zemax各种镜头设计

合集下载

基于ZEMAX的手机照相镜头的光学设计(可编辑)

基于ZEMAX的手机照相镜头的光学设计(可编辑)

基于ZEMAX的手机照相镜头的光学设计(可编辑)基于ZEMAX的手机照相镜头的光学设计本科毕业设计论文题目:手机照相镜头的光学设计院、系: 光电工程学院学科专业: 光电信息工程学生:学号:指导教师:年 6月手机照相镜头的光学设计摘要随着市场的发展,可拍照手机逐渐取代普通手机,而手机的小型超薄化也是必然趋势,手机的照相功能的提升和小型超薄化应并进,而二者又是相互制约的,因此尽量减小手机照相镜头的体积并提高其性能成为必然趋势。

本文后半部分运用ZE对所设计的镜头进行了调整和优化,用缩放法对初始模型反复调试和修改,并根据课题要求进行了数据分析,最终得出了符合设计要求的结果。

最终设计结果为:镜头总长:10.07mm,后焦距:1.27mm。

畸变范围-1.07到1.76?之间。

中心视场MTF@160lp/mm值为0.52。

边缘视场MTF@120lp/mm值为0.53。

关键字:可拍照手机镜头小型化 ZE 优化。

Mobile lens designAbstractAlong with the market’ development demand, p hones which can take photos will replace the common phone. And the phones which is small and thin will be the main product. For this , smaller and thinner should go along with each. But it’s difficult to complete. So the trend of mobile lens’ future is to monish the volume and make the assemble better In the second part of this thesis, I use ZE to design the lens and try my best to make it better, zoom the original lens to debug and alter it. And analysis the data according the task require. In final, I reach the design purpose. Final design: total length of the lens is 10.07mm, back focal length is 1.27mm, distortion is from -1.07 to 1.76, theMTF@160lp/mm at zero field is 0.52, the MTF@120lp/mm at 0.7 field is0.53Keywords: mobile which can take photos; lens; smaller; ZE; optimizations.目录摘要 (?)Abstract (?)目录 (1)1 绪论 (1)1.1 研究的目的和意义…………………………………………………(1) 1.2 可拍照手机和镜头设计的国内外发展………………………… (1) 1. 2. 1 可拍照手机国内外发展状况 (1)1.2.2 现今镜头设计的国内外发展状况 (2)2 手机照相镜头的成像原理介绍 (3)2.1 可拍照手机照相原理....................................... ............ (3) 2.2 感光元件简介............................................. ...............(3) 2. 3 镜头结构分类及选择........................... (3)2.4手机镜头的性能指标和相关术语…………………………………(4) 2.4.1镜头类型选择的依据[7] (4)2.4.2数码镜头鉴别率 (4)2.4.3光圈范围 (4)2. 4. 4影响像质的几个因素 (5)3光学系统设计 (6)3.1光学设计软件简介…………………………………………………(6) 3.1.1 ZE MTF函数 (6)3.1.2缺省的评价函数及优化 (6)3. 1. 3归一化的视场和光瞳坐标 (7)3.2设计要求及分析……………………………………………………(7) 3.3初始结构的选择……………………………………………………(8) 3. 3. 1 视场角的确定 (10)3.3.2 F数的确定 (10)3.3.3 工作波长的选择 (10)3.3.4调制传递函数图如下 (11)3.3.5七种塞得像差分别为 (11)3.3.6场曲和畸变图 (12)3.3.7点列图如下 (12)3.3.8光线特性曲线图 (13)3.4 像差的初步校正…………………………………………………(13) 3.4.1初步校正后的数据 (13)3.4.2二维光路图如下 (15)3.4.3调制传递函数图如下: (15)3.4.4场曲畸变图 (16)3.4.5点列图 (17)3.4.6光线特性曲线图 (17)3.5系统优化 (18)3.5.1优化数据 (18)3. 5. 2二维光路图 (19)3.5.3 点列图 (20)3.5.4场曲畸变示意图 (20)3.5.5 MTF分析图 (21)3.5.6光线特性曲线图 (23)3.6公差分析 (24)3. 6. 1公差分析的一般过程 (24)3.6.2公差分析方式介绍 (24)3. 6. 3此课题所进行的公差分析结果 (25)3.7设计结果 (27)4 结论 (29)致谢 (30)参考文献 (31)1 绪论1.1 研究的目的和意义随着手机镜头相关工艺的实践,低端的数码相机已逐步被可拍照手机所取代。

Zemax光学设计:Petzval物镜的设计实例

Zemax光学设计:Petzval物镜的设计实例

Zemax光学设计:Petzval物镜的设计实例引言:Petzval物镜,它是由两个被空气分离的正透镜组构成。

1839年Joseph Petzval 设计了这个著名的“照相物镜”。

其前组是一个双胶合,后组是一个双分离,两者之间有一个光圈。

前组可以很好地校正球差,但会引入彗差。

彗差由后组校正,光阑位置校正了大部分像散。

然而,这会导致额外的场曲和晕影。

因此,FOV限制在30度以内。

f/3.6的f值是可以实现的,这比当时的其他镜头要快得多。

Petzval首次根据光学定律计算透镜的组成,而之前的光学系统则是根据经验进行磨制和抛光的。

为了计算,奥地利大公路易(炮兵司令)向匹兹瓦提供了8名炮兵和3名下士,因为火炮是进行数学计算的少数职业之一。

1.Seidel分析双片式物镜的局限性在于单组元件无法校正像散,这大大限制了它的视场角范围。

在光阑上的薄透镜组的像散为:即其总是不为零。

因此,只有一些透镜组不在光阑上,才能校正像散。

因此,两个分离的透镜组可以用于产生等量反向的像散。

这两个透镜组不一定是单透镜,也可以是消色差双片式或者更复杂的透镜组。

若我们假设光阑在第一个透镜组上,第二个透镜组和它相距一段距离,那么会有光阑平移效应。

只要第二个透镜组没有完全校正球差和彗差,那么平移第二个透镜组远离光阑一定距离,就可以产生足够的像散来校正第一个透镜组的像散。

我们可以得到任意的一个像散值S3,但是两个正透镜组都会对场曲产生贡献,即Petzval 物镜的 Petzval 和总是正值。

这意味着像面总是朝向镜头弯曲。

通常,我们想要零像散,则让总的S3为零,场曲会使子午和弧矢像重合于弯曲的像面上。

但是,还有其他选择,由弧矢像差,只要S3=-S4,我们就可以使弧矢像面为平面。

而且,若让S3=-S4/3,则就可以使子午像面为平面。

在设计 Petzval 镜头中有一个很好的准则,那就是让前组(A)的光焦度为K /2,后组(B)的光焦度为K,为保证总光焦度为K,让它们之间的距离为1/K。

ZEMAX课程设计——照相机物镜设计

ZEMAX课程设计——照相机物镜设计

Z E M A X课程设计——照相机物镜设计一、(课题的背景知识,如照相机镜头的发展概况,类型及其主要技术参数的简要说明)二、课程设计题目设计一个照相物镜,1)光学特性要求:f’=100mm;2ω=30︒;;D/f’=1:3.5.2)成像质量要求:弥散斑直径小于0.05mm;倍率色差最好不超过0.01mm;畸变小于3%。

三、设计课题过程1、参考Ernostar和Tessar联合型物镜设计相关数据,对其进行相关改进。

Ernostar和Tessar联合型物镜设计相关数据如下表1(其中焦距f’=75.68mm;相对孔径D/f’=1:2.4;视场表12、根据焦距曲率镜片厚度之间的比例关系,即f1/f2=r1/r2=d1/d2,得到焦距100mm,相对孔径D/f’=1:3.5的透镜数据如下表2。

3、启动ZEMAX,将表1数据输入到LDE,相关步骤由以下图给出(1)打开ZEMAX。

(2)输入数据。

在主选单system下,圈出wavelengths,依喜好键入所要的波长,同时可选用不同波长,本实验中在第一列键入0.486,单位为microns,第二第三列分别键入0.587、0.656。

在primary中点击选1,即用第一个波长为近轴波长。

(3)输入孔径大小。

由相对孔径为1:3.5,焦距为100mm得到,孔径D=100/3.5=28.57143mm。

在主选单system菜单中选择generaldata,在aper value上键入28.57143。

(4)输入视场角。

(5)输入曲率,面之间厚度,玻璃材质。

本实验中共有5组透镜,其中最后两组为双胶合透镜,故共有9个面,回到LDE,可以看到三个surface,STO (孔径光阑)、OBJ(物点或光源)、IMA(像屏),在STO前后插入几组surface,除IMA外共计9组surface,输入数据。

最后根据参考实验图确定STO在第6面上。

①点击layout,画出2D图形②点击spot diagram ,画出点阵图由图看出光波在波长1、2、3下的弥散斑直径大小分别为33.625、54.419、64.768(单位:微米),其中第2、3波长弥散斑大小大于50微米,不符合要求,故需要改进。

ZEMAX光学成像设计实例---ZEMAX基础实例-变焦镜头设计

ZEMAX光学成像设计实例---ZEMAX基础实例-变焦镜头设计

引言● 在我们要求具焦的能● 所谓变同范围变焦距● 由于一是使用大家通变焦镜头我们知道说一个系统大小、视场I 为像高im变焦镜头对孔径保持变焦时采取通过改变ZE 们成像镜头设具备变焦的能能力便可以应变焦,即镜头围景物的成像距来改变拍摄一个系统的焦用类似定焦镜通过举一反三头设计原道,设计好的统的接收面尺场和焦距三者mage, f 为焦头的变焦倍数持不变,但对取相对孔径(变镜片与镜片焦EMAX 设计要求中,能力,如CCT 应用于多种环头的焦距在一像。

我们通常所摄范围,因此焦距在某一范镜头的分析优三的练习可掌理介绍:的一组镜头如寸大小是固定有如下关系焦距,theta 为数为长焦距和于实际的高变即F/#)也跟片之间的间隔焦距变化,视角相应改变X 基础通常分两种:TV 监控镜头,环境条件,放大定范围可调节所说的变焦镜此非常利于画面范围可变,相当优化方法,本节掌握变焦镜头在如果变化镜片定不变的(像: 为视场角度。

和短焦距比值变倍比系统,跟随变化的方隔达到设计的视场变础实例-:定焦镜头与,红外探测镜大缩小或局部节,通过改变镜头一般指摄面构图。

当于由无数多节我们将带领在ZEMAX中片与镜片之间像面:CCD 或。

如下图所不值,也称为“,由于外形尺方案。

的焦距要求,变焦镜与变焦镜头。

镜头,摄影镜部特写,这是变焦距从而改摄像镜头,即多个定焦系统领大家使用Z 中的设计优化间的空气厚度COMS 或其它不:“倍率”。

理尺寸不希望过当系统的入镜头设成像镜头在镜头,双筒望是一个定焦镜改变系统视场即在不改变拍统组成的。

我ZEMAX 来设计化方法。

度,镜头的焦它探测面),理论定义下,过大或二级光入瞳直径D 固设计在很多实际应望远镜等等,镜头所无法完场大小,达到拍摄距离的情我们在设计变计一个完整的焦距会随之变在基础光学在变焦过程光谱校正等问固定时,即系像面尺寸相同应用中通常也镜头具备变完成的。

到不同矩离不情况下通过改变焦镜头时也的变焦镜头,变化。

zemax设计实例之手机镜头

zemax设计实例之手机镜头

zemax设计实例之手机镜头2012、03、13 评论关闭4,757 views随着手机市场对高像素手机镜头得需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素得广角镜头。

该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片与1片保护玻璃构成。

镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。

采用APTINA公司得MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。

设计结果显示:各视场得均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场得MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。

关键词:手机镜头;光学设计;800万像素;Zemax引言手机镜头得研发工作始于20世纪90年代,世界上第一款照相手机就是由夏普JPHONE(现在得日本沃达丰)在2001年推出得JSH04手机,它只搭载了一个11万像素得COMS数码相机镜头。

随后各大手机知名制造厂商纷纷开始研发手机摄像功能。

2003年5月22日夏普制造了100万素得JSH53,目前照相手机得市场占有率几乎就是100%,特别就是带有高像素2M、3M、5M、8M得镜头就成为镜头研发得热点[1]。

目前800万像素得手机市场占有率还不就是太多,但随着人们对高端手机得需求量越来越大,800万像素手机肯定就是主流趋势。

鉴于此,在选用合理初始结构得基础上,优化出了一款800万像素得手机镜头。

1感光器件得选取感光器件有CCD(电荷耦合器件)与CMOS(互补金属氧化物半导体)两种。

CMOS器件产生得图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品应用于一些摄像镜头上,目前随着CMOS技术得日益成熟,也有一些高端数码产品使用CMOS器件。

CMOS相对于CCD有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等[6]。

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

第二章 基础实例设计ZEMAX基础实例 ‐ 单透镜设计引言• 在成像光学系统设计中,主要指的是透镜系统设计,当然也有一些反射系统或棱镜系统。

• 在透镜系统设计中,最基础、最简单的便是单透镜设计。

但我们不要小看这样的单透镜系统,因为它也代表了一个光学系统设计的完整流程。

麻雀虽小,五脏俱全!• 本节中,我们通过手把手的操作,为大家展示使用 ZEMAX 进行成像光学设计的完整流程。

使初学者快速领略到ZEMAX光学设计的风采,在轻松的设计中感受到光学设计的乐趣。

• 通过单透镜设计,可以使大家学习到Z EMAX 序列编辑器建模方法,光束大小设置方法,视场设置方法,变量的设罝方法,评价函数设置方法,优化方法,像差分析方法和提髙像质的像差平衡方法等,单透镜系统参数设计任何一个镜头,我们都必须有特定的要求,比如焦距,相对口径,视场,波长,材料,分辨率,渐晕,MTF等等,根据系统的简易程度客户给的要求也各不相同。

由于单透镜最简单的系统,要求也就很少。

本例中我们设计单透镜规格参数如下:EPD = 20mmF/#=10FFOV= 10 degreeWavelength 0.587umMaterial BK7Best RMS Spot Radius首先我们需要把知道的镜头的系统参数输入软件中,系统参数包括三部分:光束孔径大小,视场类型及大小,波长。

在这个单透镜的规格参数中,入瞳直径(EPD)为20mm,全视场(FFOV)为10度,波长0.587微米,分别如下说明。

1、点击System » General或点快捷按扭Gen打开通用设置对话框:入瞳直径即到还有其它像空间F 数互转换。

物空间数值直接定义物随光阑尺寸用这种类型本例中,我2、点击打开即用来直接确它几种光束孔(Image Space 值孔径(Object 物点发光角度寸漂移(Float B 型来计算入瞳我们只需选择开视场对话框定进入系统光孔径定义类型e F/#),用于t Space NA),来约束进入系By Stop Size),瞳的大小。

(完整版)光学设计zemax

(完整版)光学设计zemax
➢ Tighten 2x 将现有各项Operands 的Min 及Max 值缩 小一倍
➢ Sort by Surface 将现有各项Operands 以 Surface number 排序(递增)
➢ Sort by Type 将现有各项Operands 以其类型排序 (递增)
➢ Save 将现有的Tolerance Data 存入一个文件
差) ➢TSTX,TSTY(光学零件表面允许倾斜偏心公
差)
2014.9
光学系统设计
公差操作数(续)
➢TIRR(球差的一半与象散的一半表示的表 面不规则度,单位是光圈单位)
➢TIND(d光折射率允许偏差) ➢TABB(阿贝常数允许偏差)
2014.9
光学系统设计
➢上述设定完成之后,即可进行公差分析 ➢Tools---Tolerancing
2014.9
光学系统设计
➢每个镜片加工公司都有自己的样板库,如 “changchun.tpd”是长春理工某附属工厂 (可见光镜片)、“beijing.tpd”是北京蓝斯 泰克光电(红外镜片)的样板库等。
➢将这些tpd文件拷入“C:\ZEMAX\Testplat”目 录即可进行相应的比对
2014.9
2014.9
光学系统设计
2014.9
光学系统设计
➢Fast Tolerance Mode:
• 此项仅对近轴后焦偏差视为补偿器 (Compensator) 时有效。即在 Tolerances Data Editor 中存在一行有关后焦的补 偿器设定。在Default Tolerance 中选中 Use Focus Comp 就可以生成此补偿器的设定。 此模式比一般模式(没有选中此项)的运算模 式快50 倍。

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计班级:T1003-3班学号:20100030305姓名:李金鑫一.光学设计软件ZEMAX 的使用设计要求:1. 镜头镜片数小于10片2. 图像传感器(CCD)指标像素:1200×960,像元:3.8 3.8m m μμ? 。

3. 物镜定焦,焦距28.0mm ,畸变 < 3.5%焦距280.2f mm mm '=±,相对孔径/1/3.5D f '=轴上点100/lp mm 的MTF 值在0.3以上,轴外0.707视场100/lp mm 的MTF 值在0.15以上, 渐晕:中心相对照度 > 65 %在可见光波段设计(取d 、F 、C 三种色光,d 为主波长)。

4.计算过程:成像面积:(1200*3.8)*(960*3.8)=4.56*3.648mm 2 对角线长度:22648.356.4+=5.84mm像高:5.84/2=2.92mm 无限远入射光线的半视场角为: 96.5)arctan(''==fy w CCD 的特征频率为:1/(2*0.038)=131.6 lp/mm 有效焦距长度:'f =28mm 由于相对孔径'13.5D f =,所以8D mm =。

软件设计结果:1.透镜结构参数,视场、孔径等光学特性参数:GENERAL LENS DATA:Surfaces : 12Stop : 6System Aperture : Entrance Pupil Diameter = 8Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 28.0008(in air at system temperature and pressure) Effective Focal Length : 28.0008(in image space)Back Focal Length : 17.49979Total Track : 40.26Image Space F/# : 3.499992Paraxial Working F/# : 3.499992Working F/# : 3.498718Image Space NA : 0.1414217Object Space NA : 4e-010Stop Radius : 2.446367Paraxial Image Height : 2.92315Paraxial Magnification : 0Entrance Pupil Diameter : 8Entrance Pupil Position : 17.94124Exit Pupil Diameter : 9.552524Exit Pupil Position : -33.42397Field Type : Angle in degrees Maximum Field : 5.96 Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : 0.837475Fields: 4Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 3.440000 1.0000003 0.000000 4.860000 1.0000004 0.000000 5.960000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.0000004 0.000000 0.000000 0.000000 0.000000 0.000000 Wavelengths: 3Units: Microns# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000 Surface 6 Data Summary Title:Date : WED JAN 9 2012 Lens units: 毫米Thickness : 3.71 Diameter : 4.93475 Edge Thickness:Y Edge Thick: 3.0744 X Edge Thick: 3.0744 Index of Refraction: Glass:# Wavelength Index1 0.48613 1.00000000002 0.58756 1.00000000003 0.65627 1.0000000000Surface Powers (as situated):Surf 5 : -0.096255Surf 6 : 0Power 5 6 : -0.096255EFL 5 6 : -10.389F/# 5 6 : -1.6343Surface Powers (in air):Surf 5: 0Surf 6: 0Power 5 6 : 0EFL 5 6 : 0Shape Factor: 1SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic OBJ STANDARD 无限远无限远 0 01 STANDARD 17.412 2.21 SSK4A 11.54063 02 STANDARD 44.806 0.54 10.92813 03 STANDARD 10.871 5.05 N-SK16 10.21084 04 STANDARD 无限远 0.87 F14 7.583943 05 STANDARD 6.248 4.05 6.356952 0 STO STANDARD 无限远 3.71 4.9347557 STANDARD -6.576 0.84 F14 5.641057 08 STANDARD 无限远 2.78 N-SK16 6.386702 09 STANDARD -8.484 0.54 7.365621 010 STANDARD 40.196 2.18 N-SK16 7.733431 011 STANDARD -22.428 17.49 7.845499 0 IMA STANDARD 无限远 5.836295 0EDGE THICKNESS DATA:Surf Edge1 1.5604792 1.4790143 3.7765684 1.7388935 3.181107STO 3.0744047 1.4755968 1.9389819 1.56743310 1.64786811 17.835717IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.587562 0.6562730 20.00 1.00 1.00000000 1.00000000 1.000000001 SSK4A 20.00 1.00 1.62546752 1.61764975 1.614266422 20.00 1.00 1.00000000 1.00000000 1.000000003 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271664 F14 20.00 1.00 1.61249349 1.60140055 1.596763175 20.00 1.00 1.00000000 1.00000000 1.000000006 20.00 1.00 1.00000000 1.00000000 1.000000007 F14 20.00 1.00 1.61249349 1.60140055 1.596763178 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271669 20.00 1.00 1.00000000 1.00000000 1.0000000010 N-SK16 20.00 1.00 1.62755635 1.62040997 1.6172716611 20.00 1.00 1.00000000 1.00000000 1.0000000012 20.00 1.00 1.00000000 1.00000000 1.00000000 THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 SSK4A 6.100000002 0.000000003 N-SK16 6.300000004 F14 7.900000005 0.000000006 0.000000007 F14 7.900000008 N-SK16 6.300000009 0.0000000010 N-SK16 6.3000000011 0.0000000012 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.587562 0.656273 # Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 3.4999 3.4999 3.4987 3.4987 3.5003 3.50032 3.4400 deg: 3.5059 3.5034 3.5047 3.5022 3.5063 3.50383 4.8600 deg: 3.5115 3.5068 3.5105 3.5056 3.5121 3.50714 5.9600 deg: 3.5169 3.5102 3.5160 3.5090 3.5176 3.5105 CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length: -28.009159 28.009159Focal Planes: -5.396361 0.018674Principal Planes: 22.612798 -27.990486Anti-Principal Planes : -33.405520 28.027833Nodal Planes: 22.612798 -27.990486Anti-Nodal Planes: -33.405520 28.027833W = 0.587562 (Primary)Focal Length: -28.000842 28.000876Focal Planes: -5.508010 0.009789Principal Planes: 22.491928 -27.990148Anti-Principal Planes : -33.507947 28.009727Nodal Planes: 22.491928 -27.990148Anti-Nodal Planes: -33.507947 28.009727W = 0.656273Focal Length: -28.011708 28.011708Focal Planes: -5.572853 0.025235Principal Planes: 22.438855 -27.986473Anti-Principal Planes : -33.584560 28.036943Nodal Planes: 22.438855 -27.986473Anti-Nodal Planes: -33.584560 28.0369432.像质指标实际值目标值'= 28f mm28.0008畸变:0.28% ﹤3.5% MTF:100lp/mm 70.29% >30%(轴上) 100lp/mm 66.4% >15%(轴外)3.公差数据分析结果:Analysis of TolerancesUnits are 毫米.Paraxial Focus compensation is on. In this mode, allcompensators are ignored, except paraxial back focus change.WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. WARNING: Boundary constraints on compensators are ignored whenusing fast mode or user-defined merit functions.Criteria : RMS Spot Radius in 毫米Mode : SensitivitiesSampling : 3Nominal Criteria : 0.00090019Test Wavelength : 0.6328Fields: Y Symmetric Angle in degrees# X-Field Y-Field Weight VDX VDY VCX VCY1 0.000E+000 0.000E+000 2.000E+000 0.000 0.000 0.000 0.0002 0.000E+000 4.172E+000 1.000E+000 0.000 0.000 0.000 0.0003 0.000E+000 -4.172E+000 1.000E+000 0.000 0.000 0.000 0.0004 0.000E+000 5.960E+000 1.000E+000 0.000 0.000 0.000 0.0005 0.000E+000 -5.960E+000 1.000E+000 0.000 0.000 0.000 0.000 Worst offenders:Type Value Criteria ChangeTIRY 7 -0.200000000 0.020355900 0.019455709TIRY 7 0.200000000 0.020355900 0.019455709TSDY 7 -0.200000000 0.017442564 0.016542373TSDY 7 0.200000000 0.017442564 0.016542373TIRX 7 -0.200000000 0.017321649 0.016421459TIRX 7 0.200000000 0.017321649 0.016421459TIRY 9 -0.200000000 0.016494937 0.015594747TIRY 9 0.200000000 0.016494937 0.015594747TIRX 9 -0.200000000 0.015405686 0.014505496TIRX 9 0.200000000 0.015405686 0.014505496Estimated Performance Changes based upon Root-Sum-Square method: Nominal RMS Spot Radius : 0.000900Estimated change : 0.055470Estimated RMS Spot Radius: 0.056370Compensator Statistics:Change in back focus:Minimum : -1.006356 Maximum : 1.112564 Mean : 0.000982 Standard Deviation : 0.183198Monte Carlo Analysis:Number of trials: 20Initial Statistics: Normal DistributionTrial Criteria Change1 0.010973013 0.0100728222 0.055717068 0.0548168783 0.018735173 0.0178349824 0.014194669 0.0132944785 0.037745158 0.0368449676 0.019405575 0.0185053847 0.032397994 0.0314978048 0.007928807 0.0070286179 0.035414796 0.03451460610 0.028473194 0.02757300411 0.016118938 0.01521874812 0.013851098 0.01295090713 0.043797393 0.04289720314 0.018751552 0.01785136215 0.027123362 0.02622317216 0.026825230 0.02592504017 0.028410049 0.02750985818 0.024295827 0.02339563719 0.022359906 0.02145971520 0.024840539 0.023940348Nominal 0.000900191Best 0.007928807 Trial 8 Worst 0.055717068 Trial 2 Mean 0.025367967 Std Dev 0.011350176Compensator Statistics:Change in back focus:Minimum : -1.962392Maximum : 1.332779Mean : -0.175784Standard Deviation : 0.90742990% <= 0.03774515850% <= 0.02429582710% <= 0.010973013End of Run.Tolerance Data SummaryRadius and Thickness data are in 毫米.Power and Irregularity are in double pass fringes at 0.6328 祄Only spherical and astigmatism irregularity tolerances are listedin the "SURFACE CENTERED TOLERANCES";Zernike irregularity tolerances are listed under "OTHER TOLERANCES".Surface Total Indicator Runout (TIR) are in 毫米.Index and Abbe tolerances are dimensionlessSurface and Element Decenters are in 毫米.Surface and Element Tilts are in degrees.SURFACE CENTERED TOLERANCES:Surf Radius Tol Min Tol Max Power Irreg Thickness Tol Min Tol Max1 17.412 -0.2 0.2 - 0.2 2.21 -0.2 0.22 44.806 -0.2 0.2 - 0.2 0.54 -0.2 0.23 10.871 -0.2 0.2 - 0.2 5.05 -0.2 0.24 Infinity - - 1 0.2 0.87 -0.2 0.25 6.248 -0.2 0.2 - 0.2 4.05 -0.2 0.26 Infinity - - - - 3.71 -0.2 0.27 -6.576 -0.2 0.2 - 0.2 0.84 -0.2 0.28 Infinity - - 1 0.2 2.78 -0.2 0.29 -8.484 -0.2 0.2 - 0.2 0.54 -0.2 0.210 40.196 -0.2 0.2 - 0.2 2.18 -0.2 0.211-22.428 -0.2 0.2 - 0.2 17.49 - -12Infinity - - - - 0 - -SURFACE DECENTER/TILT TOLERANCES:Surf Decenter X Decenter Y Tilt X Tilt Y TIR X TIR Y1 0.2 0.2 - - 0.2 0.22 0.2 0.2 - - 0.2 0.23 0.2 0.2 - - 0.2 0.24 0.2 0.2 - - 0.2 0.25 0.2 0.2 - - 0.2 0.26 - - - - - -7 0.2 0.2 - - 0.2 0.28 0.2 0.2 - - 0.2 0.29 0.2 0.2 - - 0.2 0.210 0.2 0.2 - - 0.2 0.211 0.2 0.2 - - 0.2 0.212 - - - - - - GLASS TOLERANCES:Surf Glass Index Tol Abbe Tol1 SSK4A 0.001 0.551423 N-SK16 0.001 0.603244 F14 0.001 0.382327 F14 0.001 0.382328 N-SK16 0.001 0.6032410 N-SK16 0.001 0.60324ELEMENT TOLERANCES:Ele# Srf1 Srf2 Decenter X Decenter Y Tilt X Tilt Y1 12 0.2 0.2 0.2 0.22 3 5 0.2 0.2 0.2 0.23 7 9 0.2 0.2 0.2 0.24 10 11 0.2 0.2 0.2 0.2二.简易望远镜的组装1.原理图2零件清单零件清单物镜零件名称数量名称数量物镜 2 物镜推杆 2 物镜座 2 卡环 2 物镜压圈 2 物镜盖2目镜零件右目镜座 1 左目镜座 1 右目镜内筒 1 左目镜内筒 1 目镜盖 2 场栏 2 隔圈 2 挡圈 2 视度调节圈 1 目镜套 1 目镜 2棱镜零件上棱镜 2 下棱镜 2 棱镜座 2 压盖 2 隔片 2整体零件镜筒 2 滚珠 4 导向杆 2 小拖板 1 大拖板 1 调焦螺钉 1 调焦螺母 1 铰链螺钉 23.装配3.1目镜的组装(1)装配目镜1.将胶合目镜放在下面,凸面朝上,再放隔圈,将单片目镜放在隔圈上,凸面向下,保证凸面对凸面。

zemax设计实例之手机镜头

zemax设计实例之手机镜头

zemax设计实例之手机镜头2012.03.13 评论关闭4,757 views随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。

该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。

镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。

采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。

设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。

关键词:手机镜头;光学设计;800万像素;Zemax引言手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。

随后各大手机知名制造厂商纷纷开始研发手机摄像功能。

2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。

目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。

鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。

1感光器件的选取感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。

CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品应用于一些摄像镜头上,目前随着CMOS技术的日益成熟,也有一些高端数码产品使用CMOS器件。

CMOS相对于CCD有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等[6]。

(完整版)光学设计zemax

(完整版)光学设计zemax

2014.9
光学系统设计
➢再点Opt,优化结果如下
2014.9
光学系统设计
样板比对
➢为了降低加工成本,需与镜片加工厂家的 样板进行比对
➢样板比对:将设计中各面的曲率半径与厂 家的样板库进行比对,尽量选择样板库中 已有的尺寸
2014.9
光学系统设计
2014.9
光学系统设计
➢以applied样板库为例,比对样板后获得如下 结果
2014.9
光学系统设计
➢压圈法
球面或曲面
2014.9
光学系统设计
➢补充:压圈与径向的几种接触方式 相切法:
2014.9
光学系统设计
相切法:
2014.9
光学系统设计
球面包络法:
2014.9
光学系统设计
➢弹性元件法:弹性元件固定法是利用琴钢 丝制成的弹性卡圈将透镜或其他光学元件 固定在镜框内的一种方法。一般只用于同 轴度及牢固性要求低的透镜。通常用来固 定保护玻璃、滤光镜等不重要的光学零件。
2014.9
光学系统设计
➢Merit项:
2014.9
前12 项为具体的像质评 质函数,包括点大小、 Merit Function 值、几何 MTF、Diffraction MTF值。 其中对于没有趋近衍射极 限的系统应首选前三项, 即RMS Spot Size。而对 于趋近于衍射极限的系统 则最好选择MTF。
2014.9
光学系统设计
➢Default merit function作如下修改 ➢添加EFFL操作数,target 21.46,weight 1
Why?
2014.9
光学系统设计
Why 尺寸考虑
2014.9

zemax课程设计_手机镜头设计

zemax课程设计_手机镜头设计

zemax课程设计_手机镜头设计一、教学目标本课程的目标是让学生掌握手机镜头设计的基本原理和Zemax软件的使用技巧。

知识目标包括了解手机镜头的基本结构、光学原理和设计流程,以及掌握Zemax软件的基本操作和功能。

技能目标包括能够使用Zemax软件进行手机镜头的设计和优化,以及能够分析并解决设计过程中遇到的问题。

情感态度价值观目标包括培养学生的创新意识和团队合作精神,提高他们对光学科技的兴趣和热情。

二、教学内容本课程的教学内容主要包括手机镜头的基本原理、设计流程和Zemax软件的使用。

首先,将介绍手机镜头的基本结构和工作原理,包括光学镜头的焦距、光圈、像距等基本概念。

然后,将讲解手机镜头的设计流程,包括需求分析、光学设计、光学仿真和生产制造等步骤。

最后,将介绍Zemax软件的基本操作和功能,包括光学镜头的设计、仿真和优化等。

三、教学方法为了实现课程目标,将采用多种教学方法,包括讲授法、案例分析法和实验法。

首先,将通过讲授法向学生传授手机镜头的基本原理和设计流程,以及Zemax软件的基本操作和功能。

然后,将通过案例分析法让学生分析并解决实际设计过程中遇到的问题,提高他们的分析和解决问题的能力。

最后,将通过实验法让学生亲手操作Zemax软件,进行手机镜头的设计和优化,提高他们的实践能力。

四、教学资源为了支持教学内容的实施和教学方法的应用,将准备多种教学资源。

教材方面,将选用《手机镜头设计》一书,作为学生的主要学习材料。

参考书方面,将推荐《光学设计手册》等书籍,供学生深入研究。

多媒体资料方面,将制作PPT课件和教学视频,帮助学生更好地理解和掌握课程内容。

实验设备方面,将准备Zemax软件的安装环境和相关实验设备,让学生能够进行实际操作和实验。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。

平时表现主要评估学生的课堂参与和提问,占课程总评的30%。

作业包括课后练习和项目设计,占课程总评的40%。

Zemax光学设计实例汇总

Zemax光学设计实例汇总
每个变量发生少量改变或增减; 计算每个变量对结果的影响; 计算结果是一系列导数,əp/əv1, əp/əv2, əp/əv3,……, p: 优化
函数结果,v: 变量; 为了使残余结果的平方和最小,对每个变量联立方程求解; 重复上述过程直至实现最优化。
光学设计人员的任务
1. 获得并考虑技术要求 2. 选择具有代表性的切入点
(具体的应用实例——视情况而定)
ZEMAX简介
美国ZEMAX Development Corporation研发
ZEMAX 是一套综合性的光学设计软件,集成了光 学系统所有的概念、设计、优化、分析、公差分析 和文件管理功能。ZEMAX所有的这些功能都有一个 直观的接口,它们具有功能强大、灵活、快速、容 易使用等优点。

Spt
Diffraction Standard
Analysis
此程序所选用积分程序不好,使要求取样网格点(Sampling)较多,计算时 间很长,使大像差系统的衍射积分不易算好。
所以这里没有算能量集中度 Enc 及Huygens Point Spread function, 为能 容易完成这类计算,波像差(OPD,不是RMS)宜小于一个波长,否则必须加大 Sampling 点数,增长时间。
• 对于Surface type 和Glass Catalogs,在User’s Guide 内都有一章叙述。
光学性能分析(Analysis)
பைடு நூலகம்
当已输入足够的结构数据后,程序就可以计算出像差并分析成像质量,这基本 上是 Analysis 项目下的各种功能。
*系统结构和光路图:可以判断透镜厚度是否适当,或者光路内是否存在显著错
rd 14 35.7 1.5 Bk7 21.5 100

zemax监控镜头课程设计

zemax监控镜头课程设计

zemax监控镜头课程设计一、课程目标知识目标:1. 让学生掌握Zemax软件的基本操作,理解监控镜头的设计原理;2. 使学生了解光学成像的基本知识,包括光圈、焦距、视场角等概念;3. 引导学生掌握监控镜头的参数设置,学会调整光学系统以满足不同监控需求。

技能目标:1. 培养学生运用Zemax软件进行监控镜头设计的能力,具备独立完成光学系统建模、优化和评估的能力;2. 培养学生分析监控场景,提出合理的光学设计方案的技能;3. 培养学生通过调整监控镜头参数,解决实际监控问题的能力。

情感态度价值观目标:1. 培养学生对光学设计产生兴趣,激发学生主动探索光学领域的精神;2. 培养学生具备团队协作意识,学会在团队中发挥自己的作用;3. 引导学生认识到监控镜头在现实生活中的应用价值,培养学生的社会责任感。

课程性质:本课程为实践性较强的课程,以理论为基础,注重培养学生的实际操作能力和创新能力。

学生特点:学生具备一定的光学基础知识,对Zemax软件有初步了解,具有较强的学习能力和动手能力。

教学要求:结合课程特点和学生特点,注重理论与实践相结合,强化实践操作环节,提高学生的实际应用能力。

在教学过程中,将目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. Zemax软件基本操作与界面介绍:使学生熟悉软件环境,掌握基本操作方法;- 教材章节:第一章 Zemax基础- 内容列举:软件安装与启动、界面布局、基本操作命令。

2. 光学成像原理:使学生掌握光学成像基本概念,为监控镜头设计打下基础;- 教材章节:第二章 光学基础知识- 内容列举:光线传播、透镜成像、光圈、焦距、视场角等。

3. 监控镜头设计原理与参数设置:让学生了解监控镜头设计的基本原理和参数调整方法;- 教材章节:第三章 光学系统设计- 内容列举:监控镜头类型、设计原理、参数设置与优化。

4. 实际监控镜头设计案例分析:通过案例教学,培养学生实际操作和解决问题的能力;- 教材章节:第四章 实践案例- 内容列举:实际监控场景分析、光学设计方案制定、Zemax软件操作步骤。

变焦镜头zemax27优化设计教学实例省名师优质课赛课获奖课件市赛课一等奖课件

变焦镜头zemax27优化设计教学实例省名师优质课赛课获奖课件市赛课一等奖课件

• 请根据下图所示旳参数键入 LDE(镜头数据编辑器)(请忽视半 高(Semi-Diameter)栏)。(或者 是,能够从
\Samples\Tutorial\Tutorial zoom.zmx载入文件)
设罝视场角
• 开启场(Field Data)资料对话框。 • 1、选择「近轴像高(Paraxial
变焦透镜 (Zoom Lens)
• ZEMAX中MC(MultiConfiguration,F7)功能旳一种 常见应用为变焦透镜设计。这 个例子将涵盖变焦透镜旳基本 设罝与优化。
变焦透镜系统Leabharlann 简易规格:• 1、有效焦距:75、100、125 mm; • 2、入瞳直径:25 mm(F/3、F/4、
F/5); • 3、三群镜组:皆为BK7与F2旳胶合透
• 1、在孔径标签(Aperture Tab): • 孔径类型:入瞳直径 • 孔径值:25 mm • 按下「确认」。
2、在单位标签(Units Tab): 确认透镜单位为毫米(Millimeters)。
初始透镜参数
• 开始时使用三群透镜组件,每 一群都使用BK7与F2构成之胶 合透镜。透过冕牌与火石材料 旳结合能够有效地降低色差。 这个基本旳对称型式则能够有 利于平衡像差。
设罝透镜尺寸
• 全部组态旳镜组必须有一样旳 尺寸(半高(Semi-Diameter))。 这里能够透过解(Solve)来进行 限制。
• 「最大(Maximum)」半高旳 解将被设罝每个组态中,每 个表面半高旳最大要求,这 将确保边沿厚度旳边界条件 不被违反,不会产生异常旳 透镜。
• 解设罝:
Tab、7、Enter • 3、右键、「T」、「T」、「T」、
Tab、10、Enter • 在下拉式选单里搜寻第一种字符。

《Zemax光学设计软》课件

《Zemax光学设计软》课件

性。
02 Zemax软件基本操作
界面介绍
菜单栏
包含所有可用的命 令和选项。
工具栏
提供常用命令的快 捷方式。
标题栏
显示软件名称和当 前打开的文件名。
工作区
用于显示和编辑光 学设计的相关数据 和图形。
状态栏
显示当前操作的状 态和提示信息。
文件操作
新建文件
创建一个新的光学设计项目。
打开文件
打开一个已存在的光学设计项目。
高效的照明模拟
Zemax可以模拟各种光源和照明条件下的光学系统性能,帮助设 计师优化照明设计。
软件应用领域
光学仪器设计
01
Zemax广泛应用于望远镜、显微镜、照相机等光学仪器的设计
和优化。
摄像头和投影仪设计
02
Zemax可以帮助设计师优化摄像头和投影仪的性能,提高成像
质量。
照明设计和分析
03
Zemax可以用于照明系统的设计和分析,提高照明效率和均匀
光学性能分析
分辨率分析
分析光学系统的分辨率,评估系统对 细节的分辨能力。
光束孔径分析
研究光束孔径大小对成像质量的影响 ,优化光束孔径配置。
波前分析
波前畸变
研究光波经过光学系统后的波前畸变情况,分析其对成像质 量的影响。
波前重建
利用Zemax软件对波前进行重建,了解光波的传播特性和变 化规律。
05
保存文件
将当前光学设计项目保存到磁盘上。
另存为
将当前光学设计项目以不同的文件名或格式保存。
工具栏介绍
01
视图工具栏
用于控制工作区的视图,包括放大 、缩小、旋转等操作。
绘图工具栏
提供绘制各种光学元件和光路的功 能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档