第8章脂类代谢
生物化学 第08章 脂代谢(共68张PPT)
合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章
脂肪的分解代谢解读
四. Fatty acid breakdown--oxidation pathway 肉碱(也叫肉毒碱,Carnitine)的结构如下:
乙酰CoA
• 1mol软脂酸和油酸完全氧化成二氧化碳和 水,需要经历哪几个阶段,可净生成多少 mol的ATP?
乙酰CoA
四. Fatty acid breakdown--oxidation pathway
1分子软脂酸彻底氧化
生成ATP的分子数
一次活化作用 7轮-氧化作用 8分子乙酰CoA的氧化
总计
-2 +5×7 = +35 +12×8 = +96
+129
在油料种子萌发时乙醛酸体中通过-氧化产生的乙 酰CoA一般不用作产能形成ATP,而是通过乙醛酸循环 (见后)转变成琥珀酸,再经糖的异生作用转化成糖。
生成的,二羧酸可从 两端进行b氧化作用而 降解。
六.脂肪酸的-氧化途径
动物体内的十二碳以下的脂肪酸常常通过-氧化途径 进行降解。
植物体内的在-端具有含氧基团(羟基、醛基或羧基) 的脂肪酸大多也是通过-氧化作用生成的,这些脂肪酸常 常是角质层或细胞壁的组成成分。
在-氧化过程中 ,每进行一轮,使1分子FAD还原成 FADH2、1分子NAD+还原成NADH,两者经呼吸链可 分别生成2分子和3分子ATP,因此每轮-氧化作用可生 成5分子ATP。
-氧化作用的产物乙酰CoA可通过三羧酸循环而彻底氧 化成CO2和水,同时每分子乙酰CoA可生成12分子ATP。
四. Fatty acid breakdown--oxidation pathway 2.偶数碳饱和脂肪酸的氧化
1.脂肪酸-氧化的过程 (3) β-氧化的历程
对于长链脂肪酸,需要经过多次-氧化作用,每 次降解下一个二碳单位,直至成为二碳(当脂肪酸含 偶数碳时)或三碳(当脂肪酸含奇数碳时)的脂酰 CoA。
脂类代谢
第八章脂类代谢一、选择题【A1型题】B1.脂酸在血中与下列哪个物质结合运输A.载脂蛋白B.清蛋白C.球蛋白D.脂蛋白E.以上都不是C2.含2n个碳原子的饱和脂酸需要经多少次β-氧化才能完全分解为乙酰CoAA.2n次B.n次C.n-1次D.8次E.n+1次B3.酮体合成的限速酶是A.HMGCoA裂解酶B.HMGCoA合酶C.硫解酶D.HMGCoA还原酶E.乙酰乙酸硫激酶C4.关于酮体的叙述正确的是A.是脂酸在肝中大量分解产生的异常中间产物,可造成酮症酸中毒B.各组织细胞均可利用乙酰CoA合成酮体,但以肝为主C.酮体只能在肝内生成,肝外利用D.酮体氧化的关键酶是乙酰乙酸转硫酶E.合成酮体的关键酶是HMGCoA还原酶B5.脂酸β-氧化、酮体生成及胆固醇合成的共同中间产物是A.乙酰CoAB.乙酰乙酰CoAC.HMGCoAD.乙酰乙酸E.甲基二羟戊酸B6.参与脂酸合成的乙酰CoA主要来自A.胆固醇B.葡萄糖C.丙氨酸D.酮体E.脂酸C7.脂酸合成的关键酶是A.丙酮酸羧化酶B.硫解酶C.乙酰CoA羧化酶D.丙酮酸脱氢酶E. 乙酰转移酶A8.脂酸β-氧化不能生成A.H2OB.FADH2C.NADHD.乙酰CoAE.以上都不是D9.合成胆固醇的限速酶是A.HMGCoA裂解酶B.HMGCoA合酶C. 乙酰CoA羧化酶D.HMGCoA还原酶E.HMGCoA合酶和裂解酶C10.胆固醇不能转化为A.胆汁酸B.肾上腺皮质激素C.胆红素D.维生素D3E.性激素A11.胆固醇的生理功能不包括A.氧化供能B.参与构成生物膜C.转化为类固醇激素D.转化为胆汁酸E.转变为维生素D3D12.不能利用甘油的组织是A.肝B.小肠C.肾D.脂肪组织E.以上都不是D13.血浆脂蛋白按密度由大到小的正确顺序是A.CM、VLDL、LDL、HDLB.VLDL、LDL、HDL、CMC.LDL、VLDL、HDL、CMD.HDL、LDL、VLDL、CME.LDL、CM、HDL、VLDLA14.含脂肪最多的血浆脂蛋白是A.CMB.VLDLC.HDLD.LDLE.IDLB15.转运内源性甘油三酯的血浆脂蛋白是A.CMB.VLDLC.HDLD.LDLE.IDLC16.将肝外的胆固醇向肝内运输的是A.CMB.VLDLC.HDLD.LDLE.IDLD17.胆固醇含量最高的是A.CMB.VLDLC.HDLD.LDLE.IDLB18.激素敏感脂肪酶是A.脂蛋白脂肪酶B.甘油三酯脂肪酶C.甘油一酯脂肪酶D.胰脂酶 E.甘油二酯脂肪酶A19.下列哪种磷脂中含有胆碱A.卵磷脂B.脑磷脂C.磷脂酸D.溶血磷脂E.以上都是B20.抗脂解激素是指A.胰高血糖素B.胰岛素C.肾上腺素D.甲状腺素E.促肾上腺皮质激素C21.正常人空腹血中主要的脂蛋白是A.CMB.VLDLC.LDLD.HDLE.以上都不是D22.有防止动脉粥样硬化的脂蛋白是A.CMB.VLDLC.LDLD.HDLE.以上都不是C23.要真实反映血脂的情况,常在饭后A.3~6小时采血B.8~10小时采血C.12~14小时采血D.24小时后采血E.饭后2小时采血B24.生物膜含量最多的脂类是A.甘油三酯B.磷脂C.胆固醇D.糖脂E.蛋白质A25.催化脂酸活化的酶是A.脂酰CoA合成酶B.脂酰CoA脱氢酶C.脂酰CoA硫解酶D.脂酰CoA转移酶E.以上都不是B26.脂酸β-氧化的部位是A.胞液B.线粒体C.细胞核D.内质网E.以上都是C27.脂酰CoAβ-氧化的反应顺序是A.脱氢、加水、硫解、再脱氢B.硫解、再脱氢、脱氢、加水C.脱氢、加水、再脱氢、硫解D.脱氢、硫解、加水、再脱氢E.脱氢、硫解、再脱氢、加水B28.脂肪动员加强时肝内生成的乙酰辅酶A主要转变为A.脂酸B.酮体C.草酰乙酸D.葡萄糖E.氨基酸B29.控制长链脂酰CoA进入线粒体氧化的因素是A.脂酰CoA合成酶的活性B.肉碱脂酰转移酶Ⅰ的活性C.肉碱脂酰转移酶Ⅱ的活性D.脂酰CoA脱氢酶的活性E.脂酰CoA的含量C30.下列何种物质是脂酸氧化过程中不需要的A.HSCoAB.NAD+C.NADP+D.FADE.以上都是B31.体内胆固醇和脂酸合成所需的氢来自A.NADH+H+B.NADPH+H+C.FMNH2D.FADH2E.以上都是D32.不产生乙酰辅酶A的化合物是A.酮体B.脂酸C.葡萄糖D.胆固醇E.氨基酸E33.乙酰辅酶A的去路不包括A.合成脂酸B.氧化供能C. 合成胆固醇D.合成酮体E.转变为葡萄糖B34.脂酰辅酶A每进行1次β-氧化,由脱氢产生ATP数为A.4B.5C.6D.7E.8【A2型题】35.肝细胞可利用乙酰辅酶A为原料合成酮体供肝外组织利用,每合成1分子乙酰乙酸,需要乙酰辅酶A的分子数为A.1B.2C.3D. 4E.536.某物质体内不能合成,必须由食物供给,在体内可转变为前列腺素、血栓噁烷及白三烯等,该物质最有可能是A.维生素AB.亮氨酸C.软脂酸D.花生四烯酸E.甘氨酸37.3-磷酸甘油加上2分子脂酰辅酶A生成磷脂酸,后者水解脱去磷酸生成甘油二酯,再与1分子脂酰辅酶A反应生成甘油三酯。
第八章 脂类代谢(白)
= =
2、脂酰CoA进入线粒体基质
O RCH2CH 2C~SCoA 脂 酰~SCoA
CH3 + CH3 N+ CH2 CH CH2 COO CH3 OH
此过程为脂肪酸β -氧化的
限速步骤,肉碱脂酰转移酶
Ⅰ是限速酶,丙二酸单酰
ቤተ መጻሕፍቲ ባይዱ
1、脂肪酸的活化 (activation)
—— 脂酰 CoA 的生成(胞液)
O RCH2CH2C-OH 脂肪酸
= =
+ CoA-SH 脂酰CoA合成酶
ATP AMP 2Pi
O RCH2CH 2C~SCoA 脂 酰~SCoA
* 脂酰CoA合成酶(acyl-CoA synthetase)存在于内
质网及线粒体外膜上,需要消耗ATP,反应不可
O P OH O X
H2 C
X = 胆碱、水、乙 醇胺、 丝氨酸、甘 油、肌醇、磷脂酰 甘油等
二、 脂类的生理功能
重要能源:1g脂肪彻底氧化分解可产生38KJ
的能量,1g糖彻底氧化产生的能量为17KJ。 是生物膜的成分:磷脂、糖脂及类固醇 具有营养、代谢及调节功能:脂类代谢的中间
产物是合成激素、胆酸和维生素等的基本原料,
丙酰CoA合成酶 (硫激酶)
葡萄糖 或糖原
糖异生
丙酰CoA羧化酶 ATP,生物素
CO2
COOH CH2 三羧酸 循环 CH2 C ~ SCoA O 琥珀酰CoA
变位酶 VB12
O HO C CH CH3 C ~ SCoA O 甲基丙二酸 单酰CoA
四、酮体的生成和利用
乙酰乙酸(acetoacetate) 、β-羟丁酸(βhydroxybutyrate)、丙酮(acetone)三者总称为酮体。
脂类代谢
氧化修饰低密度脂蛋白与动脉粥样硬化(AS)
★ 血浆LDL的磷脂C2位多不饱和脂肪酸容易过氧 化,其脂质过氧化产物丙二醛(MDA)与LDL的 ApoB100上的Lys残基共价交联形成氧化修饰LDL (oxidized LDL,ox-LDL)。 ★ Ox-LDL不能被ApoB100 E受体识别(LDL受体途 径),易通过清道夫受体(修饰LDL受体)被巨噬细 胞识别、内吞,且此途径无反馈调节,形成载胆 (泡沫细胞,AS早期特征). 固醇酯细胞 ★ Ox-LDL还削弱LDL介导的Ch逆向转运;直接引 起血小板聚集,促进血栓形成(致AS脂蛋白).
HDL代谢过程 CM、 小肠
VLDL Ch
肝 外 细 胞 Ch不断 得到 Ch Apo E
CM、 VLDL 残粒
新 生 H LCAT HDL3 LCAT HDL2 LCAT HDL1 D HL选择作用 HDL 循环 CE CETP CE ChE HDL 水解 肝外 L LDL VLDL TG、PL
乳糜微粒(CM)代谢过程
ApoC、E
HDL
部分ApoA
新生的CM
经淋巴循环, 进入血液循环
LPL将CM中的 TG水解
CM
Apo CⅡ+
成熟CM
HDL
CM残粒
FFA、Gly
½ 被LRP清除
迅速被肝清除
Apo B100、 E受体清除
3清除方式: 迅速被肝脏清除,一半通过LRP, 另一半则通过ApoB100E受体。
HDL2与CM、VLDL的脂解(LPL活性)密切相关。 如缺乏Apo CⅡ,则LPL活性降低,CM、VLDL脂 解减弱,HDL2含量降低。如冠心病、糖尿病时,血浆 HDL2 /HDL3比值(临床评价AS和冠心病的危险性)下降。 HDL2再增加CE并从肝外组织获得ApoE,成为 HDL1, 另HL选择性作用于HDL2 ,水解TG和PL(兼),使HDL2 转 变成为HDL3。故正常人血浆HDL1中极少,仅摄入高Ch 时增加, HDL1又称HDLc 。 3清除方式: HDL主要被肝脏的HDL受体清除。 4 生 理 功 能 : 胆 固 醇 的 逆 向 转 运 ( reverse cholesterol transport,RCT)。被认为是抗AS性脂蛋白。
生物化学习题-第八章:脂质代谢
第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。
通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
某些萜类及类固醇类物质,如维生素A、D、E、K、胆酸及固醇类激素,都具有营养、代谢及调节的功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。
(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
甘油经过磷酸化及脱氢反应,转变成磷酸二羟丙酮,进入糖代谢途径。
脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。
脂酰CoA在线粒体内膜上的肉毒碱-脂酰CoA转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA,再通过三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH2、1分子NADH+H+、1分子乙酰CoA以及1分子比原先少两个碳原子的脂酰CoA。
此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,作为糖异生和其它生物合成代谢的碳源。
乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者则催化乙醛酸与乙酰CoA缩合生成苹果酸。
(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。
脂类代谢
脱腺苷钴胺素(a)和甲基丙二单酰CoA变位酶作用机制(b)
肉 碱 转 运 载 体
脂酰CoA 脱氢酶
FAD FADH2
2ATP
呼吸链
H 2O
O RCH=CHC~SCoA
β α
=
⊿--烯酰CoA 水化酶 β α L(+)-β羟脂酰 CoA脱氢酶
2
H2O
O RCHOHCH2C~SCoA
=
线 粒 体 膜
β α O RCOCH2C~SCoA
=
NAD+
3ATP
呼吸链
NADH+H+
2) 加水:
Δ2 -反-烯脂酰-SCoA在其水合酶作用下生成β羟脂酰-SCoA
3) 再脱氢: β-羟脂酰-SCoA脱氢酶催化生成β-酮脂酰SCoA,辅酶为NAD+。
4)硫解:
在硫解酶作用下, 形成乙酰-SCoA和 比原脂酰-SCoA少2个C的脂酰-SCoA
脱氢 水化 再脱氢 硫解
重复
差向异构酶
脂肪酸β-氧化的定义:激活的脂肪酸运进线粒体后在酶
的作用下,在β位经过脱氢、加水、再脱氢和硫解四步
反应生成一个乙酰CoA和少两个碳的脂酰CoA,如此不 断循环,直至将长链脂肪酸都分解为乙酰CoA(丙酰CoA) 的过程,称为~. β-氧化的生理意义:是脂肪酸分解供能的主要形式,可
产生大量ATP,提供空腹时机体所需总能量的50%。
HSLb(有活性)
甘油一酯
甘油二酯脂肪酶 FFA
甘油二酯 (DG)
FFA
甘油三酯 (TG)
甘油一酯脂肪酶 FFA
甘油
HSL-----激素敏感性甘油三酯脂肪酶
二、甘油的分解
在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。 甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷
生物化学课后习题答案-第八章xt8
第八章 脂代谢一、 课后习题1.为什么说脂肪氧化可产生大量内源性水?2.如果用14C标记乙酰CoA的两个碳原子,并加入过量的丙二酸单酰CoA,用纯化的脂肪酸合成酶体系来催化脂肪酸的合成,在合成的软脂肪酸中,哪两个碳原子是被标记的?3.1mol三软脂酰甘油酯完全氧化分解,产生多少摩尔ATP?多少molCO2?如由3mol软脂肪酸和1mol甘油合成1mol三软脂酰甘油酯,需要多少摩尔ATP?4.在动物细胞中由丙酮酸合成1mol己酸,需净消耗多少摩尔ATP及NADPH?5.1mol下列含羟基不饱和脂肪酸完全氧化成CO2和水?可净生成多少摩尔ATP?CH3-CH2-CH2-CH-CH2-CH2CH-COOHOH6.据你所知,乙酰CoA在动物体内可转变成哪些物质?解析:1.生物体内的主要脂类物质中,脂肪是体内的储存能源物质,其氧化分解后比糖产生多得多的能量,这主要是由于脂肪酸含有高比例的氢氧比,含氢多,脱氢机会多,氧化后产生大量内源性水必然高。
2.标记碳原子将会出现在软脂酸的碳链末端(远羧基端)的15、16号碳原子。
乙酰CoA在脂肪酸的合成过程中是初始原料,而直接原料为丙二酰CoA,乙酰CoA通过羧化形成丙二酰CoA。
合成起始引物为乙酰CoA,合成过程直接由丙二酰CoA提供二碳单位,所以标记首先出现在远羧基端的两个碳原子上。
3.1mol三软脂酰甘油脂首先在脂肪酶的水解作用下生成1mol甘油和3mol软脂酸。
甘油在甘油激酶和ATP供能的作用下生成α-磷酸甘油,α-磷酸甘油再在α-磷酸甘油脱氢酶的作用下生成二羟磷酸丙酮和NADH+H+,二羟磷酸丙酮由此可插入酵解途径生成丙酮酸,丙酮酸再进入TCA循环,能量产生如下:10+2.5+2+2.5(苹果酸穿梭)×2-1=18.5molATP 或10+2.5+2+1.5(α-磷酸甘油穿梭)×2-1=16.5molATP;软脂酸通过β-氧化过程完成完全氧化,1mol软脂酸需要7次循环氧化,每个循环产生一个FADH+H+和NADH + H+,最终产生8mol乙酰2molATP,能量产生如下:[(1.5+2.5)× 7 + 8× 10 - 2] × 3 = 318molATP。
《生物化学》考研内部课程配套练习第八章脂类代谢参考答案
脂类代谢练习参考答案(一、)名词解释:1、脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来少2个碳原子的脂肪酸。
2、乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。
某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。
(二)填空题1.脂肪;甘油;脂肪酸2.A TP-Mg2+;CoA-SH;脂酰S-CoA;肉毒碱-脂酰转移酶系统3.0.5n-1;0.5n;0.5n-1;0.5n-1 4.异柠檬酸裂解酶;苹果酸合成酶;三羧酸;脱羧;三羧酸5.乙酰CoA;丙二酸单酰CoA;NADPH+H+6.生物素;A TP;乙酰CoA;HCO3-;丙二酸单酰CoA;激活剂;抑制剂7.ACP;CoA;4’-磷酸泛酰巯基乙胺8.软脂酸;线粒体;内质网;细胞溶质9.氧化脱氢;厌氧;10.3-磷酸甘油;脂酰-CoA;磷脂酸;二酰甘油;二酰甘油转移酶11.CDP-二酰甘油;UDP-G;ADP-G(三)选择题1.A:脂肪酸β-氧化酶系分布于线粒体基质内。
酰基载体蛋白是脂肪酸合成酶系的蛋白辅酶。
脂肪酸β-氧化生成NADH,而葡萄糖转变成丙酮酸需要NAD+。
2.A:脂肪酸氧化在线粒体进行,连续脱下二碳单位使烃链变短。
产生的A TP供细胞利用。
肉毒碱能促进而不是抑制脂肪酸氧化降解。
脂肪酸形成酰基CoA后才能氧化降解。
3.D:参与脂肪酸β-氧化的辅因子有CoASH, FAD ,NAD+, FAD。
4.ABCD:5.A:脂肪酸从头合成的整个反应过程需要一种脂酰基载体蛋白即ACP的参与。
6.ABCD:7.BCD:必需脂肪酸一般都是不饱和脂肪酸,它们是亚油酸、亚麻酸、花生四烯酸。
8.AC:在脂肪酸合成中以NADPH为供氢体,在脂肪酸氧化时以FAD和NAD+两者做辅助因子。
脂类代谢
脱氢
FADH2
CHCORCH CHCO-SCoA
OH
加水
H2O
RCH CH2CO-SCoA COO
脱氢
NADH+H+ +
RC CH2CO-SCoA CO-
硫解
乙酰CoA 乙酰CoA
RCORCO-SCoA
脂酰CoA 2C) 脂酰CoA (少2C)
COCH3CO-SCoA
脂肪酰CoA(Cn) ( ) 脂肪酰 (脱氢 脱氢) 脱氢 一 次 氧 化 β(
一、血脂的来源与去路
内源性: 内源性:体内合成或脂肪动员
血 脂
来源
外源性: 外源性:食物消化吸收
去路 在组织细胞氧化供能 构成生物膜 转变成其他物质 进入脂库
二、血浆脂蛋白
为脂类在血浆中的运输形式.各种 为脂类在血浆中的运输形式 各种 脂蛋白中的脂类和蛋白质含量各不相 因而可以进行分类. 同,因而可以进行分类 因而可以进行分类
脂肪酰CoA 脂肪酰 )
HS- CoA β- 脂肪酰 脂肪酰CoA 酶 酰CoA 酰
脂肪酰CoA(Cn-2) ( 脂肪酰 ) β化
脂肪酸氧化的能量生成(16:0) 脂肪酸氧化的能量生成(16:0) 消耗 产生 FA活化 FA活化 7 FADH2 7 NADH+H+ 乙酰CoA 8 乙酰CoA - 2 2 7 = 14 3 7 = 21 12 8 = 96 129
脂肪的中间代谢
食物脂肪(外源性 食物脂肪 外源性) 外源性
合成脂肪(内源性) 合成脂肪(内源性)
小肠 脂肪
CM
肝 脂肪→ 糖→脂肪→VLDL
脂 肪 代 谢 概 况
CM CM FFA 脂肪细胞 合成、储存、 合成、储存、 动员脂肪 动员 FFA VLDL * FFA: 游离脂肪酸 ** CM: 乳糜微粒
脂类代谢
(二)VLDL 的代谢
1.来源:主要由肝细胞合成,分泌入血, 少量来自小肠。
2.功能:是血中内源性TG及胆固醇的运 输形式。
3.代谢过程
新生VLDL
E C A E P C B-100 TG C
VLDL
o ap
C
apo E 、 C
E
B-100 TG C C
外周组织
脂酸 胆固醇 肝
HDL
HL B-100 TG C B-100
常见的脂肪酸
饱和脂肪酸 脂肪酸 软脂酸(16C) 硬脂酸(18C) 非必需脂肪酸
油酸(18:1) 不饱和脂肪酸 亚油酸(18:2) 必需脂肪酸 亚麻酸(18:3) 花生四烯酸(20:4)
必需脂肪酸:机体必需但自身又不能合成或合成 量不足,必须从植物油中摄取的脂肪酸叫必需脂 肪酸。包括亚油酸、亚麻酸和花生四烯酸。
=
CoASH+ATP
琥珀酰CoA转硫酶 (心、肾、脑及骨 骼肌的线粒体)
O O CH3CCH2COH
乙酰乙酸
PPi+AMP
O O CH3CCH2CSCoA (乙酰乙酰CoA)
=
琥珀酰CoA
=
=
琥珀酸
乙酰乙酰CoA 硫激酶 (肾、心和脑 的线粒体)
CoASH
O 2 CH3CSCoA
乙酰乙酰CoA硫解 酶(心、肾、脑及 骨骼肌线粒体)
Ⅳ
Ⅴ
VLDL↑
VLDL↑、CM↑
↑↑
↑↑↑ ↑
第三节 甘油三酯代谢
一、结构与功能
O O
1
CH2 O C R1 O
R2 C O C H
3
2
CH2 O C R3
生物化学脂类的代谢PPT课件
第七章
脂类的代谢
1
本章重点
重点:
掌握脂类的概念、脂类的分类,熟悉脂类的生理功能。熟 悉必需脂肪酸的概念。了解脂类在体内的消化和吸收。掌 握β氧化的概念与部位,掌握脂肪酸的活化和脂肪酰CoA 进入线粒体的概况,掌握β氧化的概况并了解反应过程, 掌握β氧化产物的代谢去向。以软脂酸为例,熟悉脂肪酸 氧化产生ATP的计算。 了解不饱和脂肪酸的氧化概况。掌握脂肪酸的从头合成。
2
第一节
概述
3
一、脂类的定义:
脂类(lipid) 是脂肪和类脂的总称。它们是一类不 溶于水而易溶于有机溶剂并能为机体利用的有机 化合物,因为脂类的主要成分是长链脂肪酸,它 是不溶于水的。
4
二、脂类的分类
脂肪:甘油三酯
储能和供能
脂类
胆固醇
类脂 胆固醇酯 细胞的膜结构组分 磷脂
糖脂
5
1.脂肪的结构-甘油三酯
O O H2C O C (CH2)mCH3 H3C (CH2)n C O CH O
H2C O C (CH2)k CH3
n、m、k可以相同,称为单纯甘油酯。也可以不全相同 甚至完全不同, 其中n多是不饱和的。则称为混合甘油酯
常温下含不饱和脂肪酸多的脂类成液态称为油 含不饱和脂肪酸少的成固态称为脂(脂肪)
6
构成脂类的脂肪酸
7
生物化学习题-第八章:脂质代谢
第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。
通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
某某些萜类及类固醇类物质,如维生素A 、D 、E 、K 、胆酸及固醇类激素,都具有营养、代谢及调节的功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。
(二)脂肪的降解在脂肪酶的作用下,在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
脂肪水解成甘油和脂肪酸。
脂肪水解成甘油和脂肪酸。
甘油经过磷酸化及脱氢反应,甘油经过磷酸化及脱氢反应,甘油经过磷酸化及脱氢反应,转变成磷转变成磷酸二羟丙酮,进入糖代谢途径。
脂肪酸与ATP 和CoA 在脂酰CoA 合成酶的作用下,生成脂酰CoA 。
脂酰CoA 在线粒体内膜上的肉毒碱-脂酰CoA 转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA ,再通过三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH 2、1分子NADH+H +、1分子乙酰CoA 以及1分子比原先少两个碳原子的脂酰CoA 。
此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO 2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
生物化学第八章 脂代谢讲课文档
需从植物中摄取
Why?
第十二页,共119页。
不饱和脂酸的分类:
单不饱和脂酸
多不饱和脂酸:含2个或2个以上双键的不
饱和脂酸
不饱和脂酸的自身合成:
饱和脂肪酸 去饱和酶 单不饱和脂肪酸 单不饱和脂肪酸 去饱和酶 多不饱和脂肪酸
第十三页,共119页。
不饱和脂酸的命名:
系统命名法: 标示脂酸的碳原子数即碳链长度和双
(
Δ9,12,15)
花生四烯酸(20:4,ω6,9,12,15)
(
Δ5,8,11,14)
人体内有Δ4,Δ5,Δ8及Δ9去饱和酶
第十五页,共119页。
人体内有Δ4,Δ5,Δ8及Δ9去饱和酶
软脂酸 Δ9去饱和酶软油酸(不依赖食物摄入) 硬脂酸 Δ9去饱和酶 油酸(不依赖食物摄入)
自身不能合成
亚油酸(18:2, Δ9,12 ) 亚麻酸(18:3, Δ9,12,15)
H 反△ 2-烯酰CoA水化酶 H2O
OH RCH2 CH CH2 CO~SCoA
L(+)β-羟脂酰CoA
第二十七页,共119页。
(3) 再脱氢
OH RCH2 CH CH2 CO~SCoA
L(+)β-羟脂酰CoA
L(+)β-羟脂酰CoA脱氢酶
NAD+
2.5ATP
(4) 硫解
O
NADH+H+
H2O
呼吸链
乙酰CoA
CO2
苹果酸
草酰乙酸
柠檬酸合酶
H2O
柠檬酸 CoA
柠檬酸─丙酮酸循环 第四十一页,共119页。
3. 脂酸合成酶系及反应过程
(1) 丙二酰CoA的合成
生物化学8-脂代谢
甘油
ATP
22个ATP分子
ATP NADH
丙酮酸 乙酰CoA
3 NADH + FADH2 + GTP 柠檬酸循环和线粒体呼吸链 CO2 + H2O
脂肪酸的分解代谢
含 碳 的 脂 肪 酸 ( 软 脂 酸 ) 16
主要方式: β- 氧化途径
脂肪酸在氧化分解时,碳链的断裂发 生在脂肪酸羧基端的β-位(每次切除2个 碳原子)。反应在线粒体基质中进行。
亚油酸和亚麻酸是人体必需脂肪酸
合成
(花生、芝麻、棉籽油中富含)
多不饱和脂肪酸 如:花生四烯酸 EPA(二十碳五烯酸,鱼油主要成分) DHA(二十二碳六烯酸,脑黄金)
不饱和脂肪酸的氧化
1. 氧化反应发生在线粒体基质中;
2. 活化和跨越线粒体内膜都与饱和脂肪酸相同;
3. 进行β-氧化,到达双键位置; 4. 分子内双键需要2个酶:异构酶和还原酶。 5. 进行β-氧化。
脂肪酸β-氧化过程与柠檬酸循环中的部分反应过程 类似, 试写出这两个途径中的类似的反应过程。
脂肪酸β-氧化 柠檬酸循环
脂酰CoA脱氢生成α-β 烯脂酰CoA
琥珀酸生成延胡索酸
α-β 烯脂酰CoA水化生成L-β 羟脂酰CoA
L-β 羟脂酰CoA再脱氢生成β-酮脂酰CoA
延胡索酸生成苹果酸
苹果酸生成草酰乙酸
酮体生成的意义
1. 酮体具水溶性,能透过血脑屏障及毛细血管壁, 是输出脂肪能源的一种形式。 2. 长期饥饿时,酮体供给脑组织50—70%的能量。 3. 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮 体代替葡萄糖供能,节省葡萄糖以供脑和红细胞 所需,并可防止肌肉蛋白的过多消耗。
脂肪酸氧化、糖异生、酮体代谢的关系
中职生物化学课件第8章
一、甘油三酯的分解代谢
案例8-2 患者, 男,患1型糖尿病。一天,该患者出现多尿 、烦渴多饮和乏力,随后又出现食欲减退、恶心 、呕吐,还伴头痛、嗜睡、烦燥、呼吸深快、呼 气中有烂苹果味。问题: 1.最可能的诊断是什 么? 2.中毒机制是什么?
一、甘油三酯的分解代谢
❖ 1.脂肪酸活化成脂酰CoA
RCOOH + HSCoA
脂肪酸
辅酶A
脂酰CoA合成酶
ATP
AMP + PPi
RCO~SCoA 脂酰CoA
考点:脂肪酸的活化部位及活化形式
一、甘油三酯的分解代谢
2.脂酰CoA转运进入线粒体
考点:脂酰CoA转运的载体
一、甘油三酯的分解代谢
❖3.脂肪酸的β-氧化 脂酰CoA氧化过程发生在脂 酰羧基端β-碳原子上,所以称为β-氧化。脂肪酸 的β-氧化过程如下:
(2)软脂酸的合成
考点:脂肪酸合成的部位、原料、供氢体、限速酶、产物
二、甘油三酯的合成代谢
(三)甘油三酯的合成
在内质网中含有酯酰CoA转移酶,可催化α-磷酸甘 油与2分子脂酰CoA合成磷脂酸,磷脂酸经磷脂酸磷 酸酶催化,水解掉磷酸生成1,2-甘油二酯,后者经酯 酰CoA转移酶催化,再加上1分子脂酰CoA作用生成 甘油三酯。反应过程如下:
三、脂类的消化与吸收
人类膳食中的脂类主要是脂肪,即甘油三酯, 其次是磷脂、胆固醇及胆固醇酯。脂肪的消化部 位主要在小肠上段。
脂类的吸收部位主要在十二指肠下段和空肠上 段。短链和中链脂肪酸(<12C)构成的脂肪,在肠 黏膜细胞内脂肪酶催化下,水解生成甘油和脂肪 酸,由门静脉入肝进入血循环。而长链脂肪酸(> 12C)被吸收后,则要在肠黏膜细胞的内质网上重 新合成脂肪,再与载脂蛋白、磷脂、胆固醇等形 成乳糜微粒,经淋巴管进入血循环。
脂类代谢
胆固醇的结构和分布
胆固醇是一个含环戊烷多氢菲母核和一个羟基 的固体醇类化合物。
胆固醇分布于全身各组织,正常成人胆固醇总 量约140g,25%分布于脑和神经组织,脑组织胆固 醇的含量约占脑组织重量的2%,肾上腺皮质中胆固 醇含量高达5%。
肉毒碱
R—CH2—CH2—CO~SCoA
脱氢
FAD
1.5ATP
FADH2
呼吸链
R—CH=CH—CO~SCoA
H2O
水化
OH
R—CH—CH2—CO~SCoA
再脱氢
NAD+
2.5ATP
O
NADH+H+
R—C—CH2—CO~SCoA 呼吸链
HSCoA
硫解
H2O
乙酰CoA
R—CO~SCoA
继续进行β-氧化
脂肪酸氧化的能量计算
2. 酮体的生成:部位在肝,因肝中有酮体合成 的酶(HMG-CoA合成酶)。
3. 酮体的利用:部位在肝外组织,因肝外组织 存在利用酮体的酶(乙酰乙酸硫激酶or琥珀酰-CoA 转硫酶)。
“肝内生酮肝外用”
4. 酮体生成的意义:酮体是肝脏输出的脂 肪能源。因它分子小,溶于水,便于运输, 能通过血脑屏障和毛细血管壁,成为脑及 肌肉的重要能源。 5. 血酮:正常为0.08~0.49mmol/L。在饥饿 及糖尿病时,酮体生成远大于酮体的利用。
α- 磷酸甘油的合成
1. 来自糖代谢
NADH+H+
葡萄糖
磷酸二羟丙酮
2. 细胞内甘油再利用 ATP ADP
第八章脂代谢
脂酰CoA
第八章脂代谢
一、 -磷酸甘油的合成
1、甘油激酶 2、磷酸甘油脱氢酶
CH2OH CHOH CH2OH
ATP
ADP
CH2OH CHOH CH2O P
CH2OH NAD+HH+
CO CH2O P
NAD+
磷酸二羟丙酮可以来自于糖代谢
第八章脂代谢
CH2OH CHOH CH2O P
C2H OH ADPC2H O P N AD H + H +
磷酸丙糖 异构酶
C2H OH CO
C2H O P
CHO CHOH C2H O P
甘油
3-磷酸甘油
磷酸二羟丙酮 3-磷酸甘油醛
3-磷酸甘油醛
糖无氧氧化:乳酸+能量(少)
糖有氧氧化:CO2+H2O+能量(多) 糖异生:葡萄糖或糖原
可见: 糖代谢与脂肪代谢可经磷第八酸章脂代二谢 羟丙酮联系起来
1 2 3
5
4
2、3、4、5步反应不断重 复,直到完全生成乙酰辅 酶A
2
3 4 5
第八章脂代谢
-氧化 氧化磷酸化
三羧酸循环
第八章脂代谢
骤脂 肪 酸 氧 化 三 大 步
能 量 计 算:
以16C的软脂酸为例:
第一步消耗了2个高能磷酸键,所以应为108-2=106个高能磷酸键 当软脂酸氧化时,自由能变化为-2340千卡/摩尔; ATP水解生成 ADP+Pi时,自由能变化为-7.30千卡/摩尔。
脱氢水化再脱氢循环用苯基标记的带奇数碳原子的脂肪酸尿中排出的是苯甲尿酸苯甲酰n甘氨酸马尿酸用苯基标记的带偶数碳原子的脂肪酸尿中排出的是苯乙尿酸苯乙酰n甘氨酸chcoohchcoohch1coohncoohcoohcoohconhch每次切下一个或三个碳原子都是不符合实验结果的脂肪酸在体内氧化时每次切下一个二碳物1904年knoop提出氧化作用后经同位素实验证实偶数奇数苯乙尿酸苯甲尿酸脂肪酸在体内氧化时每次降解一个二碳单元物氧化是从羧基端的位置碳原子开始释放出一个乙酸单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主任
审批意见
教学
后记
教学内容要点
(可附另页)
1.脂肪的消化、吸收及运转
(1).脂类的消化
(2).脂质的吸收
2.脂肪的分解代谢
(1).脂肪动员过程
(2).甘油的分解与合成代谢
(3).脂肪酸的分解代谢
(4).酮体的合成与分解代谢
3.脂肪的合成代谢
(1).α-磷酸甘油的生成
(2).脂肪酸的合成代谢
(3).脂肪酸合成的调节
教学
重点
难点
1、重点:脂肪酸氧化过程、有关酶;脂肪酸合成部位、原料(包括来源)及辅助因子,乙酰辅酶A羧化酶、脂肪酸合成酶系的特点及脂酰基载体蛋白(ACP)在脂肪酸合成中的作用
2、难点:脂肪酸合成过程、有关酶
3、学生应注意的问题:
注意比较脂肪酸分解代谢与合成代谢的异同;注意脂类代谢同其它物质代谢,尤其是糖类物质代谢的联系.
教学
方法
教师讲授,课堂讨论,多媒体教学,当堂测验,提问式教学
讨论
练习
作业
1、通过复习、阅读参考书、选择练习题和实训题等方式巩固学生学习的知识.
2、安排作业见P364第1,2,3,6,7题.
3、讨论思考题
(1).比较脂肪酸氧化和合成过程
(2).酮体包括哪几种物质?为什么肝脏不能利用酮体作为燃料?这有什么意义?
(4).三酰甘油的合成
(5).磷脂的合成代谢
(6).胆固醇的合成代谢、胆固醇的转化.
备注:上述栏内内容供教师编写教案时参考。
周次
第周至第周
授课时间
章节
名称
第八章脂类代谢
授课
方式
理论课
教学
时数
4
教目的
和要求
了解甘油三酯水解过程及限速酶,解释脂肪动员及激素调节有关概念;熟记甘油代谢途径(氧化分解、异生为糖及合成脂肪)及重要的酶;详尽描述脂肪酸氧化过程、有关酶;解释酮体概念,复述酮体代谢、生理意义,阐述酮症产生机理;结合软脂酸合成途径,熟记脂肪酸合成部位、原料(包括来源)及辅助因子,乙酰辅酶A羧化酶、脂肪酸合成酶系的特点及脂酰基载体蛋白(ACP)在脂肪酸合成中的作用,知道线粒体及内质网中脂肪酸碳链延长酶体系的作用,熟记脂肪酸合成的限速步骤及调节;一般了解磷脂合成原料、部位,能以磷脂酰胆碱合成为例,描述磷脂合成过程及CTP在其中的作用;在理解的基础上写出与甘油磷脂分解代谢有关的酶及其作用;熟记胆固醇合成原料、部位、辅助因子,能叙述合成的简单过程及调节机制,写出胆固醇主要转化途径与排泄。