快速成型技术的应用及发展趋势
简述快速成型技术的应用领域。
简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,RP)是一种通过逐层堆积材料构建三维实体模型的制造技术,它可以快速、精确地制造出产品的样件或模型。
快速成型技术的应用领域非常广泛,下面将从工业设计、医疗领域、建筑设计和教育领域等方面进行简要介绍。
快速成型技术在工业设计领域得到了广泛应用。
在产品设计过程中,通过快速成型技术可以快速制造出产品的样件,供设计师进行实物验证和修正,从而加快产品开发周期。
此外,快速成型技术还可以制造出复杂形状的零部件,为工程师提供更多的设计自由度和创新空间。
快速成型技术在医疗领域也有重要的应用。
医疗器械的研发和生产需要经过严格的验证和测试,而快速成型技术可以快速制造出医疗器械的样件,用于验证其功能和可用性。
此外,快速成型技术还可以制造出个性化医疗器械,如植入式器械和义肢等,为患者提供更好的医疗服务。
快速成型技术在建筑设计领域也有广泛的应用。
传统的建筑模型制作过程需要耗费大量的时间和人力,而快速成型技术可以快速制造出建筑模型,帮助设计师和业主更好地理解和评估建筑设计方案。
此外,快速成型技术还可以制造出建筑构件,如曲面墙板和装饰雕塑等,为建筑设计提供更多的创意和可能性。
快速成型技术在教育领域也有广泛的应用。
通过快速成型技术,学生可以将自己的创意转化为实物,提升创造力和动手能力。
同时,快速成型技术还可以用于制作教学模型和实验装置,帮助学生更好地理解和掌握知识。
快速成型技术在工业设计、医疗领域、建筑设计和教育领域等方面都有广泛的应用。
随着技术的不断发展,快速成型技术将在更多的领域中发挥重要作用,为人们的生活和工作带来更多的便利和创新。
快速成型技术在产品设计中的应用
快速成型技术在产品设计中的应用
快速成型技术是一种将数字化三维模型转化为实际物体的技术,通过计算机辅助设计
软件和材料加工设备实现原型设计与制造的重要方法。
在产品设计领域中,快速成型技术
应用广泛,主要应用于产品原型制作、产品的外观检验和最终产品的制造等方面。
一、原型制作
快速成型技术可以大大加快产品原型的制作速度,并可以提供高精度、高质量的原型。
使用传统的手工制作方法,需要耗费大量的时间和人力,而且在精度和质量方面也无法与
快速成型技术相比。
快速成型技术可以将设计师的概念迅速转化为实际产品样品,从而使
设计师可以更快地评估和确认其设计方案的可行性,对于新产品的开发和改良具有重要的
作用。
二、外观检验
在产品设计阶段,快速成型技术可以通过制造实际样品,方便设计师对产品的外观、
尺寸、色彩等方面进行检验。
传统的检验方式需要手动制作模型进行比对,费时费力,且
难以做到精度的一致性。
快速成型技术可以在短时间内制作多个产品样品,提高检验的效
率和准确性。
三、最终产品制造
快速成型技术可以直接将设计师的三维模型转化为零件,并可以在短时间内生产出更
具精度和质量的产品。
在快速成型技术中,材料的用量较少,制造过程中浪费的材料也较少,大大降低了生产成本,并提高了生产效率和产品质量。
综上所述,快速成型技术在产品设计中的应用广泛,具有很大的优势。
它可以减少产
品制造时间,提高产品设计和制造的效率和准确性,从而为产品的研发和改进提供了有力
的技术手段。
随着新材料和新技术的不断发展,快速成型技术将会在产品设计中发挥更为
重要的作用。
快速成型技术的应用及发展趋势
快速成型技术的应用及发展趋势熊文恪模具1111 2011118501266摘要:阐述了快速成型技术的基本概念,总结了快速成型技术的特点,并通过制作实例展现了快速成型技术在产品开发中的应用现状,最后展望了快速成型技术的未来发展趋势。
关键词:快速成型技术应用发展趋势当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一, 快速成型技术在成型过程中无需专用的夹具或工具,成型过程具有极高的柔性, 这是快速成型技术非常重要的一个技术特征。
1—5 自动化程度高。
快速成型是一种完全自动的成型过程, 只需要在成型之初由操作者输入一些基本的工艺参数,整个成型过程操作者无需或较少干预[ 4] 。
出现故障, 设备会自动停止, 发出警示并保留当前数据。
完成成型过程时, 机器会自动停止并显示相关结果。
2快速成型技术应用近年来, 快速成型技术在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到迅速良好的应用。
主要包括以下几个方面:2—1 设计和功能验证。
通过快速成型技术可以快速制作产品的物理模型, 以验证设计人员的构思, 发现产品设计中存在的问题。
而使用传统的方法制作原型意味着从绘图到工装模具设计和制造, 一般至少历时数月, 经过多次返工和修改。
采用快速成型技术则可节省大量时间和费用。
同时, 使用快速成型技术制作的原型可直接进行装配检验、干涉检查和模拟产品真实工作情况的一些功能试验, 如运动分析、应力分析、流体和空气动力学分析等, 从而迅速完善产品的结构和性能、相应的工艺及所需工模具的设计。
2—2 非功能性样品制作。
在新产品正式投产之前或按照定单制造时,需要制作产品的展览样品或摄制产品样本照片,采用快速成型是理想的方法。
邵敏[ 5]在首饰设计方面提出首饰设计是立体的物质实体性设计,,逐层制造的优点,探索制造具有功能梯度、综合性能优良、特殊复杂结构的零件,也是一个新的方向发展。
3—2.概念创新与工艺改进。
快速成型技术在新产品开发中的应用
快速成型技术在新产品开发中的应用简介快速成型技术(Rapid Prototyping,简称RP)是一种通过快速制造物理模型的技术,可以帮助企业在新产品开发过程中快速验证设计和理念。
本文将探讨快速成型技术在新产品开发中的应用,并分析其优势和挑战。
1. 快速验证产品设计在传统的产品开发过程中,设计师和工程师通常必须等待数周或数月才能看到实物样品,这增加了开发周期和成本。
而快速成型技术通过快速制造物理样品,使得设计师能够快速验证和修改设计。
这不仅减少了开发周期,还帮助企业降低了开发成本。
2. 提高产品质量通过快速成型技术,设计师和工程师可以快速制造出可视和可操作的模型。
这些模型可以帮助他们更直观地评估产品的外观、尺寸和操作性能。
通过在早期阶段发现和解决问题,可以避免后期的设计漏洞,提高产品的质量和用户满意度。
3. 加快新产品上市时间快速成型技术的应用可以大大加快新产品的上市时间。
通过快速验证设计,优化产品性能和质量,企业可以更快地将产品推向市场,抢占竞争对手的先机。
这在当今快节奏的市场环境中尤为重要,尤其对于技术领先和创新性强的行业尤为有效。
4. 降低开发风险快速成型技术可以帮助企业降低新产品开发的风险。
通过制造出物理模型,企业可以在生产前测试产品的功能和性能,检测潜在问题并进行改进。
这有助于避免生产缺陷和不必要的成本,降低企业的风险。
快速成型技术应用的挑战除了上述的优势之外,快速成型技术在实际应用过程中也面临一些挑战。
1. 材料选择快速成型技术需要选用合适的材料来制造模型。
不同的材料具有不同的物理特性和机械性能,因此选择合适的材料很重要。
同时,随着产品的复杂性增加,需要更多种类的材料,这增加了材料选择的难度。
2. 生产能力和适用范围快速成型技术的应用还受到生产能力和适用范围的限制。
不同的技术和设备具有不同的生产能力和适用范围,部分复杂结构的产品可能无法通过快速成型技术进行制造。
因此,企业需要根据产品类型和要求选择合适的快速成型技术。
逆向工程及快速成型技术
逆向工程及快速成型技术引言逆向工程和快速成型技术是当今数字化时代强有力的工具,对各个行业都有着深远的影响。
逆向工程是通过分析和推导一个产品的设计、构造和功能,来理解并重新构建该产品的过程。
快速成型技术则是通过一系列自动化的加工过程,将数字化设计数据通过三维打印等方式快速转化为实体产品。
本文将介绍逆向工程和快速成型技术的基本概念、应用领域以及未来发展方向。
逆向工程基本概念逆向工程(Reverse Engineering)是指通过分析和推导产品的设计、构造和功能,来理解并重新构建该产品的过程。
它包括对产品的结构、性能、工艺和使用特性等方面的解析,以及对产品的复制和改进。
逆向工程通常通过采集、处理和分析产品的物理数据、CAD模型和软件程序等信息来实现。
应用领域逆向工程可以应用于各个行业和领域。
其中,制造业是逆向工程的主要应用领域之一。
在制造业中,逆向工程技术可以帮助企业快速获取竞争对手的产品信息,对其进行分析和研究,从而提升自己的技术优势。
逆向工程还可以用于产品的维修和改进,通过分析产品的结构和工艺,找出产品存在的问题并进行改进。
此外,逆向工程还可以应用于艺术、文化遗产保护等领域。
发展趋势随着信息技术的不断发展,逆向工程的方法和工具也在不断更新和改进。
目前,逆向工程主要应用于物理产品的分析和复制,但随着虚拟现实和增强现实等技术的发展,逆向工程将更多地应用于数字产品和软件的研究和分析。
此外,随着机器学习和人工智能技术的进一步发展,逆向工程将可以更加自动化和智能化,提高工作效率和准确性。
快速成型技术基本概念快速成型技术(Rapid Prototyping)是一种通过自动化的加工方法,将数字化设计数据快速转化为实体产品的技术。
它通过将设计数据转化为三维模型,并通过三维打印等方式进行快速制造。
快速成型技术可以减少产品开发周期和成本,提高生产效率。
应用领域快速成型技术被广泛应用于工业设计、医疗器械、汽车制造、航空航天等领域。
快速成型技术在产品设计中的应用
快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。
随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。
本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。
快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。
而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。
这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。
2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。
设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。
3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。
而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。
4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。
这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。
5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。
设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。
未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。
随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。
快速成型技术及其应用
快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。
在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。
本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。
通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。
二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。
其基本原理可以概括为“离散-堆积”。
将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。
根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。
材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。
光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。
在紫外光照射下,液态树脂逐层固化,形成实体。
该技术精度较高,适用于制造复杂结构和高精度的模型。
选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。
在激光的作用下,粉末逐层烧结,形成实体。
该技术可以制造金属和陶瓷等高强度材料的零件。
快速成型工艺
快速成型工艺快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品。
这种技术的出现,极大地提高了制造业的效率和质量,同时也为各行各业的发展带来了新的机遇。
快速成型工艺的基本原理是利用计算机辅助设计软件将三维模型转化为可供机器识别的数字化文件,然后通过快速成型机器将数字化文件转化为实体模型。
这种技术可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低,可以满足各种不同的需求。
快速成型工艺的应用范围非常广泛,它可以应用于汽车、航空、医疗、电子、玩具等各个领域。
在汽车制造领域,快速成型工艺可以用于制造汽车零部件,如发动机、变速器、底盘等。
在航空领域,快速成型工艺可以用于制造飞机零部件,如机翼、机身、发动机等。
在医疗领域,快速成型工艺可以用于制造人体器官模型、义肢、牙齿矫正器等。
在电子领域,快速成型工艺可以用于制造手机外壳、电脑键盘、电视机壳体等。
在玩具领域,快速成型工艺可以用于制造各种玩具模型、动漫人物等。
快速成型工艺的优点主要有以下几点:1.快速成型工艺可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低。
2.快速成型工艺可以大大缩短产品的研发周期,提高产品的研发效率。
3.快速成型工艺可以减少产品的设计和制造成本,提高企业的竞争力。
4.快速成型工艺可以满足客户的个性化需求,提高客户的满意度。
快速成型工艺的发展趋势是向着高精度、高效率、低成本、多材料、多功能、智能化的方向发展。
未来,快速成型工艺将会更加广泛地应用于各个领域,成为制造业的重要组成部分。
快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品,提高制造业的效率和质量,为各行各业的发展带来新的机遇。
我们应该积极推广和应用这种技术,为社会的发展做出更大的贡献。
快速成型技术的应用与发展趋势
快速成型技术的应用及发展趋势摘要:;快速成型技术凭借其加工原理的独特性和相对传统加工时间的大大节省,在模具工业和修复医学方面得到了大力的推广和应用.同时也是一种结合计算机、数控、激光和材料技术于一体的先进制造技术,并提出快速成型技术未来的发展方向。
关键词:快速成型;快速模具;修复医学;成型方法;成型材料;引言快速成型(Rapid Prototyping,简称RP)是80年代末期开始商品化的一种高新制造技术,它是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术.快速成型不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型.它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型.由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本.随着计算机技术的快速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能.快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域[1]。
1.快速成型技术的应用1.1 工业产品开发及样件试制作为一种可视化的设计验证工具,RP具有独特的优势。
(1)在国外,快速原型即首版的制作,已成为供应商争取订单的有力工具。
美国Detroit的一家制造商,利用2台不同型号的快速成型机以及快速精铸技术,在接到№rd公司标书后的4个工作日内生产出了第一个功能样件,从而拿到了Ford公司年生产总值300万美元的发动机缸盖精铸件的合同。
(2)在RP系统中,一些使用特殊材料制作的原型(如光敏树脂等)可直接进行装配检验、模拟产品真实工作状况的部分功能试验。
Chrysler 直接利用RP技术制造的车体原型进行高速风洞流体动力学试验,节省成本达70%。
简述快速成型技术的应用领域。
简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,简称RP)是一种通过将计算机模型直接转化为物理模型的制造技术。
它利用计算机辅助设计(CAD)软件将设计模型转化为三维数字模型,然后通过快速成型机器将数字模型转化为实体模型。
快速成型技术的应用领域非常广泛,下面将对其主要应用领域进行简要介绍。
1. 制造业:快速成型技术在制造业中的应用非常广泛。
它可以用于制造各种机械零件、模具、模型等。
通过快速成型技术,可以大大缩短产品开发周期,降低产品开发成本,提高产品质量。
此外,快速成型技术还可以用于制造复杂的结构件,如骨骼支架、人工关节等。
2. 医疗领域:快速成型技术在医疗领域的应用非常广泛。
它可以用于制造医疗器械、医疗模型、人体组织修复等。
通过快速成型技术,可以根据患者的具体情况,定制医疗器械和人工器官,提高手术的精确性和成功率。
同时,快速成型技术还可以用于制造人体模型,帮助医生进行手术模拟和培训。
3. 文化艺术:快速成型技术在文化艺术领域的应用也越来越广泛。
它可以用于制造各种艺术品、雕塑、建筑模型等。
通过快速成型技术,艺术家可以更加自由地发挥创造力,制作出更加精细、复杂的作品。
同时,快速成型技术还可以用于文物保护和修复,帮助保护和传承人类的文化遗产。
4. 教育领域:快速成型技术在教育领域的应用也日益增多。
它可以用于制作教学模型、实验装置等。
通过快速成型技术,教师可以更加生动地展示教学内容,提高学生的学习兴趣和参与度。
同时,快速成型技术还可以用于学生的创意设计和创新实践,培养学生的创造力和实践能力。
5. 建筑领域:快速成型技术在建筑领域的应用也越来越广泛。
它可以用于制造建筑模型、结构模型等。
通过快速成型技术,建筑师可以更加直观地展示设计方案,帮助客户更好地理解和接受设计。
同时,快速成型技术还可以用于制造建筑构件和装饰品,提高建筑施工效率和质量。
快速成型技术在制造业、医疗领域、文化艺术、教育领域和建筑领域等多个领域都有广泛的应用。
快速成型技术在模具制造中的应用与发展前景
快速成型技术在模具制造中的应用与发展前景快速成型技术(Rapid Prototyping,简称RP),又称增材制造技术(Additive Manufacturing,简称AM),是一种通过逐层逐点添加材料的方式,直接将三维数字模型转换为实体模型的制造技术。
它通过数控技术、计算机模型和数字化工艺的应用,极大地缩短了传统制造过程中从设计到加工的时间,提高了制造效率和产品质量,并在模具制造领域得到广泛应用。
快速成型技术在模具制造中的应用主要体现在以下几个方面:1. 制造复杂结构的模具:传统的模具制造往往需要多次加工和组装,制约了模具的结构复杂度和精度,而快速成型技术可以直接将复杂的三维数字模型转化为实体模型,使得制造复杂结构的模具变得更加容易。
例如,快速成型技术可以实现内部空腔、内螺纹结构等复杂形状的模具制造,大大提高了模具的功能性和应用领域。
2. 减少制造周期:快速成型技术可以大大缩短模具的设计和制造周期。
传统的模具制造需要经过设计、加工、组装等多个环节,而且每个环节都可能出现问题导致延误。
而快速成型技术可以直接将数字模型转化为实体模型,减少了多个环节的中间过程,加快了模具的制造速度。
尤其是在产品开发的初期阶段,这种快速制造模具的能力非常重要,可以提高产品研发的效率和竞争力。
3. 优化模具结构和性能:快速成型技术可以通过不断试验迅速调整模具的设计和结构,提高模具的性能和质量。
在传统的模具制造中,往往需要经过多次试验和修改才能最终确定模具的结构和参数。
而快速成型技术可以通过快速制造并测试多个不同设计的模具样品,迅速找到最优设计方案,减少了试错的成本和周期,提高了模具的效率和性能。
4. 减少模具制造成本:快速成型技术不仅可以缩短制造周期,还可以降低模具制造的成本。
传统的模具制造方式往往需要大量的人工和设备投入,制造周期长,成本高。
而快速成型技术可以通过直接从数字模型中生成模具,减少了多个加工环节和设备的投入,降低了制造成本。
快速成型技术在汽车工业中的应用
快速成型技术在汽车工业中的应用随着科技的不断进步,越来越多的新技术被应用到各个行业中,汽车工业也不例外。
其中,快速成型技术作为一种革命性的制造技术,已经被广泛应用于汽车制造中。
本文将从快速成型技术的定义、发展历程和应用领域三个方面,对快速成型技术在汽车工业中的应用进行详细探讨。
一、快速成型技术的定义和发展历程快速成型技术(Rapid Prototyping,RP),是一种先进的制造技术,通过三维数控系统将计算机辅助设计(CAD)文件直接转换为三维物理模型。
其主要优势是减少了传统制造过程中的工具和模具制造、组装和加工等一系列繁琐复杂的工序,进而大幅提高了制造效率和质量。
快速成型技术的起源可以追溯到20世纪80年代初期,在此期间,美国麻省理工学院的Charles Hull首次提出了激光造型技术(Stereolithography,SLA),同时日本的石井辅也独立研发出了光固化成型技术(PhotoSolidification),意味着快速成型技术的诞生。
此后,快速成型技术得到了快速发展,包括选择性激光烧结(Selective Laser Sintering,SLS)、喷墨成型(Inkjet Printing)等技术的推广和应用,以及新型成型材料的研究和不断完善。
二、快速成型技术在汽车工业中的应用快速成型技术在汽车工业中的应用可以分为三个方面:1、汽车设计和开发制造利用快速成型技术的制造优势,汽车公司可以在短时间内制造出零部件甚至整个汽车原型,对汽车进行试装、试制和试运行。
这样可以大大缩短汽车开发周期和成本,并提高产品的质量和可靠性,同时也为消费者提供更多更好的汽车产品。
目前,利用快速成型技术制造汽车原型已成为很多汽车公司普遍采用的方法。
2、汽车维修和保养快速成型技术可以在维修和保养汽车时起到很大的作用。
利用快速成型技术制造汽车零部件甚至发动机部件,可以大大缩短维修时间,提高维修效率和质量,同时也减少了汽车零部件的订购和库存成本。
快速成型中国制造2025论文
燕山大学材料成型工程导论课程论文快速成型技术的应用现状及中国制造2025目标下发展趋势学院:机械工程学院专业:材料成形及控制工程班级:二班姓名:学号:2015年06月目录1. 摘要2. 关键字3. 引言4. 正文5. 结论6. 参考文献摘要:快速成型(RP)技术是一种结合计算机、数控、机械、激光和材料技术于一体的先进制造技术。
新世纪以来,新一轮科技革命和产业变革正在孕育兴起,这场变革是信息技术与制造业的深度融合,同时叠加新能源、新材料等方面的突破而引发的新一轮变革。
适逢中国制造2025计划出台,该计划主线是以体现信息技术与制造技术深度融合的数字化网络化智能化制造为主线。
将为中国制造业注入新的力量。
【8】本文论述了快速成型技术的应用领域及发展和现状。
阐述了快速成型技术在国内国外的发展趋势及快速成型技术在中国制造2025政策下的未来发展方向。
关键字:快速成型、中国制造2025、应用、发展趋势引言:快速成型技术是一种快速而又精确地工艺技术,随着经济的迅猛发展与市场的激烈竞争,各国制造业不仅致力于扩大生产规模、降低生产成本、提高产品质量,而且还将注意力逐渐放在快速开发新品种以及加快市场的响应速度上。
快速成型技术可以加工形状复杂尺寸精度要求高的各种零件,在产品设计和制造领域应用快速成型技术,能显著地缩短产品投放市场的周期,降低成本,提高质量,增大企业的竞争能力,随着科技技术的不断高速发展,人们的生活也在随着快速的更替,对同一个产品消费者越来越追求个性化,主体化,多样化。
这些都要求产品的设计者和生产者拥有一个快速,多样化的能力来满足消费者的要求。
快速成型的优越性正好能满足这些要求,所以快速成型在很大领域得到广泛的应用和很好的发展,并且在这些领域里所占的比重是越来越大,现在我们建立起一种并行的设计系统,更好的将设计、工程分析与制造三分面集成。
从而缩短产品的开发周期,最终保证了产品的质量,国务院总理李克强2015年3月25日主持召开国务院常务会议,部署加快推进实施“中国制造2025”,实现制造业升级。
快速成型技术的发展趋势以及对智能制造的影响
快速成型技术的发展趋势以及对智能制造的影响一、快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术(Rapid Prototyping 简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。
而快速成型技术基本原理是∶借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行"切片"处理,即将零件的3D数据信息离散成一系列2D 轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了种高效低成本的实现手段。
目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。
二、快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。
目前,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。
并且随着这一技术本身的发展,其应用领域将不断拓展。
RP 技术的实际应用主要集中在以下几个方面∶ 1.用于新产品的设计与试制。
(1)CAID 应用∶工业设计师在短时间内得到精确的原型与业者作造形研讨。
快速成型技术-第七章
7.2 逆向工程、快速成型与快速模具系统的集成
(一) RE相关技术及应用 1. RE技术 逆向工程技术也称为反求工程、反向工程等,它能将已有实物或
模型转换为三维点云数据资料,借助这些数据资料能在短时间内快速地对已有产 品或模型进行造型上的修改与创新设计,即RE技术的主要内容就是将实物转变为 三维CAD数据资料并进行几何模型重构与产品的快速制造。
7.1 产品快速设计与制造系统的集成
三、产品快速设计与制造系统的应用
利用产品快速设计与制造系统的基本框架及软硬件相关资源,可快速地实现产 品的三维设计。 (一)借助RE技术实现产品的快速设计与制造 图7-2所示为对某一吉普车车轮进 行反求与再设计,图7-3所示为对吉普车车轮进行的多次再设计与LOM模型。在满 足车轮刚度、强度等使用要求的前提下,尽量使其外观具有美感。同时,在设计车 轮外观时,对每一种设计都进行LOM原型制件的快速制作与仿真,对车轮的外观及 结构进行多次改进,最终确定合理的设计方案并生产出车轮样件。
从以上两种产品的快速设计方法及步骤中可以看出,它们都是借助 计算机三维CAD设计、快速成型与快速模具制造等技术来进行产品 的快速设计与制造。不同点则是前者是采用逆向思维的方式,而后者 是采用正向思维的方式进行产品的快速设计与制造。
7.1 产品快速设计与制造系统的集成
产品快速设计与制造过程不仅仅是 考虑某个单一因素,而是集工业设计、 美学、产品的功能与结构性能、产品 的制造工艺性以及成本等多种因素于 一体的设计过程,有时甚至可能还需通 过对产品在实际工作环境中进行仿真 或在仿真基础上进行相关的优化设计, 最终达到产品的设计目的。图7-1所示 为产品快速设计与制造系统的基本框 架。
通过RE技术构建三维CAD数据资料的主要内容是:首先借助三维测量装置对 实物进行三维点云数据资料的采样以获取实物的三维点云数据资料,即对实物进 行三维离散数字化处理,这是RE的关键技术;其次再对三维点云数据资料进行预处 理,如进行数据的平滑滤波、消除噪声、删除冗余数据资料、重要特征的提取与 排序等,初步确定实物的几何特征信息;然后再进行三维曲面的修改与重构,如将数 据资料按研发需求进行曲面的建构与重构、拼接等工作;最后将曲面模型进行检 查与修改并等待输出。
快速成型技术在医疗领域的应用
快速成型技术在医疗领域的应用随着科技的不断进步,快速成型技术在各个领域的应用愈来愈广泛,如今在医疗领域也得到了广泛的应用。
快速成型技术是一种快速制造的技术,可以根据计算机模型快速制造出三维模型,通过数字化设计计算机辅助制造,计算机自动控制设备制造出模型,这项技术可以帮助医生更加准确地进行手术,缩短手术时间,提高手术质量。
快速成型技术的应用快速成型技术可以帮助医生更加准确地进行手术,缩短手术时间,提高手术质量,对于一些复杂的手术,快速成型技术可以制造出精细的三维模型,为医生提供可视化和触觉反馈系统,从而提高手术成功率。
快速成型技术可以制造出各种类型的医疗器械,如假肢、人工心脏等,可以减少精细的手工操作,提高生产效率和产品质量。
快速成型技术也可以用于医学研究中,例如制造出模拟人体器官,可以模拟真实人体的情况,帮助医生更好地观察和研究人体器官的结构和功能。
快速成型技术还可以制造出模拟人体组织,用于医学试验和药物测试,提供了更加真实的测试平台。
快速成型技术的应用案例快速成型技术在医疗领域的应用案例已经有很多,下面介绍几个典型的案例:1. 快速成型技术制造人工耳蜗人工耳蜗是一种应用于耳聋患者中耳内的电子设备,可以通过振动将声音转化为电信号,再通过植入颅内电极将电信号传递到听觉神经上。
传统的人工耳蜗需要通过手工制造,生产周期长,生产成本高。
但是,采用快速成型技术制造人工耳蜗不仅可以减少生产周期,同时也可以提高生产效率,减少生产成本,让更多的耳聋患者受益。
2. 快速成型技术制造人体器官模型快速成型技术可以制造出各种类型的人体器官模型,如心脏模型、肝脏模型等,帮助医生更好地观察和研究人体器官的结构和功能。
例如,美国医学研究公司Anatomics使用快速成型技术制造出一款精细的人体心脏模型,提供了一种准确的操作平台,帮助医生更好地了解人类心脏的结构和功能。
3. 快速成型技术制造假肢快速成型技术可以制造出各种类型的假肢,如手臂假肢、腿部假肢等,可以根据个人的需要制造出适合的假肢,提高生活质量。
简述快速成型技术的应用
简述快速成型技术的应用快速成型技术(Rapid Prototyping,简称RP)是一种通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,直接从三维CAD模型中构建实物模型的方法。
它在工业设计、制造、医疗、艺术等领域有着广泛的应用。
快速成型技术在工业设计领域得到了广泛的应用。
传统的产品设计过程需要经历多个阶段,包括手工制作模型、校对设计、制作模具等步骤。
而使用快速成型技术,设计师可以通过CAD软件直接生成三维模型,并使用快速成型机器将其转化为实物模型。
这样不仅可以减少设计时间,还可以快速验证设计的可行性,降低产品开发的风险。
快速成型技术在制造领域也有着重要的应用。
传统的制造过程通常需要制作模具,然后再进行大规模生产。
而使用快速成型技术,可以直接从CAD模型中生成产品原型,然后再根据需要进行小批量生产。
这种灵活的生产方式可以满足个性化定制的需求,提高生产效率,降低生产成本。
快速成型技术在医疗领域也有着广泛的应用。
医生可以利用快速成型技术生成患者特定的三维模型,用于手术模拟、医疗器械设计等方面。
这种个性化的医疗模型可以帮助医生更好地了解患者的病情,制定更精确的治疗方案,提高手术的成功率。
快速成型技术还被广泛应用于艺术创作领域。
艺术家可以使用CAD 软件设计出复杂的艺术品模型,然后通过快速成型技术将其转化为实物。
这种技术不仅可以大大缩短艺术品制作的时间,还可以实现艺术家的创作理念。
同时,快速成型技术还可以帮助艺术家实现雕塑、陶瓷等多种材质的艺术品制作。
快速成型技术在工业设计、制造、医疗和艺术等领域的应用非常广泛。
它可以大大缩短产品开发周期,提高生产效率,降低生产成本。
同时,它还可以帮助医生提高诊断和治疗的准确性,艺术家实现创作理念。
随着技术的不断发展,快速成型技术将会在更多领域发挥重要作用,推动各行各业的创新和发展。
《快速成型技术及应用》学习心得
《快速成型技术及应用》学习心得《快速成型技术及应用》学习心得对于本学期黄老师的《快速成型技术及应用》学习心得,主要从RP技术的应用现状和发展趋势、主要的RP成型工艺分析和RP技术在当代模具制造行业的应用三个方面进行说明:一、RP技术的应用现状与发展趋势快速成型技术是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。
RP技术虽然有其巨大的优越性,但是也有它的局限性,由于可成型材料有限,零件精度低,表面粗糙度高,原型零件的物理性能较差,成型机的价格较高,运行制作的成本高等,所以在一定程度上成为该技术的推广普及的瓶颈。
从目前国内外RP 技术的研究和应用状况来看,快速成型技术的进一步研究和开发的方向主要表现在以下几个方面:大力改善现行快速成型制作机的制作精度、可靠性和制作能力,提高生产效率,缩短制作周期。
尤其是提高成型件的表面质量、力学和物理性能,为进一步进行模具加工和功能试验提供平台。
开发性能更好的快速成型材料。
材料的性能既要利于原型加工,又要具有较好的后续加工性能,还要满足对强度和刚度等不同的要求。
提高RP 系统的加工速度和开拓并行制造的工艺方法。
目前即使是最快的快速成型机也难以完成象注塑和压铸成型的快速大批量生产。
RPM 与CAD、CAM、CAPP、CAE 以及高精度自动测量、逆向工程的集成一体化。
该项技术可以大大提高新产品的第一次投入市场就十分成功的可能性,也可以快速实现反求工程。
研制新的快速成型方法和工艺。
除了目前SLA、LOM、SLS、FDM 外,直接金属成型工艺将是以后的发展焦点。
二、几种常见RP工艺1、FDM,丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热熔化进而堆积成型方法,简称FDM。
快速成型技术在产品设计中的应用
快速成型技术在产品设计中的应用快速成型技术是一种通过计算机模型和相应的设备,以较短的时间、较低的成本、精度高的方式制造出零部件或者实体的技术。
随着科技的发展,快速成型技术被广泛应用于汽车、机械、航空、医疗等工业制造领域。
在产品设计方面,快速成型技术在以下几个方面有着非常重要的应用。
一、高效的产品设计通过快速成型技术,产品设计者可以快速制造出原型模型,以形象和实际的方式展现设计想法,直接验证设计方案,避免了设计方案的漏洞和误差,有效提高了产品设计的效率。
快速成型技术制造的原型,同时也可用来测试装配性、耐久性、图案设计等。
并且,快速成型技术可以缩短前期开发周期,避免出现市场、竞争跟不上的状况。
二、提高产品质量传统制造工艺,例如注射、铸造、电火花加工等,让产品设计者及生产工人需要反复修正产品才能满足质量要求。
而采用快速成型技术,可以通过模拟生产过程进行实验、变换不同的材料、气压、温度等条件来调整工艺参数,从而更好地掌握良好的产品质量。
三、精度高相对于手工或者传统制造方式,快速成型技术可以将诸多复杂的制造环节转化为计算机模型,避免人为因素带来的误差,并且精度高,制造出来的零部件或者模型与设计的模型几乎一致。
四、降低成本传统制造方式需要制造模具、精密加工等较高成本的要素,而快速成型技术所需的成本相对较低,制造的产品更快速、更精确、更专业,从而大幅降低了制造成本。
通过快速成型技术的应用,产品设计者可以以更快的速度制造出更高质量的零部件或者模型,实现了快速成型,以满足市场竞争和客户需求的要求。
同时,也通过降低企业成本,实现了效益的快速提升,提高了企业的竞争力。
综上所述,快速成型技术在产品设计方面具有非常重要的应用前景。
尽管不断地推进着新技术的应用和不断的改进制造过程是必要的,但必须考虑到目标市场,材料、成本效益和终端用户使用场景的实际要求,才能充分地实现快速成型技术在产品设计中的应用。
2024年手板模型市场发展现状
2024年手板模型市场发展现状引言手板模型,也称为快速成型模型,是为了验证产品设计在物理性能、外观和功能方面的正确性而制作的样品模型。
随着科技的不断进步和工业制造的要求日益提高,手板模型市场逐渐兴起。
本文将对2024年手板模型市场发展现状进行分析和讨论。
快速成型技术的发展快速成型技术作为手板模型制造的核心技术,经历了多年的发展和创新。
最早的快速成型技术是由3D打印技术引起的,其原理是通过逐层堆叠材料以实现模型的制造。
随着科技的进步,快速成型技术也得到了不断改进和完善。
目前常用的快速成型技术包括光固化成型、喷墨打印、激光烧结、电子束熔化和激光熔化等。
快速成型技术的发展为手板模型的制造提供了更多的选择和可能性。
产业发展现状手板模型市场是一个相对年轻的产业,但发展势头良好。
随着制造业的数字化转型和高效生产的需求增加,快速成型技术逐渐应用于制造业的各个领域。
手板模型作为产品设计和校验的必备工具,市场需求逐渐增长。
根据市场研究机构的数据显示,全球手板模型市场规模在未来几年将保持稳定增长的趋势。
目前,手板模型市场主要集中在汽车、航空航天、医疗设备等高科技领域。
这些领域对产品质量和安全性要求较高,因此对手板模型的需求也更加迫切。
另外,新兴产业领域如人工智能、物联网和无人机等也对手板模型的需求不断增加,进一步推动了市场的发展。
市场竞争格局手板模型市场竞争激烈,主要竞争者包括快速成型设备制造商、设计公司和制造商。
快速成型设备制造商提供了各种快速成型设备,满足了不同行业的需求。
设计公司通过提供手板模型设计和制造服务来满足客户需求,为客户解决产品开发过程中的问题。
制造商则通过自建手板模型制造部门或与手板模型制造公司合作,实现产品设计和制造的一体化。
市场竞争格局的变化主要受到技术创新和市场需求的影响。
随着技术的不断进步,快速成型技术的成本下降,产品质量得到提升,进一步推动了市场的竞争。
同时,市场需求的不断变化也要求手板模型企业及时调整产品和服务,以满足不同行业和客户的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速成型技术的应用及发展趋势熊文恪模具1111 2011118501266
摘要:阐述了快速成型技术的基本概念,总结了快速成型技术的特点,并通过制作实例展现了快速成型技术在产品开发中的应用现状,最后展望了快速成型技术的未来发展趋势。
关键词:快速成型技术应用发展趋势
当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一方面表现为消费者兴趣的短时效和消费者需求日益主体化、个性化和多元化;另一方面则是区域性、国际市场壁垒的淡化或打破,要求制造业的厂商必须着眼于全球市场的激烈竞争。
传统的制造方法不但需要采用多种机械加工机床、工具、模具,而且成本高、周期长,已经不能适应迅速发展的时代要求[ 1] 因此,在客观上需要一种可以直接将设计数据快速转化为三维实体的技术,而快速成型技术正能够满足这些要求。
1快速成型技术特点
1—1 快速性。
通过STL格式文件, 快速成型制造系统几乎可以与所有的CAD 造型系统无缝连接, 从CAD 模型到完成原型制作通常只需几小时到几十小时,可实现产品开发的快速闭环反馈。
以快速原型为母模的快速模具技术, 能够在几天内制作出所需材料的实际产品, 而通过传统的钢制模具制作,至少需要几个月的时间。
1—2 高度集成化。
快速成型技术实现了设计与制造的一体化。
在快速成型工艺中, 计算机中的CAD模型数据通过接口软件转化为可以直接驱动快速成型设备的数控指令, 快速成型设备根据数控指令完成原形或零件的加工。
1—3 与工件复杂程度无关。
快速成型技术由于采用分层制造工艺, 将复杂的三维实体离散成一系列层片加工和加工层片之叠加, 大大简化了加工过程。
它可以加工复杂的中空结构且不存在三维加工中刀具干涉的问题,理论上可以制造具有任意复杂形状的原形和零件[2] 。
1—4 高度柔性。
快速成型系统是真正的数字化制造系统, 仅需改变三维CAD模型, 适当地调整和设置加工参数, 即可完成不同类型的零件的加工制作, 特别适合新产品开发或单件小批量生产[3] 。
并且, 快速成型技术在成型过程中无需专用的夹具或工具,成型过程具有极高的柔性, 这是快速成型技术非常重要的一个技术特征。
1—5 自动化程度高。
快速成型是一种完全自动的成型过程, 只需要在成型之初由操作者输入一些基本的工艺参数,整个成型过程操作者无需或较少干预[ 4] 。
出现故障, 设备会自动停止, 发出警示并保留当前数据。
完成成型过程时, 机器会自动停止并显示相关结果。
2快速成型技术应用
近年来, 快速成型技术在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等
领域得到迅速良好的应用。
主要包括以下几个方面:
2—1 设计和功能验证。
通过快速成型技术可以快速制作产品的物理模型, 以验证设计人员的构思, 发现产品设计中存在的问题。
而使用传统的方法制作原型意味着从绘图到工装模具设计和制造, 一般至少历时数月, 经过多次返工和修改。
采用快速成型技术则可节省大量时间和费用。
同时, 使用快速成型技术制作的原型可直接进行装配检验、干涉检查和模拟产品真实工作情况的一些功能试验, 如运动分析、应力分析、流体和空气动力学分析等, 从而迅速完善产品的结构和性能、相应的工艺及所需工模具的设计。
2—2 非功能性样品制作。
在新产品正式投产之前或按照定单制造时,需要制作产品的展览样品或摄制产品样本照片,采用快速成型是理想的方法。
邵敏[ 5]在首饰设计方面提出首饰设计是立体的物质实体性设计, 在设计展开的不同阶段, 具体创意靠效果图检验不出实体体量关系, 必须辅以立体模型对设计方案加以不断检测和修改。
运用快速成型技术代替传统手工模型制作能够更加精确、快速、直观、完整地传递产品的信息。
更重要的是建立起一种并行结构的设计系统, 将设计、结构分析、制造三位一体优化集成于一个系统, 使不同分工的人员能及时相互反馈信息, 从而缩短开发周期, 并保证设计、制造的高质量。
2—3 快速模具制造。
传统的模具制造方法周期长、成本高, 一套简单的塑料注塑模具其价值也在10万元以上。
设计上的任何失误反映到模具上都会造成不可挽回的损失。
杨思一[6]提出利用快速成型技术, 可以按照下列两种方式制造模具:
(1)软模。
通常指的是硅橡胶模具, 用SLA、FDM、LOM或SLS等技术制作的原型, 再翻成硅橡胶模具后, 向模中灌注双组份的聚氨酯, 固化后即得到所需的零件。
(2) 硬模。
用SLA、SLS、FDM或LOM方法加工熔模铸造中的蜡模, 对原型表面进行特殊处理后代替木模, 直接制造石膏型或陶瓷型, 或是由RP原型经硅橡胶模过渡转换得到石膏型或陶瓷型, 再由石膏型或陶瓷型浇注出金属模具, 这是目前生产金属模具最主要的途径。
3 快速成型技术发展趋势
3—1.金属零件、功能梯度零件的直接快速成型制造技术。
目前的快速成型技术主要用于制作非金属样件,由于其强度等机械性能较差,远远不能满足工程实际需求,所以其工程化实际应用受到较大限制。
从90年代初开始,探索实现金属零件直接快速制造的方法已成为RP技术的研究热点,国外著名的RP技术公司均在进行金属零件快速成型技术研究。
可见,探索直接制造满足工程使用条件的金属零件的快速成型技术,将有助于快速成型技术向快速制造技术的转变,能极大地拓展其应用领域。
此外,利用
逐层制造的优点,探索制造具有功能梯度、综合性能优良、特殊复杂结构的零件,也是一个新的方向发展。
3—2.概念创新与工艺改进。
目前,快速成型技术的成型精度为0.01mm数量级,表面质量还较差,有待进一步提高。
最主要的是成型零件的强度和韧性还不能完全满足工程实际需要,因此如何完善现有快速成型工艺与设备,提高零件的成型精度、强度和韧性,降低设备运行成本是十分迫切的。
此外,快速成型技术与传统制造技术相结合,形成产品快速开发—制造系统也是一个重要趋势,如快速成型技术结合精密铸造,可快速制造高质量的金属零件。
另一方面,许多新的快速原型制造工艺正处于开发研究之中。
3—3优化数据处理技术。
快速成型数据处理技术主要包括将三维CAD模型转存为STL格式文件和利用专用RP软件进行平面切片分层。
由于STL格式文件的固有缺陷,会造成零件精度降低;此外,由于平面分层所造成的台阶效应,也降低了零件表面质量和成型精度。
优化数据处理技术可提高快速成型精度和表面质量。
目前,正在开发新的模型切片方法,如基于特征的模型直接切片法、曲面分层法。
3—4 开发专用快速成型设备。
不同行业、不同应用场合对快速成型设备有一定的共性要求,也有较大的个性要求。
如医院受环境和工作条件的限制,外科大夫希望设备体积小、噪音小,因此开发专门针对医院使用的便携式快速成型设备将很有市场潜力。
另一方面,汽车行业的大型覆盖件尺寸多在1m左右,因此研制大型的快速成型设备也是很有必要的。
3—5 成型材料系列化、标准化。
目前快速成型材料大部分是由各设备制造商单独提供,不同厂家的材料通用性很差,而且材料成型性能还不十分理想,阻碍了快速成型技术的发展。
因此,开发性能优良的专用快速成型材料,并使其系列化、标准化,将极大地促进快速成型技术的发展。
3—6 拓展新的应用领域。
快速成型技术的应用范围正在逐渐扩大,这也促进了快速成型技术的发展。
目前快速成型技术在医学、医疗领域的应用,正在引起人们的极大关注,许多科研人员也正在进行相关的技术研究。
此外,快速成型技术结合逆向(反求)工程,实现古陶瓷、古文物的复制,也是一个新的应用领域。
4 结论
21世纪将是以知识经济和信息社会为特征的时代, 制造业面临信息社会中瞬息万变的市场对小批量多品种产品要求的严峻挑战。
作为当今制造行业中急剧潜力的工艺技术, 快速性、高度集成化等优点使快速成型技术在推广应用后将明显缩短新产品的上市时间, 节约新产品开发费用。
但是, 快速成型技术仍然是一种处在发展完善过程的高新技术, 其技术本身和应用领域尚需进行大量的开发研究。
随着人们对快速成型技术研究越来越深入, 其将被广泛的应用到生产、生活的各个领域。
在未来, 作为一门多学科交叉的先进制造技术, 快速成型技术将推动相关技术、产业的发展, 其与其他技术的结合运用将是制造业发展的趋势。
参考文献:[ 1 ] 腾功勇, 王从军, 陈学彬. 影响SLS技术发展的因素及改进措施[ J ]. 湖北汽车工业学院学报. 2001, (6) : 12.
[ 2 ] 李春祥, 彭淑慧, 谢鹏寿. 快速成型技术原理及应用[ J ]. 甘肃工业大学学报, 2000, 26: 89.
[ 3 ] 熊晓明, 张连洪. 快速成形技术的现状及进展[ J ]. 金属成形工艺, 2001, 19 (6) : 1.
[ 4 ] 洪国栋, 张伟, 吴良伟. 熔融材料堆积成形技术及其应用[ J ]. 制造业自动化, 1997, : 52. [ 5 ] 邵敏. 快速成型技术与首饰设计[ J ]. 艺术教育, 2007, (2) : 117.
[ 6 ] 杨思一, 尹占民, 仪垂杰, 等. 快速成型技术研究发展现状及其应用前景[ J ]. 山东工程学院学报. 2001, (3) : 14.。