2015年贵州省六盘水中考数学真题及答案
贵州省六盘水市中考数学试卷含答案解析版
2017年贵州省六盘水市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)大米包装袋上(10±)kg的标识表示此袋大米重()A.(~)kg B. C. D.10kg2.(4分)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.03.(4分)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn4.(4分)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°5.(4分)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数 D.方差6.(4分)不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.7.(4分)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A. B. C.4997 D.50038.(4分)使函数y=√3−x有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤09.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>010.(4分)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=√5+2 B.a=4,b=√5﹣2 C.a=2,b=√5+1 D.a=2,b=√5﹣111.(4分)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱 B.正方体C.球D.直立圆锥12.(4分)三角形的两边a、b的夹角为60°且满足方程x2﹣3√2x+4=0,则第三边的长是()A.√6B.2√2C.2√3D.3√2二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为米.14.(5分)计算:2017×1983= .15.(5分)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={ }.16.(5分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 度.17.(5分)方程2x−1﹣1x−1=1的解为x= .18.(5分)如图,在?ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF= .19.(5分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(,).20.(5分)计算1+4+9+16+25+…的前29项的和是.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+√(3−π)2.22.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).23.(10分)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.24.(10分)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?25.(10分)如图,MN 是⊙O 的直径,MN=4,点A 在⊙O 上,∠AMN=30°,B 为AN̂的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA+PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB 的最小值.26.(12分)已知函数y=kx+b ,y=k x,b 、k 为整数且|bk|=1. (1)讨论b ,k 的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b 与y=k x 的交点个数.2017年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017?六盘水)大米包装袋上(10±)kg的标识表示此袋大米重()A.(~)kg B. C. D.10kg【考点】11:正数和负数.【分析】根据大米包装袋上的质量标识为“10±”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±”千克,∴大米质量的范围是:~千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.2.(4分)(2017?六盘水)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.0【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、B不是中心对称图形,是轴对称图形,故本选项错误;B、J不是中心对称图形,也不是轴对称图形,故本选项错误;C、4不是中心对称图形,也不轴对称图形,故本选项错误;D、0既是中心对称图形又是轴对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)(2017?六盘水)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn【考点】35:合并同类项.【分析】根据合并同类项法则解答.【解答】解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.【点评】本题考查了合并同类项,熟记同类项的概念是解题的关键.4.(4分)(2017?六盘水)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°【考点】LH:梯形.【分析】由AB∥CD,得到∠A+∠D=180°,把∠A的度数代入即可求出答案.【解答】解:∵AB∥CD,∴∠A+∠D=180°,∵∠A=45°,∴∠D=180°﹣45°=135°,故选:B.【点评】本题主要考查了梯形的性质,平行线的性质等知识点,解此题的关键是根据平行线的性质得到∠A+∠D=180°.5.(4分)(2017?六盘水)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】根据平均数、中位数、众数以及方差的意义进行选择即可.【解答】解:∵x甲=75,x乙=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的中位数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选D.【点评】本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.6.(4分)(2017?六盘水)不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(4分)(2017?六盘水)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A. B. C.4997 D.5003【考点】W1:算术平均数.【分析】根据算术平均数的定义计算可得.【解答】解:这组数据的平均数是1[5000×10+(98+99+1+2﹣10﹣80+80+10﹣99﹣10×3=,98)]=5000+110故选:A.【点评】本题主要考查算术平均数,熟练掌握算术平均数的定义是解题的关键.8.(4分)(2017?六盘水)使函数y=√3−x有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤0【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数是解题关键.9.(4分)(2017?六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0【考点】H4:二次函数图象与系数的关系.【分析】根据二次函数的性质一一判断即可.【解答】解:二次函数y=ax2+bx+c的开口向下,∴a<0,∵二次函数与y轴交于负半轴,∴c<0,∵对称轴x=﹣b2a>0,∴b>0,故选B.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,灵活运用知识解决问题,属于基础题,中考常考题型.10.(4分)(2017?六盘水)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=√5+2 B.a=4,b=√5﹣2 C.a=2,b=√5+1 D.a=2,b=√5﹣1【考点】S3:黄金分割;LB:矩形的性质.【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是√5−12的矩形叫做黄金矩形,∴ab =√5−12,∴a=2,b=√5﹣1,故选D.【点评】本题主要考查了黄金矩形,记住定义是解题的关键.11.(4分)(2017?六盘水)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱 B.正方体C.球D.直立圆锥【考点】U1:简单几何体的三视图.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B、正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C 、球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D 、直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意; 故选A .【点评】本题考查了简单几何体的三视图,确定三视图是关键.12.(4分)(2017?六盘水)三角形的两边a 、b 的夹角为60°且满足方程x 2﹣3√2x+4=0,则第三边的长是( )A .√6B .2√2C .2√3D .3√2【考点】A8:解一元二次方程﹣因式分解法;T7:解直角三角形.【专题】11 :计算题.【分析】先利用因式分解法解方程x 2﹣3√2x+4=0得到a=2√2,b=√2,如图,△ABC 中,a=2√2,b=√2,∠C=60°,作AH ⊥BC 于H ,再在Rt △ACH 中,利用含30度的直角三角形三边的关系得到CH=√22,AH=√62,则BH=3√22,然后在Rt △ABH 中利用勾股定理计算AB 的长即可. 【解答】解:x 2﹣3√2x+4=0,(x ﹣2√2)(x ﹣√2)=0,所以x 1=2√2,x 2=√2,即a=2√2,b=√2,如图,△ABC 中,a=2√2,b=√2,∠C=60°,作AH ⊥BC 于H ,在Rt △ACH 中,∵∠C=60°,∴CH=12AC=√22,AH=√3CH=√62,∴BH=2√2﹣√22=3√22, 在Rt △ABH 中,AB=√(√62)2+(3√22)2=√6, 即三角形的第三边的长是√6.故选A .【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解直角三角形.二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)(2017?六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为×103米.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为×103米,故答案为:×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(5分)(2017?六盘水)计算:2017×1983= 3999711 .【考点】4F:平方差公式.【专题】11 :计算题.【分析】把式子变形得到(2000+17)(2000﹣17),然后利用平方差公式计算.【解答】解:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为3999711.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.15.(5分)(2017?六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={ 1,0,﹣1 }.【考点】12:有理数.【专题】23 :新定义.【分析】根据新定义解答即可得.【解答】解:∵M={﹣1},N={0,1,﹣1},∴M∪N={1,0,﹣1},故答案为:1,0,﹣1.【点评】本题主要考查有理数,根据题意理解新定义是解题的关键.16.(5分)(2017?六盘水)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 75 度.【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,{AB=ADAE=AF,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(5分)(2017?六盘水)方程2x 2−1﹣1x−1=1的解为x= ﹣2 .【考点】B3:解分式方程.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:方程两边都除以(x+1)(x ﹣1)得:2﹣(x+1)=(x+1)(x ﹣1), 解得:x=﹣2或1,经检验x=1不是原方程的解,x=﹣2是原方程的解,故答案为:﹣2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.18.(5分)(2017?六盘水)如图,在?ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F .若CD=5,BC=8,AE=2,则AF= 169 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】过O 点作OM ∥AD ,求出AM 和MO 的长,利用△AEF ∽△MEO ,得到关于AF 的比例式,求出AF 的长即可.【解答】解:过O 点作OM ∥AD ,∵四边形ABCD 是平行四边形,∴OB=OD ,∴OM 是△ABD 的中位线,∴AM=BM=12AB=52,OM=12BC=4, ∵AF ∥OM ,∴△AEF ∽△MEO ,∴AE EM =AF OM, ∴22+52=AF 4,∴AF=169,故答案为169.【点评】本题考查矩形的性质、三角形的中位线定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.19.(5分)(2017?六盘水)已知A (﹣2,1),B (﹣6,0),若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为( ﹣1 , 1 ).【考点】D3:坐标确定位置.【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),B(﹣6,0),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣1,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.20.(5分)(2017?六盘水)计算1+4+9+16+25+…的前29项的和是8555 .【考点】19:有理数的加法.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n ﹣1)n+n=(1+2+3+4+5+…+n )+[0×1+1×2+2×3+3×4+…+(n ﹣1)n]=n(n+1)2+{13(1×2×3﹣0×1×2)+13(2×3×4﹣1×2×3)+13(3×4×5﹣2×3×4)+…+13[(n ﹣1)?n?(n+1)﹣(n ﹣2)?(n ﹣1)?n]}=n(n+1)2+13[(n ﹣1)?n?(n+1)]=n(n+1)(2n+1)6,∴当n=29时,原式=29×(29+1)×(2×29+1)6=8555.故答案为 8555. 【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n 的解析式是解题的关键.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)(2017?六盘水)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+√(3−π)2. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)首先利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=12+12﹣2=﹣1;(2)原式=1﹣(π﹣3)+π﹣3=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(10分)(2017?六盘水)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC 关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B 旋转到点B'的路径长(结果保留π).【考点】R8:作图﹣旋转变换;O4:轨迹.【分析】(1)根据关于原点对称的点的坐标,可得答案;(2)根据弧长公式,可得答案.【解答】解:(1)如图;(2)由图可知:OB=√32+32=3√2,∴BB ′̂=π?OB=3√2π. 【点评】本题考查了旋转变换,利用关于原点对称的点的坐标是解题关键,又利用了弧长公23.(10分)(2017?六盘水)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【考点】X6:列表法与树状图法.【分析】(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2.画出树状图即可;(2)利用(1)中的结果,即可解决问题;【解答】解:(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2. 树状图如图所示,(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能, 所以P 同一味道=412=13.【点评】本题考查树状图﹣列表法、概率的求法等知识,记住:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .24.(10分)(2017?六盘水)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【考点】9A :二元一次方程组的应用.【分析】(1)根据“每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离”,即可得出关于x 、y 的二元一次方程组;(2)解(1)中的二元一次方程组,即可得出结论.【解答】解:(1)∵甲队每天铺设x 米,乙队每天铺设y 米,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,∴{x −y =1005x =6y. (2){x −y =1005x =6y, 解得:{x =600y =500. 答:甲队每天铺设600米,乙队每天铺设500米.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)熟练掌握二元一次方程组的解法.25.(10分)(2017?六盘水)如图,MN 是⊙O 的直径,MN=4,点A 在⊙O 上,∠AMN=30°,B 为AN̂的中点,P 是直径MN 上一动点. (1)利用尺规作图,确定当PA+PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB 的最小值.【考点】N3:作图—复杂作图;M5:圆周角定理;PA :轴对称﹣最短路线问题.【分析】(1)作点A 关于MN 的对称点A ′,连接A ′B ,与MN 的交点即为点P ;(2)由(1)可知,PA+PB 的最小值即为A ′B 的长,连接OA ′、OB 、OA ,先求∠A ′OB=∠A ′ON+∠BON=60°+30°=90°,再根据勾股定理即可得出答案.【解答】解:(1)如图1所示,点P 即为所求;(2)由(1)可知,PA+PB 的最小值即为A ′B 的长,连接OA ′、OB 、OA ,∵A ′点为点A 关直线MN 的对称点,∠AMN=30°,∴∠AON=∠A ′ON=2∠AMN=2×30°=60°,又∵B 为AN̂的中点, ∴AB̂=BN ̂, ∴∠BON=∠AOB=12∠AON=12×60°=30°, ∴∠A ′OB=∠A ′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA ′=OB=12MN=12×4=2,∴Rt △A ′OB 中,A ′B=√22+22=2√2,即PA+PB 的最小值为2√2.【点评】本题主要考查作图﹣复杂作图及轴对称的最短路线问题,熟练掌握轴对称的性质和圆周角定理、圆心角定理是解题的关键.26.(12分)(2017?六盘水)已知函数y=kx+b ,y=k x ,b 、k 为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)的交点个数.(3)求y=kx+b与y=kx【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据整数的定义,以及绝对值的性质分类讨论即可求解;(2)根据一次函数与反比例函数的作法画出图形即可求解;(3)根据函数图象分两种情况:当k=1时;当k=﹣1时;进行讨论即可求解.【解答】解:(1)∵b、k为整数且|bk|=1,∴b=1,k=1;b=1,k=﹣1;b=﹣1,k=1;b=﹣1,k=﹣1;(2)如图所示:的交点个数为4个;(3)当k=1时,y=kx+b与y=kx当k=﹣1时,y=kx+b与y=k的交点个数为4个.x【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了分类思想的应用.。
贵州省六盘水市2015年中考数学试题(word版)
贵州省六盘水市2015年中考数学试卷一、选择题(本题共10道小题,每小题3分,共计30分)1.(2015·贵州六盘水)下列说法正确的是( )A .22-=-B .0的倒数是0C .4的平方根是2D .-3的相反数是3考点:平方根;相反数;绝对值;倒数..专题:计算题.分析:利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可. 解答:解:A 、|﹣2|=2,错误;B 、0没有倒数,错误;C 、4的平方根为±2,错误;D 、﹣3的相反数为3,正确,故选D点评:此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.2.(2015·贵州六盘水)如图1,直线l1和直线l 2被直线l 所截,已知l 1∥l 2,∠1=70°,则∠2=( )A .110°B .90°C .70°D .50°考点:平行线的性质..分析:根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.解答:解:∵∠3=∠1=70°,直线l 1∥l 2,∴∠3=∠2.∵∠3=∠1=70°,∴∠2=70°,故选C .点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3.(2015·贵州六盘水)袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率( )A .41B .31C .125D .127 考点:概率公式..分析:让白球的个数除以球的总数即为摸到白球的概率.解答:解:∵布袋中装有5个红球、4个白球、3个黄球,共12个球,从袋中任意摸出一个球共有12种结果,其中出现白球的情况有4种可能, ∴是白球的概率是=.点评:本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.4.(2015·贵州六盘水)如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是( )A .相对B .相邻C .相隔D .重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B .点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(2015·贵州六盘水)下列说法不‧正确的是( )A .圆锥的俯视图是圆B .对角线互相垂直平分的四边形是菱形C .任意一个等腰三角形是钝角三角形D .周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大考点:命题与定理..分析:根据三视图、菱形的判定定理、等腰三角形的性质、正方形的性质、即可解答. 解答:解:A 、圆锥的俯视图是圆,正确;B 、对角线互相垂直平分的四边形是菱形,正确;C 、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形;D 、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确; 故选:C .点评:本题考查了命题与定理,解决本题的关键是熟记三视图、菱形的判定定理、等腰三角形的性质、正方形的性质.6.(2015·贵州六盘水)下列运算结果正确的是( )A .7221)83(87=-⨯-B .1042.768.2-=--C .66.411.777.3-=-D .103102102101-<- 考点:有理数的乘法;有理数大小比较;有理数的减法..专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A 、原式=7221,正确;B 、原式=﹣10.1,错误;C 、原式=﹣3.34,错误;D 、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.7.(2015·贵州六盘水)“魅力凉都六盘水”某周连续7天的最高气温(单位°C)是26,24,23,18,22,22,25,则这组数据的中位数是()A.18 B.22 C.23 D.24考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.故选:C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(2015·贵州六盘水)如图3,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C考点:估算无理数的大小;实数与数轴..专题:计算题.分析:确定出7的范围,利用算术平方根求出的范围,即可得到结果.解答:解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A点评:此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.9.(2015·贵州六盘水)如图4,已知∠ABC=∠DCB,下列所给条件不‧能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DCC.∠ACB=∠DBC D.AC=BD考点:全等三角形的判定..分析:本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.解答:解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2015·贵州六盘水)如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)11.(2015·贵州六盘水)如图6所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB =.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠ACB=∠AOB=×80°=40°.故答案为40.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(2015·贵州六盘水)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:.考点:坐标确定位置..分析:先根据红方“马”的位置向左3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点B 的坐标即可.解答:解:建立平面直角坐标系如图所示,点B 的坐标为(2,7).故答案为:(2,7).点评:本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出坐标原点的位置是解题的关键.13.(2015·贵州六盘水)已知x 1=3是关于x 的一元二次方程042=+-c x x 的一个根,则方程的另一个根x 2是 .考点:根与系数的关系..分析:根据根与系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x 2,则:3+x 2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考查的是一元二次方程的解,根据根与系数的关系,由两根之和可以求出方程的另一个根.14.(2015·贵州六盘水)已知0654≠==a b c ,则a c b +的值为 . 考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得c=a ,b=a .===. 故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.15.(2015·贵州六盘水)如图8,有一个英语单词,四个字母都关于直线l 对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品 .考点:轴对称图形..分析:根据轴对称图形的性质,组成图形,即可解答.解答:解:如图,这个单词所指的物品是书.故答案为:书.点评:本题考查了轴对称图形,解决本题的关键是根据轴对称的性质,作出图形.16.(2015·贵州六盘水)2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元‧‧‧,这个数用科学记数法表示为 美元‧‧.考点:科学记数法—表示较大的数.专题:计算题.分析:把500亿美元化为美元,表示为科学记数法即可.解答:解:根据题意得:500亿美元=5×1010美元,故答案为:5×1010点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.(2015·贵州六盘水)在正方形A 1B 1C 1O 和A 2B 2C 2C 1,按如图9所示方式放置,在直线1+=x y 上,点C 1,C 2在x 轴上,已知A 1点的坐标是(0,1),则点B 2的坐标为 .考点:一次函数图象上点的坐标特征;正方形的性质..专题:规律型.分析:根据直线解析式先求出OA 1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B 2的坐标.解答:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA 1=1,OD=1,∴∠ODA 1=45°,∴∠A 2A 1B 1=45°,∴A 2B 1=A 1B 1=1,∴A 2C 1=C 1C 2=2,∴OC 2=OC 1+C 1C 2=1+2=3,∴B 2(3,2).故答案为(3,2).点评:本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键.18.(2015·贵州六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。
六盘水市2015年中考数学试题含答案
参考答案1-10、DCBBC ACADC11、40°12、(2,7)13、1 14、15、书16、5×1010 17、(3,2)18、2519、120、解:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.21、解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)当月通话时间多于300分钟时,A套餐更省钱22、解:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;∵前三层五边形的几何点数分别是:1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,∴第六层的几何点数是:3×6﹣2=16,第n层的几何点数是3n﹣2;前三层六边形的几何点数分别是:1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,∴第六层的几何点数是:4×6﹣3=21,第n层的几何点数是4n﹣3.23、解:(1)该班学生的总人数是:=50(人);(2)徒步的人数是:50×8%=4(人),自驾游的人数是:50﹣12﹣8﹣4﹣6=20(人);补图如下:(3)扇形统计图中∠α的度数是:360°×=144°;(4)最喜欢的方式是自驾游,它比较自由,比较方便.24、(1)证明:∵AB是⊙O的切线,∴OD⊥AB,∴∠C=∠ADO=90°,∵∠A=∠A,∴△ADO∽△ACB;(2)解:由(1)知:△ADO∽△ACB.∴,∴AD•BC=AC•OD,∵OD=1,∴AC=AD•BC.25、解:(1)如图,(2)∵AD=AB,∴∠ADB=∠ABD,而∠BAC=∠ADB+∠ABD,∴∠ADB=∠BAC=×45°=22.5°,即∠BDC的度数为22.5°;(3)设AC=x,∵∠C=90°,∠BAC=45°,∴△ACB为等腰直角三角形,∴BC=AC=x,AB=AC=x,∴AD=AB=x,∴CD=x+x=(+1)x,在Rt△BCD中,cot∠BDC===+1,即cot22.5°=+1.26、解:(1)将D、C、E的坐标代入函数解析式,得,解得.图①中抛物线的函数表达式y=x2﹣1;(2)将抛物线的函数表达式y=x2﹣1向上平移1个单位,得y=x2,该抛物线的函数表达式y=x2;(3)将抛物线的函数表达式y=x2绕原点O顺时针旋转90°,得x=y2,图③中抛物线的函数表达式x=y2;(4)将图③中抛物线的函数表达式x=y2绕原点O顺时针旋转90°,得y=﹣x2,联立,解得,.A(,),B(,).AB==.。
2015年贵州省贵阳市中考数学试卷(含详细答案)
A.2:3B.2:3C.4:9D.8:27
7.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然
后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请
估计鱼塘里鱼的数量大约有
()
A.1500条B.1600条C.1700条D.3000条
8.如图,点E,F在AC上,ADBC,DFBE,要使△ADF≌△CBE,还需要添加的
()
A.0B.1C.2D.3
10.已知二次函数yx22x3,当x≥2时,y的取值范围是
()
A.y≥3B.y≤3
C.y>3D.y<3
第Ⅱ卷(非选择题共120分)
二、填空题(本大题共5小题,每小题4分,共20分.请把答案填写在题中的横线上)
xy12,
11.方程组的解为
12.如图,四边形ABCD是O的内接正方形,若正方形的面积等于4,则O的面积等
__
__
__3.2015年5月份在贵阳召开了国际大数据产业博览会,据统计,
__
姓_
_
_()
__A.3B.4C.5D.6
__
__4.如图,一个空心圆柱体,其左视图正确的是
_题
校
学
业
毕
本试卷满分150分,考试时间120分钟.
此第Ⅰ卷(选择题共30分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
于.
三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分8分)
先化简,再求值:(x1)(x1)x2(1x)x3,其中x2.
17.(本小题满分10分)
【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)
【2019-2020年度】中考数学专题19 全等三角形试题(含解析)☞解读考点【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC (SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()12 A.0个 B.1个 C.2个 D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD (SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;2∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是【答案】.1考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.12【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数()的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .6y x =0x >【答案】6.【解析】试题分析:∵PB⊥y 轴,PA⊥x 轴,∴=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO,∴△PBC≌△DOC,∴S△APD=S 矩形APBO=6.故答案为:6.APBD S 矩形考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质.16.(2015)如图,OP 平分∠MON,PE⊥OM 于E ,PF⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan∠α=.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).34214245【答案】②③.若△BDE 为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD ,∠B=∠C ,∴△BDE ∽△CAD ,∴∠CDA=∠BED=90°,∴AD ⊥BC ,∵AB=AC ,∴BD=BC=12;12(2)若∠BDE=90°,如图2,设BD=x ,则DC=24-x ,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos ∠C=cosB=,∴,解得:,∴若△BDE 为直角三角形,则BD 为12或,故③正确;45154245AC DC x ==-214x =214设BE=x ,CD=y ,∵△BDE ∽△CAD ,∴,∴,∴,∴,∴,∴,∴0<BE ≤,∴故④错误;BE CD BD CA =2415x y y =-21524x y y =-215144(12)x y =--15144x ≤485x ≤485故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:△ADE≌△CB F ;(2)若∠DEB=90°,求证:四边形DEBF 是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.222-=EC EC CD(2)33考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN135°,∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.==--考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE≌△CDF,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE≌△CDF,故此选项不符合题意.故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为、,则( )1S 2SA .B .C .D .1212S S =1272S S =12S S =1285S S = 【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使..若AB=10,则EF 的长是_______ .12CF BC =【答案】5.【解析】∵在Rt△ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,AB=10,∴AD=5,AE=EC ,,∠AED=90°.12DE BC =∵,∴DE=FC .12CF BC =在Rt△ADE 和Rt△EFC 中,∵AE=EC ,DE=FC ,∴Rt△ADE≌Rt△EFC (SAS ).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为______.【答案】60°.【解析】试题分析:∵△ABC 三个内角的平分线交于点O ,∴∠ACO=∠BCO.在△COD 和△COB 中,∵CD=CB,∠OCD=∠OCB,CO=CO ,∴△COD≌△COB (SAS ).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.12(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳 1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳 2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳 3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届中考二模)用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A O B AOB'''∠=∠A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出.故选B .A O B AOB '''∠=∠考点:1.全等三角形的判定;2.尺规作图.2.(2015届中考二模)如图,等边△ABC 的边AB 上一点P ,作PE⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=AC C .AE=CQD .PQ ⊥AB2121 【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD≌△ACE;(5)DF=AE .其中正确的有( )A 、2个B 、3个C 、4个D 、5个【答案】A .(5)当AF 与AB 重合时,AE=AF ,AB=AF ,得到DF ≠AF ,于是由AE 与DF 不一定相等;12212试题解析:(1)△ABE ∽△DAE ,△ABE ∽△DCA ,故(1)错误;(2)∵△ABE ∽△DCA ,∴,由题意可知CA=BA=, ∴,∴m=,∴mn=2;(1<n <2); 故(2)正确;BE BAAC CD =n =2n (3)证明:将△ACE 绕点A 顺时针旋转90°至△ABH 的位置,则CE=HB ,AE=AH ,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD ,在△EAD 和△HAD 中, ∵AE=AH ,∠HAD=∠EAH-∠FAG=45°=∠EAD ,AD=AD , ∴△EAD ≌△HAD ,∴DH=DE .又∠HBD=∠ABH+∠ABD=90°, ∴BD2+CE2=DH2, 即BD2+CE2=DE2; 故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=AF,AB=AF,∴DF≠AF,∴AE与DF不一定相等;∴(5)错误.故选A.121 2考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF ,∴∠A=∠E .在△ABC 和△DEF 中,,∴△ABC ≌△EDF .A E C F AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AC=EF .考点:全等三角形的判定与性质.7.(2015届中考二模)如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF=DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).2+(2)解:如图,过点F 作FG ⊥DC 与G .∵四边形ADCE 为平行四边形,∴AE ∥CD .∴∠FDG=∠AED=45°,在Rt △FDG 中,∠FGD=90°,∠FDG=45°,DF=,∵cos ∠FDG=,∴DG=GF===2.DG DFcos DF FDG ⋅∠cos45︒ 在Rt △FCG 中,∠FGC=90°,∠FCG=30°,GF=2,∵tan ∠FCG=,∴,FGGC 2tan tan30FG CG FCG ===∠︒∴DC=DG+GC=.2+考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由;(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3)(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC ,AB 于E ,F ,连接BE ,CF ,分别交DF ,DE 于点N ,M ,连接MN .试判断△DMN 的形状,并说明理由.【答案】△DMN 为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届中考一模)如图,已知,在△ABC 中,CA=CB ,∠ACB=90°,E ,F 分别是CA ,CB 边的三等分点,将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN .(1)求证:AM=BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2).13(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cos α=.13CM CE AC AC == 考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届中考模拟)已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;121 2∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;121 2则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.12【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,,∴△BDF≌△PDA(ASA),∴BD=DP .⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DA DF(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,,∴△BDF ≌△PDA (ASA ),∴BD=DP .⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO=DO .求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届中考一模)已知:如图,在▱ABCD 中,线段EF 分别交AD .AC .BC 于点E 、O 、F ,EF⊥AC,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).【答案】(1)证明见解析;(2)EF ⊥AC .考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。
初三中考数学数与式
第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。
2015年贵州数学中考真题及答案
解得 x1=3,x2=-1,
∴点 C的坐标为(-1,0),点 A′的坐标为(3,0). (2分)
当 x=0时,y=3.
∴点 A的坐标为(0,3); (3分)
3 x+2
≥0的解集.(6分)
解:(1)根据“异号两数相乘,积为负”可得
第一人
C1Βιβλιοθήκη C2C3B
第二人
C1
(C2,C1) (C3,C1) (B,C1)
C2
(C1,C2)
(C3,C2) (B,C2)
C3
(C1,C3) (C2,C3)
(B,C3)
B
(C1,B) (C2,B) (C3,B)
(11分)
{ { 2x-3>0 2x-3<0
①
或②
x+1<0
, x+1>0
(3分)
解①得无解;解②得 -1<x<32.
∴原不等式的解集为 -1<x<32;
(6分)
有 6种结果.
八、(本题共 16分)
∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=162=12.
(14分)
26.如图,在平面直角坐标系中,平行四边形 ABOC如图放置,将此平行四边形绕
点
O顺时针旋转
90°得到平行四边形
A′B′OC′.抛物线
y=
-x2
+2x+3经过
六、(本题共 14分)
中考数学备考 QQ群:689548040
贵州省六盘水市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
某某省六盘水市2020年中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣3×2=﹣6.故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影的特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【点评】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【点评】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE =BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.(4分)化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【点评】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为 3 .【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OBAC.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120 度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB =∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOE=120°,故答案为:120.【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2020年2月,某某省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 2 3 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为50 ,在表格中,m=22 ;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h ,众数是 3.5h ;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【点评】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF =BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∵AB=4,∴四边形AEFD的面积=AB×AD=4×10=40.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6=0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2020第二届某某市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3X大小一样,背面完全相同的卡片,3X卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一X,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一X卡片,记下内容后不放回,再随机抽出一X卡片,请用列表或画树状图的方法,求恰好抽到2X卡片都是《辞海》的概率;(2)再添加几X和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一X,使得抽到《消防知识手册》卡片的概率为,那么应添加多少X《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加xX《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2X卡片都是《辞海》的结果有2个,∴恰好抽到2X卡片都是《辞海》的概率为=;(2)设应添加xX《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4X《消防知识手册》卡片.【点评】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG约为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB约为14米.【点评】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,某某市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值X围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.【点评】本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴.【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15 人数y(人)0 170 320 450 560 650 720 770 800 810 810 (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【点评】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是PQ=BO ,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG =∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.【解答】解:(1)∵点O为对角线AC的中点,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
【精校】2015年贵州省六盘水市中考真题数学
2015年贵州省六盘水市中考真题数学一、选择题(本题共10道小题,每小题3分,共计30分,在四个选项中只有一个选项符合题意,请把它选出来填涂在答题卡相应的位置)1.下列说法正确的是( )A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是3解析:A、|-2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、-3的相反数为3,正确.答案:D2.如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2=( )A.110°B.90°C.70°D.50°解析:∵∠3=∠1=70°,∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°.答案:C.3.袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率( )A.1 4B.1 3C.5 12D.7 12解析:∵布袋中装有5个红球、4个白球、3个黄球,共12个球,从袋中任意摸出一个球共有12种结果,其中出现白球的情况有4种可能,∴是白球的概率是412=13.答案:B4.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是( )A.相对B.相邻C.相隔D.重合解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.答案:B5.下列说法不正确的是( )A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大解析:A、圆锥的俯视图是圆,正确;B、对角线互相垂直平分的四边形是菱形,正确;C、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形;D、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确.答案:C6.下列运算结果正确的是( )A.-87×(-83)=7221B.-2.68-7.42=-10C.3.77-7.11=-4.66D.101102 102103 --<解析:A、原式=7221,正确;B、原式=-10.1,错误;C、原式=-3.34,错误;D、-101102>-102103,错误.答案:A7.“魅力凉都六盘水”某周连续7天的最高气温(单位℃)是26,24,23,18,22,22,25,则这组数据的中位数是( )A.18B.22C.23D.24解析:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.答案:C8.的点在数轴上表示时,所在哪两个字母之间( )A.C与DB.A与BC.A与CD.B与C解析:∵6.25<9,∴2.5<3,的点在数轴上表示时,所在C和D两个字母之间.答案:A9.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD解析:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意.答案:D10. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是( )A.60m2B.63m2C.64m2D.66m2解析:设BC=xm,则AB=(16-x)m,矩形ABCD面积为ym2,根据题意得:y=(16-x)x=-x2+16x=-(x-8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.答案:C二、填空题(本大题共8小题,每小题4分,满分32分)11.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB= °.解析:∠ACB=12∠AOB=12×80°=40°.答案:40.12.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B 点,则表示B 点位置的数对是: .解析:B 点位置的数对是(4,7).答案:(4,7).13. 已知x 1=3是关于x 的一元二次方程x 2-4x+c=0的一个根,则方程的另一个根x 2是 .解析:设方程的另一个根是x 2,则:3+x 2=4,解得x=1,故另一个根是1.答案:114. 已知456c b a ==≠0,则b c a+的值为 . 解析:由比例的性质,得c=23a ,b=56a ,b c a +=5263a a a+=96=32. 答案:32.15.如图,有一个英语单词,四个字母都关于直线l 对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品 .解析:如图,这个单词所指的物品是书.答案:书.“亚洲基础设施投资银行”在北京成立,我国出资500亿美元,16. 2014年10月24日,这个数用科学记数法表示为美元.解析:根据题意得:500亿美元=5×1010美元.答案:5×101017.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 .解析:∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=C1C2=2,∴OC2=OC1+C1C2=1+2=3,∴B2(3,2).答案:(3,2)18.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 米.解析:根据垂径定理,得AD=12AB=20米. 设圆的半径是r ,根据勾股定理,得R 2=202+(R-10)2,解得R=25(米).答案:25.三、解答题(本大题共8小题,共88分.答题时应写出必要的运算步骤,推理过程,作图痕迹以及文字说明,超出答题区域书写的作答无效)19.计算:°+(12)-1-(3-π)0)2. 解析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用平方根定义计算即可得到结果.答案:原式+320.如图,已知,l 1∥l 2,C 1在l 1上,并且C 1A ⊥l 2,A 为垂足,C 2,C 3是l 1上任意两点,点B 在l 2上.设△ABC 1的面积为S 1,△ABC 2的面积为S 2,△ABC 3的面积为S 3,小颖认为S 1=S 2=S 3,请帮小颖说明理由.解析:根据两平行线间的距离相等,即可解答.答案:∵直线l 1∥l 2,∴△ABC 1,△ABC 2,△ABC 3的底边AB 上的高相等,∴△ABC 1,△ABC 2,△ABC 3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.21.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?解析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.答案:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)当月通话时间多于300分钟时,A套餐更省钱.22. 毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.解析:首先看三角形数,根据前三层的几何点数分别是1、2、3,可得第六层的几何点数是6,第n层的几何点数是n;然后看正方形数,根据前三层的几何点数分别是1=2×1-1、3=2×2-1、5=2×3-1,可得第六层的几何点数是2×6-1=11,第n层的几何点数是2n-1;再看五边形数,根据前三层的几何点数分别是1=3×1-2、2=3×2-2、3=3×3-2,可得第六层的几何点数是3×6-2=16,第n层的几何点数是3n-2;最后看六边形数,根据前三层的几何点数分别是1=4×1-3、5=4×2-3、9=4×3-3,可得第六层的几何点数是4×6-3=21,第n层的几何点数是4n-3,据此解答即可.答案:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;∵前三层正方形的几何点数分别是:1=2×1-1、3=2×2-1、5=2×3-1,∴第六层的几何点数是:2×6-1=11,第n层的几何点数是2n-1;∵前三层五边形的几何点数分别是:1=3×1-2、2=3×2-2、3=3×3-2,∴第六层的几何点数是:3×6-2=16,第n层的几何点数是3n-2;前三层六边形的几何点数分别是:1=4×1-3、5=4×2-3、9=4×3-3,∴第六层的几何点数是:4×6-3=21,第n层的几何点数是4n-3.故答案为:6、11、16、21、n、2n-1、3n-2、4n-3.23.某学校对某班学生“五·一”小长假期间的度假情况进行调查,并根据收集的数据绘制了两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:(1)求出该班学生的总人数.(2)补全频数分布直方图.(3)求出扇形统计图中∠α的度数.(4)你更喜欢哪一种度假方式.解析:(1)根据其它的人数和所占的百分比求出总人数;(2)分别求出徒步和自驾游的人数,从而补全统计图;(3)用360°乘以自驾游所占的百分比,求出∠α的度数;(4)根据自己喜欢的方式即可得出答案.答案:(1)该班学生的总人数是:612%=50(人);(2)徒步的人数是:50×8%=4(人),自驾游的人数是:50-12-8-4-6=20(人);补图如下:(3)扇形统计图中∠α的度数是:360°×2050=144°.(4)最喜欢的方式是自驾游,它比较自由,比较方便.24.如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.(1)求证:△ADO∽△ACB.(2)若⊙O的半径为1,求证:AC=AD·BC.解析:(1)由AB是⊙O的切线,得到OD⊥AB,于是得到∠C=∠ADO=90°,问题可证;(2)由△ADO∽△ACB列比例式即可得到结论.答案:(1)∵AB是⊙O的切线,∴OD⊥AB,∴∠C=∠ADO=90°,∵∠A=∠A,∴△ADO∽△ACB.(2)由(1)知:△ADO∽△ACB.∴AD ODAC BC=,∴AD·BC=AC·OD,∵OD=1,∴AC=AD·BC.25.如图,已知Rt△ACB中,∠C=90°,∠BAC=45°.(1)用尺规作图:在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹)(2)求∠BDC的度数.(3)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=AA∠∠的的邻边对边,根据定义,利用图形求cot22.5°的值.解析:(1)以点A为圆心,AB为半径作弧交CA的延长线于D,然后连结BD;(2)根据等腰三角形的性质,由AD=AB得∠ADB=∠ABD,然后利用三角形外角性质可求出∠ADB=22.5°;(3)设AC=x ,根据题意得△ACB 为等腰直角三角形,则BC=AC=x ,x ,所以x ,+1)x ,然后在Rt △BCD 中,根据余切的定义求解.答案:(1)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22.5°,即∠BDC 的度数为22.5°. (3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,x ,∴x ,∴+1)x ,在Rt △BCD 中,cot ∠BDC=)1x DC BCx =+1,即cot22.5°+1. 26.如图,已知图①中抛物线y=ax 2+bx+c 经过点D(-1,0),D(0,-1),E(1,0).(1)求图①中抛物线的函数表达式.(2)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D 与点D1是平移前后的对应点,求该抛物线的函数表达式.(3)将图②中的抛物线绕原点O 顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为y 2=2px ,点D 1与D 2是旋转前后的对应点,求图③中抛物线的函数表达式.(4)将图③中的抛物线绕原点O 顺时针旋转90°后与直线y=-x-1相交于A 、B 两点,D2与D 3是旋转前后如图④,求线段AB 的长.解析:(1)根据待定系数法,可得函数解析式;(2)根据函数图象向上平移加,可得函数解析式;(3)根据图象顺时针旋转90°,可得图象的开口方向向右,二次函数的二次项的系数不变,可得答案;(4)根据图象顺时针旋转90°,可得图象的开口方向向下,二次函数的二次项的系数不变,可得函数解析式,根据解方程组,可得A 、B 点坐标,根据勾股定理,可得答案.答案:(1)将D 、C 、E 的坐标代入函数解析式,得001a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,,,解得101a b c =⎧⎪=⎨⎪=-⎩,,.图①中抛物线的函数表达式y=x 2-1.(2)将抛物线的函数表达式y=x 2-1向上平移1个单位,得y=x 2,该抛物线的函数表达式y=x 2.(3)将抛物线的函数表达式y=x 2绕原点O 顺时针旋转90°,得x=y 2,图③中抛物线的函数表达式x=y 2;(4)将图③中抛物线的函数表达式x=y 2绕原点O 顺时针旋转90°,得y=-x 2, 联立21y x y x =--⎧⎨=-⎩,,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩,=. 考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
贵州省六盘水市中考数学试卷含答案解析版
2017年贵州省六盘水市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)大米包装袋上(10±)kg的标识表示此袋大米重()A.(~)kg B. C. D.10kg2.(4分)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.03.(4分)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn4.(4分)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°5.(4分)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数 D.方差6.(4分)不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.7.(4分)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A. B. C.4997 D.50038.(4分)使函数y=√3−x有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤09.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>010.(4分)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=√5+2 B.a=4,b=√5﹣2 C.a=2,b=√5+1 D.a=2,b=√5﹣111.(4分)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱 B.正方体C.球D.直立圆锥12.(4分)三角形的两边a、b的夹角为60°且满足方程x2﹣3√2x+4=0,则第三边的长是()A.√6B.2√2C.2√3D.3√2二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为米.14.(5分)计算:2017×1983= .15.(5分)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={ }.16.(5分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 度.17.(5分)方程2x−1﹣1x−1=1的解为x= .18.(5分)如图,在?ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF= .19.(5分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(,).20.(5分)计算1+4+9+16+25+…的前29项的和是.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+√(3−π)2.22.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).23.(10分)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.24.(10分)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?25.(10分)如图,MN 是⊙O 的直径,MN=4,点A 在⊙O 上,∠AMN=30°,B 为AN̂的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA+PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB 的最小值.26.(12分)已知函数y=kx+b ,y=k x,b 、k 为整数且|bk|=1. (1)讨论b ,k 的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b 与y=k x 的交点个数.2017年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017?六盘水)大米包装袋上(10±)kg的标识表示此袋大米重()A.(~)kg B. C. D.10kg【考点】11:正数和负数.【分析】根据大米包装袋上的质量标识为“10±”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±”千克,∴大米质量的范围是:~千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.2.(4分)(2017?六盘水)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.0【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、B不是中心对称图形,是轴对称图形,故本选项错误;B、J不是中心对称图形,也不是轴对称图形,故本选项错误;C、4不是中心对称图形,也不轴对称图形,故本选项错误;D、0既是中心对称图形又是轴对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)(2017?六盘水)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn【考点】35:合并同类项.【分析】根据合并同类项法则解答.【解答】解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.【点评】本题考查了合并同类项,熟记同类项的概念是解题的关键.4.(4分)(2017?六盘水)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°【考点】LH:梯形.【分析】由AB∥CD,得到∠A+∠D=180°,把∠A的度数代入即可求出答案.【解答】解:∵AB∥CD,∴∠A+∠D=180°,∵∠A=45°,∴∠D=180°﹣45°=135°,故选:B.【点评】本题主要考查了梯形的性质,平行线的性质等知识点,解此题的关键是根据平行线的性质得到∠A+∠D=180°.5.(4分)(2017?六盘水)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】根据平均数、中位数、众数以及方差的意义进行选择即可.【解答】解:∵x甲=75,x乙=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的中位数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选D.【点评】本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.6.(4分)(2017?六盘水)不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(4分)(2017?六盘水)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A. B. C.4997 D.5003【考点】W1:算术平均数.【分析】根据算术平均数的定义计算可得.【解答】解:这组数据的平均数是1[5000×10+(98+99+1+2﹣10﹣80+80+10﹣99﹣10×3=,98)]=5000+110故选:A.【点评】本题主要考查算术平均数,熟练掌握算术平均数的定义是解题的关键.8.(4分)(2017?六盘水)使函数y=√3−x有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤0【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数是解题关键.9.(4分)(2017?六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0【考点】H4:二次函数图象与系数的关系.【分析】根据二次函数的性质一一判断即可.【解答】解:二次函数y=ax2+bx+c的开口向下,∴a<0,∵二次函数与y轴交于负半轴,∴c<0,∵对称轴x=﹣b2a>0,∴b>0,故选B.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,灵活运用知识解决问题,属于基础题,中考常考题型.10.(4分)(2017?六盘水)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=√5+2 B.a=4,b=√5﹣2 C.a=2,b=√5+1 D.a=2,b=√5﹣1【考点】S3:黄金分割;LB:矩形的性质.【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是√5−12的矩形叫做黄金矩形,∴ab =√5−12,∴a=2,b=√5﹣1,故选D.【点评】本题主要考查了黄金矩形,记住定义是解题的关键.11.(4分)(2017?六盘水)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱 B.正方体C.球D.直立圆锥【考点】U1:简单几何体的三视图.【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B、正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C 、球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D 、直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意; 故选A .【点评】本题考查了简单几何体的三视图,确定三视图是关键.12.(4分)(2017?六盘水)三角形的两边a 、b 的夹角为60°且满足方程x 2﹣3√2x+4=0,则第三边的长是( )A .√6B .2√2C .2√3D .3√2【考点】A8:解一元二次方程﹣因式分解法;T7:解直角三角形.【专题】11 :计算题.【分析】先利用因式分解法解方程x 2﹣3√2x+4=0得到a=2√2,b=√2,如图,△ABC 中,a=2√2,b=√2,∠C=60°,作AH ⊥BC 于H ,再在Rt △ACH 中,利用含30度的直角三角形三边的关系得到CH=√22,AH=√62,则BH=3√22,然后在Rt △ABH 中利用勾股定理计算AB 的长即可. 【解答】解:x 2﹣3√2x+4=0,(x ﹣2√2)(x ﹣√2)=0,所以x 1=2√2,x 2=√2,即a=2√2,b=√2,如图,△ABC 中,a=2√2,b=√2,∠C=60°,作AH ⊥BC 于H ,在Rt △ACH 中,∵∠C=60°,∴CH=12AC=√22,AH=√3CH=√62,∴BH=2√2﹣√22=3√22, 在Rt △ABH 中,AB=√(√62)2+(3√22)2=√6, 即三角形的第三边的长是√6.故选A .【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解直角三角形.二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)(2017?六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为×103米.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为×103米,故答案为:×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(5分)(2017?六盘水)计算:2017×1983= 3999711 .【考点】4F:平方差公式.【专题】11 :计算题.【分析】把式子变形得到(2000+17)(2000﹣17),然后利用平方差公式计算.【解答】解:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为3999711.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.15.(5分)(2017?六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={ 1,0,﹣1 }.【考点】12:有理数.【专题】23 :新定义.【分析】根据新定义解答即可得.【解答】解:∵M={﹣1},N={0,1,﹣1},∴M∪N={1,0,﹣1},故答案为:1,0,﹣1.【点评】本题主要考查有理数,根据题意理解新定义是解题的关键.16.(5分)(2017?六盘水)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 75 度.【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,{AB=ADAE=AF,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(5分)(2017?六盘水)方程2x 2−1﹣1x−1=1的解为x= ﹣2 .【考点】B3:解分式方程.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:方程两边都除以(x+1)(x ﹣1)得:2﹣(x+1)=(x+1)(x ﹣1), 解得:x=﹣2或1,经检验x=1不是原方程的解,x=﹣2是原方程的解,故答案为:﹣2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.18.(5分)(2017?六盘水)如图,在?ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F .若CD=5,BC=8,AE=2,则AF= 169 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】过O 点作OM ∥AD ,求出AM 和MO 的长,利用△AEF ∽△MEO ,得到关于AF 的比例式,求出AF 的长即可.【解答】解:过O 点作OM ∥AD ,∵四边形ABCD 是平行四边形,∴OB=OD ,∴OM 是△ABD 的中位线,∴AM=BM=12AB=52,OM=12BC=4, ∵AF ∥OM ,∴△AEF ∽△MEO ,∴AE EM =AF OM, ∴22+52=AF 4,∴AF=169,故答案为169.【点评】本题考查矩形的性质、三角形的中位线定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.19.(5分)(2017?六盘水)已知A (﹣2,1),B (﹣6,0),若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为( ﹣1 , 1 ).【考点】D3:坐标确定位置.【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),B(﹣6,0),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣1,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.20.(5分)(2017?六盘水)计算1+4+9+16+25+…的前29项的和是8555 .【考点】19:有理数的加法.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n ﹣1)n+n=(1+2+3+4+5+…+n )+[0×1+1×2+2×3+3×4+…+(n ﹣1)n]=n(n+1)2+{13(1×2×3﹣0×1×2)+13(2×3×4﹣1×2×3)+13(3×4×5﹣2×3×4)+…+13[(n ﹣1)?n?(n+1)﹣(n ﹣2)?(n ﹣1)?n]}=n(n+1)2+13[(n ﹣1)?n?(n+1)]=n(n+1)(2n+1)6,∴当n=29时,原式=29×(29+1)×(2×29+1)6=8555.故答案为 8555. 【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n 的解析式是解题的关键.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)(2017?六盘水)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+√(3−π)2. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)首先利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=12+12﹣2=﹣1;(2)原式=1﹣(π﹣3)+π﹣3=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(10分)(2017?六盘水)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC 关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B 旋转到点B'的路径长(结果保留π).【考点】R8:作图﹣旋转变换;O4:轨迹.【分析】(1)根据关于原点对称的点的坐标,可得答案;(2)根据弧长公式,可得答案.【解答】解:(1)如图;(2)由图可知:OB=√32+32=3√2,∴BB ′̂=π?OB=3√2π. 【点评】本题考查了旋转变换,利用关于原点对称的点的坐标是解题关键,又利用了弧长公23.(10分)(2017?六盘水)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【考点】X6:列表法与树状图法.【分析】(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2.画出树状图即可;(2)利用(1)中的结果,即可解决问题;【解答】解:(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2. 树状图如图所示,(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能, 所以P 同一味道=412=13.【点评】本题考查树状图﹣列表法、概率的求法等知识,记住:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .24.(10分)(2017?六盘水)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【考点】9A :二元一次方程组的应用.【分析】(1)根据“每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离”,即可得出关于x 、y 的二元一次方程组;(2)解(1)中的二元一次方程组,即可得出结论.【解答】解:(1)∵甲队每天铺设x 米,乙队每天铺设y 米,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,∴{x −y =1005x =6y. (2){x −y =1005x =6y, 解得:{x =600y =500. 答:甲队每天铺设600米,乙队每天铺设500米.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)熟练掌握二元一次方程组的解法.25.(10分)(2017?六盘水)如图,MN 是⊙O 的直径,MN=4,点A 在⊙O 上,∠AMN=30°,B 为AN̂的中点,P 是直径MN 上一动点. (1)利用尺规作图,确定当PA+PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB 的最小值.【考点】N3:作图—复杂作图;M5:圆周角定理;PA :轴对称﹣最短路线问题.【分析】(1)作点A 关于MN 的对称点A ′,连接A ′B ,与MN 的交点即为点P ;(2)由(1)可知,PA+PB 的最小值即为A ′B 的长,连接OA ′、OB 、OA ,先求∠A ′OB=∠A ′ON+∠BON=60°+30°=90°,再根据勾股定理即可得出答案.【解答】解:(1)如图1所示,点P 即为所求;(2)由(1)可知,PA+PB 的最小值即为A ′B 的长,连接OA ′、OB 、OA ,∵A ′点为点A 关直线MN 的对称点,∠AMN=30°,∴∠AON=∠A ′ON=2∠AMN=2×30°=60°,又∵B 为AN̂的中点, ∴AB̂=BN ̂, ∴∠BON=∠AOB=12∠AON=12×60°=30°, ∴∠A ′OB=∠A ′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA ′=OB=12MN=12×4=2,∴Rt △A ′OB 中,A ′B=√22+22=2√2,即PA+PB 的最小值为2√2.【点评】本题主要考查作图﹣复杂作图及轴对称的最短路线问题,熟练掌握轴对称的性质和圆周角定理、圆心角定理是解题的关键.26.(12分)(2017?六盘水)已知函数y=kx+b ,y=k x ,b 、k 为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)的交点个数.(3)求y=kx+b与y=kx【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据整数的定义,以及绝对值的性质分类讨论即可求解;(2)根据一次函数与反比例函数的作法画出图形即可求解;(3)根据函数图象分两种情况:当k=1时;当k=﹣1时;进行讨论即可求解.【解答】解:(1)∵b、k为整数且|bk|=1,∴b=1,k=1;b=1,k=﹣1;b=﹣1,k=1;b=﹣1,k=﹣1;(2)如图所示:的交点个数为4个;(3)当k=1时,y=kx+b与y=kx当k=﹣1时,y=kx+b与y=k的交点个数为4个.x【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了分类思想的应用.。
贵州省六盘水市数学中考试卷
贵州省六盘水市 数学中考试卷(满分150分,考试时间120分钟)、选择题(选择题(本题共10小题,每小题3分,共30分•在每小题给出的四个选项中,只有一项是符合题目 要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满 ).)1.( 2013贵州省六盘水,1, 3分)—2013相反数()1A . — 2013B .C . 20132013【答案】C3 2 (-3a )【答案】A 5.( 2013贵州省六盘水, A .正三角形 【答案】D 6.(2013贵州省六盘水,6, 3分)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/ 互余的角有几个()【答案】B 7.( 2013贵州省六盘水,7, 3分)在平面中,下列命题为真命题的是( )A .四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形 C.对角线相等的四边形是矩形D.四边相等的四边形是正方形1 20132. (2013贵州省六盘水,【答案】D3. (2013贵州省六盘水, 3, 3分)下列运算正确的是(5a 3b =8ab2(a - b)2 2-a b【答案】 4.B(2 013贵州省六盘4, 3分)下列图形中, 是轴对称图形的是(5, 3分)下列图形中, B .正六边形单独选用一种图形不能进行平面镶嵌的是( C .正方形 D .正五边形A.2个D.5个2, 3分)下面四个几何体中,主视图是圆的几何体是( C .aB.3个C.4个【答案】A8.(2013贵州省六盘水,8, 3分)我省五个旅游景区门票票价如下表所示(单位:元),关于这五个景区票价的说法中,正确的是( )景区名称 黄果树大瀑布 织金洞 玉舍森林滑雪安顺龙宫 荔波小七孔 票价(元) 180120200130180A.平均数126B.众数180C.中位数200D.极差70【答案】BAD AE【答案】■ ADE = • C 或.AED= • B 或AC AB14.(2013贵州省六盘水,14, 4分)在六盘水市组织的 五成连创”演讲比赛中,小明等 25人进入总决赛,赛制规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是 ___________________________ .9. (2013贵州省六盘水,9, 3 分)已知关于x 的一元二次方程(k-1)X 2- 2x • 1二0有两个不相等的实数根,则k 的取值范围是( )A.k v -2B.k v 2C.k > 2【答案】D10. D.k v 2 且 21【答案】C二、填空题(本大题共8小题,每小题 11. (2013贵州省六盘水,11, 4分)__________________________ 米(保留两位有效数字) 4分,满分32分.)H7N9禽流感病毒的直径大约为0.0000000805米,用科学计数法表示为【答案】8.1 >10启12. (2013贵州省六盘水,12, 4分)因式分解: 4x‘ —36x = __________________________【答案】4x(x 3)(x-3)13. (2013贵州省六盘水,13, 4分)如图,添加一个 条件: 出一个既可)_______________________ ,使得△ ADE ACB .(写13【答案】132515._________________________________________________________________ (2013贵州省六盘水,15 , 4分)如图,梯形ABCD中,AD//BC, AD =4, AB=5, BC=10 , CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于_________________________________________________________________________ .A D【答案】19 「16.(2013贵州省六盘水,16, 4分)若O A和O B相切,它们的半径分别为8cm和2cm,则圆心距AB为【答案】10或617.(2013贵州省六盘水,17, 4分)无论x取任何实数,代数式、x2 - 6x • m都有意义,则m的取值范围为【答案】m>918.(2013贵州省六盘水,18, 4分)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°此时,点O运动到了点O1处(既点B处),点C运动到了C1处,点B运动到了点B1处,又将正方形纸片AO1 C1B1绕B1点按顺时针方向旋转90° ••…,按上述方法经过4次旋转后,顶点O经过的总路程为•经过61旋转后,顶点O经过的总路程为三、解答题(本大题共7小题,满分88分,解答应写出文字说明、证明过程或演算步骤)佃.(2013贵州省六盘水,19, 16分)(本题共2小题,每小题8分,满分16分)(1)计算:J27—(1)上十卜3 —2 —2tan60 = + (2013—兀):;(2)先化简,再求值:(-- —X 3,其中X2-4=0 .x —4x+4 2—x x -2x【答案】解: (1)—(2)^2 _2ta 门60,+(2013_兀)_9 + 2_ JE _2V3 + 1= - 6 ;2⑵ x - 4=0,\ x= =t2 但x—2工0 故X = -2 ,2^(—2)当x= —2时,原式= =-1.2 - 220. (2013贵州省六盘水,20 , 12分)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:你平均每天参加体育活动的时间是多少?”共有4个选项:A 1.5小时以上B 1~1.5小时根据调查结果绘制了两幅不完整的统计图:牛人数辰以上信息解答下列问题:本次调查活动采取了________________ 计算本次调查的学生人数和图(将若该校有3000名学生,你估计该校可C.0.5小时 D. 0.5小时以下请你根据90(80(70(50分)302010_______________ 调查方式.2)中选项C的圆心角度数.(1)中选项B的部分补充完整。
(历年中考)贵州省六盘水市中数学考试题 含答案
2016年贵州省六盘水市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b24.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.45.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=197.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=980010.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为cm.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为()18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?数(单位:天)根据关系式列方程为:解得:检验:答:.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.2016年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元【分析】利用相反意义量的定义计算即可得到结果.【解答】解:亏本50元记作﹣50元,故选B.【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看,所得到的图形解答即可.【解答】解:几何体的俯视图是C中图形,故选:C.【点评】本题考查的是几何体的三视图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题应得到从上面看的图形.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b2【分析】由合并同类项、完全平方公式、同底数幂的除法法则得出A、B、C不正确,由积的乘方法则得出D正确即可.【解答】解:A、a3+a2=a5不正确;B、∵(x+y)2=x2+2xy+y2,∴选项B不正确;C、x8÷x2=x4不正确;D、(ab)2=a2b2正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法法则、积的乘方法则;熟记有关公式和法则是解决问题的关键.4.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.4【分析】根据平行线的性质即可得到结论.【解答】解:∵a∥b,∴∠1=∠3,2=∠3,∵∠1=∠2,∴相等的两个角有3对,故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差【分析】由表可知,运动鞋尺码为23.0cm的人数最多,故经理做决定应该是根据穿哪种尺码的运动鞋人数最多,即众数.【解答】解:由表可知,运动鞋尺码为23.0cm的人数最多,所以经理决定本月多进尺码为23.0cm的女式运动鞋主要根据众数.故选A.【点评】本题主要考查了统计量的选择的知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以求得不等式3x+2<2x+3的解集,从而可知哪个选项是正确的.【解答】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.【点评】本题考查解一元一次不等式、在数轴上表示一元一次不等式的解集,解题的关键是明确解不等式的方法.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.【分析】设旗杆高h,国旗上升的速度为v,根据国旗离旗杆顶端的距离S=旗杆的高度﹣国旗上升的距离,得出S=h﹣vt,再利用一次函数的性质即可求解.【解答】解:设旗杆高h,国旗上升的速度为v,国旗离旗杆顶端的距离为S,根据题意,得S=h﹣vt,∵h、v是常数,∴S是t的一次函数,∵S=﹣vt+h,﹣v<0,∴S随v的增大而减小.故选A.【点评】本题考查了函数的图象,一次函数的性质,根据题意得出国旗离旗杆顶端的距离与时间的函数关系式是解题的关键.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=9800【分析】根据题意,可以列出相应的方程,本题得以解决.【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.10.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为 3.04×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3040000000000用科学记数法表示为3.04×1012.故答案为:3.04×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的1种情况,∴两次都摸到红球的概率是,故答案为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为12cm.【分析】根据三角形中位线定理可直接得出结论.【解答】解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=3.【分析】根据互为相反数的两个数之和为0与互为倒数的两个数之积是1解答即可.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为:3.【点评】本题主要考查相反数和倒数的知识,解答本题的关键在于掌握互为相反数的两个数之和为0;互为倒数的两个数乘积为1.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为30.【分析】由在菱形ABCD中,对角线AC=6,BD=10,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为(3,2)【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点B的坐标是(﹣3,﹣2),∴A点的坐标为(3,2).故答案是:3,2.【点评】本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥A1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.【点评】本题考查了全等三角形像的判定;SSA不能判定的原因是有锐角钝角三角形不能全等,把三角形分类后就能全等了.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.【分析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|1﹣|﹣2sin60°+(π﹣2016)0﹣=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根等考点的运算.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.【点评】此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?数(单位:天)根据关系式列方程为:=解得:x=50检验:当x=50时x+30≠0,x=50是原分式方程的解答:甲队每天修路50m.【分析】设甲队每天修路xm,则乙队每天修(x+30)m,根据甲队修路500m与乙队修路800m所用天数相同,列出方程即可.【解答】解:设甲队每天修路xm,则乙队每天修(x+30)m,由题意得,=,解得:x=50.检验:当x=50时x+30≠0,x=50是原分式方程的解,答:甲队每天修路50m,故答案为:x+30,,=,x=50当x=50时x+30≠0,x=50是原分式方程的解,甲队每天修路50m.【点评】本题考查了由实际问题抽象出分式方程,解答本题的读懂题意,找出合适的等量关系,列出方程.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.【分析】(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)根据题意可作辅助线:过点A作AD⊥BC于点D;(3)然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2,即可证得结论.【解答】解:(1)当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)如图3,过点A作AD⊥BC于点D,(3)证明:如图3,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2∴a2+b2=c2﹣2ax∵a>0,x>0∴2ax>0∴a2+b2<c2∴当△ABC为钝角三角形时,a2+b2<c2.【点评】此题属于三角形的综合题.考查了勾股定理以及三角形的面积问题.注意理解题意是解此题的关键.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD 与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【分析】(1)根据统计图可知优秀的18人占30%,从而可以得到本次抽查的学生数;(2)根据抽查的学生数可以得到抽查中及格的人数,从而可以将条形统计图补充完整;(3)用良好的人数占抽查人数的比值乘以360°即可解答本题;(4)根据统计图中的数据可以求得该学校七年级学生中测试结果为“不及格”等级的学生人数;(5)说出的建议只要对学生具有鼓励性即可.【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.【分析】(1)根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠E,再根据三角形的内角和等于180°求出∠ABC=90°,然后根据切线的定义证明即可;(2)根据∠A的正弦求出AC,利用勾股定理列式计算求出AB,然后求解即可.【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.【点评】本题考查了切线的判定,锐角三角函数,解直角三角形,勾股定理,在同圆或等圆中,同弧所对的圆周角相等的性质,熟记切线的概念并求出直角是解题的关键.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y 轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=﹣,即点P的坐标为(1,﹣);当DA=DP时,=,解得,y=﹣4±,即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.21。
2015年贵州省六盘水市中考数学试卷(含解析版).doc
2015年贵州省六盘水市中考数学试卷一、选择题(本题共10道小题,每小题3分,共计30分,在四个选项中只有一个选项符合题意,请把它选出来填涂在答题卡相应的位置)1.(3分)(2015•六盘水)下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是32.(3分)(2015•六盘水)如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2=()A.110°B.90°C.70°D.50°3.(3分)(2015•六盘水)袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A.B.C.D.4.(3分)(2015•六盘水)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合5.(3分)(2015•六盘水)下列说法不正确的是()A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大6.(3分)(2015•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.7.(3分)(2015•六盘水)“魅力凉都六盘水”某周连续7天的最高气温(单位℃)是26,24,23,18,22,22,25,则这组数据的中位数是()A.18 B.22 C.23 D.248.(3分)(2015•六盘水)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C9.(3分)(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.A B=DC C.∠ACB=∠DBC D.A C=BD10.(3分)(2015•六盘水)如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 的最大面积是()A.60m2B.63m2C.64m2D.66m2二、填空题(本大题共8小题,每小题4分,满分32分)11.(4分)(2015•六盘水)如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.12.(4分)(2015•六盘水)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:.13.(4分)(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.14.(4分)(2015•六盘水)已知≠0,则的值为.15.(4分)(2015•六盘水)如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品.16.(4分)(2015•六盘水)2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元,这个数用科学记数法表示为美元.17.(4分)(2015•六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为.18.(4分)(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.三、解答题(本大题共8小题,共88分.答题时应写出必要的运算步骤,推理过程,作图痕迹以及文字说明,超出答题区域书写的作答无效)19.(8分)(2015•六盘水)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.20.(8分)(2015•六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.21.(10分)(2015•六盘水)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?22.(10分)(2015•六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:三角形数正方形数五边形数六边形数名称及图形几何点数层数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数……………第n层几何点数请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.23.(12分)(2015•六盘水)某学校对某班学生“五•一”小长假期间的度假情况进行调查,并根据收集的数据绘制了两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:Array(1)求出该班学生的总人数.(2)补全频数分布直方图.(3)求出扇形统计图中∠α的度数.(4)你更喜欢哪一种度假方式.24.(12分)(2015•六盘水)如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.(1)求证:△ADO∽△ACB.(2)若⊙O的半径为1,求证:AC=AD•BC.25.(12分)(2015•六盘水)如图,已知Rt△ACB中,∠C=90°,∠BAC=45°.(1)用尺规作图:在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹)(2)求∠BDC的度数.(3)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=,根据定义,利用图形求cot22.5°的值.26.(16分)(2015•六盘水)如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0),D (0,﹣1),E(1,0).(1)求图①中抛物线的函数表达式.(2)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.(3)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为y2=2px,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.(4)将图③中的抛物线绕原点O顺时针旋转90°后与直线y=﹣x﹣1相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长.2015年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题(本题共10道小题,每小题3分,共计30分,在四个选项中只有一个选项符合题意,请把它选出来填涂在答题卡相应的位置)1.(3分)(2015•六盘水)下列说法正确的是()A.|﹣2|=﹣2 B.0的倒数是0C.4的平方根是2 D.﹣3的相反数是3考点:平方根;相反数;绝对值;倒数.专题:计算题.分析:利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.解答:解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D点评:此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.2.(3分)(2015•六盘水)如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2=()A.110°B.90°C.70°D.50°考点:平行线的性质.分析:根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.解答:解:∵∠3=∠1=70°,∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°,故选C.。
六盘水中考数学试题及答案.doc
2014年六盘水中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
贵州省黔西南州中考数学试题及答案
2015年贵州省黔西南州中考数学试题及答案(1)数学试卷 第2页秘密★启用前黔西南州2015年初中毕业生学业暨升学统一考试试卷数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。
2.本试卷共4页,满分150分,答题时间120分钟。
一、选择题(每小题4分,共40分) 1.下列各数是无理数的是 A .4 B .31- C .π D .1- 2.分式11-x 有意义,则x 的取值范围是 A .1>x B .1≠x C .1<x D .一切实数3.如图1,在菱形ABCD 中,AC 与BD 相交于点O ,AC =8,BD =6,则菱形的边长AB 等于 A .10 B .7 C .6 D .5 4.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是 A .1 B .34 C .0 D .2 5.已知△ABC ∽△C B A '''且21=''B AAB ,则C B A ABCS S '''∆∆:为 A .1:2B .2:1C .1:4D .4:16.如图2,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于A.150°B.130°C.155°D.135°7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为A.180)11(=-xx B.180)11(22=-+xxC.180)11(=+xx D.180)11(22=++xx8.下面几个几何体,主视图是圆的是A B C D9.如图3,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA以1cm/s的速度向A点运动,同时动点Q从C点沿CB以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm²)与运动时间x(s)之间的函数图像大致是数学试卷第3页10.在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图4①;将AB折成正三角形,使点A、B重合于点P,如图4②;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图4③,当m=3时,n的值为A.423-B.432-C.332-D.332二、填空题(每小题3分,共30分)11.32aa⋅= .12.42500000用科学记数法表示为.13.如图5,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,数学试卷第4页可使它成为菱形.14.如图6,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B= .15.分解因式:4842++xx= .16.如图7,点A是反比例函数xky=图像上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .17.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是.18.已知215-=x,则12++xx= .19.如图8,AB是⊙O的直径,CD为数学试卷第5页数学试卷 第6页⊙O 的一条弦,CD ⊥AB 于点E ,已知CD =4,AE =1,则⊙O 的半径为 .20.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A = . 三、(本题共12分)21.(1)计算:8)21(45tan )20143(10+-︒-+--(2)解方程:31112=-+-xx x . 四、(本题共12分)22.如图9所示,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1)求证:直线PB 与⊙O 相切 (2)PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC =4.求弦CE 的长.五、(本题共14分)23.为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图10(未画完整).(1)这次调查中,一共调查了 名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、(本题共14分)24.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?七、阅读材料题(本题共12分)25.求不等式0)3)(12(>+-xx的解集.解:根据“同号两数相乘,积为正”可得:①数学试卷第7页数学试卷 第8页⎩⎨⎧>+>-03012x x 或 ②⎩⎨⎧<+<-03012x x . 解①得21>x ;解②得3-<x . ∴不等式的解集为21>x 或3-<x . 请你仿照上述方法解决下列问题: (1)求不等式0)1)(32(<+-x x 的解集.(2)求不等式02131≥+-x x 的解集. 八、(本题共16分) 26.如图11,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形C O B A '''.抛物线322++-=x x y 经过点A 、C 、A ′三点.(1)求A 、A ′、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形C O B A '''重叠部分OD C '∆的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,A AM '∆的面积最大?最大面积是多少?并写出此时M 的坐标.黔西南州2015年初中毕业生学业暨升学统一考试试卷数学参考答案及评分标准一、选择题(每小题4分,共40分)1.C 2.B 3. D 4.A 5. C 6. B7. C8. B9. C10. A二、填空题(每小题3分,共30分)11.5a12. 4.25×10713. AC⊥BD14. 40°15. 2)1x(4+16. -4 17. π1518. 2520. 84019.2三、21.题(本题共两个小题,每小题6分,共12分)(1)解:原式=1+1-2+22……………………………………………………………(4分)=22…………………………………………………………………(6分)(2)解:去分母得:-=-……………………………………213(1)x x数学试卷第9页………(2分)-=-………………………………………2x………………………………(3分)2x…………………………………………=……………………………(4分)检验:把2=x代入(1-x)≠0,∴2=x是原分式方程的解………………(6分)四、22题(每小题6分,共12分)(1)证明:过点O作OD⊥PB,连接OC. …………(2分)∵AP与⊙O相切, ∴OC⊥AP. ……………………(3分)又∵OP平分∠APB, ∴OD=OC.……………………(4分)∴PB是⊙O的切线. …………………………………(6分)数学试卷第10页数学试卷 第11页(2)解:过C 作CF ⊥PE 于点F .……………………………………………………(1分)在Rt △OCP 中,OP =522=+CP OP …………………………………………(2分)∵CF OP CP OC S OCP⋅=⋅=∆2121∴512=CF ……………………………………………………………………(3分)在R t △COF 中,2295OF CO CF =-=∴524593=+=FE 在Rt△CFE 中,551222=+=EF CF CE ………………………………………(6分)五、23题(3+4+7分,共14分)(1)200…………………………………………………………………………………(3分)(2)如图………………………………………………………………………………(4分)(3)用321、C、CC表示喜欢跳绳的学生,用B表示喜欢足球的学生,列表如下C1 C2 C3 B 第一人第二人数学试卷第12页数学试卷 第13页C 1 (C 2 ,C 1)(C 3 ,C 1)(B ,C 1) C 2 (C 1 ,C 2)(C 3 ,C 2)(B , C 2) C 3 (C 1,C 3) (C 2 ,C 3)(B , C 3)B(C 1 ,B ) (C 2 ,B ) (C 3 ,B )……………………………………………………………………(4分) ∴P (一人是喜欢跳绳,一人是喜欢足球的学生)=21126=………………………………(7分) 六、24题(本题5+5+4共14分)解:(1)设每吨水的政府补贴优惠价和市场调节价分别为x 元,y 元.依题意得………(1分)⎩⎨⎧=+=+32812421212y x y x …………………………………………………………(3分)数学试卷 第14页解方程组得:⎩⎨⎧==5.21y x ……………………………………………………(4分)答:每吨水的政府补贴优惠价1元, 市场调节价2.5元 …………………(5分) (2)当x ≤12时,y =x ; ………………………………………………………………(2分)当x >12时,y =12+2.5(x -12) 即y =2.5x -18. …………………………………………………………………(5分)(3)当x =26时,y =2.5×26-18=65-18=47(元) ……………………………(3分)答:小黄家三月份应交水费47元. ………………………………(4分)七、25题(每小题6分,共12分)数学试卷 第15页(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ②⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分)∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x <-2………………………………………………………(4分)∴原不等式的解集为x ≥3或x <-2……………………………………………(6数学试卷 第16页分)八、26题(本题4+6+6分,共16分)(1)解:(1)当=y 时,322=++-x x ……………………………………… (1分)解得1,321-==x x ……………………………………………………………(3分)∴C (-1,0),A ′(3,0).当x =0时,y =3.∴A (0,3) …………………………(4分) (2)∵C (-1,0),A (0,3) , ∴B(1,3)∴101322=+=OB ………………………………………………………………(1分)∴△AOB 的面积为131322S =⨯⨯= ………………………………………………(2分)又∵平行四边形ABOC 旋转90得平行四边形数学试卷 第17页A ′B ′OC ′,∴∠ACO =∠OC ′D又∵∠ACO =∠ABO ,∴∠ABO =∠OC ′D . 又∵∠C ′OD =∠AOB , ∴△C ′OD∽△BOA …………………………………………………………(4分)∴22)101()(='=∆'∆OB C O S S BOA OD C …………………………………………………(5分)∴203='∆ODC S………………………………………………………………(6分) (3)设M 点的坐标为(32,2++-m m m ),连接OM ……………………(1分)3321321)32(3212⨯⨯-⨯⨯+++-⨯⨯='∆m m m s A AM……………(3分)=)30.(29232<<+-m m m …………………………………………(4分)当23=m 时,A AM S ''∆取到最大值为827………………………………(5分)∴M(415,23) ………………………………………………(6分)数学试卷第18页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省六盘水市2015年中考数学试卷温馨提示:1.本试卷包括试题卷和答题卡,所有答案必须填涂或书写在答题卡上规定的位置,否则无效,考试结束后,试题卷和答题卡一并收回。
2.答题前,请认真阅读答题卡上的“注意事项”。
3.本试题卷共6页,满分150分,考试时间120分钟。
一、选择题(本题共10道小题,每小题3分,共计30分,在四个选项中只有一个选项符合题意,请把它选出来填涂在答题卡相应的位置)1.下列说法正确的是()A.2- B.0的倒数是02-=C.4的平方根是2 D.-3的相反数是3考点:平方根;相反数;绝对值;倒数..专题:计算题.分析:利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.解答:解:A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D点评:此题考查了平方根,相反数,绝对值以及倒数,熟练掌握各自的定义是解本题的关键.2.如图1,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2=()A.110° B.90° C.70° D.50°考点:平行线的性质..分析:根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.解答:解:∵∠3=∠1=70°,∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°,故选C.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3.袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率( )A .41B .31C .125 D .127 考点:概率公式..分析:让白球的个数除以球的总数即为摸到白球的概率. 解答:解:∵布袋中装有5个红球、4个白球、3个黄球,共12个球,从袋中任意摸出一个球共有12种结果,其中出现白球的情况有4种可能,∴是白球的概率是=. 故答案为:.点评:本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.4.如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是( )A .相对B .相邻C .相隔D .重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻. 故选B .点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.下列说法不‧正确的是( )A .圆锥的俯视图是圆B .对角线互相垂直平分的四边形是菱形C .任意一个等腰三角形是钝角三角形D .周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大考点:命题与定理..分析:根据三视图、菱形的判定定理、等腰三角形的性质、正方形的性质、即可解答.解答:解:A 、圆锥的俯视图是圆,正确;B 、对角线互相垂直平分的四边形是菱形,正确;C 、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形;D 、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确;故选:C .点评:本题考查了命题与定理,解决本题的关键是熟记三视图、菱形的判定定理、等腰三角形的性质、正方形的性质.6.下列运算结果正确的是( )A .7221)83(87=-⨯-B .1042.768.2-=--C .66.411.777.3-=-D .103102102101-<- 考点:有理数的乘法;有理数大小比较;有理数的减法.. 专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A 、原式=7221,正确;B 、原式=﹣10.1,错误;C 、原式=﹣3.34,错误;D 、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.7.“魅力凉都六盘水”某周连续7天的最高气温(单位°C)是26,24,23,18,22,22,25,则这组数据的中位数是()A.18 B.22 C.23 D.24考点:中位数..分析:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数就是这组数据的中位数.解答:解:把数据按从小到大的顺序排列为:18、22、22、23、24、25、26,则中位数是:23.故选:C.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.如图3,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C考点:估算无理数的大小;实数与数轴..专题:计算题.分析:确定出7的范围,利用算术平方根求出的范围,即可得到结果.解答:解:∵6.25<7<9, ∴2.5<<3,则表示的点在数轴上表示时,所在C 和D 两个字母之间.故选A点评:此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.9.如图4,已知∠ABC =∠DCB ,下列所给条件不‧能证明△ABC≌△DCB 的是( )A .∠A =∠DB .AB =DCC .∠ACB =∠DBCD .AC =BD考点:全等三角形的判定..分析:本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC 是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD 、∠ACB=∠DBC、∠A=∠D后可分别根据SAS 、ASA 、AAS 能判定△ABC≌△DCB,而添加AC=BD 后则不能.解答:解:A 、可利用AAS 定理判定△ABC≌△DCB,故此选项不合题意;B 、可利用SAS 定理判定△ABC≌△DCB,故此选项不合题意;C 、利用ASA 判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2 B.63m2C.64m2 D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)11.如图6所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=.考点:圆周角定理..专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠ACB=∠AOB=×80°=40°.故答案为40.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:.考点:坐标确定位置..分析:先根据红方“马”的位置向左3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点B 的坐标即可. 解答:解:建立平面直角坐标系如图所示,点B 的坐标为(2,7).故答案为:(2,7).点评:本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出坐标原点的位置是解题的关键.13.已知x 1=3是关于x 的一元二次方程042=+-c x x 的一个根,则方程的另一个根x 2是 .考点:根与系数的关系..分析:根据根与系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x 2,则:3+x 2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考查的是一元二次方程的解,根据根与系数的关系,由两根之和可以求出方程的另一个根.14.已知0654≠==a b c ,则ac b +的值为 . 考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得c=a ,b=a .===. 故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.15.如图8,有一个英语单词,四个字母都关于直线l 对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品 .考点:轴对称图形..分析:根据轴对称图形的性质,组成图形,即可解答.解答:解:如图,这个单词所指的物品是书.故答案为:书.点评:本题考查了轴对称图形,解决本题的关键是根据轴对称的性质,作出图形.16.2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元‧‧‧,这个数用科学记数法表示为美元‧‧.考点:科学记数法—表示较大的数.专题:计算题.分析:把500亿美元化为美元,表示为科学记数法即可.解答:解:根据题意得:500亿美元=5×1010美元,故答案为:5×1010点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.在正方形A1B1C1O和A2B2C2C1,按如图9所示方式放置,在直线1+y=x上,点C1,C2在x轴上,已知A1点的坐标是(0,1),则点B2的坐标为.考点:一次函数图象上点的坐标特征;正方形的性质..专题:规律型.分析:根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标.解答:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=C1C2=2,∴OC2=OC1+C1C2=1+2=3,∴B2(3,2).故答案为(3,2).点评:本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键.18.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。