。

它是一种广泛使用的几何图形变换方法,经常用于存储和显示图像信息,也用在测量、定位和制图等方面。

三角恒等变换的公式是指三个变量的线性函数,这三个变量分别为三角形的三条边长度和相对角度,最常见的公式为:
A =
B * sin (C)
B = A * sin (C)
C = arcsin (A/B)
A,B,C分别表示三角形的三条边长度,arcsin表示反正弦函数,求取三角形的边长,只需用任意一条边的值和角度,即可计算出其它两条边的值。

同时,三角恒等变换还能够帮助绘制几何形状,可以很方便的求出多边形的中心,对图像的处理具有非常重要的作用。

三角恒等变换的公式可以用来提高图像的处理速度,减少存储空间,减少计算量,加快查找速度。

它是计算机图像处理领域非常典型的计算方式,可以用它把需要处理的图像拆分成多个三角形,并利用其特性进行编码,从而缩小处理时间,提高处理效率。

初中数学三角恒等变换知识总结

初中数学三角恒等变换知识总结

初中数学三角恒等变换知识总结三角恒等变换是初中数学中非常重要的知识点之一。

通过学习和掌握三角恒等变换,我们可以简化和转换三角函数的表达式,从而更方便地计算和解决与三角函数相关的问题。

本文将对初中数学中常用的三角恒等变换进行总结。

首先,让我们回顾一下三角函数的基本定义。

在一个直角三角形中,正弦函数(sin)、余弦函数(cos)和正切函数(tan)分别表示:- 正弦函数:$\sin A = \frac{{\text{对边}}}{{\text{斜边}}}$- 余弦函数:$\cos A = \frac{{\text{邻边}}}{{\text{斜边}}}$- 正切函数:$\tan A = \frac{{\text{对边}}}{{\text{邻边}}}$一个重要的三角恒等变换是诱导公式,用于描述同一角的三角函数之间的关系。

这些公式有助于简化和转换三角函数的表达式。

以下是一些常见的三角诱导公式:1. 正弦诱导公式:$\sin (A \pm B) = \sin A \cdot \cos B \pm \cos A \cdot \sin B$2. 余弦诱导公式:$\cos (A \pm B) = \cos A \cdot \cos B \mp \sin A \cdot \sin B$3. 正切诱导公式:$\tan (A \pm B) = \frac{{\tan A \pm \tan B}}{{1 \mp \tan A\cdot \tan B}}$以上是加减角的诱导公式,接下来是倍角和半角的诱导公式:4. 正弦倍角公式:$\sin(2A) = 2\sin A \cdot \cos A$5. 余弦倍角公式:$\cos(2A) = \cos^2 A - \sin^2 A$6. 正切倍角公式:$\tan(2A) = \frac{{2\tan A}}{{1 - \tan^2 A}}$对于半角,有以下的诱导公式:7. 正弦半角公式:$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{{1 - \cos A}}{2}}$8. 余弦半角公式:$\cos\left(\frac{A}{2}\right) = \sqrt{\frac{{1 + \cos A}}{2}}$9. 正切半角公式:$\tan\left(\frac{A}{2}\right) = \frac{{\sin A}}{{1 + \cos A}}$此外,还有两个重要的三角恒等变换,它们是三角函数之间的倒数关系:10. 正余弦倒数公式:$\sin\left(\frac{\pi}{2} - A\right) = \cos A$11. 余切正切倒数公式:$\tan\left(\frac{\pi}{2} - A\right) = \frac{1}{\tan A}$通过掌握这些三角恒等变换,我们可以更加灵活地处理复杂的三角函数表达式。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。

在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。

这些等式在解决各种三角函数问题时起到了重要的作用。

1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。

例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。

通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。

2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。

例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。

通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。

3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。

根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。

例如,sin²(x) + cos²(x) = 1就是一个平方和关系。

通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。

4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。

例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。

通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。

5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。

三角的恒等变换

三角的恒等变换

三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβ。

cos(α-β)=cosα·cosβ+sinα·sinβ。

sin(α+β)=sinα·cosβ+cosα·sinβ。

sin(α-β)=sinα·cosβ-cosα·sinβ。

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。

定号法则将α看做锐角(注意是“看做”),按所得的角的来象垍限头樤,取三角函数的符号。

也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。

正负号看原函数中α所在象限的正负号。

关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。

或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。

还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。

定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。

所以sin(90°+α)=cosα, cos(90°+α)=-sinα这个非常神奇,屡试不爽~还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。

在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。

本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。

一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。

三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。

在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。

二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。

这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。

1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。

三角恒等变换所有公式

三角恒等变换所有公式

三角恒等变换所有公式1.余弦的平方公式:cos^2θ + sin^2θ = 1这是最为基本的三角恒等变换,它表示余弦函数平方加正弦函数平方等于12.余弦的二倍角公式:cos(2θ) = cos^2θ - sin^2θ这个公式表示一个角的余弦的二倍等于该角的余弦平方减去正弦平方。

3.正弦的二倍角公式:sin(2θ) = 2sinθcosθ这个公式表示一个角的正弦的二倍等于两倍该角的正弦函数和余弦函数的乘积。

4.余弦的和差公式:cos(θ ± φ) = cosθcosφ - sinθsinφ这个公式用于求两个角的和或差的余弦。

5.正弦的和差公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ这个公式用于求两个角的和或差的正弦。

6.正切的和差公式:tan(θ ± φ) = (tanθ ± tanφ) / (1 ∓ tanθtanφ)这个公式用于求两个角的和或差的正切。

7.余弦的和公式:cos(θ + φ) = cosθcosφ - sinθsinφ这个公式表示两个角的和的余弦等于两个角的余弦乘积减去两个角的正弦乘积。

8.余弦的差公式:co s(θ - φ) = cosθcosφ + sinθsinφ这个公式表示两个角的差的余弦等于两个角的余弦乘积加上两个角的正弦乘积。

9.正弦的和公式:sin(θ + φ) = sinθcosφ + cosθsinφ这个公式表示两个角的和的正弦等于两个角的正弦乘积加上两个角的余弦乘积。

10.正弦的差公式:sin(θ - φ) = sinθcosφ - cosθsinφ这个公式表示两个角的差的正弦等于两个角的正弦乘积减去两个角的余弦乘积。

11.三角函数的平方公式:sin^2θ = (1 - cos2θ) / 2cos^2θ = (1 + cos2θ) / 2这些公式表示正弦函数和余弦函数的平方可以用角的余弦的二倍来表示。

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. (2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15°2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ). 3.已知sin α=23,则cos(π-2α)等于( ). 4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α=_______. 5.已知cos ⎝⎛⎭⎫π4-α=1213,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫π4+α=_________. 6. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值.。

三角恒等变换公式总结

三角恒等变换公式总结

三角恒等变换公式总结1. 引言三角恒等变换公式,这个听起来有些复杂的名字,实际上就像是数学里的“调味料”,能让我们在解决各种问题时,轻松又有趣。

想象一下,生活中的各种角度和三角形,不论是你在量房子的时候,还是在看风景时,三角函数都在悄悄发挥着作用。

今天就带大家轻松了解这些公式,保证让你有种“豁然开朗”的感觉!2. 基本三角恒等式2.1 正弦与余弦的关系首先,咱们得从最基础的说起,正弦(sin)和余弦(cos)。

你知道吗?它们就像是一对好朋友,总是形影不离。

基本恒等式之一就是sin²x + cos²x = 1。

简单来说,就是不论你选择哪个角度,它们俩加起来永远都是1。

这就像生活中的一种平衡,太多或太少都不行!2.2 正切的神奇接下来,咱们聊聊正切(tan)。

正切其实是余弦和正弦的比值,公式就是 tanx = sinx/cosx。

想象一下,这就好比你在餐厅里点了一份大餐,正弦是主菜,余弦是配菜,而正切就是你整个用餐体验的完美比例,缺一不可!3. 重要的三角恒等式3.1 角度和的公式说到三角恒等变换公式,角度和的公式可得好好聊聊。

比如说,sin(a + b) = sin a * cos b + cos a * sin b。

这就像是两个不同口味的冰淇淋,混合在一起后,产生了新鲜的口感,意外的美味总是让人惊喜。

而 cos(a + b) = cos a * cos b sin a * sin b,则是让人感觉有点酸酸甜甜的感觉,确实让人难忘!3.2 角度差的公式当然,除了和,角度差的公式也很有意思。

sin(a b) = sin a * cos b cos a * sin b。

这个公式就像是两位舞者,偶尔要展示一下各自的魅力,虽有些抵触,却又能擦出火花。

cos(a b) = cos a * cos b + sin a * sin b,则让人觉得温暖,像是朋友间的默契配合。

4. 应用实例4.1 解决实际问题学习这些公式,关键还是要知道如何运用。

三角恒等变换公式大全

三角恒等变换公式大全

三角恒等变换公式大全三角函数是数学中的重要概念,它在几何、物理、工程等领域都有着广泛的应用。

而三角恒等变换公式则是三角函数中的重要内容之一,它们可以帮助我们简化复杂的三角函数表达式,从而更方便地进行计算和推导。

本文将为大家详细介绍三角恒等变换公式的相关知识,并列举一些常用的三角恒等变换公式,希望对大家的学习和工作有所帮助。

首先,我们来了解一下什么是三角恒等变换公式。

三角恒等变换公式是指在三角函数中,存在一些等式关系,通过这些等式关系,我们可以将某个三角函数表达式变换成另一个等价的三角函数表达式。

这些等式关系通常是由三角函数的定义和性质推导出来的,它们可以帮助我们简化三角函数的计算和推导过程。

接下来,我们将介绍一些常用的三角恒等变换公式。

首先是正弦函数和余弦函数的恒等变换公式:\[。

\sin^2 x + \cos^2 x = 1。

\]这个公式被称为三角恒等式的基本恒等式,它是由正弦函数和余弦函数的定义推导出来的。

通过这个公式,我们可以将一个三角函数表达式中的正弦函数或余弦函数用另一个三角函数来表示,从而简化计算。

除了基本恒等式外,还有一些常用的三角恒等变换公式,如双角和半角公式、和差化积公式等。

这些公式在三角函数的计算和推导中都有着重要的应用,它们可以帮助我们解决一些复杂的三角函数表达式,加快计算速度,提高工作效率。

另外,三角恒等变换公式还可以帮助我们简化一些三角函数的积分和微分运算。

通过恒等变换,我们可以将一些复杂的三角函数积分或微分转化成更简单的形式,从而更方便地进行计算。

这对于一些需要频繁进行三角函数积分和微分运算的工程和科学问题来说,具有非常重要的意义。

总之,三角恒等变换公式是三角函数中的重要内容,它们可以帮助我们简化复杂的三角函数表达式,加快计算速度,提高工作效率。

通过学习和掌握三角恒等变换公式,我们可以更加轻松地解决一些三角函数相关的问题,为我们的工作和学习带来便利。

希望本文介绍的内容对大家有所帮助,也希望大家能够深入学习和应用三角恒等变换公式,发挥它们在实际问题中的作用。

三角恒等变换所有公式

三角恒等变换所有公式

三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。

下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。

三角恒等变换的基本公式

三角恒等变换的基本公式

三角恒等变换的基本公式三角函数是数学中的重要概念之一,它在许多领域都有广泛的应用。

在三角函数的研究中,恒等变换是非常重要的一部分,它可以帮助我们简化计算、推导证明以及解决实际问题。

本文将介绍三角恒等变换的基本公式。

一、正弦函数的基本公式正弦函数是三角函数中最常用的函数之一,它的基本公式可以表示为:sin(x + y) = sin(x)cos(y) + cos(x)sin(y)这个公式被称为正弦函数的和差化积公式。

它表示了两个角的正弦函数之和与它们的余弦函数和正弦函数之积之间的关系。

通过这个公式,我们可以推导出一系列的恒等变换。

例如,当x和y相等时,上述公式可以简化为:sin(2x) = 2sin(x)cos(x)这个公式被称为正弦函数的倍角公式。

它可以帮助我们快速计算角的正弦函数值,从而简化求解过程。

二、余弦函数的基本公式与正弦函数类似,余弦函数也有一系列的恒等变换公式。

比较常用的是余弦函数的和差化积公式:cos(x + y) = cos(x)cos(y) - sin(x)sin(y)这个公式表示了两个角的余弦函数之和与它们的余弦函数和正弦函数之积之间的关系。

利用这个公式,我们也可以推导出一些有用的公式。

例如,当x和y相等时,上述公式可以简化为:cos(2x) = cos²(x) - sin²(x)这个公式被称为余弦函数的倍角公式。

它在解决一些复杂的三角函数计算问题时非常有用。

三、正切函数的基本公式正切函数是三角函数中另一个重要的函数,它的基本公式为:tan(x + y) = (tan(x) + tan(y))/(1 - tan(x)tan(y))这个公式被称为正切函数的和差化积公式。

它表示了两个角的正切函数之和与它们的正切函数和余切函数之积之间的关系。

通过这个公式,我们也可以推导出一些常见的恒等变换公式。

例如,当x和y相等时,上述公式可以简化为:tan(2x) = 2tan(x)/(1 - tan²(x))这个公式被称为正切函数的倍角公式。

三角恒等变换知识点归纳

三角恒等变换知识点归纳

第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 26、22tan tan 21tan ααα=-. 27、⇒(后两个不用判断符号,更加好用) 28、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

)sin αϕA +B ,其中tan ϕB =A. 29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变一.选择题(共12小题,每小题5分,共60分)1.已知)2,23(,1312cos ππαα∈=,则=+)4(cos πα ( )A.1325 B. 1327 C. 26217 D. 2627 2.若均βα,为锐角,==+=ββααcos ,53)(sin ,552sin 则( ) A.552 B. 2552 C. 2552552或 D. 552-3.=+-)12sin 12(cos )12sin 12(cos ππππ( ) A. 23-B. 21-C. 21D. 23 4.=-+0tan50tan703tan50tan70 ( )A.3 B.33 C. 33- D. 3- 5.=⋅+ααααcos2cos cos212sin22( ) A. αtan B. αtan2 C. 1 D.21 6.已知x 为第三象限角,化简=-x 2cos 1( )A.x sin 2 B. x sin 2- C. x cos 2 D. x cos 2-7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) A .1010 B .1010- C .10103 D .10103- 8. 若).(),sin(32cos 3sin 3ππϕϕ-∈-=-x x x ,则=ϕ( )A. 6π-B.6π C. 65π D. 65π-9. 已知1sin cos 3αα+=,则sin 2α=( )A .89- B .21- C . 21 D .8910. 已知cos 23θ=,则44cos sin θθ-的值为( )A .3-B .3C .49D .1 11. 求=115cos 114cos 113cos 112cos11cosπππππ( )A. 521B. 421 C. 1 D. 012. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A .x =113π B .x =53π C .53x π=- D .3x π=-二.填空题(共4小题,每小题4分,共16分)13.已知βα,为锐角,的值为则βαβα+==,51cos ,101cos .14.在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = . 15.若542cos ,532sin-==αα,则角α的终边在 象限. 16.代数式sin15cos75cos15sin105o o o o += .三.解答题(共6个小题,共74分)17.(12分)△ABC 中,已知的值求sinC ,135B c ,53cosA ==os .18.(12分)已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.19.(12分)已知α为第二象限角,且 sinα=,415求12cos 2sin )4sin(+++ααπα的值.20. (12分)已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且,求)2tan(βα-的值及角βα-2.21.(12分)已知函数2()cos cos 1f x x x x =+,x R ∈. (1)求证)(x f 的小正周期和最值; (2)求这个函数的单调递增区间.22. (14分) 已知A 、B 、C 是ABC ∆三内角,向量(m =-(cos ,sin ),n A A =且m.n=1(1)求角A; (2)若221sin 23,cos sin BB B+=--求tanC .《数学必修4》三角恒等变换测试题答案二、填空题13、43π 14、 23- 15、第四 16、 3三、解答题(共6个小题,满分74分)6563135********sin cos cos sin )sin(sin ,1312cos ,180B A ,120,1312cos 6023sin ,1312sin 1cos ,135sin 54sin ,53cos ,:.170002=⨯+⨯=+=+=∴=>+>∴-=>∴>±=-±===∴=∆B A B A B A C B B B A A B B B A A ABC 故不合题意舍去这时若可得又由中在解6556135)54(131253)sin()cos()cos()sin()]()sin[(2sin 54)cos(,135)sin(23,40432:.19-=⨯-+⨯-=-++-+=-++=∴-=+=-∴<+<<-<∴<<<βαβαβαβαβαβααβαβαπβαππβαπβαπ解 右边左边证明=-+=-+⨯+=-+=++-=+=+=xx x xx x x x x xx x x x x x x 4cos 1)4cos 3(24cos 1)24cos 122(224cos 12cos 222sin 41)22cos 1()22cos 1(cos sin cos sin sin cos cos sin :.202222224422224321713417134tan )22tan(1tan )22tan(])22tan[()2tan(0240271tan :.20πβαββαββαββαβαβαππαπβπβ-=-∴=⨯+-=--+-=+-=-∴<-<-∴<<<<∴-= 解21.解:(1)2cos cos 1y x x x =++cos 212122x x +=++11cos 221222x x =+++ 3sincos 2cossin 2662x x ππ=++3sin(2)62x π=++ (2)因为函数sin y x =的单调递增区间为2,2()22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,由(1)知3sin(2)62y x π=++,故 222()262k x k k Z πππππ-+≤+≤+∈ ()36k x k k Z ππππ∴-+≤≤+∈故函数3sin(2)62y x π=++的单调递增区间为[,]()36k k k Z ππππ-++∈三角恒等变换测试题时间:120分钟 满分:150分一.选择题(共12小题,每小题5分,共60分) 1.下列表达式中,正确的是( )AA.()sin cos sin sin cos αβαβαβ+=+B. sin()cos sin sin cos αβαβαβ-=-C.s()cos cos sin sin co αβαβαβ+=+D.cos()cos cos sin cos αβαβαβ-=- 设计意图:主要考查学生对公式结构的掌握情况。

2.表达式sin(45)sin(45)A A +--化简后为( )BA.A A C.1sin 2A D. 1sin 2A - 设计意图:主要考查学生对正弦的和、差公式的掌握和应用。

3. 函数sin cos 2y x x =++的最小值是( )AA. 22+设计意图:主要考查学生辅助角公式的应用以及三角函数的最值问题。

4. 已知θ是第三象限的角,若445sin cos 9θθ+=,则sin 2θ等于( )AA.3 B. 3- C.23 D. 23- 设计意图:主要考查同角的三角函数公式、正弦的二倍角、正切的和角公式的应用。

5.已知3(,),sin ,25παπα∈=则tan()4πα+等于( ) A A. 17 B. 7 C. 17- D. 7-设计意图:主要考查同角的三角函数公式、正弦的二倍角、正切的和角公式的应用。

6. 函数1cos y x =+的图象( )B A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线2x π=对称7. (2006高考)若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=( ) AB. C.53 D.53- 8. (2006高考)函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为( )B A.π2B.πC.2πD.4π设计意图:主要考查三角函数的性质。

9. 22cossin 88ππ-等于( )AA.2B.1C. 2-D. 1-10.tan2α不能用下列式表达的是 ( )DA. B.sin 1cos αα+C.1cos sin αα- D.sin 1cos αα-11.tan15tan30tan15tan30++等于 ( )DA.12B. 2 D.112. 当0x π-≤≤时,函数()sin f x x x =最小值为( )BA.1-B. 2-C. 二.填空题(共4个小题,每小4分,共16分) 13. 已知1sin()sin(),(,)4462x x x ππππ+-=∈,则sin 4x =____14. 设ABC ∆中,tan tan tan A B A B +=,sin cos 4A A =,则此三角形是______三角形. 15.(05高考) 若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos = .16.(06高考) 若()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,则有序实数对(,a b )可以是 . (写出你认为正确的一组数即可).三.解答题(共6个小题,74分;写出必要的文字说明或解题步骤) 17.(本小题12分)已知12sin()413x π-=,04x π<<,求cos 2cos()4x x π+.18.(本小题12分)已知函数1)4()cos x f x xπ-=. (1)求()f x 的定义域;(2)设α的第四象限的角,且tan α43=-,求()f α的值.19.(2006高考) (本小题12分)已知310,tan cot 43παπαα<<+=- (1)求tan α的值;(2)求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.20. (2006高考) (本小题12分) 已知函数()sin sin(),2f x x x x R π=++∈.(1)求()f x 的最小正周期;(2)求()f x 的的最大值和最小值; (3)若3()4f α=,求sin2α的值.21. (本小题12分)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.22. (本小题14分)已知A 、B 、C 是ABC ∆三内角,向量(m =-(cos ,sin ),n A A =且 1.m n =(1)求角A;(2)若221sin 23,cos sin B B B+=--求tanC .三角恒等变换公式两角和与差的三角函数:cos()cos cos sin sin cos()cos cos sin sin sin()sin cos cos sin sin()sin cos cos sin tan tan tan()1tan tan tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ-=++=--=-+=+--=+++=-二倍角公式22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=- 半角公式2221cos sin 221cos cos 221cos tan 21cos sin 1cos tan 21cos sin αααααααααααα-=+=-=+-==+ 万能公式:22222tan2sin 1tan 21tan 2cos 1tan22tan2tan 1tan2ααααααααα=+-=+=-。

相关文档
最新文档