液氨储罐设计全

合集下载

液氨(无水)储罐设计要点

液氨(无水)储罐设计要点

液氨(无水)储罐设计要点摘要:本文主要介绍了液氨储罐在设计过程中工作压力、设计压力、安全阀整定压力、最高允许工作压力的确定、设备选材原则及相应的技术条件要求等。

简介:液氨,又称为无水氨,呈无色液体状,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

存储液氨的压力容器,主要应用的场合有医院、制冷业、气体生产厂等场合,它可以为这些企业提供存储的载体,在使用过程中安全可靠、降低成本。

1.设计数据:根据客户提供要求,本罐为常温储存液化气体储罐,无保冷措施,介质为无水液氨,最低设计金属温度-9℃,设计使用年限10年,固定卧式安装,设备公称直径DN1400,容积V=5m³。

2.液氨储罐过程设计要点2.1设计压力、温度确定常温储存液化气体的设计压力,应当以规定温度下的工作压力为基础来确定,根据TSG 21-2016《固定式压力容器安全技术监察规程》条款3.1.9.3规定,液氨临界温度≥50℃,无保冷措施,以液氨50℃饱和蒸气压设为工作压力,液氨50℃饱和蒸气压Pw=1.93MPa,设计压力确定Pc=(1.05~1.1)Pw ≈2.2MPa。

2.2设备材料选择原则根据液氨介质特性含水量不高于0.2%,且有可能受空气中O₂或CO₂污染,使用温度高于-5℃,属于液氨应力腐蚀环境。

对本设备根据设计压力、温度、介质特性,主体板材选用GB/T713-2017《锅炉和压力容器用钢板》低合金钢Q345R,供货状态正火;根据介质危害程度,最低设计金属温度,本设计选用符合GB/T9948的钢管,材料选择10#钢,供货状态正火;法兰锻件根据压力、介质不允许微量泄漏等特性,依照HG/T20592-2009《钢制管法兰、垫片、紧固件》选择带颈对焊法兰,公称压力等级PN40,材质为16MnⅡ锻件,密封面形式凹凸面。

2.3最高允许工作压力的引入及计算过程根据HG/T20660-2017《压力容器中化学介质毒性危害和爆炸危险程度分类标准》氨属于中毒危害介质,泄漏时易挥发可燃气体,爆炸极限为16%~25%,属于易爆介质,对于盛装不允许有微量泄漏的压力容器,应进行泄漏试验,该设备选择气密性试验,试验压力等于设计压力,并且试验时,需要将安全附件装配齐全,为了确保泄漏性试验顺利进行,所以引入最高允许工作压力,最高允许工作压力[PMAWP]是根据容器各受压元件有效厚度计算得到的,考虑了该元件承受的所有载荷,取各受压元件承受最高允许工作压力的最小值;综上各压力之间关系:工作压力Pw<设计压力Pc<安全阀整定压力Pz<最高允许工作压力。

最新10立方米液氨储罐设计

最新10立方米液氨储罐设计

目录第一章概论 (4)一、设计原则及规范 (4)二、项目建设概况 (5)第二章建设项目过程中危险源及危险和有害因素分析 (7)第三章储罐设计 (13)一、设计参数 (13)二、筒体设计 (14)三、内压封头设计: (17)四、人孔的设计和选择: (18)五、支座设计: (19)管道 ................................................................................................................................................. 错误!未定义书签。

法兰 (20)第四章储罐附件 (21)一、温度计 (21)二、液面计 (21)三、压力表 (23)四、氨气浓度检测仪 (24)五、水淋浴装置 (25)六、隔热和保冷设施 (26)七、通风设施 (26)八、安全阀 (26)第五章液氨冷库总平面布置及周边环境 (29)一、液氨储罐区的设置: (29)二、本装置布置时应当考虑的安全原则: (29)三、罐区防火间距: (30)四、安全色及安全标志 (31)第六章电气 (31)一、爆炸危险区域内电气设备选型 (31)二、防雷及防静电措施 (32)三、照明 (32)第七章防火提 (32)第八章消防设计 (35)一、消防车道 (35)二、消防栓 (36)三、灭火系统 (36)四、消防池 (36)第九章事故模拟计算 (38)一、泄漏程度分析 (38)二、危害半径模拟计算 (40)三、池火灾事故的模拟计算: (42)四、爆炸损害计算 (43)第十章安全控制措施 (45)一、应急事故处理 (45)二、人员疏散 (47)第十一章安全管理制度 (48)一、重大危险源管理制度 (48)二、储罐及储罐区安全管理制度 (48)第十二章结论与建议 (49)第一章概论一、设计原则及规范1.设计原则:认真贯彻“预防为主,防消结合”的方针,严格遵循国家和地方的有关防火规范及规定,搞好本项目的安全设计。

液氨储罐设计

液氨储罐设计

液氨储罐设计液氨储罐是一种专门用于贮存液态氨的设备,通常采用铁质或钢质材料构建,其几何形状多样,包括球型、柱形、圆锥形等。

在化工、农业、医学、能源和环保等领域中,液氨储罐被广泛应用于氨气的储存、输送和使用。

液氨储罐的设计应考虑到以下因素:储罐的尺寸、外观、重量、储存容量、操作压力、储存温度、安全措施和环境影响等。

具体设计要求如下:1.设计参数与标准:储罐的设计应符合国家、行业和企业规定的设计标准和规范。

例如,对于LPG液化气罐,其设计应符合GB 50332-2013《钢制储罐设计规范》、GB50183-2005《液化石油气储存和运输设备技术条件》,以及国际规范ASME Section VIII Division 1等。

2.储罐材质和厚度:液氨储罐应采用高品质钢材或耐腐蚀材料制成,以保证其耐久性和安全性。

材质选择应考虑到单价、可用性、操作需求等因素。

对于钢制储罐,其厚度应根据所存放液体的特性和储罐的形状、尺寸等因素计算确定,以保证其承受压力和温度的能力。

3.储罐容量和形状:液氨储罐的密封容量应比其设计储存量大一些,以确保液体进入储罐时不会波涛汹涌。

储罐的几何形状可以是圆柱形、球型、圆锥形或其他形状,视实际情况而定。

4.安全措施:储罐应安装适当的安全设备,如安全阀、液位报警器、温度控制器等,以保证储存液体的安全。

此外,对于大规模储罐,还应考虑配备防火、防爆和灭火系统等。

5.管道和附件:液氨储罐应配备合适的出、进料管道和其他附件,如泄放阀、气密性检测器、排气装置等,以便于运输和输送。

6.环境考虑:储罐的设立不应对周围环境造成影响,应考虑其在地形、气候、土壤等方面的适应性。

7.检修和保养:液氨储罐应设计为易于检修和保养。

储罐的喷漆、防腐处理、检修等工作,应每隔一段时间进行,以保证其长期使用效果。

液氨储罐的结构和强度设计

液氨储罐的结构和强度设计

液氨储罐的结构和强度设计液氨储罐是储存液体氨气的装置,其结构和强度设计对于储罐的安全运行至关重要。

下面将从液氨储罐的结构设计和强度设计两方面进行详细说明。

液氨储罐的结构设计主要包括两部分,即外罐和内罐。

内罐是用来储存液氨的主体部分,一般采用不锈钢材料制成,以保证液氨不会泄漏。

外罐则是对内罐进行保护和支持的结构,一般由碳钢材料制成。

内外罐之间形成的空隙通常被称为保温层,用来降低液氨的蒸发和能量损失。

液氨储罐的结构设计还包括液氨进出口、排气孔和安全装置等部分。

液氨进出口需要满足储罐的进出液要求,通常设置在储罐的顶部或侧面。

排气孔用于放出液氨蒸汽和气体,具有防止过压和阀门失效的功能。

安全装置包括压力表、液位计、安全阀等,用于监测储罐的压力和液位,并在必要时进行自动控制和保护。

首先是内压强度设计。

液氨储罐内部存有高压液氨,因此必须具有足够的强度来抵御内部压力的作用。

内压设计考虑到储罐的材料特性、制造工艺、结构形式等因素,采用了钢结构设计中的薄壁容器理论,并依据液体容器规范对壁厚、焊缝、支承等进行合理设计和计算。

其次是大地震作用强度设计。

液氨储罐是在地面上建设的,因此必须能够抵御地震带来的横向和纵向荷载。

大地震作用强度设计需要考虑储罐的结构形式、地震分级、地基状况等因素,采用了抗震设计的相关规范,如地震设计规范、抗震设计技术规范等,来确保储罐的抗震能力。

除了内压强度和地震作用强度,液氨储罐还需要考虑其他荷载,如风载、温变荷载、雪载等。

这些荷载需要根据具体地区的气候条件、使用环境等因素进行设计和计算。

总之,液氨储罐的结构和强度设计是确保储罐安全运行的重要环节。

对于设计人员来说,需要结合液氨储罐的实际情况和相关规范要求进行设计和计算,以确保储罐在各种荷载和工况下能够安全可靠地运行。

化工设备课程设计--液氨储罐讲解

化工设备课程设计--液氨储罐讲解

化工设备课程设计50m液氨储罐设计——3学生姓名:왕량学校:대련대학专业班级:화공101学号:10412041指导老师:진숙화时间:2013.09.06目录第一章前言 (4)1.1设计条件 (4)1.2设计依据 (4)1.3设计结构 (5)第二章材料的选择 (5)2.1筒体和封头材料 (5)2.2各零、部件材料 (5)2.3焊接材料 (5)第三章工艺设计 (6)3.1壁厚设计 (6)3.1.1 筒体壁厚设计 (6)3.1.2 封头壁厚设计 (7)3.1.3 筒体及封头的水压强度校核 (7)3.2 人孔的设计 (8)3.2.1人孔的选择 (8)3.2.2 人孔的补强 (8)3.3 接口管的设计 (10)3.3.1 接口管的选用 (10)1、液氨进料管 (10)3.3.2 接口管汇总表 (11)3.4 鞍座的设计 (11)3.4.1 鞍座的选取 (11)3.4.2 鞍座的计算 (11)3.5 SW6校核 (12)第四章自我评价 (18)符号说明 (18)参考文献 (18)化工设备课程设计任务书一、设计题目液氨储罐设计姓名:王亮二、设计参数及要求介质:液氨设计使用年限:15年建议使用材料:2、设计要求1.计算单位一律采用国际单位;2.计算过程及说明应清楚;3.所有标准件均要写明标记或代号;4.设计计算书目录要有序号、内容、页码;5.设计计算书中与装配图中的数据一致。

如果装配图中有修改,在说明书中要注明变更;6.书写工整,字迹清晰,层次分明;7.设计计算书要有封面和封底,均采用B5纸,横向装订成册;8.完成ppt汇报。

三、设计内容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。

3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。

4.绘制装配图(1)按照工艺要求,绘制工艺结构草图;(2)确定支座、接管、人孔及主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。

液氨储罐设计规范

液氨储罐设计规范

液氨储罐设计规范液氨储罐设计规范液氨储罐设计是液氨储存和运输系统中的重要环节,设计规范的合理性影响着液氨安全运行和环境保护。

以下是液氨储罐的设计规范要点:1. 储罐选址和场地设计储罐选址应远离居民区和火源,具备足够的通风和排放条件,以便在发生泄漏时能够及时散发液氨气体。

场地设计应考虑防火、排水、排气等因素,并满足储罐的支撑和固定要求。

2. 结构和材料选择液氨储罐结构可以采用球形或圆柱形,球形结构可减少材料用量。

而球形结构中的支撑腿应采用独立支撑方式,以减少热应力。

储罐材料选择应考虑其抗压强度、抗腐蚀性和低温性能。

3. 安全阀与泄漏防护储罐应配置安全阀和泄漏防护装置,以防止储罐内部压力过高和泄漏事故。

安全阀应根据储罐的设计压力和容积进行选择,并在每年定期检测和校准。

泄漏防护装置包括泄漏报警器、止回阀、堤坝和防喷器等。

4. 异常情况处理液氨储罐设计应考虑各种异常情况的处理,包括火灾、地震、泄漏和爆炸等。

储罐应配置火灾报警系统和灭火系统,以及应急处理预案和逃生通道。

5. 操作和维护要求液氨储罐的操作和维护应符合相应的规范。

操作人员应接受培训,了解储罐的工作原理和安全操作规程。

储罐的定期检查和维护应包括液位、压力、温度和防腐等方面的监测与维护。

6. 泄漏应急预案液氨储罐设计应制定相应的泄漏应急预案,包括报警、疏散、应急处理和环境保护等方面的措施。

应急预案应定期检查和演练,以确保应急响应的高效性和准确性。

总之,液氨储罐设计规范的合理性和严格执行对保障液氨安全运输和使用至关重要。

每个环节都应严格按照规范要求进行设计、建设和运行,以减少事故风险,保障生产和环境的安全。

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书50立方米液氨储罐是一种用于储存液氨的设备,具有广泛的应用领域,包括化工、农业、制冷等行业。

本设计说明书将详细介绍50立方米液氨储罐的结构、性能、操作要点以及安全措施,以供相关人员参考和指导。

首先,介绍储罐的结构。

50立方米液氨储罐由罐体、密封装置、进出料口、排气装置、压力表等组成。

罐体采用钢材制成,经过特殊防腐处理,确保其在长期存储液氨的环境下不受腐蚀。

密封装置采用可靠的螺栓紧固和软管连接,以保证液氨不泄漏。

进出料口和排气装置在设计上考虑了便捷性和安全性,使得装卸操作更加方便,并能有效消除气体积压。

其次,介绍储罐的性能特点。

50立方米液氨储罐具有良好的密封性能、耐腐蚀性和抗震性。

密封装置的选材和结构设计保证了液氨的密封性,有效防止液氨的挥发和泄漏。

同时,储罐的钢材材质和结构设计考虑了液氨的腐蚀性,能够在长期使用中保持稳定性。

此外,储罐经过专业设计,在地震等外力作用下能够保持稳定,保护液氨的安全。

然后,介绍储罐的操作要点。

在使用50立方米液氨储罐时,需要按照相关操作规程进行操作。

首先,操作人员需要了解储罐的结构和性能特点,熟悉液氨的特性和储罐的操作要点。

其次,操作人员需要正确连接进出料口和排气装置,确保液氨的输送畅通。

操作过程中,需要注意操作规程,确保操作的安全性和可靠性。

最后,介绍储罐的安全措施。

50立方米液氨储罐在储存液氨的同时,也需要考虑安全问题。

操作人员需严格遵守有关安全操作规程,穿戴相应的个人防护装备。

储罐周围应设有安全警示标志,以引起人们的注意和警惕。

定期对储罐进行检查和维护,确保其安全使用。

综上所述,本设计说明书详细介绍了50立方米液氨储罐的结构、性能、操作要点和安全措施。

鉴于液氨储存的重要性和风险性,操作人员在使用储罐时应该严格按照说明书操作,并加强安全意识和防护措施,确保液氨的安全储存和使用。

液氨储罐

液氨储罐

• 公称直径Di和筒体长度L的计算:
L V 2 Vn π Di2 4
取Di = 2600 Di= 2800 Di = 3000 Di = 3200 经计算 当Di = 3200mm时,L = 4656mm,此时,Di/L = 0.687 最接近0.618 所以取 Di = 3200mm
筒体壁厚的计算
封头厚度的计算
采用的是长短轴之比为2的标准椭圆形封头,各参数与筒体相同,
其厚度计算式为:
δ

Kp cDi
2σt 0.5p

1.6 3200 21701 0.51.6

15.09
mm
K

1 6
2


Di 2 hi
2



1
设计厚度为:
δd δ C2 15.09 2 17.09 mm
设备总质量W W=W1+W2+W3
• 鞍座的选择
每个鞍座承受的负荷为
F Wg 38035.89.81 186.57 kN
2
2
根据鞍座承受的负荷,查表(《化工设备机械基础》,大连理 工大学出版社,附录16)可知,选择轻型(A)带垫板,包角为 120°的鞍座。即JB/T4712-92 鞍座A3000-F, JB/T4712-92 鞍座A3000-S。
由于接管材料与壳体材料都为16mnr故fr1故根据公式课求得面积二者得出数值较大的则为有效宽度有效高度h外侧高度h1nt接管实管实际外伸二者得出数值较小的则为外侧高度内侧高度h2nt接管实管实际外内伸壳体有效厚度减去计算厚度之外的多余面积按式43mm接管有效厚度减去计算厚度之外的多余面积按式44mm根据公式

液氨储罐的设计范文

液氨储罐的设计范文

液氨储罐的设计范文
1.储罐材料选择
液氨是一种在常温下为无色气体,液氨储罐需要选用能够承受低温和高压的材料。

常见的材料有碳钢、不锈钢和玻璃钢。

碳钢和不锈钢都具有较好的强度和耐腐蚀性,适合储存液氨。

玻璃钢具有较高的机械强度和良好的耐腐蚀性能,但需要特别注意低温下的应力开裂。

2.结构设计
液氨储罐通常是垂直圆柱形结构,底部为圆锥形或平底设计,顶部有透气装置和液位计。

储罐壁通常采用双层结构,内层负责贮存液氨,外层起到保温作用。

内外层之间的空气隔离,可以减少换热,提高保温效果。

内壁还需喷涂耐腐蚀涂层,以防止液氨对储罐壁的腐蚀。

3.安全性能
液氨是一种具有强烈刺激性和腐蚀性的气体,因此液氨储罐设计时需要采取一系列安全措施。

首先是防火措施,储罐需要设置适当的防火墙和阻火系统。

其次是安全阀和爆破片的设置,用于防止罐内压力超过安全范围。

还需要配备泄漏探测器和报警系统,以及防爆电器设备。

4.储罐周围环境
5.附属设备
液氨储罐需要配备一些附属设备,如输送系统、冷却系统、液位监测系统等。

输送系统可以将液氨导入或排出储罐,冷却系统可以保持储罐内的液氨在适当的温度范围内,液位监测系统可以实时监测储罐内的液位情况。

总结:。

液氨储罐课程设计

液氨储罐课程设计

液氨储罐课程设计1. 引言液氨储罐是一种用于储存氨气的设备,广泛应用于化工、冶金、制药、食品加工等领域。

由于液氨具有高毒性、易燃易爆等危险性质,储罐设计和操作安全非常重要。

2. 设计要求液氨储罐的设计应满足以下要求:- 安全:储罐内氨气压力控制在安全范围内,避免漏气和爆炸等事故。

- 稳定:储罐体结构稳定,能承受储存氨气的重量。

- 经济:储罐设计应在满足安全和稳定要求的前提下,尽可能减少成本。

3. 设计原则液氨储罐的设计原则:- 选择合适材料:储罐体应选用抗腐蚀和耐磨损性能好的材料,如碳钢、不锈钢等。

- 合理结构:储罐结构应简单、紧凑、稳定,高低温变形小。

- 考虑安全设计:储罐应有压力自动调节器、安全阀、温度控制器、液位监测器、泄漏探测器等安全设备。

- 考虑操作性:储罐应有方便操作的进出口和排气口,易于维修保养。

- 环保:储罐设计应考虑废气、废水等环保问题。

4. 设计步骤液氨储罐的设计步骤:1)确定储罐容量和使用环境:需考虑使用要求、周围环境等因素。

2)选择合适的材料和工艺:根据使用要求和成本等考虑,选择合适的材料和工艺。

3)确定储罐内部结构和设备:包括泵、管道、安全设备、控制器等。

4)制定设计方案:根据前面的工作,制定详细的设计方案,包括制图和计算书等。

5)审核和调整设计方案:方案制定后,需要进行审核和调整,确保方案的合理性和安全性。

6)制造和安装:制造和安装储罐,同时对储罐进行测试和验收。

7)后续维护:储罐安装后需要进行日常维护,如检查气密性、液位监测等。

5. 结论液氨储罐设计应在满足安全和稳定要求的前提下,尽可能减少成本。

设计过程中需注意选择合适材料、简化结构、考虑安全设计和操作性等因素。

储罐制造时需要对设计方案进行审核和调整,并进行测试和验收。

储罐安装后需要进行日常维护,确保储罐的安全运行。

液氨储罐设计

液氨储罐设计

4. 鞍座
首先粗略计算鞍座负荷
罐体总质量m=m1+m2+m3+m4 式中:m1—罐体质量;m2—封头质量;m3—液氨质量;m4—附件质 量 ①罐体质量m1 DN=2200mm, δ n=18mm的筒节,L=4500mm,质量q1=1290kg/m 所以m1=q1×L=5805kg ②封头质量m2 DN=2200mm, δ n=18mm ,质变高度h=40mm的标准椭圆形封头质 量m2′=1230kg,所以
4. 鞍座
故贮罐总质量=21968kg 总负荷F=mg/2=107.8kN 每个鞍座只承受107.8kN负荷,根据附录16,可以选用轻型带 垫板,包角为120°的鞍座,即
JB/T4712-92
JB/T4712-92
鞍座A2200-F
鞍座A2200-S
5.人孔
根据贮罐的设计温度,最高工作压力、材质、介质及使用要求 等条件,选用公称压力为PN=2.5MPa水平吊盖带颈对焊法兰人孔 (HG21524—95).人孔公称直径选定为DN=450mm。采用榫槽面密封 面(TG型)和石棉橡胶板垫片。人孔结构如图6—45所示,人孔各零 件名称、材质及尺寸见表6—19。
接触途径及中毒症状
2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤 或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀 部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的 炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病 例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕 、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症 。多次或持续接触氨会导致结膜炎。

(完整word版)液氨储罐设计

(完整word版)液氨储罐设计

前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识,查阅相关书籍,小组团结合作共同完成设计。

本设计的液料为液氨。

液氨,又称为无水氨,是一种无色液体.氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。

氨作为一种重要的化工原料,应用广泛.分子式NH,分子量17。

03,相对密度0.7714g/L,熔点-77。

7℃,沸点3-33.35℃,自燃点651.11℃,蒸汽压1013。

08kPa(25.7℃)。

设计基本思路:设计压力容器要求根据化工生产工艺提出的条件,确定容器设计所需参数(P、T、D),选定材料和结构形式,通过强度计算确定容器筒体及封头壁厚。

对已制定材准的受压元件,可直接选取。

而本设计容器为318m的液氨储罐,所以要求结合所学到的知识和利用身边可以查到的资料对318m的液氨储罐进行设计.课程设计是对课程内容的应用性训练环节,是学生应用所学知识进行阶段性的单体设备或单元设计方面的专业训练过程,也是对理论教学效果的检验。

通过这一环节使学生在查阅资料、理论计算、工程制图、调查研究、数据处理等方面得到基本训练,培养学生综合运用理论知识分析、解决实际问题的能力.液氨储罐属于化工常见的储运设备,一般可分解为筒体,封头,法兰,人孔,手孔,支座及管口等几种元件。

储罐的工艺尺寸可通过工艺计算及生产经验决定.液氨储罐是合成氨工业中必不可少的储存容器,所以本设计过程的内容包括容器的材质的选取、容器筒体的性状及厚度、封头的性状及厚度、确定支座,人孔及接管、开孔补强的情况以及其他接管的设计与选取。

本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。

液氨储罐设计PPT

液氨储罐设计PPT
RF指突面密封,Ⅳ指接管与法兰的材料为20R, A·G是指用普通石棉橡胶板垫片, 450-2.5是指公称直径为450mm、公称压力为
2.5 MPa。
12
5.人孔补强确定
筒节不是无缝钢管不能直接用补强圈标准。 人孔筒节壁厚dn=12mm,
内径d i=480 - 2*12=456mm, 补强圈内径D1=484mm,外径
24
本贮罐技术要求
4.壳体焊缝应进行无损探伤检查, 探伤长度为100%
5.设备制造完毕后,以2.6MPa表压 进行水压试验
6.管口方位按接管表
25
技术特性表
名称 设计压力 工作温度 物料名称
容积
指标 2.1MPa ≤40℃
液氨 30.52m3
接管表
符号 连接法兰标准
密封面形式 用途
a1-2 HG20592 SO15-2.5 RF
故取p=1.1x(2.0-0.1)=2.1MPa (表压);
Di=2600mm;[]t=163MPa(附录6);
=1.O(双面对接焊100%探伤,表(4-9)
C2=2mm
dd 2ptDipC2
dd2 1 2.1 6 2 1.3 06 1.6 02 0.01.8 8
取Cl=0.8mm(表4-10),圆整取dn=20mm
液氨储罐设计
1
设计一液氨贮罐。工艺尺寸:贮罐内径
Di=2600mm,贮罐(不包括封头)长度L=
4800mm。使用地点:天津。 解:1.罐体壁厚设计
根据第二篇第八章选材所作的分析,本贮罐 选用16MnR制作罐体和封头。
设计壁厚dd根据(4-12)式计算:
dd 2ptDipC2
设计压力:p应为50℃的氨饱和蒸气压2.0MPa (绝压)

液氨储罐设计参考图

液氨储罐设计参考图
技术要求 1.本设备按 GBl50-1998《钢制压力容器》进行制造、试验和验收 。 2.焊接材料,对接焊接接头型式及尺寸可按 GB985-80 中规定。 3.焊接采用电弧焊,焊条型号为 E4303 。 4.壳体焊缝应进行无损探伤检查,探伤长度为 100% 。 5.设备制造完毕后,以 2MPa 表压进行水压试验 6.管口及支座方位按本图。
制 图 描 图 年 月 比例 1∶30 第 1张 共 1张
法兰 SO50-1.6 RF 进料接管φ57×3.5 L=400 补强圈φ760/φ484 δ=20 人孔 RF Ⅱ(A·G)450-1.6 ) 罐体 DN2600×16 L=4800 封头 DN2600×16 h=40
16MnR
1
2.27
9
GB8163-87
10
1
1.85
8
JB/T4736-95
16MnR 组合件 16MnR 16MnR
22 21
GB8163-87 HB20592-95
出料接管φ38×3.5 L=200 法兰 SO 32-1.6 RF
10 16MnR
1 1
0.5 1.6
20
HB20592-95
法兰内径φ35 其它尺寸按 SO32-1.6
16MnR
1
1.86
19
GB8163-87
压料接管φ25×3 L=2750 法兰 SO20-1.6 RF 排污接管φ57×3.5 L=210 法兰 SO50-1.6 RF
HB20592-95
法兰 SO25-1.6 RF 放空管接管φ32×3.5 L=210 法兰 SO25-1.6 RF 安全阀接管φ32×3.5 L=210
16MnR
1
1.12

液氨储罐设计规范

液氨储罐设计规范

液氨储罐设计规范
液氨储罐是用来储存液体氨的设备,它在多个行业中被广泛应用,包括化工、冶金、制冷等领域。

为了确保储罐的安全运行,设计规范起着重要的作用。

下面将介绍一些液氨储罐的设计规范。

1. 储罐设计应符合当地相关法律法规和标准要求,包括安全生产法、压力容器安全技术监察条例等。

2. 储罐的选型应根据工艺要求和实际情况来确定,包括储存容量、工作压力、材料选择等。

3. 材料选择要考虑液氨的腐蚀性,通常使用碳钢、不锈钢等具有良好耐腐蚀性的材料。

4. 储罐的结构要牢固,通常采用圆筒形状,底部为锥形或球形。

5. 储罐的尺寸要根据液氨的储存容量和实际情况来设计,要保证结构的合理性和安全性。

6. 储罐应配备安全阀、液位计、压力表等安全设备,以确保储罐内的压力和液位在安全范围内。

7. 储罐与其它设备之间的连接要通过合适的管道和阀门来实现,要保证密封性和可靠性。

8. 储罐周围应设有防火设施,以防止火灾事故的发生。

9. 储罐应定期进行检查和维修,包括外观检查、材料检测、泄漏检测等,以确保其安全运行。

10. 储罐应配备适当的防护措施,如防护栏杆、警示标识等,
以确保操作人员的安全。

总之,液氨储罐的设计应遵循相关的法律法规和标准要求,要保证其在使用过程中的安全性和可靠性。

通过合理的结构设计、材料选择和安全设备配置,可以有效地预防事故的发生,确保液氨储罐的正常运行。

储罐的设计还需要考虑运输、储存和使用中的安全性。

总的来说,液氨储罐设计应考虑到液氨的特性和使用条件,确保其在使用中的安全性和可靠性。

卧式液氨储罐设计

卧式液氨储罐设计
论文框架
1. 前 言 2. 设计总论 3. 设计计算 4. 总 结
LOGO
1前言
本设计为一个在常温中压条件下的卧式液氨 储罐。液氨储罐是合成氨工业中必不可少的储 存容器,所以本设计主要内容包括容器材质选 取、罐体结构及壁厚设计、封头壁厚设计及支 座设计选取。在设计过程中综合考虑经济性、 实用性和安全可靠性。设备的选择大都有相应 的执行标准,各项设计参数都正确参考了行业 使用标准或国家标准,并考虑到结构方面的要 求,合理地进行设计。
图2-1 常见容器凸形封头的形式
2.2 材料及结构的选择与论证
2.2.3 容器支座的选择 压力容器靠支座支承并固定在基础上 ,鞍式支
座是应用最广泛的一种卧式支座,鞍式支座普遍使 用双鞍座支承。
图2-2 鞍式支座总体图
3 设计计算
3.1 确定罐体的内径及长度 3.2 筒体厚度设计 3.3 封头壁厚设计 3.4 水压试验及强度校核 3.5 核算承载能力并选择鞍座
在《钢制压力容器》中,只考虑钢板平面腐余量取C2=2㎜。 d C2 32.34 2 34.34㎜
式中 d ——设计厚度,㎜。 根据钢板厚度规格,圆整后确定名义厚度n 38㎜。
3.2 筒体厚度设计
现已知圆筒Di、n ,需对圆筒进行强度校核。校核如下:
t pc Di e 141.19MPa t 157 1.0 157MPa
2e
式中 e ——有效厚度,e n C,㎜; n ——名义厚度,㎜;
C ——厚度附加量,㎜;
t ——设计温度下圆筒的计算应力,MPa。
满足强度条件。
圆筒的最大允许工作压力 pw为
pw
2e t
Di e
2.95MPa
2.5MPa
式中 pw ——圆筒的最大允许工作压力,MPa。

液氨储罐的设计

液氨储罐的设计

化工设备机械基础课程设计题目:液氨贮罐的机械设计班级:07080102学号:***********名:**指导教师:***沈阳理工大学环境与化学工程学院2010年11月设计任务书课题:液氨储罐的机械设计设计内容:根据给定的工艺参数设计一台液氨储罐。

已知工艺参数:最高使用温度:T=50℃公称直径:DN=3000mm筒体长度:L=4500mm具体内容包括:(1)筒体材料的选择(2)储罐的结构和尺寸(3)罐的制造施工(焊接焊缝)(4)零部件的型号、位置和接口(5)相关校核计算设计人:陈剑学号:0708010213下达时间:2010年11月19日完成时间:2010年12月24日目录前言 (1)1液氨储罐的设计背景 (2)2液氨储罐的分类和选型 (3)2.1储罐的分类 (3)2.2 储罐的选型 (3)3 材料用钢的选取 (4)3.1容器用钢 (4)3.2附件用钢 (4)4工艺尺寸的确定 (5)4.1储罐的体积 (5)5工艺计算 (6)5.1筒体壁厚的计算 (6)5.2封头壁厚的计算 (6)5.3水压试验 (7)5.4支座 (7)5.4.1支座的选取 (7)5.4.2鞍座的计算 (7)5.4.3安装高度 (9)5.5人孔的选取 (9)5.6人孔补强 (9)5.6.1人孔补强的计算 (9)5.6.2 不需补强的最大开孔直径 (11)5.7接口管 (12)5.7.1液氨进料管 (12)5.7.2液氨出料管 (12)5.7.3排污管 (12)5.7.4液面计接管 (12)5.7.5放空接口管 (13)5.7.6安装阀接口管 (13)6参数校核 (14)6.1筒体轴向应力校核 (14)6.1.1 筒体轴向弯矩的计算 (14)6.1.2筒体轴向应力的计算 (15)6.2 筒体和封头切向应力的校核 (15)6.2.1筒体切向应力的计算 (16)6.2.2封头切向应力的计算 (16)6.3筒体环向应力的计算与校核 (16)6.3.1环向应力的计算 (16)6.3.2环向应力校核 (17)6.4鞍座有效断面平均压力 (17)7总结 (19)8设计结果一览表 (20)9液氨储罐化工设计图 (21)参考文献 (22)前言本学期在学习完化工设备机械基础理论课同时,老师下设了关于化工设备机械基础的课程设计-液氨储罐的机械设计,让我们学好理论知识的同时让我们懂得如何将学到的理论知识运用到实际生产中去,懂得如何综合考虑实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工设备机械基础课程设计题目液氨储罐的设计系(院)专业班级学生姓名学号指导教师职称二〇一一年六月七日设计任务书一、设计时间安排从2011年05月16 日至2011年06月06日二、设计内容安排1.液氨储罐的结构设计2. 筒体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)计算危险截面的重量载荷、风载荷、地震载荷;(3)计算危险截面的由各种载荷作用下的轴向应力;(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。

3. 编写设计计算书一份三、设计条件表1接管表表2设计参数目录符号说明 (4)前言 (6)液氨储罐设计 (7)第一章设计参数的选择 (7)1.1、设计题目 (7)1.2、设计数据 (7)1.3、设计压力 (7)1.4、设计温度 (8)1.5、主要元件材料的选择 (8)1.5.1 筒体材料的选择 (8)1.5.2 鞍座材料的选择 (8)第二章设备的结构设计 (8)2.1、圆筒厚度的设计 (8)2.2、封头厚度的设计 (9)2.3、筒体和封头的结构设计 (10)2.3.1 封头的结构尺寸 (10)2.3.2 筒体的长度计算 (10)2.4、鞍座选型和结构设计 (10)第三章:容器强度的校核 (12)3.1水压试验应力校核 (12)3.2.筒体轴向弯矩计算 (12)3.3筒体轴向应力计算与校核 (13)3.3.1圆筒中间横截面上,由压力及轴向弯矩引起的轴向应力 (13)3.3.2由压力及轴向弯矩引起的轴向应力 (13)3.3.3筒体轴向应力校核 (14)3.4.筒体和封头中的切向剪应力计算与校核 ....................................................................... 14 3.5.无加强圈筒体的周向应力计算与校核 ........................................................................... 15 3.6鞍座应力计算与校核 . (15)3.6.1.腹板水平应力及强度校核 .................................................................................... 15 3.6.2 鞍座有效断面应力校核 (14)第四章 开孔补强设计 (16)4.1 补强设计方法判别 .......................................................................................................... 16 4.2有效补强范围 . (17)4.2.1有效宽度B 的确定 ............................................................................................... 17 4.2.2有效高度的确定 .................................................................................................... 17 4.3 有效补强面积 (17)4.3.1 筒体多余面积 ....................................................................................................... 18 4.3.2接管的多余面积 .................................................................................................... 18 4.3.3焊缝金属截面积 .................................................................................................... 18 4.4.补强面积 (18)结束语 ........................................................................................................................................ 19 主要参考资料 (19)符号说明:A----鞍座底板中心线至封头切线的距离,2mm ;B----设计温度下,按GB150外压设计方法确定的数值,MPa ;o B ----常温下,按GB150外压设计方法确定的数值,MPa ; i D ----筒体内直径,mm ;oD ----筒体外直径,mm ;F ----每个支座的反力,N ;19K K -----系数,查表71,79:;L ----封头切线间的距离;1M ----圆筒中间处的轴向弯矩,m N ⋅;2----支座处圆筒的轴向弯矩,;m N ⋅a R ----圆筒的平均半径,,2na i R R mmδ=+;iR ----圆筒的内半径,mm ;b----支座的轴向宽度,mm ;1b ----加强圈的宽度,mm ;2b -----圆筒的有效厚度,取2b b mm=+;4b -----支座垫板宽度;g -----重力加速度;ih ----封头曲面深度;k ----系数。

当容器焊在支座上时,取1.0=k ; 当容器不焊在支座上时,取1k =;m ---容器的质量,kg ; p ---设计压力,MPa ;cp ---计算压力,MPa ; eδ---圆筒有效厚度,mm ; heδ---封头有效厚度,mm ;nδ---圆筒名义厚度,mm ; re δ--鞍座垫板有效厚度,mm ; rnδ---鞍座垫板有效厚度,mm ;θ---鞍座包角,()o;[]t σ---设计温度下容器壳体材料的许用应力,MPa ; []t acσ---设计温度下容器壳体材料的轴向许用压缩应力,MPa ;ac ---常温度下容器壳体材料的轴向许用压缩应力,MPa ; []saσ---鞍座材料的许用应力,MPa ;21,T T σσ---圆筒中间处横截面内最高点处,最点低点处的轴向应力,MPa ; 33,T T σσ---支座处圆筒横截面内的轴向应力,MPa ; 5σ---支座处圆筒横截面最低点的轴向应力,MPa ; 6σ---无加强圈时鞍座边缘处的圆筒周向应力,MPa ; 6'σ---无加强圈时鞍座垫板边缘处的圆筒周向应力,MPa ;9σ---鞍座腹板水平方向上的平均拉应力,MPa ;τ---圆筒切向剪应力,MPa ;hτ---封头切向剪应力,MPa 。

前言储存设备又称储罐,主要是指用于储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用,如氢气储罐、液化石油气储罐、石油储罐、液氨储罐等。

储罐内的压力直接受温度影响,且介质往往易燃、易爆或有毒。

储罐的结构形式主要有卧式储罐、立式储罐和球形储罐。

饱和蒸汽压是指在一定温度下的密闭容器中,当达到气液两相平衡时气液分界面上的蒸汽压,它随温度而变化,但与容积的大小有关。

对于液化石油气和液化天然气之类,都不是纯净物,而是一种混合物,此时的饱和蒸汽压与混合比例有关,可根据道尔顿定律和拉乌尔定律进行计算。

当储存的介质为具有高粘度或高冰点的液体时,为保持其流动性,就需要对储存设备进行加热或保温,使其保持便于输送的状态。

储存液体的密度,直接影响制造工艺和设备造价。

而介质的毒性程度则直接影响设备制造与管理的等级和安全附件的配置。

当储罐的金属温度受大气环境温度影响时,其最低设计温度可按该地区气象资料,取气象局实测的10年逐月平均最低温度的最小值。

随着液化气体温度的下降,罐内压力也将较大幅度下降,此时罐体的应力水平就有较大的降低。

为此,在确定储罐设计温度时,可按有关规定进行低温低应力分析。

当储罐内部因温度降低而使内压低于大气压时,还应进行罐体的稳定性校核,以免发生失稳失效。

液氨储罐设计第一章设计参数的选择1.1、设计题目:液氨储罐的设计1.2、设计数据:如下表11.3、设计压力:设计压力取最大工作压力的1.1倍,即 1.1 1.9 2.09=⨯=P MPa1.4、设计温度: 工作温度为40C , 设计温度取40+10=50C 。

1.5、主要元件材料的选择: 1.5.1 筒体材料的选择:根据GB150-1998表4-1,选用筒体材料为低合金钢16MnR (钢材标准为GB6654)[]170tMPa σ=。

16MnR 适用范围:用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(8mm ≥)的压力容器。

1.5.2 鞍座材料的选择:根据JB/T4731,鞍座选用材料为Q235-B ,其许用应力[]147sa MPa σ=第二章 设备的结构设计2.1、圆筒厚度的设计: 计算压力c P :液柱静压力: 15809.81 1.26827.8P gh Pa ρ==⨯⨯= 61/6827.8/(2.0910)0.3%5%P P =⨯=<, 故液柱静压力可以忽略,即c P 2.09P MPa == 该容器需20%探伤,所以取其焊接系数为0.85φ=。

圆筒的厚度在6~16mm 范围内,查GB150-1998中表4-1,可得:在设计温度50C 。

下,屈服极限强度345s MPa σ=, 许用应力[]t170MPa σ=利用中径公式, 计算厚度:[]i tcPD 2.09MPa 12008.7420.85170 2.092-P mm δφσ⨯===⨯⨯-查标准HG20580-1998《钢制化工容器设计基础规定》表7-1知,钢板厚度负偏差为0.25mm ,而有GB150-1998中 3.5.5.1知,当钢材的厚度负偏差不大于0.25mm ,且不超过名义厚度的6%时,负偏差可以忽略不计,故取10C =。

查标准HG20580-1998《钢制化工容器设计基础规定》表7-5知,在无特殊腐蚀情况下,腐蚀裕量2C 不小于1mm 。

本例取2C =2 则筒体的设计厚度28.74210.74n C mm δδ=+=+= 圆整后,取名义厚度12n mm δ=筒体的有效厚度12120210e n C C mm δδ=--=--= 2.2、封头厚度的设计:查标准JB/T4746-2002《钢制压力容器用封头》中表1,得公称直径iD N =D =1200m m 选用标准椭圆形封头,型号代号为EHA ,根据GB150-1998中椭圆形封头计算中式7-1计算:[]c itcP D 2.09MPa 12008.7120.851700.5 2.092-0.5P mm δφσ⨯===⨯⨯-⨯同上,取22C mm =,10C =。

相关文档
最新文档