2014年各省市文科高考试题汇编-导数

合集下载

2014年高考导数专题(含详细解答)

2014年高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常见的函数导数: ①、c '= (c 为常数); ②、n (x )'= (R n ∈); ③、)(sin 'x = ;④、)(cos 'x = ; ⑤、x (a )'= ; ⑥、x (e )'= ; ⑦、a (log x )'= ; ⑧、(ln x )'= .2. 求导数的四则运算法则:()u v u v '''±=±;v u v u uv '+'=')(;2)(v v u v u v u '-'=' )0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u注:① v u ,必须是可导函数. 3. 复合函数的求导法则: )()())((x u f x f x ϕϕ'∙'=' 或 '∙'='x u x u y y一、求曲线的切线(导数几何意义)导数几何意义:0()f x '表示函数()y f x =在点(0x ,0()f x )处切线L 的斜率;函数()yf x =在点(0x ,0()f x )处切线L 方程为000()()()y f x f x x x '-=-1.(2009全国卷Ⅱ理)曲线21xy x =-在点()1,1处的切线方程为( )A . 20x y --=B . 20x y +-=C .450x y +-=D . 450x y --= 2.【2012高考广东理12】曲线y =x 3-x +3在点(1,3)处的切线方程为 .变式一:3.(2009江西卷理)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12- 4.【2009安徽卷理】已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A .21y x =-B .y x =C .32y x =-D .23y x =-+变式二:5.(2009江苏卷)在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 6.【2009陕西卷理】设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++ 的值为 .7.(2010辽宁理数)已知点P 在曲线y =41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A 、[0,4π) B 、[,)42ππ C 、3(,]24ππ D 、3[,)4ππ变式三:8.(2009全国卷Ⅰ理) 已知直线y =x +1与曲线y ln()x a =+相切,则α的值为( )A .1B . 2C .-1D .-2 9.【2009江西卷文】若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64D .74-或710.(2010全国卷理数2)若曲线12y x-=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = A 、64 B 、32 C 、16 D 、8 11.【2012高考安徽理19】(本小题满分13分) 设1()(0)xx f x ae b a ae=++>. (I )求()f x 在[0,)+∞上的最小值;(II )设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值. 12. 【2009福建卷理】若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 .二、求单调性或单调区间1、利用导数判定函数单调性的方法:设函数)(x f y =在某个区间D 内可导,如果)(x f '>0,则)(x f y =在区间D 上为增函数; 如果)(x f '<0,则)(x f y =在区间D 上为减函数; 如果)(x f '=0恒成立,则)(x f y =在区间D 上为常数.2、利用导数求函数单调区间的方法:不等式)(x f '>0的解集与函数)(x f y =定义域的交集,就是)(x f y =的增区间;不等式)(x f '<0的解集与函数)(x f y =定义域的交集,就是)(x f y =的减区间.1、函数xe x xf )3()(-=的单调递增区间是( )A . )2,(-∞B .(0,3)C .(1,4)D . ),2(+∞2.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 . 3.(2009安徽理)(本小题12分) 已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性. 4.【2009天津卷理】(本小题满分12分)已知函数22()(23)(),xf x x ax a a e x R =+-+∈其中a R ∈(1)当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; (2)当23a ≠时,求函数()f x 的单调区间与极值.三、求函数的极值与最值1、极值的判别方法:当函数)(x f 在点0x 处连续时,① 如果在0x 附近的左侧)(x f '>0,右侧)(x f '<0,那么)(0x f 是极大值; ② 如果在0x 附近的左侧)(x f '<0,右侧)(x f '>0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件为0x 点两侧导数异号,而不是)(x f '=0. 2、最值的求法:求f (x )在[a ,b ]上的最大值与最小值的步骤如下:(1) 求 f (x ) 在区间 (a ,b ) 内的极值(极大值或极小值);(2) 将 y = f (x ) 的各极值与端点处的函数值 f (a )、f (b ) 比较,其中最大的一个为最大值,最小的一个最小值.注:极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 1.【2012高考陕西理7】设函数()xf x xe =,则( )A . 1x =为()f x 的极大值点B .1x =为()f x 的极小值点C . 1x =-为()f x 的极大值点D . 1x =-为()f x 的极小值点[学 2.(2011·广东高考理科·T12)函数32()31f x x x =-+在x = 处取得极小值.3.【2012高考重庆理16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;(Ⅱ)求函数()f x 的极值.4.(2011·福建卷理科·T18)(本小题满分13分) 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (I )求a 的值.(II )若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 5.【2011·江苏高考·T17】请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D 四个点重合与图中的点P,正好形成一个正四棱柱形状的包装盒.E,F 在AB 上,是被切去的一个等腰直角三角形斜 边的两个端点,设)(cm x FB AE ==.(1)某广告商要求包装盒的侧面积S )(2cm 最大,试问x 应取何值?(2)某厂商要求包装盒的容积V )(3cm 最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.四、判断函数的零点1.(2010天津理数)函数f(x )=23xx +的零点所在的一个区间是 A .(-2,-1); B .(-1,0); C .(0,1); D .(1,2) 2.(2009天津卷理)设函数1()ln (0),3f x x x x =->则()y f x = ( ) A .在区间1(,1),(1,)e e 内均有零点; B .在区间1(,1),(1,)e e内均无零点;C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点;D .在区间1(,1)e内无零点,在区间(1,)e 内有零点. 3.【2012高考全国卷理10】已知函数y =x 3-3x +c 的图像与x 轴恰有两个公共点,则c =A .-2或2 ;B .-9或3 ;C .-1或1;D .-3或14.【2012高考江苏18】(16分)若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y = 的极值点. 已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.五、导数与图像1.(2011·安徽高考理科·T10)函数()()1nmf x axx =-在区间[]0,1上的图象如图所示,则,m n 的值可能是 A .1,1m n == B .1,2m n == C .2,1m n == D .3,1m n ==2.(2009湖南卷文)若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .3.【2010江西理数】如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为六、导数与不等式利用导数求解(证明)不等式 主要方法是:将不等式()()t x g x ≥左右两边的多项式移到一边,构造出一个新的函数()()()f x t x g x =-,通过对()f x 求导,根据()f x '的大小和导数的性质,结合已知条件进行求解或证明. 1.(2011·江西高考理科·T4)若()224ln f x x x x =--,则()f x '>0的解集为A .()0,+∞B . ()()1,02,-⋃+∞C . ()2,+∞D . ()1,0-2.(2011·辽宁高考理科·T11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f , 则f (x )>2x +4的解集为A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)3.【2009江西卷理】(本小题满分12分)设函数()xe f x x=(1) 求函数()f x 的单调区间;(2) 若0k >,求不等式()f '()(1)()0f x k x f x +->的解集.ab ab ao xoxy b aoxy o xyb y4.(2009全国卷Ⅰ理)本小题满分12分.设函数()3233f x x bx cx =++在两个极值点12x x 、,且12[10],[1,2].x x ∈-∈, (I )求b c 、满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(),b c 的区域; (II)证明:()21102f x -≤≤-5.(2009全国卷Ⅱ理)(本题满分12分) 设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <(I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()21224In f x ->6.(2009辽宁卷理)(本小题满分12分)已知函数f (x )=21x 2-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.7.(2009宁夏海南卷理)(本小题满分12分)已知函数32()(3)x f x x x ax b e -=+++(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明βα-<6.8.【2012高考新课标理21】(本题满分12分)已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; (2)若21()2f x x ax b ≥++,求(1)a b +的最大值.9.【2012高考辽宁理21】(本小题满分12分) 设()ln(1)1(,,,)f x x x ax b a b R a b =+++++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切. (Ⅰ)求,a b 的值.(Ⅱ)证明:当02x <<时,9()6xf x x <+.10.【2012高考山东理22】(本小题满分13分) 已知函数ln ()xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.七、求参数范围1.(2009北京理)(本小题共13分)设函数()(0)kx f x xe k =≠(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.2.(2011·安徽高考理科·T16)设2()1xe f x ax =+,其中a 为正实数(Ⅰ)当a 43=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围.3. (2011·新课标全国高考理科·T21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.4.(2011·北京高考理科·T18)(13分)已知函数2()()xkf x x k e=-.(I )求()f x 的单调区间;(II )若对于任意的(0,)x ∈+∞,都有1()f x e≤,求k 的取值范围.5.(2009陕西卷理)(本小题满分12分)已知函数1()ln(1),01xf x ax x x-=++≥+,其中0a > ()I 若()f x 在x =1处取得极值,求a 的值; ()II 求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.6.(2011·浙江高考理科·T22)(本题满分14分)设函数()f x =2()ln x a x -,a ∈R(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立. 注:e 为自然对数的底数.7.【2012高考浙江理22】(本小题满分14分) 已知a >0,b ∈R ,函数()342f x ax bx a b =--+.(Ⅰ) 证明:当0≤x ≤1时,(ⅰ) 函数()f x 的最大值为|2a -b |﹢a ;(ⅱ) ()f x +|2a -b |﹢a ≥0;(Ⅱ) 若-1≤()f x ≤1对x ∈[0,1]恒成立,求a +b 的取值范围.8.【2012高考湖南理22】(本小题满分13分)已知函数()f x =axe x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2) 在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K , 问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.9.【2012高考天津理20】(本题满分14分) 已知函数)ln()(a x x x f +-=的最小值为0,其中.0>a(Ⅰ)求a 的值;(Ⅱ)若对任意的),,0[+∞∈x 有)(x f ≤2kx 成立,求实数k 的最小值; (Ⅲ)证明∑=<+--ni n i 12)12ln(122(*N n ∈).10.(2009广东卷理)(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Q 的距离的最小值为2,求m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.导数及其应用__答案一、求曲线的切线(导数几何意义)1、B ;2、012=+-y x ;3、A ;4、A ;5、(-2,15);6、-2;7、D ;8、B ;9、A ;10. A .11、【解析】(I )设(1)xt e t =≥;则2222111a t y at b y a at at at -'=++⇒=-=, ①当1a ≥时, ()f x 的最小值为1a b a++.②当01a <<时, ()f x 的最小值为2b +. (II )221,2a b e ==; 12、{}|0a a <. 二、求单调性或单调区间1、D ;2、(1,11)-;3、①当022a <<时,()f x 在(0,)+∞上是增函数.②当22a =时,()f x 在(0,)+∞上也是增函数. ③当22a >时,()f x 在28(0,)2a a --和28(,)2a a +-+∞上单调递增, 在2288(,)22a a a a --+-是上单调递减.4、(I )3e ;(II )(1)a 若>32,函数的极大值为.3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数函数的极小值为.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数(2)a 若<32,则函数的极大值为.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在数函数的极小值为.3)2()2(2)(2aae a f a f a x x f -=---=,且处取得极大值在函数三、求函数的极值与最值1、D ;2、2;3、(1)1a =-;(2)()f x 在1x =处取得极小值()13f =.4、(I )2a =;(II )当4x =时,函数()f x 取得最大值42.5、(1)当15=x 时,S 取得最大值.(2)当20=x 时取最大值,此时21=a h 四、判断函数的零点1、B ;2、D ;3、A ;4、(1)==3a b -0,;(2)()g x 的极值点是-2;(3)当=2c 时,函数()y h x =有5 个零点;当2c <时,函数()y h x =有9 个零点.五、导数与图像1、m=1,n=2;2、A ;3、A .六、导数与不等式1、C ;2、B .3、 (1) ()f x 的单调增区间是[1,)+∞; 单调减区间是(,0)(0,1]-∞,.(2)当 01k <<时, 解集是1{1}x x k <<;当 1k =时,解集是∅;当 1k >时, 解集是1{1}x x k<<.4.(1)略;(2)由题意有()22223630f x x bx c '=++=............①又()32222233f x x bx cx =++.....................②由①、②消去b 可得()32221322cf x x x =-+.又2[1,2]x ∈ ,且[2,0]c ∈-,2110()2f x ∴-≤≤-.5、解: (I )()2222(1)11a x x a f x x x x x ++'=+=>-++,令2()22g x x x a =++,其对称轴为12x =-.由题意知12x x 、是方程()0g x =的两个均大于1-的不相等的实根,其充要条件为480(1)0a g a ∆=->⎧⎨-=>⎩,得102a <<⑴ 当1(1,)x x ∈-时,()0,()f x f x '>∴在1(1,)x -内为增函数; ⑵ 当12(,)x x x ∈时,()0,()f x f x '<∴在12(,)x x 内为减函数; ⑶ 当2,()x x ∈+∞时,()0,()f x f x '>∴在2,()x +∞内为增函数; (II )由(I )21(0)0,02g a x =>∴-<<,222(2)a x x =-+2 ()()()22222222221(2)1f x x aln x x x x ln x ∴=++=-++2设()()221(22)1()2h x x x x ln x x =-++>-,则()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++ ⑴ 当1(,0)2x ∈-时,()0,()h x h x '>∴在1[,0)2-单调递增; ⑵ 当(0,)x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减.()1112ln 2(,0),()224x h x h -∴∈->-=当时,故()22122()4In f x h x -=>. 6、解析: (1)()f x 的定义域为(0,)+∞. ()x '2'11(1)(1)()a x ax a x x a f x x a x x x --+--+-=-+==2分 (i )若11a -=,即2a =,则()f x '2'(1)()x f x x-=,故()f x 在(0,)+∞单调增加. (ii) 若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,'()0f x <;当(0,1)x a ∈-及(1,)x ∈+∞时,'()0f x >故()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加.(iii) 若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加.(2) 考虑函数 ()()g x f x x =+21(1)ln 2x ax a x x =-+-+则211()(1)2(1)1(11)a a g x x a x a a x x--'=--+≥--=---g 由于1<a <5,故()0g x '>,即g(x )在(4, +∞)单调增加,从而当120x x >>时有12()()0g x g x ->,即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---·········12分 7、(1)()(,3),(0,3)303f x -∞--+∞在单调增加,在(,),(,)单调减. (2)3223'()(3)(36)[(6)].xx x f x x x ax b ex x a e e x a x b a ---=-++++++=-+-+-由条件得:3'(2)0,22(6)0,4,f a b a b a =+-+-==-即故 从而3'()[(6)42].xf x e x a x a -=-+-+-因为'()'()0,f f αβ==∴3(6)42(2)()()x a x a x x x αβ+-+-=---2(2)(()).x x x αβαβ=--++ 将右边展开,与左边比较系数得,2, 2.a αβαβ+=-=- 故2()4124.a βαβααβ-=+-=-又(2)(2)0,2()40.βααβαβ--<-++<即由此可得 6.a <- 于是 6.βα->8、解:(1)()f x 的解析式为21()2x f x e x x =-+,且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥,得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-()00,()0F x x e F x x e ''>⇔<<<⇔>, 则当x e =时,max ()2e F x = 当1,a e b e =-=时,(1)a b +的最大值为2e 9、(1)b=-1,=0a(2)证:首先由均值不等式得:当>0x 时,()2+11<+1+1=+2x x x,故+1<+12xx再次记()()9=-+6xh x f x x ,则()()()()()()22211542++154+654'=+-=-<-+12+14+12+1+6+6+6x x h x x x x x x x x ()()()()32+6-216+1=4+1+6x x x x ,令()()()3=+6-216+1g x x x ,则当0<<2x 时,()()2'=3+6-216<0g x x因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,∴()'<0h x因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,于是当0<<2x 时, ()9<+6xf x x …12分 10、解:(Ⅰ)k=1;(Ⅱ)()f x 的增区间为(0,1);减区间为(1,)+∞.(Ⅲ)21()()'()(1ln )x x g x x x f x e x x x +=+=⋅--,先研究1ln x x x --,再研究1x x e+.① 记()1ln ,0i x x x x x =-->,'()ln 2i x x =--,令'()0i x =,得2x e -=,当(0x ∈,2)e -时,'()0i x >,()i x 单增; 当2(x e -∈,)+∞时,'()0i x <,()i x 单减 . ∴22max ()()1i x i e e --==+,即21ln 1x x x e ---≤+.② 记1(),0x x j x x e +=>,'()0x x j x e=-<,∴()j x 在(0,)+∞单减,∴()(0)1j x j <=, 即11x x e+<综①、②知,2211()(1ln )(1)1x x x x g x x x x e e e e--++=--≤+<+.七、求参数范围1、(Ⅰ)y x =;(Ⅱ)由()f x'()()'10kxf x kx e =+=,得()10x k k=-≠, 若0k >,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 若0k <,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减, (Ⅲ)由(Ⅱ)知,若0k >,则当且仅当11k-≤-,即1k ≤时,函数()f x ()1,1-内单调递增, 若0k <,则当且仅当11k-≥,即1k ≥-时,函数()f x ()1,1-内单调递增, 综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1- .2、(Ⅰ)当时,34=a 令0)(='x f ,则03842=+-x x .解得21,2321==x x , 列表得x)21,(-∞21 )23,21( 23 ⎪⎭⎫ ⎝⎛+∞,23 )(x f ' + 0 - 0 + )(x f↗极大值↘极小值↗∴231=x 是极小值点,212=x 是极大值点. (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合222)1(21)(ax axax e x f x+-+='与条件a >0, 知0122≥+-ax ax 在R 上恒成立,因此.0)1(4442≤-=-=∆a a a a 由此并结合a>0,知10≤<a . 3、(Ⅰ)1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,∴22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=. ① 设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <,h(x )递减.而(1)0h =,故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈(1,+∞)时,h(x ) < 0,可得211x - h (x )>0从而当x >0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk.② 设0< k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下, 且244(1)0k ∆=-->,对称轴x =111k >-.当x ∈(1,k -11)时,(k -1)(x 2 +1)+2x >0, 故h '(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h(x ) > 0,可得211x-h(x ) < 0,与题设矛盾. ③设k ≥1. ∵ x >0且x ≠1,∴此时2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0, 故当x ∈(1,+∞)时,h (x )>0,可得211x - h (x )<0,与题设矛盾. 综合得,k 的取值范围为(-∞,0]4、 (Ⅰ)当k>0时,()f x 的单调增区间是(,)k -∞-和(,)k +∞;单调减区间是(,)k k -.当0k <时,()f x 的单调减区间是(,)k -∞和(,)k -+∞;单调增区间是(,)k k -.(Ⅱ)当0k >时,因为11(1)k kf k ee ++=>,∴不会有(0,)x ∀∈+∞,1()f x e≤. 当0k <时,由(1)知()f x 在(0,)+∞上的最大值是24()k f k e -=.∴1(0,),()x f x e ∀∈+∞≤等价于241()k f k e e -=≤,解得102k -≤<.故当(0,)x ∀∈+∞,1()f x e ≤时,k 的取值范围是1[,0)2-. 5、解(Ⅰ) 1.a =(Ⅱ)①当2a ≥时,()f x 的单调增区间为(0,).+∞②当02a <<时,()),aaf x a a+∞2-2-的单调减区间为(0,单调增区间为(,). (Ⅲ)若()f x 得最小值为1,则a 的取值范围是[2,).+∞ 6、(Ⅰ)∴a e = 或3a e =.(Ⅱ) ①当01x <≤时,对于任意的实数a ,恒有2()04f x e ≤<成立, ②当13x e <≤,由题意,首先有22(3)(3)ln(3)4f e e a e e =-≤,解得2233ln(3)ln(3)e e e a e e e -≤≤+, 由(Ⅰ)知'()()(2ln 1)af x x a x x =-+-,令 ()2ln 1ah x x x=+-,则(1)10h a =-<,()2ln 0h a a =>, 且23ln(3)(3)2ln(3)12ln(3)133e e e ah e e e ee +=+-≥+-=12(ln 3)03ln(3)e e ->. 又()h x 在(0,+∞)内单调递增,∴函数()h x 在(0,+∞)内有唯一零点,记此零点为0x , 则013x e <<,01x a <<.从而,当0(0,)x x ∈时,'()0f x >;当0(,)x x a ∈时,'()0f x <;当(,)x a ∈+∞时,'()0f x >, 即()f x 在0(0,)x 内单调递增,在0,()x a 内单调递减,在(,)a +∞内单调递增.∴要使2()4f x e ≤对](1,3x e ∈恒成立,只要 2200022()()ln 4,(1)(3)(3)ln(3)4,(2)f x x a x e f e e a e e ⎧=-≤⎪⎨=-≤⎪⎩ 成立. 000()2ln 10ah x x x =+-=,知0002ln a x x x =+ (3)将(3)代入(1)得232004ln 4x x e ≤,又01x >,注意到函数23ln x x 在[1,+∞)内单调递增,故01x e <≤ 再由(3)以及函数2x ln x +x 在(1, +∞)内单调递增,可得13a e <≤. 由(2)解得,2233ln(3)ln(3)e e e a e e e -≤≤+. ∴233ln(3)ee a e e -≤≤ 综上,a 的取值范围为233ln(3)ee a e e -≤≤.7、 (Ⅰ) (ⅰ)()2122f x ax b '=-.当b ≤0时,()2122f x ax b '=->0在0≤x ≤1上恒成立,此时()f x 的最大值为:()1423f a b a b a b =--+=-=|2a -b |﹢a ;当b >0时,()2122f x ax b '=-在0≤x ≤1上的正负性不能判断,此时()f x 的最大值为:()max 2max{(0)1}max{()3}32b a b af x f f b a a b a b b a ->⎧==--=⎨-<⎩,,(),(),=|2a -b |﹢a ;综上所述:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a ;(ⅱ) 要证()f x +|2a -b |﹢a ≥0,即证()g x =-()f x ≤|2a -b |﹢a . 亦即证()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a ,∵()342g x ax bx a b =-++-,∴令()212206bg x ax b x a'=-+=⇒=. 当b ≤0时,()2122g x ax b '=-+<0在0≤x ≤1上恒成立,此时()g x 的最大值为:()03g a b a b =-<-=|2a -b |﹢a ;当b <0时,()2122g x ax b '=-+在0≤x ≤1上的正负性不能判断,()max max{()1}6bg x g g a=,() 4max{2}36463662bb a b b a a bb a ba b ab a b a =+--⎧≤+-⎪=⎨>⎪-⎩,,,≤|2a -b |﹢a ;综上所述:函数()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a .即()f x +|2a -b |﹢a ≥0在0≤x ≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a ,且函数()f x 在0≤x ≤1上的最小值比-(|2a -b |﹢a )要大.∵-1≤()f x ≤1对x ∈[0,1]恒成立,∴|2a -b |﹢a ≤1. 取b 为纵轴,a 为横轴.则可行域为:21b a b a ≥⎧⎨-≤⎩和231b aa b <⎧⎨-≤⎩,目标函数为z =a +b .作出可行域,由图易得:当目标函数为z =a +b 过P(1,2)时,有max 3z =. ∴所求a +b 的取值范围为:(]3-∞,.8、解:(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当 111ln 1a a a-≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=-- 则121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x ea x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >- ∴1()0,x ϕ<2()0.x ϕ> 因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,∴存在012(,)x x x ∈使0()0,x ϕ=2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-. 故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 9、解:(Ⅰ)函数()f x 的定义域为(,)a -+∞()ln()f x x x a =-+11()101x a f x x a a x a x a+-'⇒=-==⇔=->-++ ()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-,得1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(Ⅱ)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ⇔≥= …………(*) (1)1ln 200g k k =-+≥⇒>, 1(221)()2111x kx k g x kx x x +-'=-+=++ ①当1210()2k k -<<时,0012()00()(0)02k g x x x g x g k-'≤⇔≤≤=⇒<=与(*)矛盾 ②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合(*), ∴实数k 的最小值为12(Ⅲ)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立 取2(1,2,3,,)21x i n i ==- :222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln32-< 得:=12ln (2+1)<221n i n i --∑ 当2i ≥时,2211(21)2321i i i <---- 得:121[ln(21)ln(21)]2ln 3122121n i i i i n =-++-<-+-<--∑. 10、(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=;又()g x '的图像与直线2y x =平行 22a ∴=,即1a =m x x m x x g ++=-++=∴21)1()(22, ()()2g x m f x x x x==++,设(),o o P x y ,则2002020202)()2(||x m x x y x PQ ++=-+=m m m m m x m x 2||2222222220220+=+≥++= 当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2 当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m (2)由()()120m y f x kx k x x=-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2m x =-; 当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m>-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=, 即1)1(11---±=k k m x ; 若0m <,11k m <-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=, 即1)1(11---±=k k m x ; 当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11 综上,①当1k =时, 函数()y f x kx =-有一零点2m x =-; ②当11k m >-(0m >),或11k m <-(0m <)时,函数()y f x kx =-有两个零点1)1(11---±=k k m x ;③当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11.。

2014年高考文科数学导数 试题汇编--高三二轮复习资料七

2014年高考文科数学导数 试题汇编--高三二轮复习资料七

二轮复习专题(七) 函数与导数1、(辽宁文)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)2、(辽宁文)若函数))(12()(a x x x x f -+=为奇函数,则a =(A )21(B )32 (C )43 (D )13、(全国新课标文)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= 4、(全国新课标文)在下列区间中,函数()43x f x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)245、(湖北文)若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e--B .1()2x xe e -+C .1()2x x e e --D .1()2x xe e --6、(福建文)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7、(福建文)已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .38、(福建文)若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .99、(陕西文)方程cos x x =在(),-∞+∞内(A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根 10、(四川文)在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-11、(湖南文)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率 A .12- B .12 C.D12、(湖南文)已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为A.[2 B.(2 C .[1,3] D .(1,3)13、(北京文)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<14、(安徽文)若点(a,b )在lg y x = 图像上,a ≠1,则下列点也在此图像上的是 (A )(a 1,b )(B )(10a,1-b )(C ) (a10,b+1)(D )(a 2,2b ) 15、(安徽文)函数2)1()(x ax x f n -=在区间〔0,1〕 上的图像如图所示,则n 可能是A(A )1 (B )2 (C )3 (D )416、(山东文)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .17、(上海文)设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为18、(湖南文)已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .19、(湖北文)里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅。

2014年全国各地高考试题分类汇编(理数)2----函数与导数(选择填空题)(全Word,精心排版)

2014年全国各地高考试题分类汇编(理数)2----函数与导数(选择填空题)(全Word,精心排版)

2014年全国各地高考试题分类汇编(理数)函数与导数(选择填空题)(2014安徽理数)6.设函数()f x ()x ∈R 满足()()πsin f x f x x +=+.当0x <π…时,则236f ⎛⎫π= ⎪⎝⎭( )A .12 B C .0 D .12- 【解析】因为()()()()()2ππsin πsin sin f x f x x f x x x f x +=+++=+-=,所以()f x 的周期2πT =,又因为当0πx <…时,()0f x =,所以5π06f ⎛⎫=⎪⎝⎭,即ππππsin 0666f f ⎛⎫⎛⎫⎛⎫-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以π162f ⎛⎫-= ⎪⎝⎭,所以23πππ14π6662f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选A .(2014北京理数)2.下列函数中,在区间()0,+∞上为增函数的是( )A .y =B .()21y x =- C .2x y -= D .()0.5log 1y x =+【解析】()21y x =-仅在[)1,+∞上为增函数,排除B ;122xxy -⎛⎫== ⎪⎝⎭为减函数,排除C ;因为0.5log t y =为减函数,1t x =+为增函数,所以()0.5log 1y x =+为减函数,排除D ;y =和1t x =+均为增函数,所以y =为增函数,故选A .(2014大纲理数)7.曲线1e x y x -=在点()1,1处切线的斜率等于( )A .2eB .eC .2D .1 【解析】因为()()111ee1e x x x y x x x ---'''=⋅+⋅=+,所以曲线在点()1,1处的切线斜率为21y x '==.故选C .(2014大纲理数)12.函数()y f x =的图像与函数()y g x =的图像关于直线0x y +=对称,则()y f x =的反函数是( )A .()y gx = B .()y g x =- C .()y g x =- D .()y g x =--【解析】因为()y g x =关于0x y +=对称的函数为()x g y -=-,即()1y g x -=--,所以()()1y f x g x -==--,对换x ,y 位置关系得:()1x y y -=--,反解该函数得()y g x =--,所以()y f x =的反函数为()y g x =--.故选D .(2014福建理数)4.若函数log a y x =()0,1a a >≠且的图像如图所示,则下列函数图像正确的是( )【解析】由题图可知log a y x =过点()3,1,所以log 31a =,即3a =.A 项,13xy ⎛⎫= ⎪⎝⎭在R 上为减函数,错误;B 项,3y x =符合;C 项,3y x =-在R 上为减函数,错误;D 项,()3log y x =-在(),0-∞上为减函数,错误.故选B .(2014福建理数)7.已知函数()21,0cos ,0x x f x x x ⎧+>=⎨⎩…,则下列结论正确的是( )A .()f x 是偶函数B .()f x 是增函数C .()f x 是周期函数D .()f x 的值域为[)+∞-,1 【解析】作出()f x 的图像如图所示,可排除A ,B ,C ,故D 正确.(2014福建理数)14.如图所示,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为 .【解析】因为e x y =与ln y x =互为反函数,故直线yx =两侧的阴影部分面积相等,只需计算其中一部分即可.如图,110101e d e e e e 10xxS x ===-=-⎰.所以()()1=2=2e 1=2e e 1=2S S S ⨯---⎡⎤⎣⎦阴影总阴影,故所求概率为22e P =.xAB .x-a(2014广东理数)10.曲线5e 2x y -=+在点()0,3处的切线方程为 . 【解析】55e x y -'=-,曲线在点()0,3处切线斜率05x k y ='==-,故切线方程为()350y x -=--,即530x y +-=.(2014湖北理数)6.若函数()(),f x g x 满足()()1d =01f x g x x -⎰,则称()(),f x g x 为区间[]1,1-上的一组正交函数,给出三组函数:①()()11sin,cos 22f x xg x x ==;②()()1,1f x x g x x =+=-;③()()2,f x x g x x ==.其中为区间[]1,1-的正交函数的组数是( ) A .0 B .1 C .2 D .3【解析】由①得()()111sin cos sin 222f xg x x x x ==,是奇函数,所以()()11d 0f x g x x -=⎰,所以①为区间[]1,1-上正交函数;由②得()()21f x g x x =-,所以()()()31121114d 1d 133x f x g x x x x x --⎛⎫=-=-=- ⎪-⎝⎭⎰⎰,所以②不是区间[]1,1-上的正交函数;由③得()()3f x g x x =,是奇函数,所以()()11d 0f x g x x -=⎰,所以①为区间[]1,1-上的正交函数. 故选C .(2014湖北理数)14.设()f x 是定义在()0,+∞上的函数,且()0f x >,对任意0,0a b >>,若经过点()()()(),,,a f a b f b -的直线与x 轴的交点(),0c ,则称c 为,a b 关于函数()f x 的平均数,记为(),fM a b ,例如,当()()10f x x =>时,可得(),2f a bM a b c +==,即(),f M a b 为b a ,的算术平均数. (1)当()()_____0f x x =>时,(),f M a b 为b a ,的几何平均数; (2)当()()_____0f x x =>时,(),f M a b 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)【解析】(1)若(),f M a b 是a ,b的几何平均数,则c ()(),a f a,),()(),b f b -共线,00f a f b -+=f a f b=,所以可取()f x(2)若(),f M a b 是a ,b 的调和平均数,则2ab c a b =+,由题意知()(),a f a ,2,0ab a b ⎛⎫ ⎪+⎝⎭,()(),b f b -共线,所以()()22f x f b ab ab a ba b a b=--++,化简得()()f a f b a b =,所以可取()f x x =.(2014湖南理数)3.若()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则()()11f g +=( )A .3-B .1-C . 1D . 3 【解析】解法一:因为()()321f x g x x x -=++,所以()()321f x g x x x ---=-++,又由题意可知()()f x f x -=,()()g x g x -=-,所以()()321f x g x x x +=-++,则()()111f g +=,故选C .解法二:令()21f x x =+,()3g x x =-,显然符合题意,所以()()23111111f g +=+-=. 选C .(2014湖南理数)9.已知函数()()sin f x x ϕ=-,且()230d 0f x x π=⎰,则函数()f x 的图像的一条对称轴是( ) A .6x 5π=B .12x 7π=C .3x π=D .6x π= 【解析】由()()sin f x x ϕ=-,知函数()f x 的最小正周期为2π,且()230f x dx π=⎰,则点,03π⎛⎫ ⎪⎝⎭为函数的对称中心,因此对称轴为56x k π=π+,k ∈Z .令0k =,则6x 5π=.故选A . (2014湖南理数)10.已知函数()21e 2xf x x =+-()0x <与()()2lng x x x a =++图像上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎛-∞ ⎝ B.(-∞ C.⎛ ⎝ D.⎛⎝【解析】依题意,()()f x g x -=在0x >上有解,即()221e ln 2xx x x a -+-=++,得()1e ln 2x x a --=+,令()1e2xp x --=,()()ln q x x a =+,0x >,()10ln 2q a =<,得0a <<0a <时,()q x 的图像是将ln y x =的图像向右平移a 各单位而得,满足()()p x q x =在0x >上有解,所以a <B .(2014江苏)10.已知函数()21f x x mx =+-,若对于任意[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是 .【解析】要满足()210f x x mx =+-<对于任意[],1x m m ∈+恒成立,只需()()0,10,f m f m ⎧<⎪⎨+<⎪⎩即()()22210,1110,m m m m ⎧-<⎪⎨+++-<⎪⎩解得0m <<.(2014江苏)11.在平面直角坐标系xOy 中,若曲线2by ax x=+(,a b 为常数)过点()2,5P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 .【解析】因为2b y ax x =+,所以22b y ax x '=-,由题意可得45,274,42b a b a ⎧+=-⎪⎪⎨⎪-=-⎪⎩解得1,2.a b =-⎧⎨=-⎩ 所以3a b +=-.(2014江苏)13.已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,()2122f x x x =-+.若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 . 【解析】当[)0,3x ∈时,()()22112122f x x x x =-+=--,由()f x 是周期为3的函数,作出()f x 在[]3,4-上的图像,如图.由题意知方程()a f x =在[]3,4-上有10个不同的根.由图可知10,2a ⎛⎫∈ ⎪⎝⎭.(2014江西理数)2.函数()()2ln f x x x =-的定义域为( )A .()0,1B .[]0,1C .()(),01,-∞+∞ D . (][),01,-∞+∞【解析】要使函数有意义,需满足20x x ->,解得0x <或1x >,故选C .(2014江西理数)3.已知函数()5xf x =,()2g x ax x =-()a ∈R .若()11f g =⎡⎤⎣⎦,则a =( )A .1B . 2C .3D . 1- 【解析】由已知条件可知:()()11151a f g f a -=-==⎡⎤⎣⎦,所以10a -=,得1a =.故选A .(2014江西理数)8.若()()122d f x x f x x =+⎰,则()1d f x x =⎰( )A .1-B .13- C .13 D .1【解析】设1()f x dx a =⎰,则2()f x x a =+,得()1220()2f x x x a dx =++⎰32223x x ax C ⎛⎫=+++ ⎪⎝⎭1222423x a x a =++=+,所以13a =.故选B .(2014江西理数)13.若曲线e x y -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是 . 【解析】令()e x f x -=,则()e x f x -'=-.令()00,P x y ,则()00e 2x f x -'=-=-,解得0ln 2x =-,所以ln20e e 2x y -=-==,所以点P 的坐标为()ln 2,2-.(2014辽宁理数)3.已知132a -=,21log 3b =,121log 3c =,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【解析】由指数函数及对数函数的单调性易知13021-<<,221log log 103<=,112211log log 132>=,故选C .(2014辽宁理数)11.当[]2,1x ∈-时,不等式32430ax x x -++…恒成立,则实数a 的取值范围是( ) A .[]5,3-- B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3-- 【解析】由题意知[]2,1x ∀∈-都有32430ax x x -++…,即3243ax x x --…在[]2,1x ∈-上恒成立.当0x =时,a ∈R .当01x <…时,233243341x x a x x x x--=--+….令()11t t x =…,()3234g t t t t =--+, 因为()()298101g't t t t =--+<…,所以()g t 在[)1,+∞上单调递减,()()()max 161g t g t ==-…, 所以6a -….当20x -<剎时,32341a x x x --+…,同理,()g t 在(],1-∞-上递减,在11,2⎡⎤--⎢⎥⎣⎦上递增. 因此()()min 1122g t g t ⎛⎫=-=-- ⎪⎝⎭…,所以2a -….综上62a--剟,故选C .(2014辽宁理数)12.已知定义在[]0,1上的函数()f x 满足:① ()()010f f ==;② 对所有[],0,1x y ∈,且x y ≠,有()()12f x f y x y -<-.若对所有[],0,1x y ∈,()()f x f y k -<恒成立,则k 的最小值为( )A .12 B .14C .12π D .18【解析】当x y =时,()()0f x f y -=.当x y ≠时,当12x y -…时,依题意有()()1124f x f y x y -<-…;当12x y ->时,不妨设x y <,依题意有()()()()()()01f x f y f x f f f y -=-+-()()()()()111101012222f x f f f y x y y x -+-<-+-=--…,又12y x ->, 所以()()11112224f x f y -<-⨯=.综上所述,对所有[],0,1x y ∈,都有()()14f x f y -<.因此,14k …,即k 的最小值为14.故选B .(2014辽宁理数)14.正方形的四个顶点()1,1A --,()1,1B -,()1,1C ,()1,1D -,分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .【解析】由对称性可知122310018=42433ABCD S S x dx x ⎛⎫-=-⨯= ⎪⎝⎭⎰阴影正方形,所以所求概率为82343=. (2014山东理数)3.函数()f x =的定义域为( )A .102⎛⎫ ⎪⎝⎭, B .()2+∞,C .()102,2⎛⎫+∞ ⎪⎝⎭, D .[)1022⎛⎤+∞ ⎥⎝⎦,,【解析】要使函数()f x 有意义,需使()22log 10x ->,即()22l o g1x >,所以2log 1x >或2log 1x <-.解之得2x >或102x <<.故()f x 的定义域为()10,2,2⎛⎫+∞ ⎪⎝⎭.(2014山东理数)5.已知实数y x ,满足()01xya aa <<<,则下列关系式恒成立的是( )A .111122+>+y x B .()()22ln 1ln 1x y +>+ C . y x sin sin > D . 33y x > 【解析】因为x ya a <,01a <<,所以x y >,所以33x y >.(2014山东理数)6.直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A .22 B .24 C .2 D .4【解析】由34,y x y x =⎧⎨=⎩得0x =或2x =或2x =-(舍).所以()232402142404S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰. (2014山东理数)8.已知函数()21f x x =-+,()kx x g =.若方程()()f x g x =有两个不相等的实根,则k22x取值范围是( )A .102⎛⎫ ⎪⎝⎭, B .112⎛⎫ ⎪⎝⎭,C .()1,2D .()2+∞, 【解析】()1,2,3, 2.x x f x x x -⎧=⎨-<⎩…如图,作出()y f x =的图像,其中()2,1A ,则12OA k =.要使方程()()f x g x =有两个不相等的实根,则函数()f x 与()g x 的图像有两个不同的交点,由图可知,112k <<.(2014山东理数)15.已知函数()()y f x x =∈R ,对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点()()()(),,,x h x x g x 关于点()(),x f x 对称,若()h x 是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .【解析】函数()g x =2为半径的圆在x 轴上及其上方的部分.由题意可知,对任意0x I ∈,都有()()()0002h x g x f x +=,即()()00,x f x 是点()()00,x h x 和点()()00,x g x 的中点,又()()h x g x >恒成立,所以直线()3f x x b =+与半圆()g x =0b >.即0,2,b >⎧>解之得b >b 的取值范围为()+∞.(2014陕西理数)3.定积分()12e d 0xx x +⎰的值为( ) A .e 2+ B .e 1+ C .e D .e 1- 【解析】()111002e d 1e 1e x x+=+-=⎰,故选C .(2014陕西理数)7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )A .()12f x x = B .()3f x x = C .()12xf x ⎛⎫= ⎪⎝⎭D .()3x f x =【解析】因为()()()f x y f x f y +=,所以()f x 为指数函数模型,排除A ,B ;又因为()f x 为单调递增函数,所以排除C ,故选D .(2014陕西理数)10.如图所示,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )A .3131255y x x =-B .3241255y x x =-C .33125y x x =-D .3311255y x x =-+【解析】根据题意,所求函数在()5,5-上单调递减.对于A ,3131255y x x =-,所以()22133251255125y x x '=-=-,所以()5,5x ∀∈-,0y '<,所以3131255y x x =-在()5,5-内为减函数,同理可研究B ,C ,D 均不满足此条件,故选A .(2014陕西理数)11.已知42,lg a x a ==,则x =_______. 【解析】因为12424a==,所以12a =,所以1lg 2x =,即x = (2014四川理数)9.已知()()()ln 1ln 1f x x x =+--,()1,1x ∈-.现有下列命题:①()()f x f x -=-;②()2221x f f x x ⎛⎫=⎪+⎝⎭;③()2f x x ….其中的所有正确命题的序号是( ) A .①②③ B .②③ C .①③ D .①②【解析】()()()()()()ln 1ln 1ln 1ln 1f x x x x x f x -=--+=-+--=-⎡⎤⎣⎦,①正确,()()222222211222ln 1ln 1ln ln 11111x x x x x f x x x x x +-⎛⎫⎛⎫⎛⎫=+--=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭,因为()1,1x ∈-,所以()()()()()222ln 12ln 12ln 1ln 121x f x x x x f x x ⎛⎫=+--=+--=⎡⎤ ⎪⎣⎦+⎝⎭,②正确.当[)0,1x ∈时,()()()1ln 1ln 1ln 1x f x x x x +=+--=-,22x x =,令()1l n 21xg x x x +=--,则()22201x g x x '=-…,所以()g x 在[)0,1上为增函数,所以()()00g x g =…,即()2f x x >>;当()1,0x ∈-时,()()()1ln 1ln 1ln 1x f x x x x +=--+=--,22x x =-,令()12l n 1xh x x x +=--,则()22201x h x x-'=<-,所以()h x在()1,0-上为减函数,所以()0h x >,即()2f x x >>.所以当()1,1x ∈-时,()2f x x …,③正确.故选A (2014四川理数)12.设()f x 是定义在R 上的周期为2的函数,当[)1,1x ∈-时,()242,10, 01x x f x x x ⎧-+-<=⎨<⎩…剎,则32f ⎛⎫= ⎪⎝⎭. 【解析】2311124212222f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-+=-=-⨯-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2014天津理数)4.函数()()212log 4f x x =-的单调递增区间是( )A .()0,+¥B .(),0-¥C .()2,+?D .(),2-?【解析】由240x ->得2x <-或2x >.又12log y u =为减函数,故()f x 的单调递增区间为(),2-∞-.故选D(2014天津理数)14.已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.【解析】首先作函数()23f x x x =+的图像,如图所示,(将抛物线()23f x x x =+在x 轴下方的部分沿x 轴对称到x 轴上方,原x 轴上方的图像不变).其次要将方程()10f x a x --=恰有4个互异的实数根, 等价转化为曲线()y f x =与折线1y a x =-恰有4个不同的公共点.最后结合图像,可将折线与曲线()y f x =有公共点的情况分类讨论:① 当0a ≤时,()y f x =与1y a x =-最多有2个公共点,不符合题意;② 当0a >时,又可分为折线1y a x =-左半支与曲线()y f x =有4个公共点.和折线1y a x =-左、右半支分别与曲线()y f x =有2个不同的公共点.如图所示,当折线1y a x =-的左半支与曲线()y f x =相切于点1P 时,即方程()()231x x a x -+=--的10∆=,整理得,()230x a x a +-+=,所以()2134a a ∆=--2109a a =-+()()190a a =--=,解得1a =或9a =(舍).要使()1f x a x =-恰有4个互异的实数根,则需01a <<.当折线1y a x =-的左半支与曲线()y f x =相切于点2P 时,即方程()231x x a x +=-的20∆=,整理得,()230x a x a +-+=,所以()22340a a ∆=--=,解得1a =(舍)或9a =要使()1f x a x =-恰有4个互异的实数根,则需9a >.故实数a 的取值范围为()()0,19,+∞.(2014新课标1理数)3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .)()(x g x f 是偶函数B .)()(x g x f 是奇函数C .)()(x g x f 是奇函数D .)()(x g x f 是奇函数 【解析】由题意可知()()f x f x -=-,()()g x g x -=,对于选项A ,()()f x g x -⋅-=()()f x g x --,所以()()f x g x 是奇函数,故A 项错误;对于选项B ,()()()()()()f x g x f x g x f x g x --=-=,所以()()f x g x 是偶函数,故B 项错误;对于选项C ,()()()()f x g x f x g x --=-,所以()()f x g x 是奇函数,故C 项正确;对于选项D ,()()()()()()f x g x f x g x f x g x --=-=,所以()()f x g x 是偶函数,故D 项错误.选C .(2014新课标1理数)11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .()+∞,2B .()2,-∞-C .()+∞,1D .()1,-∞-【解析】当0a =时,显然()f x 有两个零点,不符合题意.当0a ≠时,()236f x ax x '=-,令()0f x '=,解得10x =,22x a =.当0a >时20a >,所以函数()3231f x ax x =-+在(),0-∞与2,a ⎛⎫+∞ ⎪⎝⎭上为增函数,在20,a ⎛⎫⎪⎝⎭上为减函数,因为()f x 存在唯一零点0x ,且00x >,则()00f <,即10<,不成立.当0a <时,20a <,所以函数()3231f x ax x =-+在2,a ⎛⎫-∞ ⎪⎝⎭和()0,+∞上为减函数,在2,0a ⎛⎫ ⎪⎝⎭上为赠函数,因为()f x 存在唯一零点0x ,且00x >,则20f a ⎛⎫>⎪⎝⎭,即3284310a a a ⋅-⋅+>,解得2a >或2a <-,又因为0a <,故a 的取值范围为(),2-∞-.故选C .(2014新课标2理数)8.设曲线()ln 1y ax x =-+在点()0,0处的切线方程为2y x =,则a =( ) A .0 B .1 C .2 D . 3 【解析】11y a x '=-+,0x =时,12y a '=-=,所以3a =,故选D .x(2014新课标2理数)12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A .()(),66,-∞-+∞B .()(),44,-∞-+∞C .()(),22,-∞-+∞D .()(),11,-∞-+∞【解析】()πxf x m'=,所以()f x 得极值点为0x ,所以()0f x '=0π0x m =, 所以0πππ,2x k k m =+∈Z ,所以0m ,2x mk k =+∈Z ,又因为()02220x f x m +⎡⎤<⎣⎦,所以222m ππ22mk k m ⎤⎛⎫⎛⎫+++< ⎪ ⎪⎥⎝⎭⎝⎭⎦ ,k ∈Z ,即222132m k m ⎛⎫++< ⎪⎝⎭,k ∈Z ,因为0m ≠,所以222132m k m -⎛⎫+< ⎪⎝⎭,k ∈Z ,又因为存在0x 满足()02220x f x m +⎡⎤<⎣⎦,即存在k ∈Z 满足上式, 所以222min312m k m ⎡⎤-⎛⎫>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以222312m m -⎛⎫> ⎪⎝⎭,所以2234m m ->,所以24m >,所以2m >或2m <-,故选C . (2014新课标2理数)15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是 .【解析】因为()20f =,()10f x ->,所以()()12f x f ->,又因为()f x 是偶函数且在[)0,+∞上单调递减, 所以()()12f x f ->,所以12x -<,所以212x -<-<,所以13x -<<,所以()1,3x ∈-.(2014浙江理数)6.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-…,则( )A .3c …B .36c <…C .69c <…D . 9c >【解析】由()()()()12,13f f f f -=-⎧⎪⎨-=-⎪⎩得37,413,a b a b -=⎧⎨-=⎩解得6,11.a b =⎧⎨=⎩则有()()12f f -=-=()3f - 6c =-,由()013,f <-…得69c <….故选C .(2014浙江理数)7.在同一直角坐标系中,函数()()()0,log aa f x xx g x x ==…的图像可能是( )A .B .C .D .【解析】因为0a >,所以()a f x x =在()0,+∞上为增函数,故A 错.在B 中,由()f x 的图像知1a >,由()g x 的图像知01a <<,矛盾,故B 错.在C 中,由()f x 的图像知01a <<,由()g x 的图像知1a >,矛盾,故C错.在D 中,由()f x 的图像知01a <<,由()g x 的图像知01a <<,相符,故选D .(2014浙江理数)10.设函数()21f x x =,()()222f x x x =-,()31sin 2π3f x x =,,0,1,2,,9999i ia i ==.记()()()()()()10219998k k k k k k k f a f a f a f a f a f a I =-+-++-,1,2,3k =.则( )A .123I I I <<B .213I I I <<C .132I I I <<D .321I I I << 【解析】[]0,1i a ∈ ,且0199a a a <<<,而()1f x 在[]0,1上为增函数,故有()()()1011199f a f a f a <<<,则()()()()111101211I f a f a f a f a =⎡-⎤+⎡-⎤++⎣⎦⎣⎦()()()()()()1991981991011101f a f a f a f a f f ⎡-⎤=-=-=⎣⎦.()2f x 在10,2⎡⎤⎢⎥⎣⎦上为增函数,在1,12⎡⎤⎢⎥⎣⎦上为减函数,而495012a a <<,且49501a a +=,即有()()249250f a f a =,故()()()()()()22120250249250251I f a f a f a f a f a f a =⎡-⎤++⎡-⎤+⎡-⎤++⎣⎦⎣⎦⎣⎦()()()()()()29829925020250299f a f a f a f a f a f a ⎡-⎤=-+-=⎣⎦()()2225020199f f f ⎛⎫--= ⎪⎝⎭()224950*********,199999999⨯⨯⨯==-∈.()3f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,在11,42⎡⎤⎢⎥⎣⎦上为减函数,在13,24⎡⎤⎢⎥⎣⎦上为增函数,在3,14⎡⎤⎢⎥⎣⎦上为减函数,即()3f x 在[]024,a a 上为增函数,在[]2549,a a 上为减函数.在[]5074,a a 上为增函数,在[]7599,a a 上为减函数.又()324148148sin πsin π399399f a =⋅=,()325150149sin πsin π399399f a =⋅=,则()()()3253243491981πsin πsin 399399f a f a f a >=⋅=,()35011001πsin πsin 399399f a =⋅=,即有()()349350f a f a =. ()3741148149sinπsin π399399f a =⋅=,()()3753741150151148πsin πsin π=sin 399399399f a f a =⋅=<.故有()()()()3031324325f a f a f a f a <<<<,()()()()325326349350f a f a f a f a >>>=,()()()350351374f a f a f a <<<,()()()374375399f a f a f a >>>.从而3I =()()()(){}()()()(){}3130325324325326349350f a f a f a f a f a f a f a f a ⎡-⎤++⎡-⎤+⎡-⎤++⎡-⎤+⎣⎦⎣⎦⎣⎦⎣⎦()()()(){}374375398399f af a f a f a ⎡-⎤++⎡-⎤=⎣⎦⎣⎦()()()()()()()()32530325350374350374399f a f a f a f a f a f a f a f a ⎡-⎤+⎡-⎤+⎡-⎤+⎡-⎤=⎣⎦⎣⎦⎣⎦⎣⎦()()()()()3253503743039923f a f a f a f a f a -+--=250π2100π2148πsin sin sin 399399399-+=2492π249249πsin πsin sin π2sin π-sin 39939939939999⎛⎫-+= ⎪⎝⎭.而495πsin πsin9912>=,ππsinsin 9912<=,则3213I >>⎝⎭.所以213I I I <<.故选C (2014浙江理数)15.设函数()22,0,0x x x f x x x ⎧+<⎪=⎨-⎪⎩…,若()()2f f a …,则实数a 的取值范围是 .【解析】当0a …时,()20f a a =-…,又()00f =,故由()()()2422f f a f a a a =-=-…,得22a …,所以0a剟当10a -<<时,()()210f a a a a a =+=+<,则由()()()()()22222f f a f a a a a aa =+=+++…,得210a a +-…,得a ,则有10a -<<.当1a -…时,()()210f a a a a a =+=+…,则由()()()()2222f f a f a a a a =+=-+…,得a ∈R ,故1a -….综上,a 的取值范围为(-∞.(2014重庆理数)12.函数())2log 2f x x =的最小值为_________.【解析】显然0x >,所以())()22221log 2log log 42f x x x x ==⋅=()2221log log 42log 2x x ⋅+()22222111log log log 244x x x ⎛⎫=+=+-- ⎪⎝⎭….当且仅当x =时,有()min 14f x =-.。

2014年全国高考试卷导数部分汇编(上)

2014年全国高考试卷导数部分汇编(上)

2014年全国高考试卷导数部分汇编(上)1. (2014安徽理18文20)设函数23()1(1)f x a x x x =++--,其中0a >.⑴讨论()f x 在其定义域上的单调性;⑵当[01]x ∈,时,求()f x 取得最大值和最小值时的x 的值. 【解析】 ⑴ ()f x 的定义域为2()'()123f x a x x -∞+∞=+--,,.令'()0f x =,得1212x x x x ==<, 所以12'()3()()f x x x x x =---.当1x x <或2x x >时,'()0f x <;当12x x x <<时,'()0f x >. 故()f x 在1()x -∞,和2()x +∞,内单调递减,在12()x x ,内单调递增. ⑵ 因为0a >,所以1200x x <>,. ①当4a ≥时,21x ≥.由⑴知,()f x 在[01],上单调递增. 所以()f x 在0x =和1x =处分别取得最小值和最大值. ②当04a <<时,21x <由⑴知,()f x 在2[0]x ,上单调递增,在2[1]x ,上单调递减.所以()f x 在2x x ==又(0)1(1)f f a ==,,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =处和1x =处同时取得最小值; 当14a <<时,()f x 在0x =处取得最小值.评析 本题考查利用导数求函数的单调区间和最大(小)值,同时考查分类讨论的思想,分为讨论的关键是确定分类的标准.2. (2014安徽理21)设实数0c >,整数1p >,*n N ∈.⑴证明:当1x >-且0x ≠时,(1)1p x px +>+; ⑵数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+.证明:11p n n a a c +>>. 【解析】 ⑴ 用数学归纳法证明:①当2p =时,22(1)1212x x x x +=++>+,原不等式成立. ②假设(2*)p k k k =N ≥,∈时,不等式(1)1k x kx +>+成立. 当1p k =+时,12(1)(1)(1)(1)(1)1(1)1(1)k k x x x x kx k x kx k x ++=++>++=+++>++所以1p k =+时,原不等式也成立.综合①②可得,当10x x >-,≠,对一切整数1p >,不等式(1)1p x px +>+均成立. ⑵ 证法一:先用数学归纳法证明1pn a c >. ①当1n =时,由题设11pa c >知1pn a c >成立. ②假设(1*)n k k k =N ≥,∈时,不等式1pn a c >成立. 由111pn n n p c a a a p p-+-=+易知0*n a n >N ,∈. 当1n k =+时,11111p k k p k k a p c ca a p p p a -+⎛⎫-=+=+- ⎪⎝⎭. 当10pk a c >>得11110p k cp p a ⎛⎫-<-<-< ⎪⎝⎭. 由⑴中的结论得11111ppk p k k a c p a p a +⎡⎤⎛⎫⎛⎫=+->+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.11p p k kcc p a a ⎛⎫-= ⎪⎝⎭. 因此1pk ac +>,即11pk a c +>.所以1n k =+时,不等式1rn a c >也成立.综合①②可得,对一切正整数n ,不等式1pn a c >均成立. 再由1111n p n n a ca p a +⎛⎫=+- ⎪⎝⎭可得11n n a a +<,即1n n a a +<.综上所述,11pn n a a c +>>,*n N ∈.证法二:设111()p p p cf x x x x c p p --=+,≥,则p x c ≥, 并且11()(1)10p p p c p c f x p x p p p x ---⎛⎫'=+-=-> ⎪⎝⎭,1p x c >. 由此可得,()f x 在1p c ⎡⎫+∞⎪⎢⎪⎢⎣⎭,上单调递增.因而,当1px c >时,11()()p pf x f c c >=, ①当1n =时,由110pa c >>,即1p a c >可知12111111111p p p c c a a a a a p p p a -⎡⎤⎛⎫-=+=+-<⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,并且121()pa f a c =>,从而112p a a c >>.故当1n =时,不等式11pn n a a c +>>成立.②假设(1*)n k k k =N ≥,∈时,不等式11pk k a a c +>>成立,则当1n k =+时,11()()()p k k f a f a f c +>>,即有112pk k a a c ++>>. 所以1n k =+时,原不等式也成立.综合①②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.3. (2014安徽文15)若直线l 与曲线C 满足下列两个条件:⑴直线l 在点()00P x y ,处与曲线C 相切; ⑵曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线:0l y =在点()00P ,处“切过”曲线C :2y x = ②直线:1l x =-在点()10P -,处“切过”曲线C :2(1)y x =+ ③直线:l y x =在点()00P ,处“切过”曲线C :sin y x = ④直线:l y x =在点()00P ,处“切过”曲线C :tan y x = ⑤直线:1l y x =-在点()10P ,处“切过”曲线C :ln y x = 【解析】 ①③④①直线0l y =:在()00P ,处与曲线3C y x =:相切,且曲线C 位于直线l 的两侧,①对; ②直线1l x =-:不是曲线()21C y x =+:在()10P -,处的切线,②错; ③中cos y x '=,cos 01=,因此曲线sin C y x =:在()00P ,处的切线为l y x =:,设()s i n f x x x =-,则()1cos 0f x x '=-≥,即()f x 是增函数,又()00f =,从而当0x <时,()0sin f x x x ⇒<<,当0x >时,()0sin f x x x ⇒>>,即曲线sin C y x =:在()00P ,附近位于直线l 的两侧,③正确;④中22sin 111cos cos cos 0x y x x ⎛⎫'='== ⎪⎝⎭,,因此曲线tan C y x =:在()00P ,处的切线为l y x =:,设()tan g x x x =-,则()21ππ10cos 22g x x x ⎛⎫'=-- ⎪⎝⎭<<≤,即()g x 在ππ22⎛⎫- ⎪⎝⎭,上是减函数,且()00g =,同③得④正确;⑤中1111y x '==,,因此曲线ln C y x =:在()10P ,处的切线为1l y x =-:,设()()1l n 0h x x x x =-->,则()111x h x x x-'=-=,当01x <<时,()0h x '<,当1x >时,()0h x '>,因此当1x =时,()()min 10h x h ==,因此曲线C 在()10P ,附近位于直线l 的一侧,故⑤错误.因此答案为①③④评析 本题考查导数的几何意义及导数在函数中的应用,解题时结合图象可简化运算和推理的过程.4. (2014北京理18)已知函数()πcos sin 02f x x x x x ⎡⎤=-,∈,⎢⎥⎣⎦,⑴求证:()0f x ≤;⑵若sin x a b x <<对π02x ⎛⎫∈, ⎪⎝⎭恒成立,求a 的最大值与b 的最小值. 【解析】 ⑴ ()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减, 所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤. ⑵ 法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”, 令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1.法二: 令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦, 则()2cos sin x x xg x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 的最大值为2π.b 的最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥, 综上知:b 的最小值为1.5. (2014北京文20)已知函数3()23f x x x =-.⑴求()f x 在区间[]21-,上的最大值;⑵若过点(1)P t ,存在3条直线与曲线()y f x =相切,求t 的取值范围;⑶问过点(12)(210)(02)A B C -,,,,,分别存在几条直线与曲线()y f x =相切?(只需写出结论)【解析】 ⑴ 由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛ ⎝⎭()11f f ==-⎝⎭所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝⎭⑵ 设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -, 因此()()2000631t y x x -=--.整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.()()21212121g x x x x x '=-=-. ()g x 与()g x '的情况如下:当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点. 当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,, 所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点. 由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--,. ⑶ 过点()12A -, 存在3条直线与曲线()y f x =相切; 过点()210B , 存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:6. (2014大纲理7)曲线1e x y x -=在点()11,处切线的斜率等于( ) A .2e B .eC .2D .1【解析】 C7. (2014大纲理16)若函数()cos2sin f x x a x =+在区间ππ62⎛⎫⎪⎝⎭,上是减函数,则a 的取值范围是____________.【解析】 (]2-∞, 8. (2014大纲理22)函数()()()ln 11axf x x a x a=+->+. ⑴讨论()f x 的单调性;⑵设11a =,1ln(1)n n a a +=+,证明:2322n a n n <++≤. 【解析】 ⑴ ()f x 的定义域为()1-+∞,,()()()()222'1x x a a f x x x a ⎡⎤--⎣⎦=++(i )当12a <<时,若()212x a a ∈--,,则()'0f x >,()f x 在()212a a --,是增函数;若()220x a a ∈-,,则()'0f x <,()f x 在()220a a -,是减函数;若()0x ∈+∞,,则()'0f x >,()f x 在()0+∞,上增函数. (ii )当2a =时,()'0f x ≥,()'0f x =成立当且仅当0x =,()f x 在()1-+∞,是增函数. (iii )当2a >时,若()10x ∈-,,则()'0f x >,()f x 在()10-,是增函数; 若()202x a a ∈-,,则()'0f x <,()f x 在()202a a -,是减函数;若()22x aa ∈-+∞,,则()'0f x >,()f x 在()22a a -+∞,是增函数.⑵ 由⑴知,当2a =时,()f x 在()1-+∞,是增函数 当()0x ∈+∞,时,()()00f x f >=,即()()2ln 102xx x x +>>+ 又由⑴知,当3a =时,()f x 在[)03,是减函数.当()03x ∈,时,()()00f x f <=,即()()3ln 1033xx x x +<<<+. 下面用数学归纳法证明2322n a n n <++…(i )当1n =时,由已知1213a <=,故结论成立;(ii )设当n k =时结论成立,即12322a k k <++≤. 当1n k =+时.()122222ln 1ln 1=2322k k k a a k k k +⨯⎛⎫+=+>+>⎪++⎝⎭++. ()133332ln 1ln 12332k k k a a k k k +⨯⎛⎫+=++<= ⎪++⎝⎭++≤ 即当1n k =+时有12333k a k k +<++≤,结论成立 根据(i )(ii )知对任何*n ∈N 结论都成立.9. (2014大纲文21)函数()()32330f x ax x x a =++≠.⑴讨论()f x 的单调性;⑵若()f x 在区间()12,是增函数,求a 的取值范围. 【解析】 ⑴ ()2363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a ≥,则()0f x '≥,且()0f x '=当且仅当1a =,1x =-,故此时()f x 在R 上是增函数.(ii )由于0a ≠,故当1a <,()0f x '=有两个根;1x =2x =若01a <<,则当()2x x ∈-∞,或()1x x ∈+∞,时()0f x '>, 故()f x 分别在()2x -∞,,()1x +∞,上是增函数; 当()21x x x ∈,时,()0f x '<,故()f x 在()21x x ,上是减函数; 若0a <,则当()1x x ∈-∞,或()2x +∞,时,()0f x '<, 故()f x 分别在()1x -∞,,()2x +∞,上是减函数; 当()12x x x ∈,时,()0f x '>,故()f x 在()12x x ,上是增函数.⑵ 当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()12,上是增函数. 当0a <时,()f x 在区间()12,上是增函数当且仅当()10f '≥且()20f '≥,解得504a -<≤.综上,a 的取值范围是()5004⎡⎫-+∞⎪⎢⎣⎭∪,,. 10. (2014福建理14)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.【解析】 22e11. (2014福建理20文22)已知函数()e x f x ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.⑴求a 的值及函数()f x 的极值; ⑵证明:当0x >时,2e x x <;⑶证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有2e x x c <. 【解析】 本小题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词与存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想、分类与整合思想、特殊与一般思想. ⑴ 由()x f x e ax =-,()x f x e a '=- 又'(0)11f a =-=-,得2a =. 所以()e 2'()e 2x x f x x f x =-=-,, 令'()0f x =,得ln 2x =.当ln 2x <时,'()0()f x f x <,单调递减; 当ln 2x >时,'()0()f x f x >,单调递增. 所以当ln 2x =时,()f x 取得极小值, 且极小值为ln 2(ln 2)e 2ln 22ln 4f =-=-, ()f x 无极大值.⑵ 令2()e x f x x =-,则'()e 2x g x x =-, 由⑴得'()()(ln 2)0g x f x f =>≥, 故()g x 在R 上单调递增,又(0)10g =>,x因此,当0x >时,()(0)0g x g >>,即2e x x <. ⑶ 理科解法一:①若1c ≥,则e e x x c ≤.又由⑵知,当0x >时,2e x x <. 所以当0x >时,2e x x c <.取00x =,当0()x x +∞∈,时,恒有2e x x c <. ②若01c <<,令11k c=>,要使不等式2e x x c <成立,只要2e x kx >成立. 而要使2e x kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立. 令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时,'()0h x >,()h x 在(2)+∞,内单调递增. 取01616x k =>,所以()h x 在0()x +∞,内单调递增, 又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+, 易知ln ln 250k k k k >>>,,,所以0()0h x >.即存在016x c=,当0()x x +∞∈,时,恒有2e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有2e x x c <. 理科解法二:对任意给定的正数c ,取0x =,由⑵知,当0x >时,2e xx >,所以2222e e e 22x x xx x ⎛⎫⎛⎫=⋅> ⎪ ⎪⎝⎭⎝⎭.当0x x >时,222241e 222xx x x x c c ⎛⎫⎛⎫⎛⎫>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此,对任意给定的正数c ,总存()0x ∈+∞,时,恒有313x x e < 理科解法三:首先证明当(0)x +∞∈,时,恒有21e 3x x <.证明如下:令31()e 3x h x x =-,则2'()e x h x x =-.由⑵知,当0x >时,3e x x <,从而'()0()h x h x <,在(0)+∞,上单调递减, 所以()(0)10h x h <=-<,即31e 3x x <.取03x c =,当0x x >时,有2311e 3x x x c <<. 因此,对任意给定的正数c ,总存在0x ,当()x x ∞∈,+时,恒有2e x x c <. 文科解法一:对任意给定正数c ,取01x c=所以当0x x >时,21e x x x c>> ,即e x x c <.因此,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法二:令1(0)k k c=>,要使不等式e x x c <成立,只要e x kx >成立.而要使e x kx >成立,则只需要ln()x kx >,即ln ln x x k >+成立. ①若01k <≤,则ln 0k ≤,易知当0x >时,ln ln ln x x x k >+≥成立.即对任意[)1c ∈+∞,,取00x =,当0()x x ∈+∞,时,恒有e x x c <. ②若1k >,令()ln ln h x x x k =--,则11'()1x h x x x-=-=, 所以当1x >时,'()0()h x h x >,在(1)+∞,内单调递增, 取04x k =.0()4ln(4)ln 2(ln )2(ln 2)h x k k k k k k =--=-+-.易知ln ln 2k k k >>,,所以0()0h x >. 因此对任意(01)c ∈,,取04x c=,当0()x x ∈+∞,时,恒有e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法三: ①若1c ≥,取00x =,由⑵的证明过程知,e 2x x >,所以当0()x x +∞∈,时,有e e 2x x c x x >>≥,即e x x c <. ②若01x <<,令()e x h x c x =-,则'()e 1x h x c =-. 令'()0h x =得1ln x c=.当1ln x c>时,'()0()h x h x >,单调递增.取022ln x c=, 22ln0222()e2ln2ln ch x c c cc ⎛⎫=-=- ⎪⎝⎭, 易知22ln 0c c->,又()h x 在()0x +∞,内单调递增. 所以当0()x x ∈+∞,时,恒有0()()0h x h x >>,即e x x c <.综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 注:对c 的分类可有不同的方式,只要解法正确,均相应给分.12. (2014广东理10)曲线5e 2x y -=+在点(0,3)处的切线方程为____________. 【解析】530x y +-=. 55e x xy -'=-,05y '=-,切线过点(0,3),由点斜式写出直线方程53y x =-+. 13. (2014广东文11)曲线5e 3x y =-+在(02)-,处的切线方程为____________. 【解析】520x y ++= 14. (2014广东文21)已知函数321()1()3f x x x ax a =+++∈R⑴求函数()f x 的单调区间;⑵当0a <时,试讨论是否存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,∪,,使得01()2f x f ⎛⎫= ⎪⎝⎭. 【解析】 ⑴ 函数的定义域为R ,()22f x x x a '=++.①当1a <时,令()0f x '>,则2201x x a x ++>⇒>-或1x <-,所以()f x 的单调递增区间为(1-∞-,和()1-+∞;令()0f x '<,可得11x -<-+所以()f x 的单调递减区间为(11--+.②当1a ≥时,()0f x '≥在R 上恒成立,所以()f x 在R 上是增函数.⑵ 0a <时,10-.由⑴知,()f x在()1-++∞上是增函数. ①()1111701172244212551211442f f a a a a a ⎧⎛⎫⎧⎧+++- ⎪⎪⎪⎪⎪⎪⎪⎝⎭⇒⇒⇒-⎨⎨⎨⎪⎪⎪>->--⎪⎪⎪⎩⎩⎩,≤≤≥≤, 则7012a -<≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012fx f ⎛⎫= ⎪⎝⎭; ②()1705721254121142f f a a a ⎧⎛⎫⎧><- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪>--⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ③15124a -⇒=-, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ④()1251252123512131142f f a a a ⎧⎛⎫⎧- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<--⎪⎪⎩⎩,≤≤≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ⑤()12512552125124131142f f a a a ⎧⎛⎫⎧>>- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<-<-+⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ⑥113a -⇒-≤,()f x 在()01,上是单调函数, 故不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 综上所述,当25557124412a ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭,,时, 存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 当2557012412a ⎛⎫⎧⎫⎡⎫∈-∞---⎨⎬ ⎪⎪⎢⎝⎭⎩⎭⎣⎭,,时,不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,, 使得()012f x f ⎛⎫= ⎪⎝⎭.15. (2014湖北理6)函数()(),f x g x 满足()()110f x g x dx -=⎰,则称()(),f x g x 为区间[]11-,上的一组正交函数,给出三组函数:①()()11sin cos 22f x x g x x ==,;②()()11f x x g x x =+=-,; ③()()2f x x g x x ==,其中为区间[]11-,的正交函数的组数是( ) A .0B .1C .2D .3【解析】 C由①得111()()sin cos sin 222f xg x x x x ==,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数;由②得2()()1f xg x x =-,∴131121114()()d (1)33x f x g x x x dx x ---⎛⎫=-=-=- ⎪⎝⎭⎰⎰,所以②不是区间[]11-,上的正交函数;由③得3()()f x g x x =,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数.故选C .16. (2014湖北理22)π为圆周率,e 2.71828= 为自然对数的底数.⑴求函数ln ()=xf x x的单调区间⑵求3e πe π3e ,3,e ,π,3,π这6个数中的最大数与最小数;⑶将3e πe π3e ,3,e ,π,3,π这6个数从小到大的顺序排列,证明你的结论.【解析】 ⑴ 函数()f x 的定义域为(0)+∞,. 因为ln ()x f x x =,所以2l ln ()xf x x-'=. 当()0f x '>,即0e x <<,函数()f x 单调递增; 当()0f x '<,即e x <,函数()f x 单调递减. 故函数()f x 的单调递增区间为(0e ,),单调递减区间为(e +∞,). ⑵ 因为e <3π<,所以eln3eln ππlne πln3<,<,即e e ππln3ln πln e ln3<,<. 于是根据函数ln e πx x y x y y ===,,在定义域上单调递增,可得e e 33ππ3ππe e 3<<,<<. 故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln 3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e 3e <,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.⑶ 由⑵知,e e 3πe 33ππ33e <<<,<. 又由⑵知,ln πlneπe<得e ππe <. 故只需比较3e 与e π和πe 与3π的大小.由⑴知,当0e x <<时,1()(e)=e f x f <,即ln 1ex x <.在上式中,令2e πx =,又2e e π<,则2e e ln ππ<,从而e 2ln ππ-<,即得eln π2π->.由①得,e 2.72e ln πe 2 2.72 2.7(20.88)π 3.1⎛⎫⎛⎫-⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭>>> 3.0243>,即e ln π>3,亦即e 3ln πln e >,所以3e e π<.又由①得,3e 3ln π66e ππ-->>>,即3ln ππ>,所以π3e π>. 综上可得,e 3e π3π3e πe π3<<<<<. 即6个数从小到大的顺序为e 3e π3π3e πe π3,,,,,. 评析 本题考查了函数和导数的结合应用;考查了不等式求解的能力;考查了分析问题、解决问题的综合能力.充分考查了考生的综合素质在平时的学习过程中应充分培养综合解决问题的能力.17. (2014湖北文21)π为圆周率,e 2.71828=为自然对数的底数.⑴求函数ln ()xf x x=的单调区间; ⑵求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.【解析】 ⑴ 函数()f x 的定义域为()0+∞,.因为ln ()x f x x =,所以21ln ()xf x x -'=.当()0f x '>,即0e x <<时,函数()f x 单调递增;当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为()0e ,,单调递减区间为()e +∞,. ⑵ 因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<. 于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33>π; 由ln 3ln e 3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.18. (2014湖南理9)已知函数()()sin f x x ϕ=-,且()2π300f x dx =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x =【解析】 A函数()f x 的对称轴为ππ2x k ϕ-=+ππ2x k ϕ⇒=++,因为()2π32πsin d 0cos cos 03x x ϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰πsin 03ϕ⎛⎫⇒-= ⎪⎝⎭, 所以π2π3k ϕ=+或4π2π3k +,则5π6x =是其中一条对称轴,故选A . 19. (2014湖南理22)已知常数0a >,函数()()2ln 12xf x ax x =+-+.⑴讨论()f x 在区间()0+∞,上的单调性; ⑵若()f x 存在两个极值点1x ,2x ,且()()120f x f x +>,求a 的取值范围.【解析】 ⑴ 对函数()f x 求导可得()()2412a f x ax x '=-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()0f x '≥恒成立,则函数()f x 在()0+∞,上单调递增;当1a ≤时,()0f x x '=⇒=则函数()f x在区间0⎛ ,⎝⎭上单调递减,在⎫⎪,+∞⎪⎝⎭上单调递增的. ⑵ 由⑴可知,当1a ≥时,()f x 不存在极值点,因而01a <<. 又()f x的极值点只可能是12x x ==-,且由()f x 的定义可知,1x a>-且2x ≠-,所以1a ->-,2--,解得12a ≠,此时12x x ,分别是()f x 的极小值点和极大值点.而()()()()1212121222ln 1ln 122x x f x f x ax ax x x +=+-++-++ ()2122212121212444ln 1224x x x x ax ax a x x x x x x ++=+++-+++=()()()22412ln 21ln 2122121a a a a a ---=-+--- 令21a x -=,由01a <<且12a ≠知, 当102a <<时,10x -<<;当112a <<时,01x <<.记()22ln 2g x x x=+-①当10x -<<时,()()22ln 2g x x x =-+-,所以()2222220x g x x x x -'=-=<,因此()g x 在区间()10-,上单调减,从而()()140g x g <-=-<, 故当102a <<时,()()120f x f x +<. ②当01x <<时,()22ln 2g x x x =+-,()2222220x g x x x x -'=-=<,因此()g x 在区间()01,上单调递减,从而()()10g x g >=, 故当112a <<时,()()120f x f x +>. 综上,满足条件的a 的取值范围为112⎛⎫⎪⎝⎭,. 20. (2014湖南文9)若1201x x <<<,则( )A .2121e e ln ln x x x x ->-B .2121e e ln ln x x x x -<-C .1221e e x x x x >D .1221e e x x x x <【解析】 C21. (2014湖南文21)已知函数()cos sin 1(0)f x x x x x =-+>.⑴求()f x 的单调区间;⑵记i x 为()f x 的从小到大的第()i i *∈N 个零点,证明:对一切*n ∈N ,有2221211123n x x x +++<. 【解析】 ⑴ ()cos sin cos sin f x x x x x x x '=--=-令()0f x '=,得()*πx k k =∈N .当()()()2π,21πx k k k ∈+∈N 时,sin 0x >,此时()0f x '<; 当()()()()21π,22πx k k k ∈++∈N 时,sin 0x <,此时()0f x '>, 故()f x 的单调递减区间为()()()2π,21πk k k +∈N ,单调递增区间为()()()()21π,22πk k k ++∈N .⑵ 由⑴知,()f x 在区间()0,π上单调递减,又π02f ⎛⎫= ⎪⎝⎭,故1π2x =,当*n ∈N 时,因为()()()()()()1π1π1π11110nn f n fn n n n +⎡⎤⎡⎤+=-+-++<⎣⎦⎣⎦,且函数()f x 的图象是连续不断的,所以()f x 在区间()()π,1πn n +内至少有一个零点. 又()f x 在区间()()π,1πn n +上是单调的,故()1π1πn n x n +<<+. 因此当1n =时,221142π3x =<; 当2n =时,()22212111241π3x x +<+<; 当3n ≥时,()2222221211111141π21n x x x n ⎡⎤+++<++++⎢⎥-⎢⎥⎣⎦()()21115π1221n n ⎡⎤<+++⎢⎥⨯--⎢⎥⎣⎦211111151π22321n n ⎡⎤⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦2211626π1π3n ⎛⎫=-<< ⎪-⎝⎭. 综上所述,对一切*n ∈N ,2221211123n x x x +++<.22. (2014江苏理11)在平面直角坐标系xOy 中,若曲线()2by ax a b x=+,为常数过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是_______.【解析】3- 由已知,452b a +=-,又∵22b y ax x '=-,∴7442b a -=-,解得2b =-,1a =- ∴3a b +=-23. (2014江苏理19)已知函数()e e x x f x -=+,其中e 是自然对数的底数⑴证明:()f x 是R 上的偶函数;⑵若关于x 的不等式()e 1x mf x m -+-≤在(0,)+∞上恒成立,求实数m 的取值范围;⑶已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立,试比较1e a -与e 1a -的大小,并证明你的结论.【解析】 ⑴ x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数⑵ 由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0,)x ∈+∞,∴e e 10xx-+->,即e 1e e 1x x x m ---+-≤对(0,)x ∈+∞恒成立令e x t =(1)t >,则211tm t t --+≤对任意(1,)t ∈+∞恒成立.∵22111111(1)(1)131+11t t t t t t t t --=-=---+-+-+-+-≥,当且仅当2t =时等号成立 ∴实数m 的取值范围为1,3⎛⎤-∞- ⎥⎝⎦⑶ ()e e x x f x -'=-,当1x >时()0f x '>,∴()f x 在(1,)+∞上单调增 令3()(3)h x a x x =-+,()3(1)h x ax x '=--∵0a >,1x >,∴()0h x '<,即()h x 在(1,)x ∈+∞上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即11(e )2ea >+ ∵e 1e 111ln ln lne (e 1)ln 1ea a a a a a ----=-=--+设()(e 1)ln 1m a a a =--+,则e 1e 1()1a m a a a ---'=-=,11(e )2ea >+ 当11(e )e 12ea +<<-时()0m a '>,()m a 单调增;当e 1a >-时()0m a '<,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m ==∴当e a >时()0m a <,当11(e )e 2ea +<<时()0m a >,当e a =时()0m a =∵e 11()0e a m a a --<⇔<,e 11()0e a m a a -->⇔>,e 11()0e a m a a --=⇔=综上所述,当11(e e )e 2a -+<<时e 11e a a -->;当e a =时e 11e a a --=;当e a >时e 11e a a --<24. (2014江苏理23)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,*n ∈N⑴求12πππ2()()222f f +的值⑵证明:对任意*n ∈N,等式1πππ()()444n n nf f -+=都成立.【解析】 ⑴ 0()sin xf x x =,两边求导得01()()cos f x xf x x +=两边再同时求导得122()()sin f x xf x x +=- (*)将π2x =代入(*)式得12πππ2()()1222f f +=-⑵ 下证命题:1sin ,4cos ,41()()sin ,42cos ,43n n x n kx n k nf x xf x x n k x n k -=⎧⎪=+⎪+=⎨-=+⎪⎪-=+⎩,*k ∈N 恒成立当0n =时,0()sin xf x x =成立当1n =时,10()()cos xf x f x x +=,由(1)知成立 当2n =时,21()2()sin xf x f x x +=-,由(1)知成立当3n =时,上式两边求导322()()2()cos xf x f x f x x ++=-,即32()3()cos xf x f x x +=- 假设当n m =(3)m ≥时命题成立,下面证明当1n m =+时命题也成立 若14m k +=,*k ∈N ,则41m k =-,*k ∈N由1()()cos m m mf x xf x x -+=-两边同时求导得1()()()sin m m m xf x f x mf x x +++= 即1(1)()()sin m m m f x xf x x +++=,命题成立同理,若141m k +=+,*k ∈N ,则4m k =,*k ∈N由1()()sin m m mf x xf x x -+=两边同时求导得1(1)()()cos m m m f x xf x x +++=,命题成立 若142m k +=+,*k ∈N ,则41m k =+,*k ∈N由1()()cos m m mf x xf x x -+=两边同时求导得1(1)()()sin m m m f x xf x x +++=-,命题成立 若143m k +=+,*k ∈N ,则42m k =+,*k ∈N由1()()sin m m mf x xf x x -+=-两边同时求导得1(1)()()cos m m m f x xf x x +++=-,命题成立 综上所述,命题对*n ∀∈N 恒成立 代入π4x =得1πππ()()444n n nf f -+=两边同时取绝对值得1πππ()()444n n nf f -+=25. (2014江西理8)若()()1202d ,f x x f x x =+⎰则()1d f x x =⎰( )A .1-B .13-C .13D .1【解析】 B令()10d f x x m =⎰,则()22f x x m =+,所以()()111230011d 2d 2233f x x x m x x mx m m ⎛⎫=+=+=+= ⎪⎝⎭⎰⎰,解得13m =-,故选B .26. (2014江西理13)若曲线e x y -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 【解析】 ()ln 2,2-令()e x f x -=,则()'e x f x -=-,令()00P x y ,,则()00'e 2x f x -=-=-,解得0ln 2x =-,所以0ln 20e e 2x y -===,所以点P 的坐标为()ln 2,2-.27. (2014江西理18)已知函数()()2f x x bx bb =++∈R .⑴当4b =时,求()f x 的极值;⑵若()f x 在区间103⎛⎫ ⎪⎝⎭,上单调递增,求b 的取值范围.【解析】 ⑴ 当4b =时,()52'x x f x -+=,由()'0f x =得2x =-或0x =.当()2x ∈-∞-,时,()'0f x <,()f x 单调递减; 当()20x ∈-,时,()'0f x >,()f x 单调递增; 当102x ⎛⎫∈ ⎪⎝⎭,时,()'0f x <,()f x 单调递减,故()f x 在2x =-处取极小值()20f -=,在0x =处取极大值()04f =.⑵ ()'f x =,因为当103x ⎛⎫∈ ⎪⎝⎭,0<,依题意,当103x ⎛⎫∈ ⎪⎝⎭,时,有()532x b +-≤0,从而()53203b +-≤.所以b 的取值范围为19⎛⎤∞ ⎥⎝⎦-,28. (2014江西文11)若曲线ln y x x =上点P 处的切线平行于直线210x y -+=,则点P 的坐标是_______. 【解析】 ()e e , 29. (2014江西文18)已知函数22()(44f x x ax a =++0a <. ⑴当4a =-时,求()f x 的单调递增区间; ⑵若()f x 在区间[14],上的最小值为8,求a 的值. 【解析】 ⑴ 当4a =-时,由()25220x x f x--'==得25x =或2x =,由()0f x '>得 205x ⎛⎫∈ ⎪⎝⎭,或()2x ∈+∞,,故函数()f x 的单调递增区间为205⎛⎫ ⎪⎝⎭,和()2+∞,.⑵ ()0f x a '=<, 由()0f x '=得10ax =-或2a x =-.当010a x ⎛⎫∈- ⎪⎝⎭,时,()f x 单调递增;当102aa x ⎛⎫∈-- ⎪⎝⎭,时,()f x 单调递减;当2a x ⎛⎫∈-+∞ ⎪⎝⎭,时,()f x 单调递增.易知()()220f x x a =+,且02a f ⎛⎫-= ⎪⎝⎭.①当12a-≤,即20a -<≤时,()f x 在[]14,上的最小值为()1f ,由()21448f a a =++=,得2a =±,均不符合题意.②当142a<-≤,即82a -<-≤时,()f x 在[]14,上的最小值为02a f ⎛⎫-= ⎪⎝⎭,不符合题意.③当42a ->,即8a <-时,()f x 在[]14,上的最小值可能在1x =或4x =处取得,而()18f ≠,由()()24264168f a a =++=得10a =-或6a =-(舍去),当10a =-时()f x 在()14,上单调递减,()f x 在[]14,上的最小值为()48f =,符合题意.综上,10a =-.30. (2014辽宁理11文12)当[]21x ∈-,时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是()A .[]53--,B .968⎡⎤--⎢⎥⎣⎦,C .[]62--,D .[]43--,【解析】 C31. (2014辽宁理14)正方形的四个顶点()11A --,,()11B -,,()11C ,,()11D -,分别在抛物线2y x =-和2y x =上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是.【解析】 2332. (2014辽宁理21)已知函数()()()()8cos π2sin 13f x x x x x =-+-+, ()()()23πcos 41sin ln 3πx g x x x x ⎛⎫=--+- ⎪⎝⎭证明:⑴存在唯一0π02x ⎛⎫∈ ⎪⎝⎭,,使()00f x =;⑵存在唯一1ππ2x ⎛⎫∈ ⎪⎝⎭,,使()10g x =,且对⑴中的0x ,有01πx x +<.在0(0)x ,上()u t 是增函数,又(0)0u =,从而当0(0]t x ∈,时,()0u t >,所以()u t 在0(0]x ,上无零点在0π2x ⎛⎫ ⎪⎝⎭,上()u t 为减函数,由()00u x >,π4ln 202u ⎛⎫=-< ⎪⎝⎭,知存在唯一10π,2t x ⎛⎫∈ ⎪⎝⎭使1()0u t =.所以存在唯一的1π02t ⎛⎫∈ ⎪⎝⎭,,使1()0u t =. 因此存在唯一的11πππ2x t ⎛⎫=-∈ ⎪⎝⎭,,使1()h x h =11(π)()0t u t -==. 因为当ππ2x ⎛⎫∈ ⎪⎝⎭,时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1ππ2x ⎛⎫∈ ⎪⎝⎭,,使1()0g x =. 因1110πx t t x =->,,所以01πx x +<.33. (2014辽宁文21)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πx g x x =--. 证明:⑴存在唯一0π(0,)2x ∈,使0()0=f x ; ⑵存在唯一1π(,π)2x ∈,使1()0=g x ,且对⑴中的0x ,01πx x +>. 【解析】 ⑴ 当π(0,)2∈x 时,()ππsin 2cos 0f x x x '=+->,所以()f x 在π(0,)2上为增函 数,又(0)f 2πππ20,()4022=--<=->f ,所以存在唯一0π(0,)2x ∈,使0()0=f x . ⑵ 当π,π2x ⎡⎤∈⎢⎥⎣⎦时,化简得cos 2()(π)11sin πx x g x x x =-⋅+-+ 令πt x =-,记()(π)=-u t g t =cos 211sin πt t t t --++,π[0,]2∈t ()().π(1sin )f t u t t '=+ 由⑴得,当0(0,)∈t x 时,()0u t '<当0π(,)2∈t x 时,()0u t '>. 在0π(,)2x 上()u t 为增函数,由π()02=u 知,当0π,2t x ⎡⎫∈⎪⎢⎣⎭时,()0<u t .所以()u t 在0π,2t x ⎡⎫∈⎪⎢⎣⎭上无零点. 在0(0,)x 上()u t 为减函数,由(0)1=u 及0()0u x <知存在唯一00(0,)∈t x ,使0()0=u t . 于是存在唯一0π(0,)2t ∈,使()00u t =. 设10ππ(,π)2x t =-∈,则100()(π)()0g x g t u t =-==,因此存在唯一的1π(,π)2x ∈,使1()0=g x .由于1000π,x t t x =-<,所以01πx x +>.。

2014高考函数与导数汇编及详细解答

2014高考函数与导数汇编及详细解答

2014高考函数与导数解答题汇编1.[2014·江西卷18] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19.2.[2014·安徽卷18] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值.3.[2014·北京卷18] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.18.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.4.[2014·福建卷20] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2. 当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .5.[2014·湖北卷22] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln ee .由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3;由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e ,即ln x x <1e.在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷22] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·江苏卷19] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.8.[2014·辽宁卷] 已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sin x )ln⎝⎛⎭⎫3-2x π.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=-(1+sin x )·(π+2x )-2x -23cos x <0,函数f (x )在⎝⎛⎭⎫0,π2上为减函数.又f (0)=π-83>0,f ⎝⎛⎭⎫π2=-π2-163<0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)记函数h (x )=3(x -π)cos x 1+sin x-4ln ⎝⎛⎭⎫3-2πx ,x ∈⎣⎡⎦⎤π2,π.令t =π-x ,则当x ∈⎣⎡⎦⎤π2,π时,t ∈⎣⎡⎦⎤0,π2.记u (t )=h (π-t )=3t cos t 1+sin t -4 ln ⎝⎛⎭⎫1+2πt ,则u ′(t )=3f (t )(π+2t )(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )>0,当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )<0.故在(0,x 0)上u (t )是增函数,又u (0)=0,从而可知当t ∈(0,x 0]时,u (t )>0,所以u (t )在(0,x 0]上无零点.在⎝⎛⎭⎫x 0,π2上u (t )为减函数,由u (x 0)>0,u ⎝⎛⎭⎫π2=-4ln 2<0,知存在唯一t 1∈⎝⎛⎭⎫x 0,π2,使u (t 1)=0,故存在唯一的t 1∈⎝⎛⎭⎫0,π2,使u (t 1)=0.因此存在唯一的x 1=π-t 1∈⎝⎛⎭⎫π2,π,使h (x 1)=h (π-t 1)=u (t 1)=0.因为当x ∈⎝⎛⎭⎫π2,π时,1+sin x >0,故g (x )=(1+sin x )h (x )与h (x )有相同的零点,所以存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.因为x 1=π-t 1,t 1>x 0,所以x 0+x 1<π.9.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e.设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.10.、[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.11.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a (a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈N *结论都成立.12.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 13.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立. 方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x 1+x,x >0.令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n xx +1d x =⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1),结论得证.14.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1. 当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).15.、[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大.20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a .当x 变化时,f ′(x )这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2.又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1,所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x (x -1)2. 令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.16.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.17.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立. 下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).。

2014年高考数学真题分类汇编文科-导数与定积分(文科)

2014年高考数学真题分类汇编文科-导数与定积分(文科)

一、选择题1.(2014陕西文10)如图所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖湾曲路段为某三次函数图像的一部分,则该函数的解析式为( ) .A.x x x y --=232121 B.x x x y 3212123-+= C.x x y -=341 D.x x x y 2214123-+=2.(2014新课标Ⅰ文12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A. (2,)+∞B. (1,)+∞C. (,2)-∞-D. (,1)-∞-3.(2014新课标Ⅱ文11)若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是( ) A.(],2-∞- B.(],1-∞- C.[)2,+∞ D.[)1,+∞ 二、填空题4. (2014广东文11)曲线5e 3x y =-+在点()0,2-处的切线方程为________.5.(2014江苏11)在平面直角坐标系xOy 中,若曲线2by ax x=+(,a b 为常数)过点()2,5P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 .6.(2014江西文11)若曲线ln y x x =上点P 处的切线平行于直线210x y -+=,则点P 的坐标是 .7. (2014安徽文15)若直线l 与曲线C 满足下列两个条件: (1)直线l 在点()00,P x y 处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是 (写出所有正确命题的编号). ① 直线0:=y l 在点()0,0P 处“切过”曲线C :3y x =;② 直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ; ③ 直线x y l =:在点()0,0P 处“切过”曲线C :x y sin =;3x -6千米)④ 直线x y l =:在点()0,0P 处“切过”曲线C :x y tan =; ⑤ 直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =. 三、解答题8.(2014福建文22)(本小题满分12分) 已知函数()e x f x ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)求证:当0x>时,2e x x <(3)求证:对任意给定的正数c ,总存在0x ,使得当0(,)x x ∈+∞时,恒有e x x c < 9. (2014广东文21)(本小题满分14分)已知函数()()32113f x x x ax a =+++∈R . (1) 求函数()f x 的单调区间;(2) 当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭. 10.(2014山东文20)(本小题满分13分) 洞穿高考例5.1变式1 设函数()1ln 1x f x a x x -=++ ,其中a 为常数. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性.11.(2014江西文18)(本小题满分12分) 已知函数x a ax x x f )44()(22++=,其中0<a .(1)当4-=a 时,求)(x f 的单调递增区间; (2)若)(x f 在区间]4,1[上的最小值为8,求a 的值. 12.(2014湖北文21)(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数()ln xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.13.(2014江苏23)(本小题满分10 分) 已知函数()0sin x f x x=()0x >,设()n f x 为()1n f x -的导数,*n ∈N.(1)求122222f f πππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值;(2)求证:对任意的*n ∈N ,等式14442n n nf f -πππ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立. 14.(2014辽宁文21)(本小题满分12分)已知函数()(cos )2sin 2f x x x x =π---,2()(1xg x x =-π-π.求证:(1)存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,使0()0f x =; (2)存在唯一1,2x π⎛⎫∈π ⎪⎝⎭,使1()0g x =,且对(1)中的0x ,有01x x +>π.15.(2014天津文19)(本小题满分14分)洞穿高考例5.16变式2 已知函数()()2320,3f x x ax a x =->∈R .(1)求()f x 的单调区间和极值;(2)若对于任意的()12,x ∈+∞,都存在()21,x ∈+∞,使得()()121f x f x ⋅=,求a 的取值范围. 16.(2014重庆文19)(本小题满分12分)已知函数23ln 4)(--+=x x a x x f ,其中a ∈R ,且曲线)(x f y =在点(1(1))f ,处的切线垂直于直线x y 21=.(1)求a 的值;(2)求函数)(x f 的单调区间和极值. 17.(2014四川文19)(本小题满分12分)设等差数列{}n a 的公差为d ,点(),n n a b 在函数()2xf x =的图像上()*n ∈N .(1)求证:数列{}n b 为等比数列; (2)若11a =,函数()f x 的图像在点()22,a b 处的切线在x 轴上的截距为12ln 2-,求数列{}2n n a b 的前n 项和n S . 18.(2014四川文21)(本小题满分14分)已知函数()2e 1xf x ax bx =---,其中,a b ∈R ,e 2.71828=⋅⋅⋅为自然对数的底数. (1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[]0,1上的最小值; (2)若()10f =,函数()f x 在区间()0,1内有零点,求证:e 21a -<<. 19. (2014新课标Ⅱ文21)(本小题满分12分)已知函数()3232f x x x ax =-++,曲线()y f x =在点()0,2处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)求证:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.20. (2014浙江文21)函数()()330f x x x a a =+->,若()f x 在[]1,1-上的最小值记为()g a . (1)求()g a ;(2)求证:当[]1,1x ∈-时,恒有()()4f x g a +…. 21.(2014陕西文21)(本小题满分14分) 设函数()ln mf x x m x=+∈R ,. (1)当e m =(e 为自然对数的底数)时,求()f x 的极小值; (2)讨论函数()()3xg x f x '=-零点的个数; (3)若对任意0b a >>,()()1f b f a b a-<-恒成立,求m 的取值范围.。

2014年高考数学(文)真题分类汇编2(函数与导数)

2014年高考数学(文)真题分类汇编2(函数与导数)

2014年全国高考数学试题汇编二(函数与导数)★(2014年安徽卷)若函数()f x 是周期为4的奇函数,且在[0,2]上的解析式为(1)()sin x x f x xπ-⎧=⎨⎩(01)(12)x x ≤≤<≤,则2941()()46f f += .(答案:516) ★(2014年北京卷)下列函数中,定义域是R 且为增函数的是( ) A xy e -=B 3y x = C ln y x = D ||y x =★(2014年山东卷)函数()f x =的定义域为( )A (0,2)B (0,2]C (2,)+∞D [2,)+∞★(2014年湖南卷)下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) A 21()f x x=B 2()1f x x =+C 3()f x x =D ()2xf x -=★(2014年江苏卷)已知函数()xxf x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1,)x ∈+∞,使得3000()(3)f x a x x <-+成立.试比较1a e -与1e a-的大小,并证明你的结论.★(2014年四川卷)已知函数2()1xf x e ax bx =---,其中a ,b R ∈, 2.71828e =为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,证明:21e a -<<. ★(2014年重庆卷)下列函数为偶函数的是( ) A ()1f x x =-B 2()f x x x =+C ()22x xf x -=-D ()22x xf x -=+★(2014年广东卷)下列函数为奇函数的是( )A 1()22xx f x =-B 3()sin f x x x =C ()2cos 1f x x =+D 2()2xf x x =+ ★(2014年湖北卷)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()3f x x x =-,则函数()()3g x f x x =-+的零点的集合为( )A {1,3}B {3,1,1,3}--C {2-D {2-★(2014年湖南卷)若3()ln(1)xf x e ax =++是偶函数,则a = .(答案:32-) ★(2014年全国卷)奇函数()f x 的定义域为R .若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A 2-B 1-C 0D 1★(2014年新课标全国卷Ⅱ)偶函数()y f x =的图像关于直线2x =对称,(3)3f =,则(1)f -= .(答案:3)★(2014年全国新课标卷Ⅰ)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( ) A ()()f x g x 是偶函数 B |()|()f x g x 是奇函数C ()|()|f x g x 是奇函数D |()()|f x g x 是奇函数★(2014年四川卷)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10(),01x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .(答案:1)★(2014年江苏卷)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是 .(答案:(2-) ★(2014年全国卷)函数cos 22sin y x x =+的最大值为________.(答案:32) ★(2014年安徽卷)设log 7a =, 1.12b =, 3.10.8c =,则( )A b a c <<B c a b <<C c b a <<D a c b <<★(2014年福建卷)若函数log a y x =(0a >且1a ≠)的图象如图12-所示,则下列函数图象正确的是( )图1。

2014年高考数学(文)真题分类汇编:函数与导数

2014年高考数学(文)真题分类汇编:函数与导数

第二单元函数与导数1.[2014·北京卷2] 下列函数中,定义域是R且为增函数的是() A.y=e-x B.y=x3 C.y=ln x D.y=|x|【答案】B2.[2014·山东卷3] 函数f(x)=1log2x-1的定义域为()A.(0,2) B.(0,2] C.(2,+∞) D.[2,+∞)【答案】C3.[2014·全国卷5] 函数y=ln(3x+1)(x>-1)的反函数是()A.y=(1-e x)3(x>-1) B.y=(e x-1)3(x>-1)C.y=(1-e x)3(x∈R) D.y=(e x-1)3(x∈R)【答案】D4.[2014·北京卷2] 下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3 C.y=ln x D.y=|x|【答案】B5.[2014·湖南卷4] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1 C.f(x)=x3D.f(x)=2-x【答案】A6.[2014·重庆卷4] 下列函数为偶函数的是()A.f(x)=x-1 B.f(x)=x2+x C.f(x)=2x-2-x D.f(x)=2x+2-x 【答案】D7.[2014·广东卷5] 下列函数为奇函数的是()A.2x-12x B.x3sin x C.2cos x+1 D.x2+2x【答案】A8.[2014·湖北卷9] 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} 【答案】D9.[2014·山东卷9] 对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数,下列函数中是准偶函数的是() A.f(x)=x B.f(x)=x2C.f(x)=tan x D.f(x)=cos(x+1)【答案】D10.[2014·江西卷10] 在同一直角坐标系中,函数y =ax 2-x +a2与y =a 2x 3-2ax 2+x +a (a ∈R )的图像不可能是( )【答案】B 11.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .1 【答案】D12.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 【答案】C12.[2014·湖南卷] 若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2 【答案】C12.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3] 【答案】C13.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b 【答案】B14.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A B C D 【答案】B15.[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 【答案】D16.[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin y C .ln(x 2+1)>ln(y 2+1) D.1x 2+1>1y 2+1【答案】A17.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x【答案】B 18.[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B19.[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 【答案】B20.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a 【答案】C21. [2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D 【答案】D22.[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 【答案】D 23.[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B24.[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+23 C .6+4 3 D .7+4 3 【答案】D25.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 【答案】C26.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9【答案】C27.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 【答案】A28.[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D29.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2 【答案】A30.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 【答案】B31.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x【答案】A32.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 【答案】D33.[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1) 【答案】C34.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.【答案】-3235.[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 【答案】516、36.[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.【答案】(-∞,8]37.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.【答案】338.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 【答案】139.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________. 【答案】(-∞,0)40.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.【答案】1041.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.【答案】27842.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-22,043.[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________. 【答案】3244.[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.【答案】5 15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.【答案】⎝⎛⎭⎫0,1645.[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【答案】⎝⎛⎭⎫0,1246.[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e -,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.【答案】(-∞,8]47.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.【答案】248.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.【答案】249.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.【答案】(1,2)50.[2014·广东卷] 曲线y =-5e +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=051.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【答案】-352.[2014·江西卷] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【答案】(e ,e) [解析] 由题意知,y ′=ln x +1,直线斜率为2.由导数的几何意义知,令ln x +1=2,得x =e ,所以y =eln e =e ,所以P (e ,e).53.[2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x . 【答案】①③④54.[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 【答案】①③④55.[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )=⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90,所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119.56.[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.57.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ;当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.58.[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.59.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞).60.[2014·陕西卷] 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.61.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.62.[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 63.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1. 令h ′(x )=0得x =ln 1c.当x >ln 1c时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .64.[2014·江苏卷] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立. 解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin xx3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎫x +π2. 类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2. 因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *), 所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).65.[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a 1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).66.[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12. 又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .因为x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.67.[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43,所以,S n =(3n -1)4n +1+49.68.[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.所以,f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32.69.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.70.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.71.[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 72.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .。

2014高考数学导数汇编

2014高考数学导数汇编

2014高考导数汇编1. (辽宁)当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( C )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--2.(新课标二8.)设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=3.(新课标二12)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 【答案】.2.||,34∴34)]([,2||||,3)]([3πsin3)(2222020020C m m m m x f x m x x f m x x f 故选解得,,即的极值为><++≥+∴≤=±= 4.(大纲卷7).曲线1x y xe -=在点(1,1)处切线的斜率等于( C )A .2eB .eC .2D .15.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( C ) A.3≤c B.63≤<c C.96≤<c D. 9>c 6(广东10).曲线25+=-x e y 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即7.(江苏) 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲ .8(辽宁) (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.解.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =.(Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+, 令t x π=-,则[,]2x ππ∈时,[0,]2t π∈,记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ ,由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0(,)2x π上()u t 是减函数,由0()0,()4l n 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<9.(新课标二21) (本小题满分12分) 已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001)解(1).)(.02-12≥2-12-)(∴∈2--)(--上单增在所以,,R x f ee e e e e xf R x x e e x f x x x x x x x x =•+=+=′= (2)2≥22≥0-0≥)-(-))((0≥)-(2-2-2.0≥)(0,t t),(0,∈∃x ∴)-(2-2-2)(.0)0(,0m m),(0,∈x )2-(2-2-)(.0≥)2-(2-2-0≥)2-(4-4-22.0≥)(0,m m),(0,∈∃x ∴)2-(4-4-22)(.0)0(,0),2--(4-4--)(.0,0)2--(4-4--)(4-)2()(--------2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2的最大值为,所以,即即,且,即即使,则,同理,令即即使,则令b b e e e e b e e e e e e b e e e e e e b e e x m e e b e e x m m e e b e e x m e e b e e e e b e e x h e e b e e x h h x x e e b x e e x h x x e e b x e e x bf x f x g x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =•>++>+>=′=>++=++++′>++=′=>=>>==10.(江苏)(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.11(北京18)(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin x a b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.12.(重庆20)(本小题满分12分,(1)问4分,(2)问3分,(3)问5分)已知函数22()(,,)x xf x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(1)确定,a b 的值;(2)若3c =,判断()f x 的单调性; (3)若()f x 有极值,求c 的取值范围. 解:(Ⅰ)对()f x 求导得()2222x x f x ae be c -'=+-,由()f x '为偶函数,知()()f x f x ''-=,即()()2220x x a b e e --+=,因220x x e e -+>,所以a b = 又()022f a b c '=+-,故1,1a b ==.(Ⅱ)当3c =时,()223x x f x e e x -=--,那么()22223310x x f x e e -'=+-≥=>故()f x 在R 上为增函数.(Ⅲ)由(Ⅰ)知()2222x x f x e e c -'=+-,而22222x xe e -+≥=,当0x =时等号成立.下面分三种情况进行讨论.当4c <时,对任意()22,220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意0,x ≠()222240x x f x e e -'=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t +-=有两根,1,20,4c t =>即()0f x '=有两个根111ln 2x t =或221ln 2x t =. 当12x x x <<时,()0f x '<;又当2x x >时,()0f x '>从而()f x 在2x x =处取得极小值.综上,若()f x 有极值,则c 的取值范围为()4,+∞. 13. (福建)(本小题满分14分)已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(I )求a 的值及函数()x f 的极值; (II )证明:当0>x 时,x e x <2;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2.解法一:(I )由()x f x e ax =-,得'()x f x e a =-.又'(0)11f a =-=-,得2a =.所以()2,'()2x x f x e x f x e =-=-.令'()0f x =,得ln 2x =.当ln 2x <时,'()0,()f x f x <单调递减;当ln 2x >时, '()0,()f x f x >单调递增.所以当ln 2x =时, ()f x 取得极小值,且极小值为ln2(ln 2)2ln 22ln 4,()f e f x =-=-无极大值. (II )令2()x g x e x =-,则'()2x g x e x =-.由(I )得'()()(ln 2)0g x f x f =≥>,故()g x 在R 上单调递增,又(0)10g =>,因此,当0x >时, ()(0)0g x g >>,即2x x e <.(III )①若1c ≥,则x x e ce ≤.又由(II )知,当0x >时, 2x x e <.所以当0x >时,2x x ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <.②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=.所以当2x >时, '()0,()h x h x >在(2,)+∞内单调递增.取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+.易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2x x ce <.综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <. 解法二:(I )同解法一(II )同解法一 (III )对任意给定的正数c ,取o x =由(II )知,当x>0时,2xe x >,所以2222,()()22x x xx xe e e =>当o x x >时, 222241()()()222xx x x e x c c>>=因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <.14.(本题满分14分)已知函数()).(33R a a x x x f ∈-+=(1) 若()x f 在[]1,1-上的最大值和最小值分别记为)(),(a m a M ,求)()(a m a M -;(2) 设,R b ∈若()[]42≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围.解:(I )因为()3333,()33,()x x a x a f x x x a x a ⎧+-≥=⎨-+<⎩,所以()2233,()'33,()x x a f x x x a ⎧+≥=⎨-<⎩,由于11x -≤≤,(i )当1a ≤-时,有x a ≥,故()333f x x x a =+-, 此时()x f 在()1,1-上是增函数,因此()()143M a f a ==-,()()143m a f a =-=--,()()()43438M a m a a a -=----= (ii )当11a -<<时,若(),1x a ∈,()333f x x x a =+-,在(),1a 上是增函数, 若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,所以()()(){}max 1,1m a f f =-,()()3m a f a a ==,由于()()1162f f a --=-+,因此,当113a -<≤时,()()334M a m a a a -=--+,当113a <<时,()()332M a m a a a -=-++,(iii )当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()x f 在()1,1-上是减函数,因此()()123M a f a =-=+,()()123m a f a ==-+,故()()()23234M a m a a a -=+-+=,综上()()()()338,1134,13132,134,1a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎪-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎪⎩;(II )令()()h x f x b =+,则()3333,()33,()x x a b x a h x x x a b x a ⎧+-+≥=⎨-++<⎩,()2233,()'33,()x x a h x x x a ⎧+≥=⎨-<⎩,因为()24f x b +≤⎡⎤⎣⎦,对[]1,1-∈x 恒成立,即()22h x -≤≤对[]1,1-∈x 恒成立,所以由(I )知,(i )当1a ≤-时,()h x 在()1,1-上是增函数,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()143h a b -=--+,则432a b --+≥-,且432a b -+≤,矛盾;(ii )当113a -<≤时,()h x 在[]1,1-上的最大值是()143h ab =-+,最小值是()3h a a b =+,所以32a b +≥-,432a b -+≤,从而323362a a a b a --+≤+≤-且103a ≤≤,令()323t a a a =--+,则()2'330t a a =->,()t a 在10,3⎛⎫⎪⎝⎭上是增函数,故()()02t a t >=-,因此230a b -≤+≤,(iii )当113a <<时,()h x 在[]1,1-上的最大值是()132h ab -=++,最小值是()3h a a b =+,所以32a b +≥-,322a b ++≤,解得283027a b -≤+≤, (iv )当1a ≥时,()h x 在[]1,1-上的最大值是()132h a b -=++,最小值是()123h a b =-++,所以322a b ++≤,232a b -++≥-,解得30a b +=,综上b a +3的取值范围230a b -≤+≤.15..(广东21)(本题14分)设函数()f x =,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--±∴++-><->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<-<-∴----<-+-+∴=-∞------+---+-+∞==-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------+∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<---<<-+-+-+--+<+->∴><+<-++<<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii x x x x x k x x k k k g x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<--<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<-+<-++<∴<>+->∴<+-+<---⋃--⋃-⋃-+-++<>从而综合题意欲使则即的解集为:上所述16.(陕西)(本小题满分14分)设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数. (1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围; (3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k xkxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xxx g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,,(2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f (3)+∈>++++>>++∴>∈++=+++++++++=+++++••••=++++=+++++=+=+=N n f(n)-n )()3()2()1(0)(,011-n 1n ln .0)()2(],1,0,1 -)1ln()((a) )11-n 1n (ln )311-34(ln )211-23(ln )111-12(ln 11--311-211-111-n 1n 342312ln 11--311-211-111-f(n)f(n)]-[n -)()3()2()1(∴11-11)(∴,1)(,所以,恒成立式恒成立恒成立知,则由(令)(n g g g g a nx h x xxx x h nnnn g g g g nn n n g x x x g17.((天津)本小题满分14分)已知函数()x f x x ae =-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明 12x x +随着a 的减小而增大. 解:由()x f x x ae =-,可得()1x f x ae ¢=-. 下面分两种情况讨论: (1)0a £时()0f x ¢>在R 上恒成立,可得()f x 在R 上单调递增,不合题意.(2)0a >时,由()0f x ¢=,得ln x a =-.当x 变化时,()f x ¢,()f x 的变化情况如下表:这时,()f x 的单调递增区间是(),ln a -?;单调递减区间是()ln ,a -+¥. 于是,“函数()y f x =有两个零点”等价于如下条件同时成立: 1°()ln 0f a ->;2°存在()1,ln a s ??,满足()10f s <; 3°存在()2ln ,a s ?+,满足()20f s <.由()ln 0f a ->,即ln 10a -->,解得10a e -<<,而此时,取10s =,满足()1,ln a s ??,且()10f s a =-<;取222ln s a a=+,满足()2ln ,a s ?+ ,且()22222ln 0a af s e e a a骣骣鼢珑鼢=-+-<珑鼢珑鼢珑桫桫. 所以,a 的取值范围是()10,e -.(Ⅱ)证明:由()0x f x x ae =-=,有x xa e=. 设()x x g x e =,由()1xxg x e -¢=,知()g x 在(),1-¥上单调递增,在()1,+¥上单调递减. 并且,当(],0x ? 时,()0g x £;当()0,x ? 时,()0g x >.由已知,12,x x 满足()1a g x =,()2a g x =. 由()10,a e -Î,及()g x 的单调性,可得()10,1x Î,()21,x ?.对于任意的()1120,,a a e -Î,设12a a >,()()121g g a x x ==,其中1201x x <<<;()()122g g a h h ==,其中1201h h <<<.因为()g x 在()0,1上单调递增,故由12a a >,即()()11g g x h >,可得11x h >;类似可得22x h <. 又由11,0x h >,得222111x h h x x h <<. 所以,21x x 随着a 的减小而增大. (Ⅲ)证明:由11x x ae =,22x x ae =,可得11ln ln x a x =+,22ln ln x a x =+. 故221211ln ln lnx x x x x x -=-=. 设21x t x =,则1t >,且2121,ln ,x tx x x t ì=ïïíï-=ïî解得1ln 1t x t =-,2ln 1t t x t =-.所以, ()121ln 1t tx x t ++=-. ①令()()1ln 1x xh x x +=-,()1,x ? ,则()()212ln 1x x x h x x -+-¢=-.令()12ln u x x x x=-+-,得()21x u x x 骣-÷ç¢=÷ç÷ç桫. 当()1,x ? 时,()0u x ¢>.因此,()u x 在()1,+¥上单调递增,故对于任意的()1,x ? ,()()10u x u >=,由此可得()0h x ¢>,故()h x 在()1,+¥上单调递增. 因此,由①可得12x x +随着t 的增大而增大.而由(Ⅱ),t 随着a 的减小而增大,所以12x x +随着a 的减小而增大.。

2014年普通高等学校招生全国统一考试分类汇编5—导数及应用(文科)

2014年普通高等学校招生全国统一考试分类汇编5—导数及应用(文科)

2014年普通高等学校招生全国统一考试分类汇编(5)(一) 函数的单调性与最值[2014·江苏卷]19. 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解:19. (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e-1.[2014·四川卷]21. 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.解:21. (1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0.解得e -2<a <1. 所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.(二)函数的奇偶性与周期性[2014·江苏卷]19. 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解:19. (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e(三) 函数模型及其应用[2014·陕西卷]10. 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .(五)导数及其运算[2014·陕西卷]21. 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.[2014·安徽卷]20.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. [2014·北京卷]20.已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论) 20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. [2014·福建卷] 22.已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2. 当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1c x ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x . ②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x >2x , 所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x . ②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c .当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c ,则h (x 0)=c e2ln 2c -2ln 2c =2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . [2014·广东卷]11.曲线y =-5e x +3在点(0,-2)处的切线方程为________.[解析] 11.5x +y +2=0 ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.[2014·江苏卷]11. 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-3 [解析] 易知y ′=2ax -bx 2.根据题意有⎩⎨⎧-5=4a +b2,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,故a +b =-3.[2014·江苏卷]23.已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立.23.解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin x x 3,所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2.类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *),所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).[2014·全国新课标卷Ⅰ]21. 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a1-a >1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).20.,[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.20.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12.又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a,x 2=-(a +1)-2a +1a .因为x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43, 所以,S n =(3n -1)4n +1+49.19.、[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.当所以,f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32. (六)导数的应用 21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,有g (0)=a -e +2>0,g (1)=1-a >0.解得e -2<a <1. 所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.15.[2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x .15.①③④ [解析] 对于①,因为y ′=3x 2,y ′x =0=0,所以l :y =0是曲线C :y =x 3在点P (0,0)处的切线,画图可知曲线C 在点P 附近位于直线l 的两侧,①正确;对于②,因为y ′=2(x +1),y ′x =-1=0,所以l :x =-1不是曲线C :y =(x +1)2在点P (-1,0)处的切线,②错误;对于③,y ′=cos x ,y ′x =0=1,所以曲线C 在点P (0,0)处的切线为l :y =x ,画图可知曲线C 在点P 附近位于直线l 的两侧,③正确;对于④,y ′=1cos 2x ,y ′x =0=1,所以曲线C 在点P (0,0)处的切线为l :y =x ,画图可知曲线C 在点P 附近位于直线l 的两侧,④正确;对于⑤,y ′=1x ,y ′x =1=1,所以曲线C 在点P (1,0)处切线为l :y =x -1,又由h (x )=x -1-ln x (x >0)可得h ′(x )=1-1x =x -1x ,所以h min (x )=h (1)=0,故x -1≥ln x ,所以曲线C 在点P 附近位于直线l 的下侧,⑤错误.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论) 20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0,设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x >2x , 所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x . ②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c .当x >ln 1c时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c ,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c >0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .21.[2014·广东卷] 已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12. 21.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e ,e π,πe ,3π,π3这6个数中的最大数与最小数. 21.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞). (2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增可得,3e <πe <π3,e 3<e π<3π.故这6个数中的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e), 即ln ππ<ln 33<ln e e .由ln ππ<ln 33, 得ln π3<ln3π,所以3π>π3.由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e . 9.[2014·湖南卷] 若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 29.C [解析] 依题可构造函数f (x )=e xx ,则f ′(x )=e x ·x -e x x 2=e x (x -1)x 2.当x ∈(0,1)时,f ′(x )<0,所以f (x )=e xx在区间(0,1)上递减,故0<x 1<x 2<1时有f (x 1)>f (x 2),即x 2e x 1>x 1e x 2.21.、[2014·湖南卷] 已知函数f (x )=x cos x -sin x +1(x >0). (1)求f (x )的单调区间;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有1x 21+1x 22+…+1x 2n <23.21.解: (1)f ′(x )=cos x -x sin x -cos x =-x sin x . 令f ′(x )=0,得x =k π(k ∈N *).当x ∈(2k π,(2k +1)π)(k ∈N )时,sin x >0,此时f ′(x )<0; 当x ∈((2k +1)π,(2k +2)π)(k ∈N )时,sin x <0,此时f ′(x )>0. 故f (x )的单调递减区间为(2k π,(2k +1)π)(k ∈N ),单调递增区间为((2k +1)π,(2k +2)π)(k ∈N ).(2)由(1)知,f (x )在区间(0,π)上单调递减.又f ⎝⎛⎭⎫π2=0,故x 1=π2.当n ∈N *时,因为f (n π)f [](n +1)π=[(-1)n n π+1][(-1)n +1(n +1)π+1]<0,且函数f (x )的图像是连续不断的,所以f (x )在区间(n π,(n +1)π)内至少存在一个零点.又f (x )在区间(n π,(n +1)π)上是单调的,故 n π<x n +1<(n +1)π.因此,当n =1时,1x 21=4π2<23;当n =2时,1x 21+1x 22<1π2(4+1)<23;当n ≥3时,1x 21+1x 22+…+1x 2n <1π2⎣⎡⎦⎤4+1+122+…+1(n -1)2 <1π2⎣⎡⎦⎤5+11×2+…+1(n -2)(n -1)<1π2⎣⎡⎦⎤5+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -2-1n -1 =1π2⎝⎛⎭⎫6-1n -1<6π2<23.综上所述,对一切n ∈N *,1x 21+1x 22+…+1x 2n <23.11.[2014·江西卷] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.11.(e ,e) [解析] 由题意知,y ′=ln x +1,直线斜率为2.由导数的几何意义知,令ln x +1=2,得x =e ,所以y =eln e =e ,所以P (e ,e). 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率. (1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N ,同理有f (n )=⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90,所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 12.、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98C .[-6,-2] D .[-4,-3] 12.C [解析] 当-2≤x <0时,不等式可转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故函数f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤f min (x )=f (-1)=1+4-3-1=-2.当x =0时,不等式恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4,故函数g (x )在(0,1]上单调递增,此时有a ≥g max (x )=g (1)=1-4-31=-6. 综上,-6≤a ≤-2. 11.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)11.D [解析] f ′(x )=k -1x =kx -1x ,且x >0,由题可知f ′(x )≥0,即得kx -1≥0,得x ≥1k (k <0时不满足),因为函数f (x )在区间(1,+∞)上单调递增,所以1k≤1,解得k ≥1.21.[2014·新课标全国卷Ⅱ] 已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. 21.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a .曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4, 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0, g (x )单调递增,g (-1)=k -1<0,g (0)=4, 所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以g (x )>h (x )≥h (2)=0,所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 12.[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)12.C [解析] 显然a =0时,函数有两个不同的零点,不符合.当a ≠0时,由f ′(x )=3ax 2-6x =0,得x 1=0,x 2=2a .当a >0时,函数f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在⎝⎛⎭⎫0,2a 上单调递减,又f (0)=1,所以函数f (x )存在小于0的零点,不符合题意;当a <0时,函数f (x )在⎝⎛⎭⎫-∞,2a ,(0,+∞)上单调递减,在⎝⎛⎭⎫2a ,0上单调递增,所以只需f ⎝⎛⎭⎫2a >0,解得a <-2,所以选C. 21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1,(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a1-a >1,故当x ∈⎝⎛⎭⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a 1-a ,+∞上单调递增. 所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).20.,[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.20.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12. 又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0, f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,。

2014年高考数学分类汇编(高考真题+模拟新题)函数与导数 文

2014年高考数学分类汇编(高考真题+模拟新题)函数与导数 文

B 单元 函数与导数B1 函数及其表示 14.、[2014·某某卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=______.14.516 [解析] 由题易知f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.2.、[2014·卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·某某卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如nF (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169. 又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·某某卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.B2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R )5.D [解析] 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).B3 函数的单调性与最值 2.、[2014·卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·某某卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.19.、、、[2014·某某卷] 已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x+m -1在(0,+∞)上恒成立,某某数m 的取值X 围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x=f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立.令 t =e x(x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值X 围是⎝⎛⎦⎥⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′(x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0)<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e-12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x. 令 h ′(x )=0, 得x =e-1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e-1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·某某卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”;②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎢⎡⎦⎥⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确21.、[2014·某某卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x-2ax -b ,所以g ′(x )=e x-2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性4.[2014·某某卷] 下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x)=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x=f (x ),f (x )为偶函数.故选D.14.、[2014·某某卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=______.14.516 [解析] 由题易知f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.5.[2014·某某卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x-2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.9.、[2014·某某卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·某某卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.15.[2014·某某卷] 若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x+1)+ax ,∴2ax =-ln e 3x=-3x ,∴a =-32.19.、、、[2014·某某卷] 已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x+m -1在(0,+∞)上恒成立,某某数m 的取值X 围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x=f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立.令 t =e x(x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值X 围是⎝⎛⎦⎥⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′(x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0)<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e-12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x. 令 h ′(x )=0, 得x =e-1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数.所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e-1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .112.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·某某卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.13.1 [解析] 由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1.B5二次函数10.[2014·某某卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.10.⎝ ⎛⎭⎪⎫-22,0 [解析] 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0, 解得⎩⎪⎨⎪⎧-22<m <22,-32<m <0,即m ∈⎝ ⎛⎭⎪⎫-22,0.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.B6指数与指数函数5.[2014·某某卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . 8.,,[2014·某某卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1­2所示,则下列函数图像正确的是( )图1­2A BC D 图1­38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.3.、[2014·某某卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x的取值X 围是________.15.(-∞,8] [解析] 当x <1时,由ex -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值X 围为x ≤8.5.,[2014·某某卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .x 3>y 3B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·某某卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝ ⎛⎭⎪⎫12x为单调递减函数,所以排除选项D.12.[2014·某某卷] 已知4a=2,lg x =a ,则x =________.12.10 [解析] 4a =2,即22a=2,可得a =12,所以lg x =12,所以x =1012=10.7.、[2014·某某卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d=10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·某某卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |+|PB |的取值X 围是( )A .[5,2 5]B .[10,2 5]C .[10,4 5]D .[25,4 5]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|PA |2+|PB |2=|AB |2=10,即|PA |+|PB |≥|AB |=10.又|PA |+|PB |=(|PA |+|PB |)2=|PA |2+2|PA ||PB |+|PB |2≤2(|PA |2+|PB |2)=2 5,所以|PA |+|PB |∈[10,2 5],故选B.4.[2014·某某卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .B7对数与对数函数12.[2014·某某卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).11.[2014·某某卷] ⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.11.278 [解析] 原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34+log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3=278.8.、[2014·某某卷] 在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D图1­28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·某某卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1­2所示,则下列函数图像正确的是( )图1­2A BC D 图1­38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.13.、[2014·某某卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3.、[2014·某某卷] 已知a =2-13,b =log 213,c =log 1213,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D[解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .6.,[2014·某某卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1­1所示,则下列结论成立的是( )图1­1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.7.、[2014·某某卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d=10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·某某卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3B .7+2 3 C .6+4 3 D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b≥7+24b a ·3ab=7+43,当且仅当4b a =3ab,即a =4+23,b =2 3+3时等号成立,故其最小值是7+4 3.B8幂函数与函数的图像8.、[2014·某某卷] 在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D图1­28.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·某某卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1­2所示,则下列函数图像正确的是( )图1­2A BC D 图1­38.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.15.[2014·某某卷] 如图1­4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值X 围为________.15.⎝ ⎛⎭⎪⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值X 围为⎝ ⎛⎭⎪⎫0,16.13.、[2014·某某卷] 已知()是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值X 围是________.13.⎝ ⎛⎭⎪⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝ ⎛⎭⎪⎫0,12.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e ,<1,x 13,x ≥1,则使得f (x )≤2成立的x的取值X 围是________.15.(-∞,8] [解析] 当x <1时,由ex -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值X 围为x ≤8.6.,[2014·某某卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1­1所示,则下列结论成立的是( )图1­1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.B9 函数与方程6.[2014·卷] 已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)6.C [解析] 方法一:对于函数f (x )=6x-log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).7.[2014·某某卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.10.[2014·某某卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx-m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值X 围是( ) A.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12 B.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,12 C.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,23 D.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)的图像恒过定点P (-1,0),由图易知有两交点的边界有四条,其中k PO =0,k PA =12,k PB =-2,第四条为过P 点的曲线y =1x +1-3的切线PC .将y =m (x +1)(m ≠0)代入y =1x +1-3,得mx 2+(2m +3)x +m +2=0,则由Δ=(2m +3)2-4m (m +2)=4m +9=0,得m =-94,即k PC =-94,所以由图可知满足条件的实数m 的取值X 围是⎝ ⎛⎭⎪⎫-94,-2∪⎝ ⎛⎭⎪⎫0,12.15.[2014·某某卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.2 [解析] 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2,即在区间(-∞,0)上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2.9.、[2014·某某卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 13.、[2014·某某卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值X 围是________.13.⎝ ⎛⎭⎪⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝ ⎛⎭⎪⎫0,12.4.[2014·某某卷] 已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a=( )A.14B.12C .1D .2 4.A [解析] 因为f (-1)=21=2,f (2)=a ·22=4a =1,所以a =14.15.[2014·某某卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.15. 2 [解析] 令t =f (a ),若f (t )=2,则t 2+2t +2=2满足条件,此时t =0或t =-2,所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.21.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值X 围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a,x 2=-1-1-aa.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值X 围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).14.[2014·某某卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值X 围为________.14.(1,2) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1<a <2.B10 函数模型及其应用 8.[2014·卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1­2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1­2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟8.B [解析] 由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.10.[2014·某某卷] 如图1­2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1­2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .B11 导数及其运算21.、、[2014·某某卷] 设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值X 围.21.解:(1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2, ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14⎝ ⎛⎭⎪⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞.20.、[2014·某某卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.20.、[2014·卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值X 围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎪⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0,设g (x )=4x 3-6x 2+t +3, 则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,(0)=+3是()的极大值,(1)=+1是()的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值X 围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切.22.、[2014·某某卷] 已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x.22.解:方法一:(1)由f (x )=e x-ax ,得f ′(x )=e x-a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x-2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x-2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x.(3)证明:对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x.所以当x >x 0时,e x >x 2>1cx ,即x <c e x.因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x. 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c(k >0),要使不等式x <c e x 成立,只要e x>kx 成立.而要使e x>kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立.即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x.②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c,当x ∈(x 0,+∞)时,恒有x <c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x. 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x>2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x>2x >x ,即x <c e x.②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x-1. 令h ′(x )=0得x =ln 1c.当x >ln 1c时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝ ⎛⎭⎪⎫2c -ln 2c ,易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x.11.、[2014·某某卷] 曲线y =-5e x+3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.11.[2014·某某卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-3 [解析] 易知y ′=2ax -bx 2.根据题意有⎩⎪⎨⎪⎧-5=4a +b2,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,故a +b =-3.23.、[2014·某某卷] 已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.。

2014年高考导数压轴题汇编

2014年高考导数压轴题汇编

2014年高考导数压轴题汇编2014年高考导数压轴题汇编1.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0.又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增.所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).2.[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)方法一:先用数学归纳法证明a n >c 1p. ①当n =1时,由题设知a 1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立.由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c pa -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p =⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k-1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立. 综合①②可得,对一切正整数n ,不等式a n >c 1p均成立. 再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *. 方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p. ①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p, 故当n =1时,不等式a n >a n +1>c 1p成立. ②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p), 即有a k +1>a k +2>c 1p, 所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立. 3.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,故g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c>1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立.令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x. 所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0.即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法二:(1)同方法一.(2)同方法一.(3)对任意给定的正数c ,取x 0=4c , 由(2)知,当x >0时,e x >x 2,所以e x =e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22, 当x >x 0时,e x >⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .方法三:(1)同方法一.(2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=-1<0,即13x 3<e x . 取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .4.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x 1+x(x ≥0). (1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x , g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设n =k 时结论成立,即g k (x )=x 1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增,又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax 1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax 1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1, 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2), 即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12, ln 3-ln 2>13, ……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1, 结论得证.方法三:如图, x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1> x x +1d x = ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.5.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln x x的单调区间; (2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数; (3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论. 22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln x x ,所以f ′(x )=1-ln x x 2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π.于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π. 故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln e e . 由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3; 由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3. 又由(2)知,ln ππ<ln e e ,得πe <e π. 故只需比较e 3与πe 和e π与π3的大小. 由(1)知,当0<x <e 时,f (x )<f (e)=1e, 即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-e π.① 由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3e π>6-e>π,即3ln π>π, 所以e π<π3. 综上可得,3e <e 3<πe <e π<π3<3π, 即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π.6.[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2x x +2. (1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.22.解:(1)f ′(x )=a 1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*) 当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去. 当x ∈(0,x 1)时,f ′(x )<0;当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减,在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增. (2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-a a ,且由f (x )的定义可知, x >-1a且x ≠-2, 所以-21-a a >-1a ,-21-a a ≠-2, 解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点. 而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2. 令2a -1=x .由0<a <1且a ≠12知, 当0<a <12时,-1<x <0; 当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2. (i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0, 因此,g (x )在区间(-1,0)上单调递减,从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0. (ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x 2<0, 因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0. 综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.7.[2014·全国大纲卷] 函数f (x )=ln(x +1)-ax x +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2. 22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2. (i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数;若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数;若x ∈(0,a 2-2a ),则f ′(x )<0,所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数.(2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数.当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2x x +2(x >0). 又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3x x +3(0<x <3). 下面用数学归纳法证明2n +2<a n ≤3n +2. (i)当n =1时,由已知23<a 1=1,故结论成立. (ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立.根据(i)(ii)知对任何n ∈结论都成立.8.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.9.[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x .(1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001). 21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立,所以f (x )在(-∞,+∞)上单调递增. (2)g (x )=f (2x )-4bf (x )=e 2x -e -2x-4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e-2x-2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2).(i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.10.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞), f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22.11.[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2. (1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大. 20.解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-ln a )-ln a (-ln a ,+∞)f ′(x ) + 0 - f (x )-ln a -1这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2. 又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1, 所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.① 令h (x )=(x +1)ln x x -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x(x -1)2. 令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.12.[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8. (ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ), 则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.13.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围. 20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e-2x)=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1. (2)当c =3时,f (x )=e 2x -e -2x-3x ,那么f ′(x )=2e 2x +2e-2x-3≥22e 2x ·2e-2x-3=1>0,故f (x )在R 上为增函数. (3)由(1)知f ′(x )=2e 2x +2e-2x-c ,而2e 2x +2e-2x≥22e 2x ·2e-2x=4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x-c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e-2x-4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).。

2014年高考数学导数题集

2014年高考数学导数题集

2013-2014年高考数学导数题集1.[2014·广东] 曲线y =-5e x +3在点(0,-2)处的切线方程为________. 2.[2014·江苏] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 3.[2014·江西] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 4.[2014·新课标Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 5.[2014·陕西] 设函数f (x )=ln x +mx ,m ∈R ,当m=e(e 为自然对数的底数)时,求f (x )的极小值;6.[2014·安徽] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0,讨论f (x )在其定义域上的单调性;7.[2014·北京] 已知函数f (x )=2x 3-3x ,求f (x )在区间[-2,1]上的最大值;8.[2014·福建] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1,求a 的值及函数f (x )的极值;9.[2014·江苏] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *,求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;10.[2014·新课标Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0,求b ;11.[2014·广东] 已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).求函数f (x )的单调区间;12.[2014·湖北] 求函数f (x )=ln xx的单调区间;13.[2014·湖南] 已知函数f (x )=x cos x -sin x +1(x >0).求f (x )的单调区间;14.[2014·山东] 设函数f (x )=a ln x +x -1x +1,其中a为常数.若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;15.[2014·天津] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R ,求f (x )的单调区间和极值;16.[2014·重庆] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值. 17.[2013重庆理]设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6。

2014年数学导数高考题

2014年数学导数高考题

1. z 是z 的共轭复数. 若2=+z z ,(2)(=-i z z (i 为虚数单位),则=z ( )A. i +1B. i --1C. i +-1D. i -1 8.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13- C.13D.1 12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.13.若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 18、(本小题满分12分) 已知函数.(1) 当时,求的极值; (2) 若在区间上单调递增,求b 的取值范围.1. i 为虚数单位,则=+-2)11(ii ( )B. 1- B. 1C. i -D. i 2. 若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( ) A.2 B.54 C. 1 D.42得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .106.六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 11.复数221ii-=+ 。

21.已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi += (A )54i -(B )54i +(C )34i -(D )34i +(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A )B )C )2(D )4(14)若24()bax x+的展开式中3x 项的系数为20,则22a b +的最小值为 . (15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x关于点(,())x f x 对称.若()h x 是()g x =关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .(18)(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望. (20)(本小题满分13分)设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.7、已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( ) A 、3≤c B 、63≤<c C 、96≤<c D 、9>c 11、已知i 是虚数单位,计算=+-2)1(1i i_______________. 3.定积分1(2)x x e dx +⎰的值为( ).2A e + .1B e + .C e .1D e -6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 9.设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为( )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 21014.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答). (1)复平面内表示复数(12)i i -的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能是(A )0.4 2.3y x =+ (B )2 2.4y x =- (C )29.5y x =-+ (D )0.3 4.4y x =-+ (9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是(A )72 (B )120 (C )144 (D )16822. (本小题满分13分)已知常数20,()ln(1).2xa f x ax x >=+-+函数 (I )讨论()f x 在区间(0,)+∞上的单调性;(II )若()f x 存在两个极值点12,,x x 且12()()0,f x f x +>求a 的取值范围.11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)13.8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) (16)(本小题满分13分)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率。

2014高考真题函数导数(一)教师版

2014高考真题函数导数(一)教师版

2014高考数学真题汇编函数与导数 (一)1、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)1.D [解析] 由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞). 2、.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .32.C [解析] 因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.3.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12 3.A [解析] 由已知可得,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝⎛⎭⎫-π6=sin 5π6=12.4.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数4.C [解析] 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.5、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.5.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].6.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A .1B .2C .3D .-16.A [解析] g (1)=a -1,由f [g (1)]=1,得5|a -1|=1,所以|a -1|=0,故a =1.7、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a7.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .8,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 38.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.B7 对数与对数函数 9.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.9.-14 [解析] f (x )=log 2 x ·log 2(2x )=12log 2 x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.10、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-210.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,则其函数图像不正确;选项B 中的函数为y =x 3,则其函数图像正确;选项C 中的函数为y =(-x )3,则其函数图像不正确;选项D 中的函数为y =log 3(-x ),则其函数图像不正确.11.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 11.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 12、[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e) C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e12.B [解析] 依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e).13.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x13.A [解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .14.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3] 14.C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2. 15、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确.16、[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 16.解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x ,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19.17.[2014·北京卷] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.17.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.18.、[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.18.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e.因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.19、[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).19.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2). (i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693. 20、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .。

【最新原创】2014年高考数学(文)真题分类汇编:B单元++函数与导数

【最新原创】2014年高考数学(文)真题分类汇编:B单元++函数与导数

数 学B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.516、 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x | 2.B 、 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) 3.CB2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( )A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R ) 5.DB3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x | 2.B 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 4.A19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1. 综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 15.①③④ 21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性 4.[2014·重庆卷] 下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x 4.D 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 14.5165.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x 5.A 9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 9.D 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 4.A 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-3219.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立. 因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1. 综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .1 12.D 15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 5.C 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 13.1B5 二次函数 10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝⎛⎭⎫-22,0 14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________. 14.32B6 指数与指数函数 5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b5.B 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 3.D15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] 5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x7.B 12.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.12.10 7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )C .c =adD .d =a +c 7.B 9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 9.B4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a 4.CB7 对数与对数函数 12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________. 12.(-∞,0)11.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.11.2788.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B 13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.53.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 3.D 6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 6.D 7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 7.B 9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 3 9.DB8 幂函数与函数的图像 8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-28.D 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-38.B 15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.⎝⎛⎭⎫0,1613.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,1215.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x 1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.15.(-∞,8] 6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 6.DB9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 6.C7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9 7.C10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 10.A15.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.29.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 9.D 13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,124.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2 4.A15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.15.221.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). 14.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2)B10 函数模型及其应用 8.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 8.B 10.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.AB11 导数及其运算21.、、[2014·陕西卷] 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c.当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________. 11.5x +y +2=011.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-323.、[2014·江苏卷] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立.23.解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin xx3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3.故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2.类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *),所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).21.、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 21.解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <a a -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).20.,[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.20.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12. 又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .因为x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.19.、、[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .19.解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43,所以,S n =(3n -1)4n +1+49.19.、[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.所以,f (x )的单调递增区间是⎝⎛⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭⎫1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2.(2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32.B12 导数的应用 21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.15.[2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x . 15.①③④ 20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 20.、[2014·北京卷] 已知函数f (x )=2x 3-3x .(1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 22.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.。

函数导数高考题专题汇编

函数导数高考题专题汇编

函数专题2014年全国各地高考题导数大题汇总【2014全国新课标卷I 】设函数,ln )(1x be x ae x f x x-+=曲线)(x f y =在))1(,1(f 处的切线方程为.2)1(+-=x e y(1)求;,b a(2)证明.1)(>x f【2014全国新课标卷II 】已知函数.2)(x e e x f x x --=-(1)讨论)(x f 的单调性;(2)设)(4)2()(x bf x f x g -=,当0>x 时,0)(>x g ,求b 的最大值;(3)已知4143.124142.1<<,估计2ln 的近似值(精确到0.001).【2014全国大纲卷】 函数).1()1ln()(>+-+=a ax ax x x f (1)讨论)(x f 的单调性;(2)设11=a ,)1ln(1+=+n n a a ,证明:.2322+≤<+n a n n【2014湖南卷】已知常数0>a ,函数.22)1ln()(+-+=x x ax x f (1)讨论)(x f 在区间),0(+∞上的单调性;(2)若)(x f 存在两个极值点1x ,2x ,且0)()(21>+x f x f ,求a 的取值范围.【2014四川卷】已知函数1)(2---=bx ax e x f x ,其中R b a ∈,,71828.2=e …为自然对数的底数.(1)设)(x g 是函数)(x f 的导函数,求函数)(x g 在区间[]1,0上的最小值;(2)若0)1(=f ,函数)(x f 在(0,1)内有零点,求a 的取值范围.【2014浙江卷】 已知函数a x x x f -+=3)(3 )(R a ∈/(1)若)(x f 在[]1,1-上的最大值和最小值分别记为)(a M ,)(a m ,求)()(a m a M -; (2)设R b ∈.若[]4)(2≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围. 【2014浙江卷】π为圆周率,71828.2=e …为自然对数的底数.(1)求函数xx x f ln )(=的单调性; (2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(3)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论.【2014陕西卷】设函数)1ln()(+=x x f ,)()(x f x x g '=,0≥x ,其中)(x f '是)(x f 的导函数.(1)令)()(1x g x g =,))(()(1x g g x g n n =+,N n ∈,求)(x g n 的表达式;(2)若)()(x ag x f ≥恒成立,求实数a 的取值范围;(3)设+∈N n ,比较++)2()1(g g …)(n g +与)(n f n -的大小,并加以证明.【2014江西卷】 已知函数x b bx x x f 21)()(2-++= ).(R b ∈(1)4=b 时,求)(x f 的极值;(2)若)(x f 在区间(0,31)上单调递增,求b 的取值范围. 【2014重庆卷】已知函数cx be ae x f x x --=-22)( ),,(R c b a ∈的导函数)(x f '为偶函数,且曲线)(x f y =在(0,)0(f )处的切线斜率为.4c -(1)确定b a ,的值;(2)若3=c ,判断)(x f 的单调性;(3)若)(x f 有极值,求c 的取值范围.【2014山东卷】 设函数)ln 2()(2x xk x e x f x +-= (k 为常数,71828.2=e …为自然对数的底数.) (1)当0≤k 时,求函数)(x f 的单调区间;(2)若函数)(x f 在(0,2)内存在两个极值点,求k 的取值范围.【2014福建卷】已知函数ax e x f x -=)((a 为常数)的图像与y 轴交于点A ,曲线)(x f y =在点A 处的切线斜率为.1-(1)求a 的值及函数)(x f 的极值;(2)证明:当0>x 时,x e x <2;(3)证明:对任意给定的正数c ,总存在0x ,使得当),(0+∞∈x x 时,恒有.2x ce x <【2014北京卷】已知函数x x x x f sin cos )(-=,.2,0⎥⎦⎤⎢⎣⎡∈πx (1)求证:0)(≤x f ;(2)若b x x a <<sin 对)2,0(π∈x 恒成立,求a 的最大值与b 的最小值. 【2014天津卷】 设x ae x x f -=)( )(R a ∈.已知函数)(x f y =有两个零点1x ,2x ,且.21x x <(1)求a 的取值范围;(2)证明:21x x 随着a 的减小而增大; (3)证明:21x x +随着a 的减小而增大.【2014江苏卷】已知函数x x e e x f -+=)(,其中e 为自然对数的底数.(1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式1)(-+≤-m e x mf x 在(0,∞+)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在[)+∞∈,10x ,使)3()(0300x x a x f +-<成立.试比较1-a e 与1-e a 的大小,并证明你的结论.2015年函数解答题汇编全国卷1理科已知函数f (x )=x 3+ax +14,g (x )=-lnx . (Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.全国卷2理科设函数f(x)=e mx +x 2-mx .(Ⅰ)证明:f (x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1, x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤e -1,求m 的取值范围 全国卷2文科已知函数f (x )=ln x +a (1- x )(I )讨论f (x )的单调性; (II )当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围. 北京理已知函数()1ln1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 北京文设函数. (1)求的单调区间和极值;(2)证明:若存在零点,则在区间上仅有一个零点. ()2ln ,02x f x k x k =->()f x ()f x ()fx (天津文已知函数4()4,,f x x x x R =-?其中*n N Î,且n 2³.(1)求()f x 的单调性;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £; (3)若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.重庆理 设函数23()()xx ax f x a R e +=∈ (1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()f x 在[3,)+∞上为减函数,求a 的取值范围;重庆文已知函数,其中,设是的导函数. (Ⅰ)讨论的单调性;(Ⅱ)证明:存在,使得恒成立,且在区间(1,)内有唯一解。

导数2014-2016高考文科数学试题

导数2014-2016高考文科数学试题

三年高考〔2014-2016〕数学〔文〕试题分项版解析第三章 导数一、选择题1. 【2015高考,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量〔升〕加油时的累计里程〔千米〕2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间,该车每100千米平均耗油量为〔 〕 A .6升 B .8升 C .10升 D .12升2. 【 2014文9】假设1201x x <<<,那么〔 〕A.2121ln ln x xe e x x ->-B.2121ln ln x xe e x x -<-C.1221xxx e x e >D.1221xxx e x e <3.【2015高考,文8】设函数()ln(1)ln(1)f x x x =+--,那么()f x 是( )A 、奇函数,且在〔0,1〕上是增函数B 、奇函数,且在〔0,1〕上是减函数C 、偶函数,且在〔0,1〕上是增函数D 、偶函数,且在〔0,1〕上是减函数4. 【2014全国2,文11】假设函数()f x kx Inx =-在区间()1,+∞单调递增,那么k 的取值围是〔 〕〔A 〕(],2-∞- 〔B 〕(],1-∞- 〔C 〕[)2,+∞ 〔D 〕[)1,+∞5.【2016高考新课标1文数】假设函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,那么a 的取值围是〔 〕〔A 〕[]1,1-〔B 〕11,3⎡⎤-⎢⎥⎣⎦〔C 〕11,33⎡⎤-⎢⎥⎣⎦〔D 〕11,3⎡⎤--⎢⎥⎣⎦6. 【2014全国1,文12】函数32()31f x ax x =-+,假设()f x 存在唯一的零点0x ,且00x >,那么a 的取值围是( )()2,+∞ 〔B 〕()1,+∞ 〔C 〕(),2-∞- 〔D 〕(),1-∞-7.【2016高考文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,那么△PAB 的面积的取值围是( ) (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)8. 【2016高考文科】a 函数3()12f x x x =-的极小值点,那么a =( )(A)-4 (B) -2 (C)4 (D)29.【2015高考,文12】“对任意(0,)2x π∈,sin cos k x x x <〞是“1k <〞的〔 〕A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件10. (2014课标全国Ⅰ,文12)函数f (x )=ax 3-3x 2+1,假设f (x )存在唯一的零点x 0,且x 0>0,那么a的取值围是( ).A .(2,+∞) B.(1,+∞) C .(-∞,-2) D .(-∞,-1)11. 【2014文12】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,那么实数a 的取值围是〔 〕A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--二、填空题1. 【2014高考卷.文.11】曲线53x y e =-+在点()0,2-处的切线方程为________.2. [2016高考新课标Ⅲ文数]()f x 为偶函数,当0x ≤时,1()x f x e x --=-,那么曲线()y f x =在(1,2)处的切线方程式_____________________________.3. 【2015高考,文15】函数x y xe =在其极值点处的切线方程为____________.4.【2015高考新课标1,文14】函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,那么a =.5. 【2014,文15】假设直线l 与曲线C 满足以下两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,那么称直线l 在点P 处“切过〞曲线C ,以下命题正确的选项是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过〞曲线C :3yx =②直线1:-=x l 在点()0,1-P 处“切过〞曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过〞曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过〞曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过〞曲线C :x y ln =6. 【2015高考,文11】函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,假设()13f '= ,那么a 的值为.7. 【2015新课标2文16】曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,那么a =.三、解答题1.【2014高考文第20题】〔本小题总分值13分〕函数3()23f x x x =-.〔1〕求()f x 在区间[2,1]-上的最大值;〔2〕假设过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值围;〔3〕问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?〔只需写出结论〕2.【2015高考,文19】〔本小题总分值13分〕设函数()2ln 2x f x k x =-,0k >. 〔I 〕求()f x 的单调区间和极值;〔II 〕证明:假设()f x 存在零点,那么()f x 在区间(e ⎤⎦上仅有一个零点.3. 【2014高考卷.文.21】(本小题总分值14分)函数()()32113f x x x ax a R =+++∈. (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭.4.【2016高考新课标1文数】〔本小题总分值12分〕函数()()()22e 1xf x x a x =-+-.(I)讨论()f x 的单调性;(II)假设()f x 有两个零点,求a 的取值围.5.【2015高考,文21】〔本小题总分值14分〕设a 为实数,函数()()()21f x x a x a a a =-+---.〔1〕假设()01f ≤,求a 的取值围; 〔2〕讨论()f x 的单调性; 〔3〕当2a ≥时,讨论()4f x x+在区间()0,+∞的零点个数. 6. 【 2014文21】函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;〔2〕记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<. 7.【2016高考新课标2文数】函数()(1)ln (1)f x x x a x =+--.〔I 〕当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; 〔Ⅱ〕假设当()1,x ∈+∞时,()0f x >,求a 的取值围.8.【2014.文20】〔此题总分值13分)设函数.,11ln )(为常数其中a x x x a x f +-+= (1)假设0=a ,求曲线))1(,1()(f x f y 在点=处的切线方程; (2)讨论函数)(x f 的单调性.9.[2016高考新课标Ⅲ文数]设函数()ln 1f x x x =-+.〔I 〕讨论()f x 的单调性; 〔II 〕证明当(1,)x ∈+∞时,11ln x x x-<<;〔III 〕设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.10. 【2015高考,文20】设函数. 曲线在点(1,(1))f 处的切线与直线平行.〔Ⅰ〕求a 的值;〔Ⅱ〕是否存在自然数k ,使得方程()()f x g x =在(,1)k k +存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;〔Ⅲ〕设函数()min{(),()}m x f x g x =〔{},min p q 表示,,p q 中的较小值〕,求()m x 的最大值.11. 【2016高考文数】〔本小题13分〕设函数()32.f x x ax bx c =+++〔I 〕求曲线().y f x =在点()()0,0f 处的切线方程;〔II 〕设4a b ==,假设函数()f x 有三个不同零点,求c 的取值围;〔III 〕求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.12. 【2014高考版文第21题】设函数()ln ,mf x x m R x=+∈. (1)当m e =〔e 为自然对数的底数〕时,求()f x 的最小值;(2)讨论函数()'()3xg x f x =-零点的个数;〔3〕假设对任意()()0,1f b f a b ab a->><-恒成立,求m 的取值围.13. 【2016高考文数】(本小题总分值13分)设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)f (x )在x =1处取得极大值.数a 的取值围.14. 【2014全国2,文21】〔本小题总分值12分〕函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.〔Ⅰ〕求a ; 〔Ⅱ〕证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.15. 【2016高考文数】〔〔本小题总分值14分〕设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, 〔Ⅰ〕求)(x f 的单调区间;〔Ⅱ〕假设)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; 〔Ⅲ〕设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.16. 【2016高考文数】〔此题总分值15分〕设函数()f x =311x x++,[0,1]x ∈.证明: 〔I 〕()f x 21x x ≥-+;〔II 〕34<()f x 32≤. 17. 【2014,文21】函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。

导数2014-2016高考文科数学试题

导数2014-2016高考文科数学试题

1, 2,(B ) 1,(C ) (D )三年高考(2014-2016 )数学(文)试题分项版解析第三章导数一、选择题A . 6升取值范围是()注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每 1.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.100千米平均耗油量为(2.【2014湖南文9】若0x-i x 21,则(.x 2 x 1 . .A. e e In x 2 In x 1B. e x2 e x1In x 2 In x-ix ,xC. x 2e“D.x 2e 'x23.【2015高考湖南,文8】设函数f (x ) ln(1 x) ln(1 x),则 f (x)是(A 、奇函数,且在(0,1) 上是增函数B 、奇函数,且在(0,1) 上是减函数C 、偶函数,且在(0,1) 上是增函数D 、偶函数,且在(0,1) 上是减函数4.【2014全国2,文 11】若函数f x kx Inx 在区间 1,单调递增,则k 的取值范围是((A) (B)(C ) 2,(D) 1,5.【2016咼考新课标 1文数】若函数 f(x)x 」s in2x 3a sin x 在单调递增,则a 的取值范围是((A)1,1 (B )1,1 (C )-33(D)6.【2014全国1,文12】已知函数f (x ) 3ax3x 2若f (x )存在唯一的零点X 。

,且X 。

0 ,则a 的.10 升__ _ In xOx1 一7. 【2016高考四川文科】设直线i 12分别是函数f(x)=‘'图象上点P i, P2处的切线,I lIn x,x 1,与I2垂直相交于点P,且l i,I2分别与y轴相交于点A,B,则△ PAB的面积的取值范围是()(A)(0,1) (B) (0,2) (C) (0,+ g) (D) (1,+ g)8. 【2016高考四川文科】已知a函数f (x) x3 12x的极小值点,贝U a=()(A)-4 (B) -2 (C)4 (D)29. 【2015高考福建,文12】“对任意x (0, ) , ksinxcosx x ”是“ k 1 ”的( )2A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件10. (2014课标全国I,文12)已知函数f(x) = ax3-3x2+ 1,若f(x)存在唯一的零点x°,且x0>0,则a的取值范围是().A. (2,+g ) B . (1,+g )C. (-g,- 2) D . (-g,- 1)11. 【2014辽宁文12】当x [ 2,1]时,不等式ax3 x2 4x 3 0恒成立,则实数a的取值范围是( )9A. [ 5, 3]B. [ 6, -]C. [ 6, 2]D. [ 4, 3]8二、填空题1. 【2014高考广东卷.文.11】曲线y 5e x 3在点0, 2处的切线方程为______________ .2. [2016高考新课标川文数]已知f x为偶函数,当x 0时,f(x) e x 1 x,则曲线y f x在(1,2)处的切线方程式________________________________ .3. 【2015高考陕西,文15】函数y xe x在其极值点处的切线方程为___________________ .4. 【2015高考新课标1,文14】已知函数f x ax3x 1的图像在点1,f 1的处的切线过点2,7 ,则a _______ .5. 【2014,安徽文15】若直线l与曲线C满足下列两个条件:(i)直线l在点P x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年各省市文科高考试题汇编------导数
1.(全国新标Ⅰ,12)已知32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( A ) A.(,2)-∞- B.(1,)+∞ C. (2,)+∞ D. (,1)-∞-
2. (全国新标Ⅰ,21)已知2
1()ln (1)2
a f x a x x bx a -=+
-≠,若()f x 在点(1,(1))f 处的斜率为0。

(1)求b 的值;
*(2)若存在01x ≥,使得0()1
a
f x a <
-,求a 的取值范围.
令'
12()0,11a f x x x a =⇒=
=-, 由11112
a a a a ≤⇒≤>-或
()f x 的最小值为1(1)2a f --=
,只需1(1)1121
a a
f a a --=
<⇒<<-; (ⅱ)若1a >,
()f x 的最小值为1(1)2a f --=
,只需1(1)1121
a a
f a a --=
<⇒<<- 与1a >矛盾;
(ⅲ)
112a <<,则11a a >-,故当'(1,),()01a
x f x a
∈<-
()f x 的最小值为()1a f a - , 只需()11
a a
f a a <--
3. (全国新标Ⅱ,3)函数()f x 在0x x =处导数存在。

若'00:()0;:p f x q x x ==是()f x 的极值点,则( C )
A.p 是q 的充要条件
B. p 是q 的充分不必要条件
C.p 是q 的必要不充分条件
D. p 是q 的既不充分也不必要条件
4. (全国新标Ⅱ,11)函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( D )
A.(,2]-∞-
B. (,1]-∞-
C. [2,)+∞
D. [1,)+∞
5. (全国新标Ⅱ,21)函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2.
(1)求a 的值;
*(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.
当0x >时,
1,(1)0k k x <∴->,只需证明:32()340(0)h x x x x =-+≥>
'212()3600,2h x x x x x =-=⇒==
'
'
(0,2),()0;(2,),()0x h x x h x ∈<∈+>当时当时,所以()h x 的最小值为(2)0h = 所以()g x 在(0,+∞)没有实数根。

综上所述,当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 6.(全国大纲,21)函数3
2
()33(0)f x ax x x a =++≠. (1)讨论()f x 的单调性;
(2)若()f x 在区间(1,2)是增函数,求a 的取值范围.
解法2:分离参数法
7.(山东,20))设函数1
()ln 1
x f x a x x -=+
+,其中a 为常数。

(1)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程。

(2)讨论函数()y f x =的单调性。

8.(安徽,20)函数32
()(1)1f x x x a x =--+++,其中0a >
(1)讨论()f x 在其定义域内的单调性;
(2)当[0,1]x ∈,求()f x 取得最大最小值时x 的值。

9.(浙江,7)已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f <-=-=-≤,则( C )
A.3c ≤
B. 36c <≤
C. 69c <≤
D. 9c > 10. (浙江,21)已知3()3||(0)f x x x a a =+->,若()f x 在[1,1]-上的最小值记为()g a (1)求()g a ; (2)证明:当[1,1]x ∈-时,恒有()()4f x g a ≤+.
11.(北京,20)已知函数3()23f x x x =- (1)求()f x 在区间[2,1]-上的最大值;
(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;
(3)过点A(-1,2)、B(2,10)、C(0,2)分别存在几条直线与曲线()y f x =相切?(只需写出结论). 解析:
12.(辽宁,12)当[2,1]x ∈-时,不等式3
2
430ax x x -++≥恒成立,则实数a 的取值范围为( C )
A.[5,3]--
B. 9[6,]8
-- C. [6,2]-- D. [4,3]--
13.(重庆,19)已知函数3
()ln ()22
x a f x x a R x =
+--∈,且曲线()y f x =在点(1,(1))f 处的切线垂直于直线1
2
y x =。

(1)求a 的值;
(2)求函数()y f x =的单调区间和极值。

相关文档
最新文档