MC33063计算
33063应用
电源电路一、使用LM2575的降压开关电源LM2575是可以输出1A电流,1A时效率高达80%以上的降压开关电源芯片,开关工作频率是52KHz。
它的内部结构如下图所示:它内置了功率管和过流保护电路,在外部只需加少量的滤波元件即可构成一个开关电源模块。
在实际电路的设计中,对原电路做了一些改动:在这个电路中,高压输入端加了一个二极管,防止不慎接反电源引起电容爆炸和芯片损坏。
保险丝是1A,防止输入电压超过40V或电源板内部短路引起的大电流造成的危害。
在图中,保险丝接在3300uF电容的后端,防止加电时电容大电流充电烧断保险丝。
3300uF的电容起储能和电源滤波的作用,在电池组供电时主要起储能作用,电容接在高压端更利于储能,因为如果电源暂时断电,稳压电路前面的电压逐渐下降不会影响输出电压。
如果使用全、半波整流的工频交流或者高频开关电源供电,应该在这个电容上再并联一个瓷片电容来吸收高频。
LM2575和第一级滤波电路是按照LM2575的datasheet说明里接的,在后面又加了第二级滤波以进一步减小纹波。
发光二极管D2作输出只是,另外在空载时,D2可以提供一个负载,使空载电压不至于偏离稳压值。
在机器人的应用中,LM2575把24~30V的电压降至9~12V,供传感器板和主控板使用。
主控板带有线性稳压,所以本电路对输出电压的精确程度要求不是很高,所以在输出端又串接了一个肖特基二极管防止用户错把高压接到输出端。
如果该电源板直接对单片机供电,这个二极管不能接,而且最好把电源部分集成到主控板上,防止连线不当造成的干扰。
所有电感用黑色铁氧体磁芯自己绕制,不要用色环电感(小于200mA的除外)。
漆包线直径0.51mm。
L1用磁罐,L2用磁环。
二、使用比较器的降压开关电源使用滞回比较器作自激振荡的12V 1A开关稳压电源,是工控主板用5V 10A开关电源(项目被取消,未实际制作)的技术验证机。
比较器A接成滞回比较器作自激振荡,C1起加速作用。
MC 中文资料
MC34063A,MC33063A,SC34063A,SC33063A, NCV33063A1.5A, 升压、降压转换用开关调整器。
MC34063A系列是包含DC-DC转换器基本功能的单片集成控制电路。
该器件的内部组成包括带温度补偿的参考电压、比较器、带限流电路的占空比控制振荡器、驱动器、大电流输出开关。
该器件专用于降压、升压以及电压极性反转场合,可以减少外部元件的使用数量。
获取更详细的设计参考信息,可参阅应用笔记“AN920A/D”或“AN954/D”.特性●工作输入电压3.0V-40V●低静态电流●具有限流功能●输出开关电流可达1.5A●输出电压可调●工作频率可至100kHz●参考电压精度2%●支持无铅封装封装印记说明:x = 3或4A = 封装地区L,WL = 晶片批号Y,YY = 年份W,WW = 周次G或■ = 无铅封装本手册封装尺寸部分有关于订货、包装的详细信息。
“”(底部视图)该器件包含79个有源晶体管图1 等效原理图MC34063A,MC33063A,SC34063A,SC33063A,NCV33063A图2 引脚分布强制性地超出极限参数将损坏器件。
极限参数只是强制性参数,不代表正常工作要超出推荐工作条件,长期超出推荐工作条件的操作将影响器件的可靠性。
1.必须注意封装的最大功耗限制。
2.该系列器件具备静电放电防护,并通过了以下试验:人体放电模式4000V,美军标MIL-STD-883,3015方式.机械模式400V.3.NCV前缀系列用于汽车电子。
电气特性(VCC=5.0V,T=T至T【注4】,除非另有说明。
)4.对于MC34063,SC34063,Tlow=0℃;对于MC33063,SC33063,MC33063V,NCV33063,Tlow=-40℃;对于MC34063,SC34063,Thigh =+70℃;对于MC33063,SC33063,Thigh=+85℃;对于MC33063V,NCV33063,Thigh =+125.℃5.测试时采用了低占空比以保证结温尽可能接近环境温度。
MC33063ADR2G中文资料
MC34063A, MC33063A,NCV33063A1.5 A, Step−Up/Down/Inverting Switching RegulatorsThe MC34063A Series is a monolithic control circuit containing the primary functions required for DC−to−DC converters. These devices consist of an internal temperature compensated reference, comparator,controlled duty cycle oscillator with an active current limit circuit,driver and high current output switch. This series was specifically designed to be incorporated in Step−Down and Step−Up and V oltage−Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.Features•Operation from 3.0 V to 40 V Input •Low Standby Current •Current Limiting•Output Switch Current to 1.5 A •Output V oltage Adjustable•Frequency Operation to 100 kHz •Precision 2% Reference•Pb−Free Packages are AvailableFigure 1. Representative Schematic DiagramDrive CollectorI pk SenseV CCComparator Inverting InputSwitch CollectorSwitch EmitterTiming CapacitorGND(Bottom View)This device contains 51 active transistors.SOIC−8D SUFFIX CASE 751PDIP−8P , P1 SUFFIX CASE 6261See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.ORDERING INFORMATION1Switch CollectorSwitch Emitter Timing CapacitorGNDDriver Collector I pk Sense V CC Comparator Inverting Input(Top View)2345678PIN CONNECTIONSx = 3 or 4A = Assembly Location L, WL = Wafer Lot Y , YY = YearW, WW = Work WeekG or G= Pb−Free Package183x063AP1AWL YYWWG1833063AVPAWL YYWWG 18MARKING DIAGRAMSMAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC40Vdc Comparator Input Voltage Range V IR−0.3 to +40Vdc Switch Collector Voltage V C(switch)40Vdc Switch Emitter Voltage (V Pin1 = 40 V)V E(switch)40Vdc Switch Collector to Emitter Voltage V CE(switch)40Vdc Driver Collector Voltage V C(driver)40Vdc Driver Collector Current (Note 1)I C(driver)100mA Switch Current I SW 1.5A Power Dissipation and Thermal CharacteristicsPlastic Package, P, P1 SuffixT A = 25°C P D 1.25W Thermal Resistance R q JA100°C/W SOIC Package, D SuffixT A = 25°C P D625mW Thermal Resistance R q JA160°C/W Operating Junction Temperature T J+150°C Operating Ambient Temperature Range T A°C MC34063A 0 to +70MC33063AV, NCV33063A−40 to +125MC33063A−40 to +85Storage Temperature Range T stg−65 to +150°C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.Maximum package power dissipation limits must be observed.2.This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL−STD−883, Method 3015.Machine Model Method 400 V.3.NCV prefix is for automotive and other applications requiring site and change control.ELECTRICAL CHARACTERISTICS (V CC = 5.0 V, T A = T low to T high[Note 4], unless otherwise specified.)Characteristics Symbol Min Typ Max Unit OSCILLATORFrequency (V Pin5 = 0 V, C T = 1.0 nF, T A = 25°C)f osc243342kHz Charge Current (V CC = 5.0 V to 40 V, T A = 25°C)I chg243542m A Discharge Current (V CC = 5.0 V to 40 V, T A = 25°C)I dischg140220260m A Discharge to Charge Current Ratio (Pin 7 to V CC, T A = 25°C)I dischg/I chg 5.2 6.57.5−Current Limit Sense Voltage (I chg = I dischg, T A = 25°C)V ipk(sense)250300350mV OUTPUT SWITCH (Note 5)Saturation Voltage, Darlington Connection(I SW = 1.0 A, Pins 1, 8 connected)V CE(sat)− 1.0 1.3VSaturation Voltage (Note 6)(I SW = 1.0 A, R Pin8 = 82 W to V CC, Forced b] 20)V CE(sat)−0.450.7V DC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C)h FE5075−−Collector Off−State Current (V CE = 40 V)I C(off)−0.01100m A COMPARATORThreshold Voltage T A = 25°CT A = T low to T high V th1.2251.211.25−1.2751.29VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) MC33063A, MC34063AMC33063AV, NCV33063A Reg line−−1.41.45.06.0mVInput Bias Current (V in = 0 V)I IB−−20−400nA TOTAL DEVICESupply Current (V CC = 5.0 V to 40 V, C T = 1.0 nF, Pin 7 = V CC,V Pin5 > V th, Pin 2 = GND, remaining pins open)I CC−− 4.0mA4.T low = 0°C for MC34063A, −40°C for MC33063A, AV, NCV33063AT high = +70°C for MC34063A, +85°C for MC33063A, +125°C for MC33063AV, NCV33063A5.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.6.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended:Forced b of output switch:I C outputI C driver–7.0mA*w10*The 100 W resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.Figure 2. Output Switch On−Off Time versusOscillator Timing CapacitorFigure 3. Timing Capacitor Waveform0.010.020.050.10.20.5 1.0 2.05.010C T , OSCILLATOR TIMING CAPACITOR (nF), O U T P U T S W I T C H O N -O F F T I M E ( s )o n −o f f μt 10 m s/DIV, O S C I L L A T O R V O L T A G E (V )O S C 200 m V /D I VV V CC = 5.0 V Pin 7 = V CC Pin 2 = GNDPins 1, 5, 8 = Open C T = 1.0 nF T A = 25°C10005002001005020105.02.01.0Figure 6. Current Limit Sense Voltageversus Temperature Figure 7. Standby Supply Current versusSupply Voltage, S A T U R A T I O N V O L T A G E (V )C E (s a t )V −55−25025*******125, C U R R E N T L I M I T S E N S E V O L T A G E (V )I P K (s e n s e )T A , AMBIENT TEMPERATURE (°C)V 05.010152025303540V CC , SUPPLY VOLTAGE (V)1.81.71.61.51.41.31.21.11.04003803603403203002802602402202007.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.170 m HV in12 VV outOptional FilterTest Conditions Results Line Regulation V in = 8.0 V to 16 V, I O = 175 mA30 mV = ±0.05%Load Regulation V in = 12 V, I O = 75 mA to 175 mA10 mV = ±0.017%Output Ripple V in = 12 V, I O = 175 mA400 mVppEfficiency V in = 12 V, I O = 175 mA87.7%Output Ripple With Optional Filter V in = 12 V, I O = 175 mA40 mVppFigure 8. Step−Up ConverterFigure 9. External Current Boost Connections for I C Peak Greater than 1.5 A9a. External NPN Switch9b. External NPN Saturated Switch(See Note 8)8.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended.V out Optional FilterV in 25 VTestConditionsResults Line Regulation V in = 15 V to 25 V, I O = 500 mA 12 mV = ±0.12%Load Regulation V in = 25 V, I O = 50 mA to 500 mA 3.0 mV = ±0.03%Output Ripple V in = 25 V, I O = 500 mA 120 mVpp Short Circuit Current V in = 25 V, R L = 0.1 W 1.1 A EfficiencyV in = 25 V, I O = 500 mA 83.7%Output Ripple With Optional FilterV in = 25 V, I O = 500 mA40 mVppFigure 10. Step−Down Converter11a. External NPN Switch11b. External PNP Saturated SwitchFigure 11. External Current Boost Connections for I C Peak Greater than 1.5 AV outOptional FilterV TestConditionsResults Line Regulation V in = 4.5 V to 6.0 V, I O = 100 mA 3.0 mV = ±0.012%Load Regulation V in = 5.0 V, I O = 10 mA to 100 mA 0.022 V = ±0.09%Output Ripple V in = 5.0 V, I O = 100 mA 500 mVpp Short Circuit Current V in = 5.0 V, R L = 0.1 W 910 mA EfficiencyV in = 5.0 V, I O = 100 mA 62.2%Output Ripple With Optional FilterV in = 5.0 V, I O = 100 mA70 mVppFigure 12. Voltage Inverting Converter13a. External NPN Switch13b. External PNP Saturated SwitchFigure 13. External Current Boost Connections for I C Peak Greater than 1.5 A(Top view, copper foil as seen through the board from the component side)(Top View, Component Side)*Optional Filter.Figure 14. Printed Circuit Board and Component Layout(Circuits of Figures 8, 10, 12)INDUCTOR DATAConverter Inductance (m H)Turns/Wire Step−Up 17038 Turns of #22 AWG Step−Down 22048 Turns of #22 AWG Voltage−Inverting8828 Turns of #22 AWGAll inductors are wound on Magnetics Inc. 55117 toroidal core.V sat = Saturation voltage of the output switch.V F = Forward voltage drop of the output rectifier.The following power supply characteristics must be chosen:V in − Nominal input voltage.V out − Desired output voltage,I out − Desired output current.f min − Minimum desired output switching frequency at the selected values of V in and I O .V ripple(pp) − Desired peak−to−peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to itsequivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.NOTE:For further information refer to Application Note AN920A/D and AN954/D.|V out |+ 1.25ǒ1)R2R1ǓFigure 15. Design Formula TableORDERING INFORMATIONDevicePackage Shipping †MC33063AD SOIC−898 Units / Rail MC33063ADG SOIC−8(Pb−Free)98 Units / Rail MC33063ADR2SOIC−82500 Units / Tape & Reel MC33063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC33063AP1PDIP−850 Units / Rail MC33063AP1G PDIP−8(Pb−Free)50 Units / Rail MC33063AVD SOIC−898 Units / Rail MC33063AVDG SOIC−8(Pb−Free)98 Units / RailMC33063AVDR2SOIC−82500 Units / Tape & ReelMC33063AVDR2G SOIC−8(Pb−Free)NCV33063AVDR2*SOIC−8NCV33063AVDR2G*SOIC−8(Pb−Free)MC33063AVP PDIP−850 Units / Rail MC33063AVPG PDIP−8(Pb−Free)50 Units / Rail MC34063AD SOIC−898 Units / Rail MC34063ADG SOIC−8(Pb−Free)98 Units / Rail MC34063ADR2SOIC−82500 Units / Tape & Reel MC34063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC34063AP1PDIP−850 Units / Rail MC34063AP1GPDIP−8(Pb−Free)50 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.*NCV33063A: T low = −40°C, T high = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.PACKAGE DIMENSIONSSOIC−8 NB D SUFFIX CASE 751−07ISSUE AG*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ǒmm inchesǓSCALE 6:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.DIM A MIN MAX MIN MAX INCHES4.805.000.1890.197MILLIMETERS B 3.80 4.000.1500.157C 1.35 1.750.0530.069D 0.330.510.0130.020G 1.27 BSC 0.050 BSC H 0.100.250.0040.010J 0.190.250.0070.010K 0.40 1.270.0160.050M 0 8 0 8 N 0.250.500.0100.020S5.806.200.2280.244YM0.25 (0.010)Z SXS____PACKAGE DIMENSIONSPDIP−8P , P1 SUFFIX CASE 626−05ISSUE LNOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.DIM MIN MAX MIN MAX INCHESMILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.SENSEFET is a trademark of Semiconductor Components Industries, LLC.PUBLICATION ORDERING INFORMATION。
MC33063AP1G中文资料
MC34063A, MC33063A,NCV33063A1.5 A, Step−Up/Down/Inverting Switching RegulatorsThe MC34063A Series is a monolithic control circuit containing the primary functions required for DC−to−DC converters. These devices consist of an internal temperature compensated reference, comparator,controlled duty cycle oscillator with an active current limit circuit,driver and high current output switch. This series was specifically designed to be incorporated in Step−Down and Step−Up and V oltage−Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.Features•Operation from 3.0 V to 40 V Input •Low Standby Current •Current Limiting•Output Switch Current to 1.5 A •Output V oltage Adjustable•Frequency Operation to 100 kHz •Precision 2% Reference•Pb−Free Packages are AvailableFigure 1. Representative Schematic DiagramDrive CollectorI pk SenseV CCComparator Inverting InputSwitch CollectorSwitch EmitterTiming CapacitorGND(Bottom View)This device contains 51 active transistors.SOIC−8D SUFFIX CASE 751PDIP−8P , P1 SUFFIX CASE 6261See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.ORDERING INFORMATION1Switch CollectorSwitch Emitter Timing CapacitorGNDDriver Collector I pk Sense V CC Comparator Inverting Input(Top View)2345678PIN CONNECTIONSx = 3 or 4A = Assembly Location L, WL = Wafer Lot Y , YY = YearW, WW = Work WeekG or G= Pb−Free Package183x063AP1AWL YYWWG1833063AVPAWL YYWWG 18MARKING DIAGRAMSMAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC40Vdc Comparator Input Voltage Range V IR−0.3 to +40Vdc Switch Collector Voltage V C(switch)40Vdc Switch Emitter Voltage (V Pin1 = 40 V)V E(switch)40Vdc Switch Collector to Emitter Voltage V CE(switch)40Vdc Driver Collector Voltage V C(driver)40Vdc Driver Collector Current (Note 1)I C(driver)100mA Switch Current I SW 1.5A Power Dissipation and Thermal CharacteristicsPlastic Package, P, P1 SuffixT A = 25°C P D 1.25W Thermal Resistance R q JA100°C/W SOIC Package, D SuffixT A = 25°C P D625mW Thermal Resistance R q JA160°C/W Operating Junction Temperature T J+150°C Operating Ambient Temperature Range T A°C MC34063A 0 to +70MC33063AV, NCV33063A−40 to +125MC33063A−40 to +85Storage Temperature Range T stg−65 to +150°C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.Maximum package power dissipation limits must be observed.2.This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL−STD−883, Method 3015.Machine Model Method 400 V.3.NCV prefix is for automotive and other applications requiring site and change control.ELECTRICAL CHARACTERISTICS (V CC = 5.0 V, T A = T low to T high[Note 4], unless otherwise specified.)Characteristics Symbol Min Typ Max Unit OSCILLATORFrequency (V Pin5 = 0 V, C T = 1.0 nF, T A = 25°C)f osc243342kHz Charge Current (V CC = 5.0 V to 40 V, T A = 25°C)I chg243542m A Discharge Current (V CC = 5.0 V to 40 V, T A = 25°C)I dischg140220260m A Discharge to Charge Current Ratio (Pin 7 to V CC, T A = 25°C)I dischg/I chg 5.2 6.57.5−Current Limit Sense Voltage (I chg = I dischg, T A = 25°C)V ipk(sense)250300350mV OUTPUT SWITCH (Note 5)Saturation Voltage, Darlington Connection(I SW = 1.0 A, Pins 1, 8 connected)V CE(sat)− 1.0 1.3VSaturation Voltage (Note 6)(I SW = 1.0 A, R Pin8 = 82 W to V CC, Forced b] 20)V CE(sat)−0.450.7V DC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C)h FE5075−−Collector Off−State Current (V CE = 40 V)I C(off)−0.01100m A COMPARATORThreshold Voltage T A = 25°CT A = T low to T high V th1.2251.211.25−1.2751.29VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) MC33063A, MC34063AMC33063AV, NCV33063A Reg line−−1.41.45.06.0mVInput Bias Current (V in = 0 V)I IB−−20−400nA TOTAL DEVICESupply Current (V CC = 5.0 V to 40 V, C T = 1.0 nF, Pin 7 = V CC,V Pin5 > V th, Pin 2 = GND, remaining pins open)I CC−− 4.0mA4.T low = 0°C for MC34063A, −40°C for MC33063A, AV, NCV33063AT high = +70°C for MC34063A, +85°C for MC33063A, +125°C for MC33063AV, NCV33063A5.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.6.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended:Forced b of output switch:I C outputI C driver–7.0mA*w10*The 100 W resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.Figure 2. Output Switch On−Off Time versusOscillator Timing CapacitorFigure 3. Timing Capacitor Waveform0.010.020.050.10.20.5 1.0 2.05.010C T , OSCILLATOR TIMING CAPACITOR (nF), O U T P U T S W I T C H O N -O F F T I M E ( s )o n −o f f μt 10 m s/DIV, O S C I L L A T O R V O L T A G E (V )O S C 200 m V /D I VV V CC = 5.0 V Pin 7 = V CC Pin 2 = GNDPins 1, 5, 8 = Open C T = 1.0 nF T A = 25°C10005002001005020105.02.01.0Figure 6. Current Limit Sense Voltageversus Temperature Figure 7. Standby Supply Current versusSupply Voltage, S A T U R A T I O N V O L T A G E (V )C E (s a t )V −55−25025*******125, C U R R E N T L I M I T S E N S E V O L T A G E (V )I P K (s e n s e )T A , AMBIENT TEMPERATURE (°C)V 05.010152025303540V CC , SUPPLY VOLTAGE (V)1.81.71.61.51.41.31.21.11.04003803603403203002802602402202007.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.170 m HV in12 VV outOptional FilterTest Conditions Results Line Regulation V in = 8.0 V to 16 V, I O = 175 mA30 mV = ±0.05%Load Regulation V in = 12 V, I O = 75 mA to 175 mA10 mV = ±0.017%Output Ripple V in = 12 V, I O = 175 mA400 mVppEfficiency V in = 12 V, I O = 175 mA87.7%Output Ripple With Optional Filter V in = 12 V, I O = 175 mA40 mVppFigure 8. Step−Up ConverterFigure 9. External Current Boost Connections for I C Peak Greater than 1.5 A9a. External NPN Switch9b. External NPN Saturated Switch(See Note 8)8.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended.V out Optional FilterV in 25 VTestConditionsResults Line Regulation V in = 15 V to 25 V, I O = 500 mA 12 mV = ±0.12%Load Regulation V in = 25 V, I O = 50 mA to 500 mA 3.0 mV = ±0.03%Output Ripple V in = 25 V, I O = 500 mA 120 mVpp Short Circuit Current V in = 25 V, R L = 0.1 W 1.1 A EfficiencyV in = 25 V, I O = 500 mA 83.7%Output Ripple With Optional FilterV in = 25 V, I O = 500 mA40 mVppFigure 10. Step−Down Converter11a. External NPN Switch11b. External PNP Saturated SwitchFigure 11. External Current Boost Connections for I C Peak Greater than 1.5 AV outOptional FilterV TestConditionsResults Line Regulation V in = 4.5 V to 6.0 V, I O = 100 mA 3.0 mV = ±0.012%Load Regulation V in = 5.0 V, I O = 10 mA to 100 mA 0.022 V = ±0.09%Output Ripple V in = 5.0 V, I O = 100 mA 500 mVpp Short Circuit Current V in = 5.0 V, R L = 0.1 W 910 mA EfficiencyV in = 5.0 V, I O = 100 mA 62.2%Output Ripple With Optional FilterV in = 5.0 V, I O = 100 mA70 mVppFigure 12. Voltage Inverting Converter13a. External NPN Switch13b. External PNP Saturated SwitchFigure 13. External Current Boost Connections for I C Peak Greater than 1.5 A(Top view, copper foil as seen through the board from the component side)(Top View, Component Side)*Optional Filter.Figure 14. Printed Circuit Board and Component Layout(Circuits of Figures 8, 10, 12)INDUCTOR DATAConverter Inductance (m H)Turns/Wire Step−Up 17038 Turns of #22 AWG Step−Down 22048 Turns of #22 AWG Voltage−Inverting8828 Turns of #22 AWGAll inductors are wound on Magnetics Inc. 55117 toroidal core.V sat = Saturation voltage of the output switch.V F = Forward voltage drop of the output rectifier.The following power supply characteristics must be chosen:V in − Nominal input voltage.V out − Desired output voltage,I out − Desired output current.f min − Minimum desired output switching frequency at the selected values of V in and I O .V ripple(pp) − Desired peak−to−peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to itsequivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.NOTE:For further information refer to Application Note AN920A/D and AN954/D.|V out |+ 1.25ǒ1)R2R1ǓFigure 15. Design Formula TableORDERING INFORMATIONDevicePackage Shipping †MC33063AD SOIC−898 Units / Rail MC33063ADG SOIC−8(Pb−Free)98 Units / Rail MC33063ADR2SOIC−82500 Units / Tape & Reel MC33063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC33063AP1PDIP−850 Units / Rail MC33063AP1G PDIP−8(Pb−Free)50 Units / Rail MC33063AVD SOIC−898 Units / Rail MC33063AVDG SOIC−8(Pb−Free)98 Units / RailMC33063AVDR2SOIC−82500 Units / Tape & ReelMC33063AVDR2G SOIC−8(Pb−Free)NCV33063AVDR2*SOIC−8NCV33063AVDR2G*SOIC−8(Pb−Free)MC33063AVP PDIP−850 Units / Rail MC33063AVPG PDIP−8(Pb−Free)50 Units / Rail MC34063AD SOIC−898 Units / Rail MC34063ADG SOIC−8(Pb−Free)98 Units / Rail MC34063ADR2SOIC−82500 Units / Tape & Reel MC34063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC34063AP1PDIP−850 Units / Rail MC34063AP1GPDIP−8(Pb−Free)50 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.*NCV33063A: T low = −40°C, T high = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.PACKAGE DIMENSIONSSOIC−8 NB D SUFFIX CASE 751−07ISSUE AG*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ǒmm inchesǓSCALE 6:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.DIM A MIN MAX MIN MAX INCHES4.805.000.1890.197MILLIMETERS B 3.80 4.000.1500.157C 1.35 1.750.0530.069D 0.330.510.0130.020G 1.27 BSC 0.050 BSC H 0.100.250.0040.010J 0.190.250.0070.010K 0.40 1.270.0160.050M 0 8 0 8 N 0.250.500.0100.020S5.806.200.2280.244YM0.25 (0.010)Z SXS____PACKAGE DIMENSIONSPDIP−8P , P1 SUFFIX CASE 626−05ISSUE LNOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.DIM MIN MAX MIN MAX INCHESMILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.SENSEFET is a trademark of Semiconductor Components Industries, LLC.PUBLICATION ORDERING INFORMATION。
MC34063中文资料应用原理资料
MC34063中文资料应用原理资料发布时间: 2010-3-6 10:39:01 MC34063中文资料应用原理资料MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能:图1MC34063A在线电源计算器-Online Power calculation1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
图2 电压逆变器图3 降压转换器图4 NPN三极管扩流升压转换器图5 NPN三极管扩流降压转换器图6 升压转换器主要参数:MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。
工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+ R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
mc33063中文资料
矮成本开闭电源芯片MC34063A(MC33063)华文资料之阳早格格创做该器件自己包罗了DC/DC变更器所需要的主要功能的单片统造电路且代价廉价.它由具备温度自动补偿功能的基准电压爆收器、比较器、占空比可控的振荡器,R—S触收器战大电流输出开闭电路等组成.该器件可用于降压变更器、落压变更器、反背器的统造核心,由它形成的DC/DC变更器仅用少量的中部元器件.正在百般电子产品中均非常广大的应用.MC34063主要个性:输进电压范畴:2、5~40V输出电压可调范畴:1.25~40V最大输出电流:1.5A最大开闭频次:100kHz矮固态电流短路电流节造可真止降压或者落压电源变更器MC34063的里面结构,引足图及引足功能:图1 MC34063里面结构及引足图1足:开闭管T1集电极引出端;2足:开闭管T1收射极引出端;3足:定时电容ct交线端;安排ct可使处事频次正在100—100kHz范畴内变更;4足:电源天;5足:电压比较器反相输进端,共时也是输出电压与样端;使用时应中交二个粗度没有矮于1%的粗稀电阻;6足:电源端;7足:背载峰值电流(Ipk)与样端;6,7足之间电压超出300mV时,芯片将开用里面过流呵护功能;8足:启动管T2集电极引出端.MC34063A正在线电源估计器-Online Power calculationMC34063主要参数:名目条件参数单位Power Supply Voltage 电源电压VCC40VdcComparator Input Voltage Range 比较器输进电压范畴VIR0.3-+40VdcSwitch Collector Voltage 集电极电压开闭VC(switch)40VdcSwitch Emitter Voltage (VPin 1 = 40 V) 收射极电压开闭VE(switch)40VdcSwitch Collector to Emitter Voltage 开闭电压集电极到收射极 VCE(switch)40VdcDriver Collector Voltage 启动集电极电压VC(driver)40VdcDriver Collector Current (Note 1) 启动集电极电流IC(driver)100mASwitch Current 开闭电流ISW1.5AOperating Junction Temperature处事结温TJ+150℃Operating Ambient Temperature Range支配环境温度范畴 TAMC34063A0-70℃MC33063AV40-125MC33063A40-85Storage Temperature Range 储藏温度范畴Tstg65-150℃MC34063应用电路图图2 MC34063电压顺变器图3 MC34063落压电路图4 NPN三极管扩流降压变更器图5 NPN三极管扩流落压变更器图6 降压变更器MC34063的处事本理MC34063组成的落压电路MC34063组成的落压电路本理如图7.处事历程:1.比较器的反相输进端(足5)通过中交分压电阻R1、R2*输出电压 .其中,输出电压U.=1.25(1+ R2/R1)由公式可知输出电压 .仅与R1、R2数值有闭,果1.25V为基准电压,恒定没有变.若R1、R2阻值宁静,U.亦宁静.2.足5电压与里面基准电压1.25V共时收人里面比较器举止电压比较.当足5的电压值矮于里面基准电压(1.25V)时,比较器输出为跳变电压,开开R—S触收器的S足统造门,R—S触收器正在里面振荡器的启动下,Q端为“1”状态(下电仄),启动管T2导通,开闭管T1亦导通,使输进电压Ui背输出滤波器电容Co充电以普及U.,达到自动统造U.宁静的效率.3.当足5的电压值下于里面基准电压(1.25V)时,R—S触收器的S足统造门被启锁,Q端为“0”状态(矮电仄),T2停止,T1亦停止.4. 振荡器的Ipk 输进(足7)用于*开闭管T1的峰值电流,以统造振荡器的脉冲输出到R—S触收器的Q端.5. 足3中交振荡器所需要的定时电容Co电容值的大小决断振荡器频次的下矮,亦决断开闭管T1的通断时间.图7 MC34063 落压电路MC34063 降压电路MC34063组成的落压电路本理如图8,当芯片内开闭管(T1)导通时,电源经与样电阻Rsc、电感L1、MC34063的1足战2足交天,此时电感L1开初保存能量,而由C0对于背载提供能量.当T1断开时,电源战电感共时给背载战电容Co提供能量.电感正在释搁能量功夫,由于其二端的电动势极性与电源极性相共,相称于二个电源串联,果而背载上得到的电压下于电源电压.开闭管导通与闭断的频次称为芯片的处事频次.只消此频次相对于背载的时间常数足够下,背载上即可赢得连绝的曲流电压.图8 MC34063 降压电路MC34063组成的电压反背电路图9为采与MC34063芯片形成的开闭反压电路.当芯片里面开闭管T1导通时,电流经MC34063的1足、2足战电感Ll 流到天,电感Ll保存能量.此时由Co背背载提供能量.当T1断开时,由于流经电感的电流没有克没有及突变,果此,绝流二极管D1导通.此时,Ll经D1背背载战Co供电(经大众天),输出背电压.那样,只消芯片的处事频次相对于背载的时间常数足够下,背载上即可赢得连绝曲流电压.图9 开闭反压电路非断绝型变压器初级线圈启动电路图10为采与MC34063芯片形成的非断绝型变压器初级线圈启动电路.当芯片里面的开闭管T1导通时,电流经变压器初级线圈、T1的集电极战收射极流到天,变压器初级线圈储藏能量.当T1断开时,变压器初级线圈回路断开,能量耦合到变压器的次级线圈.对于变压器次级的输出电压举止与样,并将与样电压经R1、R2分压后收到MC34063的5足,不妨保证输出电压的宁静.图10 非断绝型变压器初级线圈启动电路断绝下压大电流变压器初级线圈启动电路图11为采与MC34063芯片形成的断绝下压大电流变压器初级线圈启动电路.当芯片里面的开闭管导通时,MC34063的2足将浮现下电仄,中部P型三极管Q1停止,N型MOSFET管Q2导通.电流经变压器初级线圈战Q2到天,初级线圈储藏能量.当里面开闭管闭断时,MC34063的2足为矮电仄,Q1导通,Q2停止,初级线圈回路断开.能量耦合到变压器的次级线圈.从变压器的另一次级线圈对于输出电压举止与样,而后经分压后收到MC34063的5足可包管输出电压的宁静.该电路中次级主输出端为浮天电源输出,非常符合调理等央供浮天的系统使用.非断绝、断绝正在此指输出旗号是可战变压器输进部分贯串.图12 断绝下压大电流变压器初级线圈启动电路。
低成本,高性能LED驱动器MC33063的应用
低成本,高性能LED驱动器MC33063的应用随着LED在各种应用中的使用率越来越高,其中包括手持设备、车载以及建筑照明。
其高可靠性(使用寿命超过50000 小时)、高效率(175 流明/瓦)以及近乎瞬时的响应使其成为一种颇具吸引力的光源。
但是,驱动 LED 却是一项很具挑战性的工作。
受控的亮度需要用一个恒定的电流来驱动LED,无论输入电压如何这一恒定的电流都必须保持恒定不变。
通常,LED 都会有调光要求,例如,想要调节显示器或建筑照明亮度。
实现LED 调光有两种方法:改变LED 电流或使用脉宽调制(PWM)。
效率最低的方法是改变电流,因为光输出并非完成随着电流变化而发生线性变化,并且在电流低至其额定值时 LED 色谱会发生变化。
时刻谨记人类对亮度的感知呈指数型是很重要的,完全变暗需要对电流进行大幅度的变化。
这对电路设计有很大的影响,因为全电流时 3% 的调节误差由会于电路容差而在 10% 负载时变成 30% 甚至更高的误差。
尽管响应速度比较慢,但使用PWM 调光电流波形会更加精确。
在照明和显示器应用中,人们希望 PWM 超过 100 Hz,这样人眼就不会感觉到闪烁。
图 1 MC33063 构成了一款低成本 LED 驱动器图 1 显示了一款驱动单个 LED 的非常简单且成本非常低的降压稳压器,该稳压器实施了一种快速调光的特性。
其基于一个具有内部开关、电流限制比较器、振荡器和内部接口的MC33063。
通常用于稳压的引脚具有关闭功能。
在此情况下,一个超过1.25V 的电压会关闭电源,而一个较低的电压会开启电源。
随着电路的开启,由于消除了电压反馈,控制器以电流限制/磁滞模式运行。
振荡器生成了一个会引起电源开关开启的启动脉冲。
这使得输入电压正好适用于电流感应电阻、LED 和电感。
当电流达到大约 350mA 时电流限制比较器开始感应电流并关闭电源开关。
电感电压反向并超过输入电流,从而使续流二极管发生传导。
基于MC33063的降压式开关电源的设计
i d co . lo, h a m a le fo pu i p evo tg nd p a ure tt r u h i d t rw i n t a g f n u t r A s t e m xi l vau so ut trp l la e a e k c r n h o g n uco t her n e o hi
d s nab c w t igp we sp l t 3 0 3 T i p we p l c ng nrt aj s be u u v l g ei uks i hn o r u pywi MC 3 6 . hs o r u py a e ea dut l o t t ot e g c h s e a p a
r a he t a i a au e c sism x m lv l e whi h o d r ssa c e c e t i i l t e l a e itn e r a h sism n mum a u . n t e b ss o ura ayss e v l e O h a i fo n l i,w e
1 ~. e e pe i e tr s t e iy t e c re t s u h o e ia n l ssa h sgi o ndpr off rt e Th x rm n e ul v rf h o r cne sofo rt e r tc la a y i nd t u vea s u o o h 0 s f a i l yofo rm eh . e sbi t u t od i K e w o ds Bu k Co ve e ; r m e e sD e i n; C3 0 3 y r : c n r r Pa a tr sg M t 3 6
IC 34063中文资料
MC34063A(MC33063)集成电路芯片器件简介:该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:
输入电压范围:2、5~40V
输出电压可调范围:1.25~40V
输出电流可达:1.5A
工作频率:最高可达100kHz
低静态电流新艺图库mc34063是什么mc33063
短路电流限制
可实现升压或降压电源变换器
MC34063的基本内部结构图及引脚图功能:
MC34063 计算器
1脚:开关管T1集电极引出端;
2脚:开关管T1发射极引出端;
3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;
4脚:电源地;
5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%
的精密电阻;
6脚:电源端;
7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;
8脚:驱动管T2集电极引出端。
图2 电压逆变器。
NCV33063A中文资料
MC34063A, MC33063A,NCV33063A1.5 A, Step−Up/Down/Inverting Switching RegulatorsThe MC34063A Series is a monolithic control circuit containing the primary functions required for DC−to−DC converters. These devices consist of an internal temperature compensated reference, comparator,controlled duty cycle oscillator with an active current limit circuit,driver and high current output switch. This series was specifically designed to be incorporated in Step−Down and Step−Up and V oltage−Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.Features•Operation from 3.0 V to 40 V Input •Low Standby Current •Current Limiting•Output Switch Current to 1.5 A •Output V oltage Adjustable•Frequency Operation to 100 kHz •Precision 2% Reference•Pb−Free Packages are AvailableFigure 1. Representative Schematic DiagramDrive CollectorI pk SenseV CCComparator Inverting InputSwitch CollectorSwitch EmitterTiming CapacitorGND(Bottom View)This device contains 51 active transistors.SOIC−8D SUFFIX CASE 751PDIP−8P , P1 SUFFIX CASE 6261See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.ORDERING INFORMATION1Switch CollectorSwitch Emitter Timing CapacitorGNDDriver Collector I pk Sense V CC Comparator Inverting Input(Top View)2345678PIN CONNECTIONSx = 3 or 4A = Assembly Location L, WL = Wafer Lot Y , YY = YearW, WW = Work WeekG or G= Pb−Free Package183x063AP1AWL YYWWG1833063AVPAWL YYWWG 18MARKING DIAGRAMSMAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage V CC40Vdc Comparator Input Voltage Range V IR−0.3 to +40Vdc Switch Collector Voltage V C(switch)40Vdc Switch Emitter Voltage (V Pin1 = 40 V)V E(switch)40Vdc Switch Collector to Emitter Voltage V CE(switch)40Vdc Driver Collector Voltage V C(driver)40Vdc Driver Collector Current (Note 1)I C(driver)100mA Switch Current I SW 1.5A Power Dissipation and Thermal CharacteristicsPlastic Package, P, P1 SuffixT A = 25°C P D 1.25W Thermal Resistance R q JA100°C/W SOIC Package, D SuffixT A = 25°C P D625mW Thermal Resistance R q JA160°C/W Operating Junction Temperature T J+150°C Operating Ambient Temperature Range T A°C MC34063A 0 to +70MC33063AV, NCV33063A−40 to +125MC33063A−40 to +85Storage Temperature Range T stg−65 to +150°C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.Maximum package power dissipation limits must be observed.2.This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL−STD−883, Method 3015.Machine Model Method 400 V.3.NCV prefix is for automotive and other applications requiring site and change control.ELECTRICAL CHARACTERISTICS (V CC = 5.0 V, T A = T low to T high[Note 4], unless otherwise specified.)Characteristics Symbol Min Typ Max Unit OSCILLATORFrequency (V Pin5 = 0 V, C T = 1.0 nF, T A = 25°C)f osc243342kHz Charge Current (V CC = 5.0 V to 40 V, T A = 25°C)I chg243542m A Discharge Current (V CC = 5.0 V to 40 V, T A = 25°C)I dischg140220260m A Discharge to Charge Current Ratio (Pin 7 to V CC, T A = 25°C)I dischg/I chg 5.2 6.57.5−Current Limit Sense Voltage (I chg = I dischg, T A = 25°C)V ipk(sense)250300350mV OUTPUT SWITCH (Note 5)Saturation Voltage, Darlington Connection(I SW = 1.0 A, Pins 1, 8 connected)V CE(sat)− 1.0 1.3VSaturation Voltage (Note 6)(I SW = 1.0 A, R Pin8 = 82 W to V CC, Forced b] 20)V CE(sat)−0.450.7V DC Current Gain (I SW = 1.0 A, V CE = 5.0 V, T A = 25°C)h FE5075−−Collector Off−State Current (V CE = 40 V)I C(off)−0.01100m A COMPARATORThreshold Voltage T A = 25°CT A = T low to T high V th1.2251.211.25−1.2751.29VThreshold Voltage Line Regulation (V CC = 3.0 V to 40 V) MC33063A, MC34063AMC33063AV, NCV33063A Reg line−−1.41.45.06.0mVInput Bias Current (V in = 0 V)I IB−−20−400nA TOTAL DEVICESupply Current (V CC = 5.0 V to 40 V, C T = 1.0 nF, Pin 7 = V CC,V Pin5 > V th, Pin 2 = GND, remaining pins open)I CC−− 4.0mA4.T low = 0°C for MC34063A, −40°C for MC33063A, AV, NCV33063AT high = +70°C for MC34063A, +85°C for MC33063A, +125°C for MC33063AV, NCV33063A5.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.6.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended:Forced b of output switch:I C outputI C driver–7.0mA*w10*The 100 W resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.Figure 2. Output Switch On−Off Time versusOscillator Timing CapacitorFigure 3. Timing Capacitor Waveform0.010.020.050.10.20.5 1.0 2.05.010C T , OSCILLATOR TIMING CAPACITOR (nF), O U T P U T S W I T C H O N -O F F T I M E ( s )o n −o f f μt 10 m s/DIV, O S C I L L A T O R V O L T A G E (V )O S C 200 m V /D I VV V CC = 5.0 V Pin 7 = V CC Pin 2 = GNDPins 1, 5, 8 = Open C T = 1.0 nF T A = 25°C10005002001005020105.02.01.0Figure 6. Current Limit Sense Voltageversus Temperature Figure 7. Standby Supply Current versusSupply Voltage, S A T U R A T I O N V O L T A G E (V )C E (s a t )V −55−25025*******125, C U R R E N T L I M I T S E N S E V O L T A G E (V )I P K (s e n s e )T A , AMBIENT TEMPERATURE (°C)V 05.010152025303540V CC , SUPPLY VOLTAGE (V)1.81.71.61.51.41.31.21.11.04003803603403203002802602402202007.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.170 m HV in12 VV outOptional FilterTest Conditions Results Line Regulation V in = 8.0 V to 16 V, I O = 175 mA30 mV = ±0.05%Load Regulation V in = 12 V, I O = 75 mA to 175 mA10 mV = ±0.017%Output Ripple V in = 12 V, I O = 175 mA400 mVppEfficiency V in = 12 V, I O = 175 mA87.7%Output Ripple With Optional Filter V in = 12 V, I O = 175 mA40 mVppFigure 8. Step−Up ConverterFigure 9. External Current Boost Connections for I C Peak Greater than 1.5 A9a. External NPN Switch9b. External NPN Saturated Switch(See Note 8)8.If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents(≥30 mA), it may take up to 2.0 m s to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended.V out Optional FilterV in 25 VTestConditionsResults Line Regulation V in = 15 V to 25 V, I O = 500 mA 12 mV = ±0.12%Load Regulation V in = 25 V, I O = 50 mA to 500 mA 3.0 mV = ±0.03%Output Ripple V in = 25 V, I O = 500 mA 120 mVpp Short Circuit Current V in = 25 V, R L = 0.1 W 1.1 A EfficiencyV in = 25 V, I O = 500 mA 83.7%Output Ripple With Optional FilterV in = 25 V, I O = 500 mA40 mVppFigure 10. Step−Down Converter11a. External NPN Switch11b. External PNP Saturated SwitchFigure 11. External Current Boost Connections for I C Peak Greater than 1.5 AV outOptional FilterV TestConditionsResults Line Regulation V in = 4.5 V to 6.0 V, I O = 100 mA 3.0 mV = ±0.012%Load Regulation V in = 5.0 V, I O = 10 mA to 100 mA 0.022 V = ±0.09%Output Ripple V in = 5.0 V, I O = 100 mA 500 mVpp Short Circuit Current V in = 5.0 V, R L = 0.1 W 910 mA EfficiencyV in = 5.0 V, I O = 100 mA 62.2%Output Ripple With Optional FilterV in = 5.0 V, I O = 100 mA70 mVppFigure 12. Voltage Inverting Converter13a. External NPN Switch13b. External PNP Saturated SwitchFigure 13. External Current Boost Connections for I C Peak Greater than 1.5 A(Top view, copper foil as seen through the board from the component side)(Top View, Component Side)*Optional Filter.Figure 14. Printed Circuit Board and Component Layout(Circuits of Figures 8, 10, 12)INDUCTOR DATAConverter Inductance (m H)Turns/Wire Step−Up 17038 Turns of #22 AWG Step−Down 22048 Turns of #22 AWG Voltage−Inverting8828 Turns of #22 AWGAll inductors are wound on Magnetics Inc. 55117 toroidal core.V sat = Saturation voltage of the output switch.V F = Forward voltage drop of the output rectifier.The following power supply characteristics must be chosen:V in − Nominal input voltage.V out − Desired output voltage,I out − Desired output current.f min − Minimum desired output switching frequency at the selected values of V in and I O .V ripple(pp) − Desired peak−to−peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to itsequivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.NOTE:For further information refer to Application Note AN920A/D and AN954/D.|V out |+ 1.25ǒ1)R2R1ǓFigure 15. Design Formula TableORDERING INFORMATIONDevicePackage Shipping †MC33063AD SOIC−898 Units / Rail MC33063ADG SOIC−8(Pb−Free)98 Units / Rail MC33063ADR2SOIC−82500 Units / Tape & Reel MC33063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC33063AP1PDIP−850 Units / Rail MC33063AP1G PDIP−8(Pb−Free)50 Units / Rail MC33063AVD SOIC−898 Units / Rail MC33063AVDG SOIC−8(Pb−Free)98 Units / RailMC33063AVDR2SOIC−82500 Units / Tape & ReelMC33063AVDR2G SOIC−8(Pb−Free)NCV33063AVDR2*SOIC−8NCV33063AVDR2G*SOIC−8(Pb−Free)MC33063AVP PDIP−850 Units / Rail MC33063AVPG PDIP−8(Pb−Free)50 Units / Rail MC34063AD SOIC−898 Units / Rail MC34063ADG SOIC−8(Pb−Free)98 Units / Rail MC34063ADR2SOIC−82500 Units / Tape & Reel MC34063ADR2G SOIC−8(Pb−Free)2500 Units / Tape & ReelMC34063AP1PDIP−850 Units / Rail MC34063AP1GPDIP−8(Pb−Free)50 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.*NCV33063A: T low = −40°C, T high = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.SOIC−8 NB D SUFFIX CASE 751−07ISSUE AG*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ǒmm inchesǓSCALE 6:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.3.DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 (0.006)PER SIDE.5.DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.6.751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.DIM A MIN MAX MIN MAX INCHES4.805.000.1890.197MILLIMETERS B 3.80 4.000.1500.157C 1.35 1.750.0530.069D 0.330.510.0130.020G 1.27 BSC 0.050 BSC H 0.100.250.0040.010J 0.190.250.0070.010K 0.40 1.270.0160.050M 0 8 0 8 N 0.250.500.0100.020S5.806.200.2280.244YM0.25 (0.010)Z SXS____PDIP−8P , P1 SUFFIX CASE 626−05ISSUE LNOTES:1.DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.2.PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).3.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.DIM MIN MAX MIN MAX INCHESMILLIMETERS A 9.4010.160.3700.400B 6.10 6.600.2400.260C 3.94 4.450.1550.175D 0.380.510.0150.020F 1.02 1.780.0400.070G 2.54 BSC 0.100 BSC H 0.76 1.270.0300.050J 0.200.300.0080.012K 2.92 3.430.1150.135L 7.62 BSC 0.300 BSC M −−−10 −−−10 N0.76 1.010.0300.040__ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.SENSEFET is a trademark of Semiconductor Components Industries, LLC.PUBLICATION ORDERING INFORMATION。
mc34063中文资料应用原理范文
MC34063A(MC33063)集成电路芯片器件简介:该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流新艺图库mc34063是什么mc33063短路电流限制可实现升压或降压电源变换器MC34063的基本内部结构图及引脚图功能:MC34063 计算器1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
图2 电压逆变器图3 降压转换器图4 NPN三极管扩流升压转换器图5 NPN三极管扩流降压转换器图6 升压转换器MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。
工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+ R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
MC34063或MC33063 接成标准DC-DC电路元件参数的自动计算
MC34063或MC33063 接成标准DC-DC电路元件参数的自动计算上一篇/ 下一篇 2010-10-01 08:02:26查看( 8 ) / 评论( 0 ) / 评分( 0 / 0 ) MC34063或IRM03A接成标准的DC—DC1:极性反转。
2:升压。
3:降压。
三种典型电路时,外围元件参数的自动计算使用方法:只要在左中部框中输入你想要的参数,然后点击“进行计算并且刷新电路图”按钮,它就可以自动给所有相关的外围元件参数和相对应的标准电路图纸,使设计DC—DC电路实现智能化高效化。
关于警告:如果您输入的参数超过了34063的极限,它会自动弹出警告窗口提醒您更改它们。
特殊输入:要设计极性反转电路请在输入或输出电压数字的前面加上负号,比如-5V。
MC34063或MC33063是一种用于DC-DC电源变换的集成电路,应用比较广泛,通用廉价易购。
极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。
另外,输出功率达不到要求的时候,比如>250~300MA时,可以通过外接扩功率管的方法扩大电流,双极型或MOS型扩流管均可,计算公式和其他参数及其含义详见最下部详细介绍即可。
输入电压V输出电压V输出电流mA输出电压波纹系mV(pp)数工作频率kHz外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2)Ct(定时电容):决定内部工作频率。
Ct=0.000 004*Ton(工作频率)Ipk=2*Iomax*T/toffRsc(限流电阻):决定输出电流。
Rsc=0.33/IpkLmin(电感):Lmin=(Vimin-Vces)*Ton/ IpkCo(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)固定值参数:Vces=1.0V ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vimin:输入电压不稳定时的最小值Vf=1.2V 快速开关二极管正向压降其他手册参数:在实际应用中要注意:1:快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819!2:34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作。
国外的34063A芯片计算器
The maximum ambient temperayellow table. The value of maxitemperature Tj = 150°C.(DO NOT CHANGE)2) Input Conduction Loss Parameters from Free-wheeling Diode Datasheets- Found in Electrical Characteristics of Datasheet,Darlington Configuration3) Set D IL/IL(avg)For Maximum Output Current it is suggested that ΔIL should be chosen to be less than 10% of the average inductor curre This will help prevent Ipk (sw) from reaching the current limit threshold set by RSC. If the design goal isinductance value, let ΔIL = 2*IL(avg). This will proportionally reduce output current capability.D IL / IL(avg)D IL4) Input target frequency5) The spreadsheet calculates key parameters for the remaining component selec∆i L* increasing inductance decreas 6) Efficiency / Power Lossximum ambient temperature is related to one-layer PCB with parameters mentioned in the aboveyellow table. The value of maximum ambient temperature is calculated for maximum allowable junction temperature Tj = 150°C.Input Voltage: 4V < Vin < 40VOutput Voltage: 1.25V < Vout < (Vin*Dmax)4%of Datasheet,0% of the average inductor current, IL(avg).oal is to use a minimumponent selectionerter this equals Ioutthis equals Iout + Iripple/2* increasing inductance decreases ripple current ata sheet or measurement).data sheet. Leave blank if not available.Rev 0.1 7/22/09。
mc34063中文资料应用原理
MC34063A(MC33063)集成电路芯片器件简介:该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流新艺图库mc34063是什么mc33063短路电流限制可实现升压或降压电源变换器MC34063的基本内部结构图及引脚图功能:MC34063 计算器1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
图2 电压逆变器图3 降压转换器图4 NPN三极管扩流升压转换器图5 NPN三极管扩流降压转换器图6 升压转换器MC34063的工作原理MC34063组成的降压电路MC34063组成的降压电路原理如图7。
工作过程:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+ R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
24V转3.3V-5V,24V转3.3V-5V正负15V电源
输出噪声电压峰峰值Vripple(pp)=25mV
2016/6/6
9
5.0V/1A降压电路
10
3.3V/1A降压电路
MC34063组成的电压反向电路
图为采用MC34063芯片构成的开关反压电 路。当芯片内部开关管T1导通时,电流经 MC34063的1脚、2脚和电感Ll流到地,电感Ll存 储能量。此时由Co向负载提供能量。当T1断开 时,由于流 经电感的电流不能突变,因此,续 流二极管D1导通。此时,Ll经D1向负载和Co供 电(经公共地),输出负电压。这样,只要芯片的 工作频率相对负载的时间常数足够高,负载上便 可获得连续直流电压。
7
外围元件计算
Vout(输出电压)=1.25V(1+R2/R1)
Ct(定时电容):决定内部工作频率。Ct=0.000 004*TonIpk=2*Ioax*T/toff Rsc(限流电阻):决定输出电流。Rsc=0.33/Ipk
Lmin(电感):Lmin=(Vimin-Vces)*Ton/ Ipk
2016/6/6
பைடு நூலகம்
-15V/250mA降压电路
2016/6/6
13
15V/250mA降压电路
14
放映结束,请提问!
Co(滤波电容):决定输出电压波纹系数Co=Io*ton/Vp-p(波 纹系数) ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces) ton+toff =1/f (此处为f=50KHz)
有关计算常量
输出三极管饱和压降Vsat=0.1V 输出续流二极管的正向压降Vf=0.8V
电源设计
Input: 24V----2A Output: 5.0V-----1A 3.3V-------1A ±15V--------250mA
总结MC各个元件的计算
MC34063各个元件的计算注:Ipk升压变换的公式是Ton+Toff,不是Ton-Toff。
一、大电流升压型(三极管扩流)(3.7V到5V)线上计算器:()名词表:固定参数:(数据手册25摄氏度)VSAT=1.0VVF=0.4V 快速开关二极管正向压降(外部二极管参数决定,如1N5822为0.4V) 外围元件标称含义和它们取值的计算公式:1、导通时间与关断时间比值:TONTOFF =Vout+Vf-Vin(max)Vin(max)-Vsat=5.11V+0.4V−3.7V3.7V−1V=1.812.72、输出电压Vout 和R1 R2关系: Vout=(R1+R2)R1×1.25V例如,使用R1=2.2K,R2=6.8K 则输出电压Vout =1.25V×(6.8+2.22.2)=5.11V3、Pin7 和 pin8之间电阻固定为180Ω。
4、Ct( 定时电容):决定内部工作频率。
Ct=4×10-5×TONCt=[4×10-5×(T×TonTon+Toff)]F=[4×10-5×(110KHz × 1.811.81+2.7)]F=1605 pF5、输出开关电流Ipk( SWITCH)=2×IOUT(MAX)×Ton+ToffToff=2×400mA×4.512.7=1336.3mA6、Rsc( 限流电阻):决定输出电流。
Rsc=0.33/Ipk=0.331.336=0.247Ω(线上计算器用0.3,不知道那个值正确。
)7、Lmin (电感):Lmin=Vin(max)−VsatIpk(switch)×Ton(max)=(3.7−1)V1.336A ×(T×TonTon+Toff)=2.02Ω×(110KHz × 1.811.81+2.7)=81 uH8、Co(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)二:降压型应用:(网上下载,未验证)外围元件标称含义和它们取值的计算公式:Vout(输出电压)=1.25V(1+R1/R2 )Ct( 定时电容):决定内部工作频率。
33063升压电路原理
33063升压电路原理引言升压电路是一种常见的电路结构,其作用是将输入的电压提升到更高的电压水平。
33063升压电路是一种经典的升压电路,具有简单、稳定和高效的特点。
本文将介绍33063升压电路的原理及其工作过程。
一、原理概述33063升压电路是一种基于开关电源控制器的电路,其主要原理是通过控制开关管的开关时间比例,将输入的直流电压转换为高于输入电压的输出电压。
该电路采用了开关电源的特点,具有高效率、稳定性好和体积小的优点。
二、电路结构33063升压电路主要由以下几部分组成:1. 输入滤波电路:用于滤除输入电压中的干扰信号,保证电路的稳定工作;2. 升压变换器:包括开关管、电感和输出电容器,用于实现输入电压到输出电压的转换;3. 控制电路:用于控制开关管的开关时间比例,从而控制输出电压的大小;4. 反馈电路:用于监测输出电压的大小,并将信息反馈给控制电路,实现电压的稳定输出。
三、工作原理33063升压电路的工作原理如下:1. 输入电压通过输入滤波电路进入升压变换器;2. 控制电路根据反馈电路的信号,控制开关管的开关时间比例;3. 当开关管导通时,电感储存能量,电流增大;当开关管关断时,电感释放能量,电流减小;4. 通过电感和开关管的周期性开关,将输入电压转换为高于输入电压的脉冲电压;5. 输出电容器对脉冲电压进行滤波,得到稳定的输出电压。
四、工作特点33063升压电路具有以下特点:1. 高效率:由于采用了开关电源结构,能量转换效率较高;2. 稳定性好:通过控制电路对开关管的开关时间比例进行调节,能够实现稳定的输出电压;3. 体积小:相比于传统的线性稳压电源,33063升压电路体积较小,适合应用于空间有限的场合。
五、应用领域33063升压电路广泛应用于各种场合,例如:1. 电子产品:如手机、平板电脑等便携式设备中,常用于为电池充电或提供稳定的工作电压;2. LED照明:用于驱动LED灯珠,提供所需的电压和电流;3. 汽车电子:常用于汽车电子系统中,如车载音响、导航仪等设备的电源供应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The maximum ambient tempera
yellow table. The value of maxi
temperature Tj = 150°C.
(DO NOT CHANGE)
2) Input Conduction Loss Parameters from Free-wheeling Diode Datasheets
- Found in Electrical Characteristics of Datasheet,
Darlington Configuration
3) Set D IL/IL(avg)
For Maximum Output Current it is suggested that ΔIL should be chosen to be less than 10% of the average inductor curre This will help prevent Ipk (sw) from reaching the current limit threshold set by RSC. If the design goal is
inductance value, let ΔIL = 2*IL(avg). This will proportionally reduce output current capability.
D IL / IL(avg)
D IL
4) Input target frequency
5) The spreadsheet calculates key parameters for the remaining component selec
∆i L
* increasing inductance decreas 6) Efficiency / Power Loss
ximum ambient temperature is related to one-layer PCB with parameters mentioned in the above
yellow table. The value of maximum ambient temperature is calculated for maximum allowable junction temperature Tj = 150°C.
Input Voltage: 4V < Vin < 40V
Output Voltage: 1.25V < Vout < (Vin*Dmax)
4%
of Datasheet,
0% of the average inductor current, IL(avg).
oal is to use a minimum
ponent selection
erter this equals Iout
this equals Iout + Iripple/2
* increasing inductance decreases ripple current ata sheet or measurement).
data sheet. Leave blank if not available.
Rev 0.1 7/22/09。