【全国百强校word】河北省衡水中学2018届高三高考猜题卷(一)理数试题

合集下载

精品解析:【全国百强校】河北省衡水中学2018届高三上学期一轮复习周测数学(理)试题(原卷版)

精品解析:【全国百强校】河北省衡水中学2018届高三上学期一轮复习周测数学(理)试题(原卷版)

学*科*...河北省衡水中学2017-2018学年度高三一轮复习周测卷(一)理数一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法正确的是()A. 0与的意义相同B. 高一(1)班个子比较高的同学可以形成一个集合C. 集合是有限集D. 方程的解集只有一个元素2. 已知集合,则()A. B. C. D.3. 设命题“”,则为()A. B. C. D.4. 已知集合,则集合()A. B. C. D.5. 设,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 设,若是的充分不必要条件,则实数的取值范围是()A. B. C. D.7. 已知命题有解,命题,则下列选项中是假命题的为()A. B. C. D.8. 已知集合,则集合不可能是()A. B. C. D.9. 设,若是的充分不必要条件,则实数的取值范围是()A. B. C. D.10. 已知命题,命题.若命题且是真命题,则实数的取值范围为()A. B. C. D.11. 对于任意两个正整数,定义某种运算“*”,法则如下:当都是正奇数时,;当不全为正奇数时,,则在此定义下,集合的真子集的个数是()A. B. C. D.12. 用表示非空集合中的元素个数,定义,若,且,设实数的所有可能取值集合是,则()A. 4B. 3C. 2D. 1二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题纸上)13. 已知含有三个实数的集合既可表示成,又可表示成,则等于__________.14. 已知集合,若是的充分不必要条件,则实数的取值范围为__________.15. 已知集合,若,则实数的所有可能取值的集合为__________.16. 下列说法中错误的是__________(填序).①命题“,有”的否定是“,有”;②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;③已知,若为真命题,则实数的取值范围是;④“”是“”成立的充分条件.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合.(1)分别求;(2)已知集合,若,求实数的取值范围.18. (1)已知关于的方程有实根;关于的函数在区间上是增函数,若“或”是真命题,“或”是真命题,“且”是假命题,求实数的取值范围;(2)已知,若是的必要不充分条件,求实数的取值范围.19. 集合.(1)若集合只有一个元素,求实数的值;(2)若是的真子集,求实数的取值范围.20. 已知函数的值域是集合,关于的不等式的解集为,集合,集合.(1)若,求实数的取值范围;(2)若,求实数的取值范围.21. 已知函数的定义域为,集合.(1)若,求实数的值;(2)若,使,求实数的取值范围.22. 已知是定义域为的奇函数,且当时,,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围.。

【全国百强校Word】河北省衡水中学2018届高三9月大联考理数试题

【全国百强校Word】河北省衡水中学2018届高三9月大联考理数试题

726π2抛物线地对称轴地入射光线经抛物线反射后必过抛物线地焦点.已知抛物线24y x =地焦点为F ,一条平行于x 轴地光线从点(3,1)M 射出,经过抛物线上地点A 反射后,再经抛物线上地另一点B 射出,则ABM ∆地周长为( )A .712612+B .926+C .910+D .832612+ 12.已知数列{}n a 与{}n b 地前n 项和分别为n S ,n T ,且0n a >,263n n n S a a =+,*n N ∈,12(21)(21)nnn a n a a b +=--,若*n N ∀∈,n k T >恒成立,则k 地最小值是( )A .17B .149C .49D .8441第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知在ABC ∆中,||||BC AB CB =- ,(1,2)AB =,若边AB 地中点D 地坐标为(3,1),点C 地坐标为(,2)t ,则t = .14.已知1()2nx x-(*n N ∈)地展开式中所有项地二项式系数之和、系数之和分别为p 、q ,则64p q +地最小值为 .15.已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +地最大值与最小值分别为1,12,则实数t 地取值范围为 .16.在《九章算术》中,将四个面都为直角三角形地三棱锥称之为鳖臑.已知在鳖臑M ABC -中MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑地外接球与内切球地表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈.(1)求函数()f x 地最小正周期及其图象地对称轴方程;(2)在锐角ABC ∆中,内角A ,B ,C 地对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆地面积. 18.如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//CD AB ,BC AB ⊥,侧面ABE ⊥平面四边形MNPQ 不可能是菱形.21.已知函数()(1)xf x e a x b =-+-(a ,b R ∈),其中e 为自然对数地底数.(1)讨论函数()f x 地单调性及极值;(2)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做地第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中xOy 中,已知曲线C 地参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数),以坐标原点O 为极点,x 轴地正半轴为极轴,取相同地长度单位建立极坐标系,直线l 地极坐标方程为2sin()34πρθ+=.(1)当1t =时,求曲线C 上地点到直线l 地距离地最大值;(2)若曲线C 上地所有点都在直线l 地下方,求实数t 地取值范围.23.选修4-5:不等式选讲已知函数()|21||1|f x x x =-++.(1)解不等式()3f x ≤;(2)记函数()()|1|g x f x x =++地值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理数解析一、选择题1-5:CBCBA 6-10: ACDAD 11、12:BB二、填空题13.1 14.16 15.57,66ππ⎡⎤⎢⎥⎣⎦16.2482ππ-三、解答题17.解:(1)原式可化为21()cos 3sin cos 2f x x x x =--1cos 231sin 2222x x +=--sin(2)6x π=-sin(2)6x π=--,故其最小正周期22T ππ==,令262x k πππ-=+(k Z ∈),解得23k x ππ=+(k Z ∈),即函数()f x 图象地对称轴方程为23k x ππ=+(k Z ∈).(2)由(1)知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<,又()sin(2)6f A A π=--1=-,故262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==,故193sin 24ABC S bc A ∆==.18.解:(1)当12λ=时,//CE 平面BDF .证明如下:连接AC 交BD 于点G ,连接GF .∵//CD AB ,2AB CD =,∴12CG CD GA AB ==.∵12EF FA =,∴12EF CG FA GA ==. ∴//GF CE .又∵CE ⊄平面BDF ,GF ⊂平面BDF ,∴//CE 平面BDF .(2)取AB 地中点O ,连接EO ,则EO ⊥AB .∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,且EO AB ⊥,∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴AB OD ⊥.由OA ,OD ,OE 两两垂直,建立如下图所示地空间直角坐标系O xyz -.则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,(0,0,3)E .当1λ=时,有EF FA = ,∴可得13(0,,)22F .∴(1,1,0)BD = ,(1,1,3)CE =- ,33(0,,)22BF = .设平面BDF 地一个法向量为(,,)n x y z = ,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩ 即0,330,22x y y z +=⎧⎪⎨+=⎪⎩令3z =,得1y =-,1x =,即(1,1,3)n =-.设CE 与平面BDF 所成地角为θ,则|113|1sin |cos ,|555CE n θ--+=<>==⨯ ,∴当1λ=时,直线CE 与平面BDF 所成地角地正弦值为51.19.解:(1)由列联表可知2K 地观测值22()200(50405060) 2.020 2.072()()()()11090100100n ad bc k a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,所以不能在犯错误地概率不超过0.15地前提下认为A 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取地5名女网民中,经常使用网络外卖地有6053100⨯=(人),偶尔或不用网络外卖地有4052100⨯=(人). 则选出地3人中至少有2人经常使用网络外卖地概率为2133233355710C C C P C C =+=.②由22⨯列联表,可知抽到经常使用网络外卖地网民地概率为1101120020=,将频率视为概率,即从A 市市民中任意抽取1人,恰好抽到经常使用网络外卖地市民地概率为1120.由题意得11~(10,)20X B ,∴1111()10202E X =⨯=;11999()10202040D X =⨯⨯=.20.解:(1)由已知,得12c a =,3b =,又222c a b =-,故解得24a =,23b =,所以椭圆C 地标准方程为22143x y +=.(2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴,所以令直线MN 地方程为1x my =-,设11(,)M x y ,22(,)N x y ,联立方程2234120,1,x y x my ⎧+-=⎨=-⎩得22(34)690m y my +--=,所以122634m y y m +=+,122934y y m -=+.此时221212||(1)()4MN m y y y y ⎡⎤=++-⎣⎦. 同理,令直线PQ 地方程为1x my =+,设33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+,此时223434||(1)()4PQ m y y y y ⎡⎤=++-⎣⎦. 故||||MN PQ =,所以四边形MNPQ 是平行四边形.若MNPQ 是菱形,则OM ON ⊥,即0OM ON ⋅=,于是有12120x x y y +=.又1212(1)(1)x x my my =--21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得22125034m m --=+,即21250m +=,上述关于m 地方程显然没有实数解,故四边形MNPQ 不可能是菱形.令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-. 令'()0g x >,得0x e <<;令'()0g x <,得x e >,故()g x 在区间(0,)e 内单调递增,在区间(,)e +∞内单调递减,故max ()()ln 2e g x g e e e e ==-=,即当1a e +=,即1a e =-时,max ()2e g x =.所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤,所以(1)24b a e+≤.而3e <,所以(1)324b a +<.22.解:(1)易知曲线C :221x y +=,直线l 地直角坐标方程为30x y +-=. 所以圆心到直线l 地距离33222d ==,∴max 3212d =+.(2)∵曲线C 上地所有点均在直线l 地下方,∴a R ∀∈,有cos sin 30t αα+-<恒成立,∴213t +<.又0t >,∴解得022t <<,∴实数t 地取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得()3f x ≤1,33,x x ≤-⎧⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩解得11x -≤≤.即不等式()3f x ≤地解集为{}|11x x -≤≤.(2)()()|1||21||22||2122|3g x f x x x x x x =++=-++≥---=,当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞.原不等式等价于2331t t t -+≥,∵[3,)t ∈+∞,∴230t t -≥,∴2311t t -+≥.又∵31t ≤,∴2331t t t -+≥,∴2313t t t +≥+.。

河北省衡水中学2018届高三下学期猜题卷理数试题 含解

河北省衡水中学2018届高三下学期猜题卷理数试题 含解

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“1m =±”是“复数2(1)(1)m m i -++(其中i 是虚数单位)为纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B. 【解析】试题分析:由题意得,2(1)(1)m m i -++是纯虚数210110m m m ⎧-=⇔⇔=⎨+≠⎩,故是必要不充分条件,故选B.考点:1.复数的概念;2.充分必要条件.2.设全集U R =,函数()lg(|1|1)f x x =+-的定义域为A ,集合{}|sin 0B x x π==,则()U C A B 的元素个数为( )A .1B .2C .3D .4 【答案】C.考点:1.对数函数的性质;2.三角函数值;3.集合的运算. 3.若点55(sin,cos )66ππ在角α的终边上,则sin α的值为( )A .2-B .12- C .12 D .2 【答案】A. 【解析】试题分析:根据任意角的三角函数的定义,5cos 6sin 1πα==,故选A. 考点:任意角的三角函数.4.如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的i a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n = 【答案】B.考点:1.统计的运用;2.程序框图.5.如图所示的是函数()sin 2f x x =和函数()g x 的部分图象,则函数()g x 的解析式是( )A .()sin(2)3g x x π=-B .2()sin(2)3g x x π=+C .5()cos(2)6g x x π=+D .()cos(2)6g x x π=- 【答案】C. 【解析】试题分析:由题意得,(0)0g <,故排除B ,D ;又∵17()()sin 24842g f πππ===除A ,故选C.考点:三角函数的图象和性质. 6.若函数2(2)()m xf x x m-=+的图象如图所示,则m 的范围为( )A .(,1)-∞-B .(1,2)-C .(0,2)D .(1,2) 【答案】D.考点:函数性质的综合运用.7.某多面体的三视图如图所示,则该多面体各面的面积中最大的是( )A .1B .2C .2D 【答案】C.考点:1.三视图;2.空间几何体的表面积.8.已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421- B .201421+ C .201521- D .201521+【答案】A.考点:数列的通项公式.9.已知非零向量a ,b ,c ,满足||||4a b b -==,()()0a c b c -⋅-=,若对每个确定的b ,||c 的最大值和最小值分别为m ,n ,则m n -的值为( )A .随||a 增大而增大B .随||a 增大而减小C .是2D .是4 【答案】D. 【解析】试题分析:∵()()0a c b c -⋅-=,∴2()0c a b c a b -+⋅+⋅=,即2||||||cos ,0c a b c a b c a b -+⋅⋅<+>+⋅=,∵1cos ,1a b c -≤<+>≤,∴22||||||0||||||0c a b c a b c a b c a b ⎧-+⋅+⋅≤⎪⎨++⋅+⋅=⎪⎩,解得||||2||222a b a b c ++-≤≤+,(||||||||2222a b a b a bb b +--=+≥-=),故min ||||22a bc +=-,max ||||22a b c +=+, ∴4m n -=,故选D. 考点:平面向量数量积.10.已知在三棱锥P ABC -中,1PA PB BC ===,AB =AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( ) AB .3π CD .2π【答案】B. 【解析】考点:空间几何体的外接球.【名师点睛】外接球常用的结论:长方体的外接球:1.长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,2R =;2.棱长为a 的正方体的体对角线长2R =;棱长为a ,内切球的半径为12a ; 11.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q ,若60PAQ ∠=,且3OQ OP =,则双曲线C 的离心率为( )A C D 【答案】C. 【解析】试题分析:如下图所示,设AOQ α∠=,∴tan cos b a a c αα=⇒=,sin bcα=,∴2||cos a OH a cα=⋅=,||sin ab AH a c α=⋅=,又∵3OQ OP =,∴2||||||2a OP PH HQ c===,∴2|||22ab a AH PH b c c =⇒=⇒=,∴e ==C.考点:双曲线的标准方程及其性质.【名师点睛】要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解,要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征以及平面几何知识的运用,如12||||2PF PF c +≥等.12.已知函数()()()()()52log 11221x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程1(2)f x a x +-=的实根个数不可能为( )A .5个B .6个C .7个D .8个 【答案】A.当2a =时,方程()f x a =有两个正根,一个小于4-的负根,∴1(2)f x a x+-=有六个根,当2a >时,方程()f x a =有一个正根一个小于4-的负根,∴1(2)f x a x+-=有四个根,∴1(2)f x a x+-=根的个数可能为2,3,4,6,7,8,故选A.考点:1.函数与方程;2.分类讨论的数学思想.【名师点睛】要判断函数零点或方程根的个数,一般需结合函数在该区间的单调性、极值等性质进行判断,对于解析式较复杂的函数的零点,可根据解析式特征,利用函数与方程思想化为()()f x g x =的形式,通过考察两个函数图象的交点来求,通过图形直观研究方程实数解的个数,是常用的讨论方程解的一种方法.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上.)13.已知0a >6)x展开式的常数项为15,则2(a ax x dx -+=⎰____________.【答案】223π++考点:定积分的计算及其性质.14.设a ,b R ∈,关于x ,y 的不等式||||1x y +<和48ax by +≥无公共解,则ab 的取值范围是__________. 【答案】[16,16]-.考点:线性规划.15.设抛物线()220y px p =>的焦点为F ,其准线与x 轴交于点C ,过点F 作它的弦AB ,若90CBF ∠=,则AF BF -=________. 【答案】2p .考点:抛物线焦点弦的性质.【名师点睛】若AB 为抛物线22(0)y px p =>的焦点弦,F 为抛物线焦点,A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,则:2124p x x =,212y y p =-,以AB 为直径的圆与抛物线的准线相切, 112||||AF BF p+=. 16.已知数列{}n a 满足12a =,210n n a a n +++=,则31a =_____________.【答案】463-.考点:数列的通项公式.【名师点睛】已知递推关系求通项,掌握先由1a 和递推关系求出前几项,再归纳、猜想n a 的方法,以及“累加法”,“累乘法”等:1.已知1a 且1()n n a a f n --=,可以用“累加法”得:12()nn k a a f k ==+∑,2n ≥;2.已知1a 且1()nn a f n a -=,可以用“累乘法”得:1(2)(3)(1)()n a a f f f n f n =⋅⋅⋅⋅⋅-⋅,2n ≥. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图,在ABC ∆中,已知点D 在边BC 上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =(1)求AD 长; (2)求cos C . 【答案】(1)3;(2)3. 【解析】试题分析:(1)利用已知条件首先求得cos BAD ∠的值,再在ABD ∆中,利用余弦定理即可求解;(2)在ABD ∆中利用正弦定理即可求解.试题解析:(1)∵0AD A C ⋅=,则A D A C ⊥,∴s i n s i n ()c o s 2B AC B AD B A Dπ∠=+∠=∠,即cos 3BAD ∠=,在ABD ∆中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-∠,即28150AD AD -+=,解得5AD =,或3AD =,∵AB AD >,∴3AD =;……6分(2)在ABD ∆中,由正弦定理,可知sin sin BD ABBAD ADB=∠∠.又由cos 3BAD ∠=,可知1sin 3BAD ∠=,∴sin sin AB BAD ADB BD ∠∠==.∵2ADB DAC C C π∠=∠+=+,∴cos C =…………12分 考点:正余弦定理解三角形. 18.(本小题满分12分)已知矩形ABCD ,22AD AB ==,点E 是AD 的中点,将DEC ∆沿CE 折起到D EC '∆的位置,使二面角D EC B '--是直二面角.(1)证明:BE CD '⊥;(2)求二面角D BC E '--的余弦值.【答案】(1)详见解析;(2.在Rt D MF '∆中,122D M EC '==,11,tan 22D M MF AB D FM MF ''==∠==cos D FM '∠=,∴二面角D BC E '--…………12分考点:1.面面垂直的判定与性质;2.二面角的求解. 19.(本小题满分12分)2018年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[]0,2000,(]2000,4000,(]4000,6000,(]6000,8000,(]8000,10000五组,并作出如下频率分布直方图:(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望; (3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求b ,c ,a b +,c d +,a c +,b d +,a b c d +++的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?0.00.18附:临界值表参考公式:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++.【答案】(1)3360;(2)详见解析;(3)详见解析.ξ的分布列为()0123535355E ξ=⨯+⨯+⨯=;…………8分 (3)解得9b =,5c =,39a b +=,11c d +=,35a c +=,15b d +=,50a b c d +++=,()225030695 4.046 3.84139113515K ⨯⨯-⨯==>⨯⨯⨯,∴有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关.…………12分考点:1.古典概型;2.频率分布直方图;3.独立性检验. 20.(本小题满分12分)已知椭圆()2222:10x y E a b a b +=>>的两个焦点1F ,2F ,且椭圆过点,,且A 是椭圆上位于第一象限的点,且12AF F ∆的面积12AF F S ∆(1)求点A的坐标;(2)过点(3,0)B的直线l与椭圆E相交于点P,Q,直线AP,AQ与x轴相交于M,N两点,点5(,0)2C,则||||CM CN是否为定值,如果是定值,求出这个定值,如果不是请说明理由.【答案】(1)(2,1)A;(2)详见解析.法二:设11(,)P x y ,22(,)Q x y ,3(,0)M x ,4(,0)N x ,直线l ,AP ,AQ 的斜率分别为k ,1k ,2k ,由()22326y k x x y ⎧=-⎨+=⎩,得()222212121860k x k x k +-+-=,()()4221444121860k k k ∆=-+->,可得21k <,21221212k x x k +=+,212218612k x x k -=+,考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系;3.椭圆中的定值问题. 【名师点睛】求解定值问题的方法一般有两种:1.从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;2.直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 21.(本小题满分12分)已知函数221()()(1)(22),2xf x ax bx a b e x x x a R =++---++∈,且曲线()y f x =与x 轴切于原点O .(1)求实数a ,b 的值;(2)若2()()0f x x mx n ⋅+-≥恒成立,求m n +的值. 【答案】(1)0a =,1b =;(2)1m n +=-. 【解析】试题分析:(1)求导,利用导数的几何意义即可求解;(2)将不等式作进一步化简,可得21(1)(1)(1)2x x e x x x ->-++,分类讨论,构造函数21()(1)2x g x e x x =-++,求导研究其单调性即可得到0x =,和1x =是方程20x mx n +-=的两根,从而求解.考点:导数的综合运用.【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明;2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值;3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论;4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,PA 为四边形ABCD 外接圆的切线,CB 的延长线交PA 于点P ,AC 与BD 相交于点M ,且//PA BD .(1)求证:ACD ACB ∠=∠;(2)若3PA =,6PC =,1AM =,求AB 的长.【答案】(1)详见解析;(2)2.考点:1.切线的性质;2.相似三角形的判定与性质.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知点()1,2P -,直线1:2x t l y t =+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B .(1)求直线l 和曲线C 的普通方程;(2)求PA PB +.【答案】(1)直线l 的普通方程是30x y --=,曲线C 的普通方程是22y x =;(2)联立直线方程与抛物线方程,利用参数的几何意义结合韦达定理即可求解.【解析】考点:1.参数方程,极坐标方程与直角方程的相互转化;2.直线与抛物线的位置关系.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x a =--,()2g x x m =-+,a ,m R ∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-2.(1)求整数m 的值;(2)若函数()y f x =的图象恒在函数1()2y g x =的上方,求实数a 的取值范围. 【答案】(1)4;(2)(,3)-∞.【解析】试题分析:(1)解不等式()1g x ≥-,根据整数解为2-,即可求解;(2)问题等价于()()102f xg x ->恒成立,分类讨论将绝对值号去掉即可求解. 试题解析:(1)由()1g x ≥-,即21x m -+≥-,21x m +≤, 得1122m m x ---+≤≤,∵不等式的整数解为2-,∴11222m m ---+≤-≤,解得35m ≤≤, 又∵不等式仅有一个整数解2-,∴4m =;…………4分 (2)函数()y f x =的图象恒在函数()12y g x =的上方,故()()102f x g x ->, ∴212a x x <-++对任意x R ∈恒成立,设()212h x x x =-++,则3,2()4,213,1x xh x x xx x-≤-⎧⎪=--<≤⎨⎪>⎩,则()h x在区间(),1-∞上是减函数,考点:1.绝对值不等式;2.分类讨论的数学思想;3.恒成立问题.。

衡水中学2018年高考理数押题试卷

衡水中学2018年高考理数押题试卷

河北衡水中学2018年高考押题试卷理数试卷第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A {x|x2x 6 0, x Z},B {z|z x y ,x A,y A},则Al B ()A. {0,1} B• {0,1,2} C• {0,1,2,3} D• { 1,0,1,2}1 z2.设复数z满足'2 i,则| A ()1 i zA. .5B 1C•仝D仝5 5 253.若cos( -)- ,(0,—) ,则sin 的值为()4 3 2A. 4 2B 4 .2 C7 D辽••6 6 18 34.已知直角坐标原点O为椭圆C :2 2x y1(a b 0)的中心,F1,F2为左、右焦点,在区间(0,2)任a2 b2取一个数e,则事件“'以e为离心率的椭圆C与圆0: 2 2 x y a b没有交点”的概率为()Ad B 4 2C D 2 24 4 2 25.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E :2 2% y21(a 0,b 0),当其离心率e [「2,2]时,对应双曲线的渐近线的夹角的取值范围为()a bA. [0, ] B • [―,]C • [―,]D •[―,]6 6 3 4 3 3 26.某几何体的三视图如图所示,若该几何体的体积为 3 2,则它的表面积是()A. (32133) .22 2B- (3 413|) 22 2c •卫.22D.13 ,22247.函数ysin x ln x 在区间[ 3,3]的图象大致为()A.函数g( x)图象的对称轴方程为 x k (k Z)12B. 函数g(x)的最大值为2.218.二项式(ax)n (a 0,b 0)的展开式中只有第 6项的二项式系数最大,bx第4项的系数的3倍,则ab 的值为( )且展开式中的第3项的系数是A . 4B12D. 169.执行如图的程序框图,若输入的x 0 , y 1 ,n 1,则输出的p 的值为(A . 81B• 2 10. 已知数列 a 1 1, a 22, 且an 2A .2016 1010 1B.100911. 已知函数 f(x)Asin( x )(Aa n 2 20170,2( 1)n , 814n N ,则S 2017的值为.2017 1010 1 D81 8)1009 20160,)的图象如图所示,令 g(x)2f(x) f '(x),则下列关于函数g(x)的说法中不正确的是()B .C . Dr'-W I I 庄C.函数g(x)的图象上存在点 P ,使得在P 点处的切线与直线I : y 3x 1平行第U 卷二、填空题:本大题共4小题,每小题5分,共20分.13. 向量a (m, n) , b ( 1,2),若向量a , b 共线,且a 2 b ,则mn 的值为 _______________________ .2 2x y14. 设点M 是椭圆 —2 1(a b 0)上的点,以点 M 为圆心的圆与x 轴相切于椭圆的焦点 F ,圆Ma b与y 轴相交于不同的两点 P 、Q ,若 PMQ 为锐角三角形,则椭圆的离心率的取值范围为 ___________________ .2x y 3 015.设x , y 满足约束条件 x 2y 2 0,则y 的取值范围为2x y 2 x16.在平面五边形 ABCDE 中, 已知 A 120o , B 90o , C 120o , E 90o ,AB 3,AE 3, 当五边形ABCDE 的面积S [6・、,3,9、一 3)时,则BC 的取值范围为 __________三、解答题:解答应写出文字说明、证明过程或演算步骤•1 *17.已知数列{a n }的前 n 项和为 S n ,q —,2S n S n 1 1(n 2,n N).2(1 )求数列{a n }的通项公式;* 1(2)记 b n log 1 a n (n N ),求{}的前 n 项和 T n .2b n b n 1D.方程g(x) 2的两个不同的解分别为X i , x 2,贝U X ! x 2最小值为一212.已知函数f(x) ax 3 3x 21,若f (x)存在三个零点,则 a 的取值范围是(A . (, 2) B . ( 2,2) C . (2,) D(2,0) U(0,2)18.如图所示的几何体ABCDEF中,底面ABCD为菱形,AB 2a , ABC 120o, AC与BD相交于O点,四边形BDEF为直角梯形,DE//BF , BD DE , DE 2BF 2. 2a,平面BDEF 底面ABCD.(1)证明:平面AEF 平面AFC ;(2 )求二面角E AC F的余弦值•19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1 )试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数的分布列与数学期望20.已知椭圆C :与爲l(a b 0)的离心率为—,且过点,动直线I : y kx m交a b 2 22uuu uuu椭圆C于不同的两点A, B,且OA OB 0 ( O为坐标原点)•(1)求椭圆C的方程•(2)讨论3m2 2k2是否为定值?若为定值,求出该定值,若不是请说明理由_ 2 221.设函数f (x) a In x x ax(a R).(1)试讨论函数f (x)的单调性;(2)设(x) 2x (a2 a)ln x,记h(x) f (x) (x),当a 0时,若方程h(x) m(m R)有两个不相等的实根禺,X2,证明h'Q x2) 0 .2请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号22.选修4-4 :坐标系与参数方程x 3 cost在直角坐标系xOy中,曲线G : ( t为参数,a 0),在以坐标原点为极点,x轴的非负y 2 si nt半轴为极轴的极坐标系中,曲线C2: 4sin .(1 )试将曲线G i与C2化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围;(2)当a 3时,两曲线相交于A,B两点,求AB .23.选修4-5 :不等式选讲已知函数f (x) 2x 1 x 1 .(1 )在下面给出的直角坐标系中作出函数y f(x)的图象,并由图象找出满足不等式f(x) 3的解集;(2)若函数y f (x)的最小值记为m,设a, b R,且有a2 b2 m,试证明:1 4 18 a2 1 b2 1 7、选择题 1-5: BCAAD 6-10: AABCC 11 、填空题 13. 8 14. 参考答案及解析 理科数学(U )、12: CD15.2 7 - [―,—]代.[、,3,3、3) 5 417.解:(1)当 n 2时,由— 得 2S 2 S 1 1 ,即 2a〔 2a 2又由2S n S n 1 1,① 可知2S n 1 S n 1,② ②-①得2a n 1 a n ,即也a n 1适合上式, 2 a 2 a 1三、解答题 S n 1 1 及 a 11,解得a 212 14 .且n 1时, (2)由(1)及 b n1 可知bn log 1(2)n 1 所以 ------ b n bn 11 故Tn — b n b2 1 尹2). 1 因此数列{a n }是以一为首项, 21-为公比的等比数列,故21 * a n 27(nN ).log-, a n (n N2n(n 1) 1 db s b n b n 1 [(1 2)(11)(丄n 1 1 —)]1 —n 1n 118.解:(1)因为底面 ABCD 为菱形,所以AC BD , 又平面BDEF 底面 ABCD ,平面 BDEF I 平面 ABCD BD,因此AC 平面BDEF ,从而AC EF . 又BD DE ,所以DE 平面ABCD , 由 AB 2a ,DE 2BF 2、2a , ABC 120o , 可知 AF -4a 2 2a 2 ,6a ,BD 2a , EF 4a 2 2a 2 . 6a ,AE 4a 2 8a 2 2.3a ,从而 AF 2 FE 2 AE 2,故 EF AF .19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为 B , 所以可以估计该校学生获得成绩等级为B 的概率为卫6 14,100 25 14则该校高三年级学生获得成绩为 B 的人数约有800 14 448.251(2)这100名学生成绩的平均分为 (32 100 56 90 7 80 3 70 2 60)100因为91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关 (3)由题可知用分层抽样的方法抽取11个学生样本,其中 A 级4个,B 级7个,从而任意选取3个,这3又AF I AC A ,所以EF 平面AFC .又EF 平面AEF ,所以平面 AEF 平面 AFC .(2)取EF 中点G ,由题可知OG / /DE ,所以OG 平面ABCD ,又在菱形 ABCD 中,OA OB ,所uuu以分别以OA , uuu uuu OB , OG 的方向为x , y , z 轴正方向建立空间直角坐标系O xyz(如图示),则 O(0,0,0),A(「3a,0,0),C( _3a,0,0),E(0, a,2.'2a),F(0,a,j2a), uuu 所以AE (0, a,2、2a) ( 3a,0,0)( , 3a, a,2 2a), uuur _ __ uuu_AC (3a,0,0)(..3a,0,0)(2、3a,0,0),EF (0,a, 2a)(0, a, 2 2a)(0,2a, ,2a).uur由(1)可知EF 平面AFC ,所以平面 AFC 的法向量可取为 EF (0,2a, ,2a).设平面AEC 的法向量为n (x, y, z),r uuu冲 n AE 0 则r uuir ,即n AC 0x 0x 0r uuun EF 6a V 31 n LuiU I EF |6屈 3 .,即 y 2'2z ,令 z 2,得 y 4,91.3,2 2zAC F 的余弦值为所以 n (0,4, .2).r uuu 从而 cos n, EF故所求的二面角 E个为A 级的个数 的可能值为0, 1, 2 , 3.x2故所求的椭圆方程为 -2uuu uuu(2)设 A(x 1, %),B(x 2, y 2),由 OA OBy 联立方程组 x 22因此可得的分布列为:12 则 E( )0 11552兰4 7 28 133 55 可知 x-|X 2 y 1y 2 0.消去y 化简整理得 (1 2 2 22k )x 4kmx 2m2 2 由 16k m8(m 21)(122k ) 0,得 12k 2m 2,所以 X 1 X 24km1 2k2 ,X-|X 2c 2 c细2,③1 2k又由题知x 1x 2 yy 即 x 1x 2 (kx 1 m)(kx 2 m)整理为(1 k 2)x 1x2 km(x 1 X 2)c 22、2m 将③代入上式,得(1 k 2)击 km岁 3 -165 20.解:(1) c由题意可知一 a所以a 2 2 c 2 2(a 2 b 2),即 a 22b 2,①又点P (互 2f )在椭圆上,所以有2 4a 2 34b 2,②由①②联立,解得b 21, a 21.kx2 2化简整理得3m 2 22k 0,从而得到3m 2i 2k 22k 2 2.2i.解:(i )由 f(x) a 21nx x 2 ax , 可知 f'(x)2x a2x 2 ax a 2(2x a)(x a)因为函数f (x)的定义域为(0, ),所以, ①若a 0时,当x (0, a)时, f'(x) 0, 函数 f (x)单调递减, (a,)时, f'(x) 0 ,函数f (x)单调递增; ②若a 0时,当f '(x) 2x 0 在 x (0, )内恒成立,函数 f (x)单调递增;③若a 0时,当x (0, f'(x) 0,函数 f(x)单调递减,当xa (2,)时, f '(x)0,函数f (x)单调递增. (2 )证明:由题可知 h(x) f (x) (x) x 2 (2 a)x a In x(x 0),所以 h'(x) 2x (2 2 、a 2x a )x(2 x a)x a (2x a)(x 1)a a X (0,)时,h'(x) 0 ;当 x (, 2 2 欲证 h'(Xi X2) 0,只需证 h'4 X2) h'(a ), 2 2 2 x i x 2 a 2 2. 所以当 )时,h'(x)i 时,h' 0.)0,只需证h '(又 h''(x)即h'(x)单调递增,故只需证明设X i ,X 2是方程h(x) m 的两个不相等的实根,不妨设为 X iX 2,2 “X i (2 a)x i al n X i m 则 v 7 i i, 2x 2 (2 a)x 2 a I n x 2 m 两式相减并整理得 a(x-i x 2 In x-i In x 2) 2 2^ X i X 2 2 X i2x2,从而a x i 2 x 222x i 2x 2 x 2 In x i In x 2 X i 故只需证明x i x 2 x i 2 x 22 2x i 2x 2 2 2(x i x 2 In x i In x 2)即 x 1 x 2 2 2% x 2 2为 2X 2 x i x ? In x i In x 2 因为 x-i x 2 In x i In x 2 0, 所以(*)式可化为In x i, 2x i 2x 2 In x 2 x i x 2因为0 x 1 x 2,所以0 竺1 ,X 2因此R(t)在(0,1)单调递增• 又 R(1) 0 ,因此 R(t) 0 , t (0,1),故 Int 2— , t (0,1)得证,t 1从而h'(X1 X2) 0得证.2 x 3cost2 2 22.解:(1)曲线C 1: ,消去参数t 可得普通方程为(x 3) (y 2)y 2 si nt 曲线C 2: 4sin ,两边同乘 •可得普通方程为x 2 (y 2)2 4. 把(y 2)2 4 x 2代入曲线G 的普通方程得:a 2 (x 3)2 4 x 2 13 6x , 而对C 2有x 2 x 2 (y 2)2 4,即2x2,所以1 a 225故当两曲线有公共点时, 为[1,5].2 2 (2)当 a 3时,曲线 G : (x 3) (y 2)9,2两曲线交点A ,B 所在直线方程为x 2.即ln$ X 2 2生2 X 2 X i X 2所以AB 2 823不妨令t —-,所以得到In t X 2 2tt t (0,1). 2t 21 4 设 R ⑴ |nt 十,t (0,1),所以 R'(t)? r (t 1)2 3 t(t 1)2 0,当且仅当t 1时,等号成立,a 的取值范围32 2 2 2 曲线x (y 2) 4的圆心到直线 x 的距离为d —,3 3 3x, x 1 23.解:(1)因为 f (x) |2x 1 x 1 x 2, 1所以作出图象如图所示,并从图可知满足不等式 所以 2 a ,从而 b 2 3 2 从而1 a2 1 4 b 2 1 7[(a2 1) 3x,x 1 f (x) 3的解集为[1,1] f (x)的最小值为 1 b 21 7, 22 1(b 2 1)](— a a2 b 2 1 4(a 2 0 181 b2 1 ] 7当且仅当 b 2 1 a 22肓时,等号成立即a 2 所以 1 6 1 a 2 1 b 2 4 b 7" 4时,有最小值,3 18 、工得证.1 7 i ,即 7[5 J2 當)]。

【全国百强校Word】衡水金卷2018届全国高三大联考理数试题

【全国百强校Word】衡水金卷2018届全国高三大联考理数试题

衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|540}M x x x =-+≤,{|24}xN x =>,则 ( ) A .{|24}M N x x =<<I B .M N R =U C .{|24}M N x x =<≤I D .{|2}M N x x =>U2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .33. 已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+( ) A .12 B .2 C .35 D . 38- 4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A .27265mm π B .236310mm π C.23635mm π D .236320mm π5. 已知双曲线C :22221(0,0)x y a b a b-=>>的渐近线经过圆E :22240x y x y +-+=的圆心,则双曲线C 的离心率为( )A .5B .52C.2 D .2 6. 已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( ) A .3- B .3 C.3± D .33- 7. 执行如图的程序框图,若输出的S 的值为-10,则①中应填( )A .19?n <B .18?n ≥ C. 19?n ≥ D .20?n ≥8.已知函数()f x 为R 内的奇函数,且当0x ≥时,2()1cos f x e m x =-++,记2(2)a f =--,(1)b f =--,3(3)c f =,则a ,b ,c 间的大小关系是( )A .b a c <<B .a c b << C.c b a << D .c a b <<9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A .23π+ B .12π+ C.26π+ D .23π+ 10. 已知函数()2sin()(0,[,])2f x x πωϕωϕπ=+<∈的部分图象如图所示,其中5||2MN =.记命题p :5()2sin()36f x x ππ=+,命题q :将()f x 的图象向右平移6π个单位,得到函数22sin()33y x ππ=+的图象.则以下判断正确的是( )A.p q ∧为真B.p q ∨为假C.()p q ⌝∨为真D.()p q ∧⌝为真11.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A .712612+ B .926+ C. 910+ D .832612+ 12.已知数列{}n a 与{}n b 的前n 项和分别为n S ,n T ,且0n a >,2*63,n n S a a n N =+∈,12(21)(21)n n n a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( ) A .71 B .149 C. 49 D .8441第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.已知在ABC ∆中,||||BC AB CB =-u u u r u u u r u u u r ,(1,2)AB =u u u r,若边AB 的中点D 的坐标为(3,1),点C 的坐标为(,2)t ,则t = .14. 已知*1()()2nx n N x-∈的展开式中所有项的二项式系数之和、系数之和分别为p ,q ,则64p q +的最小值为 .15. 已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +的最大值与最小值分别为1,12,则实数t 的取值范围为 .16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为 . 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈. (Ⅰ)求函数()f x 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆的面积.18. 如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//,CD AB BC AB ⊥,侧面ABE ⊥平面ABCD ,且222AB AE BE BC CD =====,动点F 在棱AE 上,且EF FA λ=. (1)试探究λ的值,使//CE 平面BDF ,并给予证明; (2)当1λ=时,求直线CE 与平面BDF 所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在A 市的普及情况,A 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖的情况与性别有关? (Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.82820. 已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为点1F ,2F ,其离心率为12,短轴长为23.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点1F 的直线1l 与椭圆C 交于M ,N 两点,过点2F 的直线2l 与椭圆C 交于P ,Q 两点,且12//l l ,证明:四边形MNPQ 不可能是菱形.21. 已知函数,()(1)(,)xf x e a x b a b R =-+-∈其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性及极值;(Ⅱ)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为2sin()34πρθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值; (Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围. 23.选修4-5:不等式选讲 已知函数()21|1|f x x x =-++. (Ⅰ)解不等式()3f x ≤;(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理科参考答案及评分细则一、选择题1-5: CBCBA 6-10:ACDAD 11、12:BB二、填空题13. 1 14. 16 15. 57[,]66ππ16. 2482ππ- 三、解答题17. 解:(1)原式可化为,21()cos 3sin cos 2f x x x =--, 1cos 231sin 2222x x +=--, sin(2)sin(2)66x x ππ=-=--, 故其最小正周期22T ππ==,令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈,即函数()f x 图象的对称轴方程为,()23k x k Z ππ=+∈. (2)由(1),知()sin(2)6f x x π=--, 因为02A π<<,所以52666A πππ-<-<. 又()sin(2)16f A A π=--=-,故得262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==. 故193sin 24ABC S bc A ∆==. 18.(1)当12λ=时,//CE 平面BDF . 证明如下:连接AC 交BD 于点G ,连接GF . ∵//,2CD AB AB CD =,∴12 CG CD GAAB==.∵12EF FA=,∴12EF CGFA GA==.∴//GF CE.又∵CE⊄平面BDF,GF⊂平面BDF,∴//CE平面BDF.(2)取AB的中点O,连接EO.则EO AB⊥.∵平面ABE⊥平面ABCD,平面ABE I平面ABCD AB=,且EO AB⊥,∴EO⊥平面ABCD.∵//BO CD,且1BO CD==,∴四边形BODC为平行四边形,∴//BC DO.又∵BC AB⊥,∴//AB DO.由,,OA OD OE两两垂直,建立如图所示的空间直角坐标系Oxyz.则(0,0,0)O,(0,1,0)A,(0,1,0)B-,(1,0,0)D,(1,1,0)C-,(0,0,3)E. 当1λ=时,有EF FA=u u u r u u u r,∴可得13(0,,)22F.∴(1,1,0)BD=u u u r,(1,1,3)CE=-u u u r,33(1,,)22BF=u u u r.设平面BDF的一个法向量为(,,)n x y z=r,则有0,0,n BDn BF⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即0,330,22x yy z+=⎧⎪⎨+=⎪⎩令3z=,得1y=-,1x=.即(1,1,3)n =-r.设CE 与平面BDF 所成的角为θ,则sin |cos |CE n θ=<⋅>=u u u r r |113|1555--+=⨯. ∴当1λ=时,直线CE 与平面BDF 所成的角的正弦值为15. 19.解:(1)由列联表可知2K 的观测值,2()()()()()n ad bc k a b c d a c b d -=++++2200(50405060) 2.020 2.07211090100100⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖情况与性别有关. (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有6053100⨯=(人), 偶尔或不用网络外卖的有4052100⨯=(人). 则选出的3人中至少有2人经常使用网络外卖的概率为2133233355710C C C P C C =+=. ②由22⨯列联表,可知抽到经常使用网络外卖的网民的频率为1101120020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为1120. 由题意得11~(10,)20X B , 所以1111()10202E X =⨯=;11999()10202040D X =⨯⨯=. 20. 解:(1)由已知,得12c a =,3b =,又222c a b =-, 故解得224,3a b ==,所以椭圆C 的标准方程为22143x y +=. (2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴. 所以令直线MN 的方程为1x my =-,11(,)M x y ,22(,)N x y .联立方程2234120,1,x y x my ⎧+-=⎨=-⎩,得22(34)690m y my +--=, 所以122634m y y m +=+,122934y y m -=+. 此时221212(1)[()]MN m y y y y =++-, 同理,令直线PQ 的方程为1x my =+,33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+, 此时223434(1)[()4]PQ m y y y y =++-. 故||||MN PQ =.所以四边形MNPQ 是平行四边形.若MNPQ Y 是菱形,则OM ON ⊥,即0OM ON ⋅=u u u u r u u u r,于是有12120x x y y +=. 又1212(1)(1)x x my my =--,21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得到22125034m m --=+, 即21250m +=,上述关于m 的方程显然没有实数解, 故四边形MNPQ 不可能是菱形.21.解:(1)由题意得'()(1)xf x e a =-+.当10a +≤,即1a ≤-时,'()0f x >,()f x 在R 内单调递增,没有极值. 当10a +>,即1a >-, 令'()0f x =,得ln(1)x a =+,当ln(1)x a <+时,'()0f x <,()f x 单调递减; 当ln(1)x a >+时,'()0f x >,()f x 单调递增,故当ln(1)x a =+时,()f x 取得最小值(ln(1))1(1)ln(1)f a a b a a +=+--++,无极大值. 综上所述,当1a ≤-时,()f x 在R 内单调递增,没有极值;当1a >-时,()f x 在区间(,ln(1))a -∞+内单调递减,在区间(ln(1),)a ++∞内单调递增,()f x 的极小值为1(1)ln(1)a b a a +--++,无极大值.(2)由(1),知当1a ≤-时,()f x 在R 内单调递增,当1a =-时,(1)3024b a +=<成立. 当1a <-时,令c 为1-和11ba -+中较小的数,所以1c ≤-,且11bc a-≤+.则1x e e -≤,(1)(1)a c b -+≤--+.所以1()(1)(1)0xf c e a c b e b b -=-+-≤---<, 与()0f x ≥恒成立矛盾,应舍去.当1a >-时,min ()(ln(1))f x f a =+=1(1)ln(1)0a b a a +--++≥, 即1(1)ln(1)a a a b +-++≥,所以22(1)(1)(1)ln(1)a b a a a +≤+-++.令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-.令'()0g x >,得0x e <<,令'()0g x <,得x e >,故()g x 在区间(0,)e 内单调递增, 在区间(,)e +∞内单调递减. 故max ()()ln 2eg x g e e e e ==-=, 即当11a e a e +=⇒=-时,max ()2eg x =. 所以22(1)(1)(1)ln(1)2ea b a a a +≤+-++≤. 所以(1)24b a e+≤.而3e <, 所以(1)324b a +<.22.解:(1)直线l 的直角坐标方程为30x y +-=.曲线C 上的点到直线l 的距离,|cos sin 3|2d αα+-==|2sin()3|42πα+-, 当sin()14πα+=-时,max |23|23222d ++==,即曲线C 上的点到直线l 的距离的最大值为2322+.(2)∵曲线C 上的所有点均在直线l 的下方,∴对R α∀∈,有cos sin 30t αα+-<恒成立, 即21cos()3t αϕ+-<(其中1tan t ϕ=)恒成立,∴213t +<.又0t >,∴解得022t <<,∴实数t 的取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得1,()333,x f x x ≤-⎧≤⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤.(2)()()|1|g x f x x =++=|21||22|x x -++≥|2122|3x x ---=,当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞. 原不等式等价于2331t t t -+-,22233(3)(1)t t t t t t t -+--+==.∵t M ∈,∴30t -≥,210t +>. ∴2(3)(1)0t t t -+≥. ∴2313t t t +≥+.。

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A. B.C. D.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 33. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.6. 已知数列为等比数列,且,则( )A. B. C. D.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A. B. C. D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )...A. B. C. D.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( )A. 为真B. 为假C. 为真D. 为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A. B. C. D.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为. (Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.21. 已知函数,其中为自然对数的底数.(Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为. (Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.。

【全国百强校】河北省衡水中学2018届高三上学期一调考试数学(理)试题

【全国百强校】河北省衡水中学2018届高三上学期一调考试数学(理)试题

2017—2018学年度上学期高三年级第一调考试数学理科试卷第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合2{1,2,4},{|41}0A B x x x m ==-+-=,若{1}AB =,则B = A .{}1,3- B .{}1,0C .{}1,3D .{}1,52、已知i 是虚数单位,若复数12a i i -+为纯虚数,则实数a 的值是 A .12- B .0 C .12D .2 3、执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .5D .24、已知点(2,0)A -,点(,)M x y 为平面区域220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩上的一个动点,则AM 的最小值是A .5B .3 CD.5、已知ABC ∆的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S ∆= A .3 B...66、一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱长为A .3 B..7、已知数列{}n a满足111,n a a +==,则20a =A .0 B. C8、已知0w >,函数()sin()3f x wx π=-在(,)32ππ内单调递减,则w 的取值范围是 A .11(0,]3 B .511[,]23 C .1(0,]2 D .13[,]249、设函数()2sin(),f x wx x R ϕ=+∈,其中0,w ϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则A .17,324w πϕ==B .211,312w πϕ==-C .17,324w πϕ==-D .2,312w πϕ==- 10、已知函数()31()x x f x e x e =-,若实数a 满足()20.5(log )(log )21f a f a f +≤,则实数a 的取值范围是A .1(,)(2,)2-∞+∞ B .1(,][2,)2-∞+∞ C .1[,2]2 D .1(,2)211、已知函数()321f x x ax =++的图象的一对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是A .(,0)-∞ B.(,-∞ C .(0,)+∞ D .(,1)-∞- 12、定义在内的函数满足:①当24x ≤≤时,()13f x x =--;②()()2f x cf x =(c 为正常数),若函数的所有极大值点都在同一直线上,则常数c 的值是A .1B .2±C .12或3 D .1或2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。

【全国百强校Word】河北省衡水中学2018届高三上学期二调考试理数试题

【全国百强校Word】河北省衡水中学2018届高三上学期二调考试理数试题

2017—2018学年度上学期高三年级二调考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合⎭⎬⎫⎩⎨⎧≤<=2221|x x A ,1|ln()02B x x ⎧⎫=-≤⎨⎬⎩⎭,则()R A B =I ð( ) A .∅B .1(1,]2-C .1[,1)2D .(1,1]-2.已知i 为虚数单位,z 为复数z 的共轭复数,若29z z i +=-,则z =( ) A .1i +B .1i -C .3i +D .3i -3.设正项等比数列{}n a 的前n 项和为n S ,且11n na a +<,若3520a a +=,3564a a =,则4S =( ) A .63或120B .256C .120D .634.42()(1)x x x+-的展开式中x 的系数是( ) A .1B .2C .3D .125.已知ABC ∆中,tan (sin sin )cos cos A C B B C -=-,则ABC ∆为( ) A .等腰三角形B .60A ∠=︒的三角形C .等腰三角形或60A ∠=︒的三角形D .等腰直角三角形6.已知等差数列{}n a 的公差0d ≠,且1a ,3a ,15a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则2163n n S a ++的最小值为( )A .3B .4C .232-D .927.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A .83B .163C .323D .168.已知函数()sin cos f x a x x =+(a 为常数,x R ∈)的图像关于直线6x π=对称,则函数()sin cos g x x a x =+的图像( )A .关于直线3x π=对称B .关于点2(,0)3π对称 C .关于点(,0)3π对称 D .关于直线6x π=对称9.设0a >,若关于x ,y 的不等式组20,20,20,ax y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩表示的可行域与圆22(2)9x y -+=存在公共点,则2z x y =+的最大值的取值范围为( )A .[]8,10B .(6,)+∞C .(6,8]D .[8,)+∞10.已知函数()2sin()1f x x ωϕ=++(1ω>,||2πϕ≤),其图像与直线1y =-相邻两个交点的距离为π,若()1f x >对于任意的(,)123x ππ∈-恒成立,则ϕ的取值范围是( )A .,123ππ⎡⎤⎢⎥⎣⎦B .,122ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .(,]62ππ11.已知定义在R 上的奇函数()f x 的导函数为'()f x ,当0x <时,()f x 满足2()'()()f x xf x xf x +<,则()f x 在R 上的零点个数为( ) A .5B .3C .1或3D .112.已知函数2ln 2,0,()3,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩ 的图像上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图像上,则实数k 的取值范围是( )A .1(,1)2B .13(,)24C .1(,1)3D .1(,2)2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知1211sin()2sin()0510πθπθ++-=,则2tan()5πθ+= . 14.已知锐角ABC ∆的外接圆的半径为1,6B π∠=,则BA BC ⋅u u u r u u u r 的取值范围为 .15.数列{}n a 满足1(2|sin |1)22n n n a a n π+=-+,则数列{}n a 的前100项和为 .16.函数()y f x =图象上不同两点11(,)A x y ,22(,)B x y 处切线的斜率分别是A k ,B k ,规定||(,)||A B k k A B AB ϕ-=(||AB 为线段AB 的长度)叫做曲线()y f x =在点A 与B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(,)3A B ϕ>;②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A ,B 是抛物线21y x =+上不同的两点,则(,)2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点11(,)A x y ,22(,)B x y ,且121x x -=,若(,)1t A B ϕ⋅<恒成立,则实数t 的取值范围是(,1)-∞.其中真命题的序号为 .(将所有真命题的序号都填上)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在ABC ∆中,3B π∠=,D 为边BC 上的点,E 为AD 上的点,且8AE =,410AC =,4CED π∠=.(1)求CE 的长;(2)若5CD =,求cos DAB ∠的值.18.如图所示,A ,B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,AOP θ∠=(0θπ<<),C 点坐标为(2,0)-,平行四边形OAQP 的面积为S .(1)求OA OP S ⋅+u u u r u u u r的最大值;(2)若//CB OP ,求sin(2)6πθ-的值.19.已知数列{}n a 满足对任意的*n N ∈都有0n a >,且33321212()n n a a a a a a +++=+++…….(1)求数列{}n a 的通项公式; (2)设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,不等式1log (1)3na S a >-对任意的正整数n 恒成立,求实数a 的取值范围.20.已知函数21()ln 2f x x ax =-,a R ∈. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()(1)1f x a x ≤--恒成立,求整数a 的最小值.21.已知函数2()(1)(1)xf x axe a x =--+(其中a R ∈,e 为自然对数的底数, 2.718281e =…). (1)若函数()f x 仅有一个极值点,求a 的取值范围; (2)证明:当102a <<时,函数()f x 有两个零点1x ,2x ,且1232x x -<+<-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程将圆2cos ,2sin x y θθ=⎧⎨=⎩(θ为参数)上的每一个点的横坐标保持不变,纵坐标变为原来的12,得到曲线C .(1)求曲线C 的普通方程;(2)设A ,B 是曲线C 上的任意两点,且OA OB ⊥,求2211||||OA OB +的值. 23.选修4-5:不等式选讲已知函数()|2||2|f x x x a =-++,a R ∈. (1)当1a =时,解不等式()5f x ≥;(2)若存在0x 满足00()|2|3f x x +-<,求a 的取值范围.2017—2018学年度上学期高三年级二调考试数学(理科)试卷答案一、选择题1-5:BDCCC 6-10:BBADC 11、12:DA二、填空题13.2 14.3(3,3]2+ 15.5100 16.②③ 三、解答题17.解:(1)因为344AEC πππ∠=-=,在AEC ∆中,由余弦定理得2222cos AC AE CE AE CE AEC =+-⋅∠,所以21606482CE CE =++, 所以282960CE CE +-=, 所以42CE =.(2)在CDE ∆中,由正弦定理得sin sin CE CDCDE CED=∠∠, 所以25sin 422CDE ∠=⨯, 所以4sin 5CDE ∠=. 因为点D 在边BC 上,所以3CDE B π∠>∠=,而4352<, 所以CDE ∠只能为钝角, 所以3cos 5CDE ∠=-, 所以cos cos()cos cossin sin333DAB CDE CDE CDE πππ∠=∠-=∠+∠3143433525210-=-⨯+⨯=.18.解:(1)由已知得A ,B ,P 的坐标分别为(1,0),(0,1),(cos ,sin )θθ,因为四边形OAQP 是平行四边形,所以OQ OA OP =+u u u r u u u r u u u r (1,0)(cos ,sin )(1cos ,sin )θθθθ=+=+, 所以1cos OA OQ θ⋅=+u u u r u u u r,又因为平行四边形OAQP 的面积为||||sin sin S OA OP θθ=⋅=u u u r u u u r,所以1cos sin 2sin()14OA OQ S πθθθ⋅+=++=++u u u r u u u r .又因为0θπ<<,所以当4πθ=时,OA OQ S ⋅+u u u r u u u r的最大值为21+.(2)由题意知,(2,1)CB =u u u r ,(cos ,sin )OP θθ=u u u r,因为//CB OP ,所以1tan 2θ=, 因为0θπ<<,所以02πθ<<.由cos 2sin θθ=,22cos sin 1θθ+=, 得5sin 5θ=,25cos 5θ=,所以4sin 22sin cos 5θθθ==,223cos 2cos sin 5θθθ=-=, 所以sin(2)sin 2coscos 2sin666πππθθθ-=-4331433525210-=⨯-⨯=.19.解:(1)由于33321212()n n a a a a a a +++=+++……,① 则有33332121121()n n n n a a a a a a a a ++++++=++++……,② ②—①,得322112112()()n n n n a a a a a a a a ++=++++-+++……, 由于0n a >,所以211212()n n n a a a a a ++=++++…,③ 同样有21212()(2)n n n a a a a a n -=++++≥…,④ ③—④,得2211n n n n a a a a ++-=+,所以11n n a a +-=(2n ≥).由3211a a =,3321212()a a a a +=+,得11a =,22a =.由于211a a -=,即当1n ≥时都有11n n a a +-=,所以数列{}n a 是首项为1,公差为1的等差数列,故n a n =. (2)由(1)知n a n =, 则211(2)n n a a n n +=+111()22n n =-+,所以13243511211111n n n n n S a a a a a a a a a a -++=+++++ (11111111111111)(1)()()()()2322423521122n n n n =-+-+-++-+--++… 1111(1)2212n n =+--++3111()4212n n =-+++. 因为110(1)(3)n n S S n n +-=>++,所以数列{}n S 单调递增,所以min 11()3n S S ==. 要使不等式1log (1)3n a S a >-对任意正整数n 恒成立,只要11log (1)33a a >-. 因为10a ->,所以01a <<,所以1a a ->,即102a <<.所以,实数a 的取值范围是1(0,)2.20.解:(1)211'()ax f x ax x x-=-=,函数()f x 的定义域为(0,)+∞.当0a ≤时,'()0f x >,则()f x 在区间(0,)+∞内单调递增;当0a >时,令'()0f x =,则1x a =或1a-(舍去负值), 当10x a<<时,'()0f x >,()f x 为增函数, 当1x a>时,'()0f x <,()f x 为减函数. 所以当0a ≤时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为1(0,)a ,单调递减区间为1(,)a+∞. (2)由21ln (1)12x ax a x -≤--,得22(ln 1)(2)x x a x x ++≤+, 因为0x >,所以原命题等价于22(ln 1)2x x a x x++≥+在区间(0,)+∞内恒成立.令22(ln 1)()2x x g x x x++=+,则222(1)(2ln )'()(2)x x x g x x x -++=+,令()2ln h x x x =+,则()h x 在区间(0,)+∞内单调递增,由(1)10h =>,11()2ln 2022h =-+<,所以存在唯一01(,1)2x ∈,使0()0h x =,即002ln 0x x +=,所以当00x x <<时,'()0g x >,()g x 为增函数, 当0x x >时,'()0g x <,()g x 为减函数, 所以0x x =时,00max 2002(ln 1)()2x x g x x x ++=+0002(2)x x x +=+01x =,所以01a x ≥,又01(,1)2x ∈,则1(1,2)x ∈, 因为a Z ∈,所以2a ≥, 故整数a 的最小值为2.21.解:(1)'()2(1)(1)(1)(22)xxxf x ae axe a x x ae a =+--+=+-+, 由'()0f x =,得1x =-或220xae a -+=(*). 由于()f x 仅有一个极值点, 所以关于x 的方程(*)必无解. ①当0a =时,(*)无解,符合题意; ②当0a ≠时,由(*)得22xa e a-=, 故由220a a-≤,得01a <≤. 由于这两种情况都有当1x <-时,'()0f x <,于是()f x 为减函数,当1x >-时,'()0f x >,于是()f x 为增函数,所以仅1x =-为()f x 的极值点. 综上可得a 的取值范围是[]0,1. (2)证明:由(1)得,当102a <<时,1x =-为()f x 的极小值点,又因为2222(2)(1)(1)10a f a a e e -=---=--+>对于102a <<恒成立, (1)0a f e -=-<对于102a <<恒成立,(0)(1)0f a =-->对于102a <<恒成立,所以当21x -<<-时,()f x 有一个零点1x , 当10x -<<时,()f x 有另一个零点2x ,即121x -<<-,210x -<<且12111()(1)(1)0xf x ax e a x =--+=,22222()(1)(1)0x f x ax e a x =--+=(**),所以1231x x -<+<-.下面再证明122x x +<-,即证122x x <--, 由210x -<<,得2221x -<--<-, 由于1x <-时,()f x 为减函数,于是只需证明12()(2)f x f x >--,也就是证明2(2)0f x --<,22222222222(2)(2)(1)(1)(2)(1)(1)x x f x a x e a x a x e a x ------=------=----+,借助(**)式代换可得222222(2)(2)x x f x a x e ax e ----=--⋅-22222(2)x x a x e x e --⎡⎤=---⎣⎦,令2()(2)(10)xx g x x e xe x --=----<<, 则2'()(1)()xx g x x e e --=+-,因为2()xx h x ee --=-在区间(1,0)-内为减函数,且(1)0h -=,所以2'()(1)()0xx g x x ee --=+-<在区间(1,0)-内恒成立,于是()g x 在区间(1,0)-内为减函数,即()(1)0g x g <-=,所以2(2)0f x --<,这就证明了122x x +<-. 综上所述,1232x x -<+<-.22.解:(1)设11(,)x y 为圆上的任意一点,在已知的变换下变为C 上的点(,)x y ,则有11,1.2x x y y =⎧⎪⎨=⎪⎩因为112cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),所以2cos ,sin x y θθ=⎧⎨=⎩(θ为参数),所以2214x y +=. (2)以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线C 的普通方程化为极坐标方程得2222cos sin 14ρθρθ+=.设1(,)A ρθ,2(,)2B πρθ+,则1||OA ρ=,2||OB ρ=, 则2222222212cos ()1111cos 52sin sin ()||||4424OA OB πθθπθθρρ++=+=++++=. 23.解:(1)当1a =时,()|2||21|f x x x =-++.由()5f x ≥,得|2||21|5x x -++≥.当2x ≥时,不等式等价于2215x x -++≥,解得2x ≥,所以2x ≥; 当122x -<<时,不等式等价于2215x x -++≥,解得2x ≥,所以x ∈∅; 当12x ≤-时,不等式等价于2215x x ---≥,解得43x ≤-,所以43x ≤-. 故原不等式的解集为4|23x x x ⎧⎫≤-≥⎨⎬⎩⎭或. (2)()|2|2|2||2||24||2|f x x x x a x x a +-=-++=-++|2(24)||4|x a x a ≥+--=+,因为原命题等价于[]min ()|2|3f x x +-<,所以|4|3a +<,所以71a -<<-.。

衡水中学2018年高考押题理数(一)答案

衡水中学2018年高考押题理数(一)答案

c( x1
x2 )]
x1 1
2(x1 x2 ) x1 x2
ln
x1 x2
2
x2 x1
ln 1
x1 x2
.
x2

x1 x2
t(0 t
1) ,由 (x1 x2 )2
m2 得 x12
x22
2x1x2
m2

因为
x1x2
1 ,两边同时除以
x1x2
,得 t
1 t
2
m2 ,
因为 m 3 2 ,故 t 1 5 ,解得 0 t 1 或 t 2 ,所以 0 t 1 .
2
t2
2
2
设 G(t)
2
t t
1 1
ln
t
,所以 G '(t)
(t 1)2 t(t 1)2
0

则 y G(t) 在 (0, 1] 上是减函数, 2
所以 G(t)min
G( 1) 2
2 3
ln
2


y
( x1
x2
)h
'(x0
)
的最小值为
2 3
ln
2
.
所以
( x1
x2
)h
'(x0 )
2 3
ln
2
.
22.解:(1)由 4 cos 得 2 4 cos ,
9
3
可得椭圆 C 经过点 (2, 2 10 ) , 3
所以
4 9
40 9b2
1 ,解得 b2
8.
所以椭圆 C 的方程为 x2 y2 1. 98
(2)直线 l 的解析式为 y kx 2 ,设 A(x1, y1), B(x2, y2 ) , AB 的中点为 E(x0, y0 ) .假设存在点 D(m, 0) ,

【全国百强校word】河北省衡水中学2018届高三十六模理科数学试题

【全国百强校word】河北省衡水中学2018届高三十六模理科数学试题

2017-2018学年度第二学期高三年级十六模考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则复数集合37iz i 的实部和虚部分别是()A .7,3B .7,3iC .7,3D .7,3i2.已知集合1,0,2P ,sin ,Q y y R ,则P Q ()A .B .0C .1,0D .1,0,23.已知随机变量X 服从正态分布(,4)N a ,且(1)0.5P X ,(2)0.3P X ,(0)P X 等于()A .0.2B .0.3C .0.7D .0.84.下列有关命题的说法正确的是()A .命题“若0xy ,则0x ”的否命题为“若0xy ,则0x ”B .命题“若0x y ,则,x y 互为相反数”的逆命题是真命题C.命题“x R ,使得2210x ”的否定是“x R ,都有2210x ”D .命题“若cos cos x y ,则x y ”的逆否命题为真命题5.已知满足1sin 3,则cos()cos()44()A .718B .2518 C. 718 D .25186.某几何体的三视图如图所示,三个视图中的正方形的边长均为6,俯视图中的两条曲线均为圆弧,则该几何体的体积为()A .2163B .216 4.5 C.2166 D .21697.已知函数()2sin(2)6f x x ,现将()y f x 的图形向左平移12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x 的图象,则()g x 在50,24上的值域为()A .1,2B .0,1 C.0,2 D .1,08.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算术——“辗转相除法”实质一样,如图的程序框图即源于“辗转相除法”,当输入6402a ,2046b 时,输出的a ()A .66B .12 C. 36 D .1989.已知实数,x y 满足约束条件5001202x y y x y x ,若不等式22(1)2(42)0a x xy a y 恒成立,则实数a 的最大值为()A .73 B .53 C.5 D .610.已知函数()ln f x x ,()(23)g x m x n ,若对任意的(0,)x ,总有()()f x g x 恒成立,记(23)m n 的最小值为(,)f m n ,则(,)f m n 最大值为()A .1B .1e C. 21e D .1e11.设双曲线2222:1(0,0)x y C a b a b 的左、右焦点分别为12,F F ,过2F 的直线与双曲线的右知交于两点,A B ,若1:3:4AF AB ,且2F 是AB 的一个四等分点,则双曲线C 的离心率是()A .52 B .102 C.52 D .512.已知偶函数()f x 满足(4)(4)f x f x ,且当0,4x 时,ln(2)()x f x x ,关于x 的不等式2()()0f x af x 在区间200,200上有且只有300个整数解,则实数a 的取值范围是()A .1(ln 2,ln 6)3 B .1(ln 2,ln 6]3 C.13ln 2(ln 6,)34D .13ln 2(ln 6,]34第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量a ,b ,1a ,2b ,且1a b ,若e 为平面单位向量,则()a b e 的最大值为.14.二项式651()x x x 展开式中的常数项是.15.已知点A 是抛物线2:2(0)C x py p 上一点,O 为坐标原点,若,A B 是以点(0,8)M 为圆心,OA 的长为半径的圆与抛物线C 的两个公共点,且ABO 为等边三角形,则p 的值是.16.已知直三棱柱11ABC A B C 中,120BAC ,1AB AC ,12AA ,若棱1AA 在正视图的投影面内,且AB 与投影面所成角为(3060),设正视图的面积为m ,侧视图的面积为n ,当变化时,mn 的最大值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列n a 的前*()n n N 项和为n S ,数列n b 是等比数列,13a ,11b ,2210b S ,5232a b a .(1)求数列n a 和n b 的通项公式;。

【全国百强校】【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(一)理科数学(解析版)

【全国百强校】【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(一)理科数学(解析版)

2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.【答案】B【解析】∵集合∴∵集合∴∴∵集合∴故选B.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.........................3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数【答案】D【解析】,为常数,故选D.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】A【解析】设,则.∴,∴所求的概率为故选A.5. 已知点为双曲线:(,)的右焦点,点到渐近线的距离是点到左顶点的距离的一半,则双曲线的离心率为()A. 或B.C.D.【答案】B【解析】由题意可得,双曲线的渐近线方程为,即.∵点到渐近线的距离是点到左顶点的距离的一半∴,即.∴,即.∴∴双曲线的离心率为.故选B.点睛:本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.6. 已知函数则()A. B. C. D.【答案】D【解析】,,的几何意义是以原点为圆心,半径为的圆的面积的,故,故选D.7. 执行如图程序框图,则输出的的值为()A. B. C. D.【答案】C【解析】第1次循环后,,不满足退出循环的条件,;第2次循环后,,不满足退出循环的条件,;第3次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;第次循环后,,满足退出循环的条件,故输出的的值为.故选C.8. 已知函数的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】B【解析】,因为函数()的相邻两个零点差的绝对值为,所以函数的最小正周期为,而,,故的图象可看作是的图象向右平移个单位而得,故选B.9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.【答案】A【解析】令,得,而常数项为,所以展开式中剔除常数项的各项系数和为,故选A.10. 某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A. B. C. D.【答案】B【解析】由三视图可得该几何体是六棱锥,底面是边长为1的正六边形,有一条侧棱垂直底面,且长为2,可以将该几何体补成正六棱柱,其外接球与该正六棱柱外接球是同一个球.故该几何体的外接球的半径,则该几何体的外接球的表面积是.点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解;(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.11. 设为坐标原点,点为抛物线:上异于原点的任意一点,过点作斜率为的直线交轴于点,点是线段的中点,连接并延长交抛物线于点,则的值为()A. B. C. D.【答案】C【解析】设点,点,则,.∵过点作斜率为的直线交轴于点,点是线段的中点∴∴直线的方程为.∴联立,解得,即.∴故选C.12. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数,若函数是定义在区间内的2级类周期函数,且,当时,函数,若,,使成立,则实数的取值范围是()A. B. C. D.【解析】是定义在区间内的级类周期函数,且,,当时,,故时,时,,而当时,,,当时,在区间上单调递减,当时,在区间上单调递增,故,依题意得,即实数的取值范围是,故选B.【方法点睛】本题主要考查分段函数函数的最值、全称量词与存在量词的应用以及新定义问题. 属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.【答案】【解析】∵向量,,且∴,即.∵∴故答案为.14. 已知,满足约束条件则目标函数的最小值为__________.【解析】由约束条件作出可行域如图所示:联立,解得.由目标函数化为,由图可知过时,直线在轴上的截距最大,此时最小,的最小值为.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在等比数列中,,且与的等差中项为,设,,则数列的前项和为__________.【答案】【解析】设等比数列的首项为,公比为.∵∴,即.∵与的等差中项为∴,即.∴,.∴∵∴数列的前项和为.故答案为.16. 有一个容器,下部是高为的圆柱体,上部是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为__________.【答案】【解析】设圆柱的底面半径为,圆锥的高为,则,故.∴该容器的体积.∴当时,,即在上为增函数;当时,,即在上为减函数.∴当时,取得最大值,此时,.故答案为点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果要与实际情况相结合,用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.【答案】(1),;(2).【解析】试题分析:(1)由及正弦定理化简可得即,从而得.又,所以,由余弦定理得;(2)由,得,所以.试题解析:(1)由及正弦定理得,即,在中,,所以.又,所以.在中,由余弦定理得,所以.(2)由,得,所以.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.【答案】(1)证明见解析;(2)为的中点.【解析】试题分析:(1)连接,,,与的交点为,连接,则,由正方形的性质可得,从而得平面,,又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、两两垂直.以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,设(),求得,利用向量垂直数量积为零可得平面的一个法向量为,利用空间向量夹角余弦公式列方程可解得,从而可得结果.试题解析:(1)连接,,,因为,,所以和均为正三角形,于是.设与的交点为,连接,则,又四边形是正方形,所以,而,所以平面.又平面,所以,又,所以.(2)由,及,知,于是,从而,结合,,得底面,所以、、两两垂直.如图,以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,,由,易求得.设(),则,即,所以.设平面的一个法向量为,由得令,得,设直线与平面所成角为,则,解得或(舍去),所以当为的中点时,直线与平面所成角的正弦值为.【方法点晴】本题主要考查利用线面垂直证明线线垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.【答案】(1);(2)①,②分布列见解析,.【解析】试题分析:(1)根据频率分布直方图,直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①根据服从正态分布,从而求出;②根据题意得,的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;. ∴的分布列为∴.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,点的坐标为,问直线与的斜率之和是否为定值?若是,求出该定值,若不是,试说明理由.【答案】(1);(2)定值为.【解析】试题分析:(1)由椭圆的几何性质可得,即可求得,的值,从而可得椭圆的标准方程;(2)联立直线与椭圆的方程得,根据判别式可得的取值范围,设,,结合韦达定理,对化简,从而可得出定值.试题解析:(1)由已知可得解得,.故所求的椭圆方程为.(2)由得,则,解得或.设,,则,,则,,∴,∴为定值,且定值为0.点睛:(1)解题时注意圆锥曲线定义的两种应用,一是利用定义求曲线方程,二是根据曲线的定义求曲线上的点满足的条件,并进一步解题.(2)求定值问题常见的方法:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据题意,由函数的解析式计算可得,由函数的导数与函数单调性的关系,分函数在区间上是为单调增函数和单调减函数两种情况讨论,分别求出的取值范围,综合即可得答案;(2)根据题意,对求导分析可得,由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,在区间内存在零点,同理,在区间内存在零点,由(1)的结论,只需在区间内两个零点即可,利用导数研究函数的单调性,从而可得实数的取值范围.试题解析:(1)由题意得,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得;当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理,在区间内存在零点.∴在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单调递减,在区间内单调递增.记的两个零点为,,∴,,必有,.由,得.∴,又∵,,∴.综上所述,实数的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22. 在平面直角坐标系中,圆的参数方程为(是参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的交点为,,若圆与圆外切,试求实数的值及线段的长.【答案】(1),;(2),.【解析】试题分析:(1)先将圆的参数方程化为直角坐标方程,再利用可得圆的极坐标方程,两边同乘以利用互化公式即可得圆的直角坐标方程;(2)由(1)知圆的圆心,半径;圆的圆心,半径,圆与圆外切的性质列方程解得,分别将代入、的极坐标方程,利用极径的几何意义可得线段的长.试题解析:(1)圆:(是参数)消去参数,得其普通方程为,将,代入上式并化简,得圆的极坐标方程,由圆的极坐标方程,得.将,,代入上式,得圆的直角坐标方程为.(2)由(1)知圆的圆心,半径;圆的圆心,半径,,∵圆与圆外切,∴,解得,即圆的极坐标方程为.将代入,得,得;将代入,得,得;故.【名师点睛】本题考查圆的参数方程和普通方程的转化、圆的极坐标方程和直角坐标方程的转化以及极径的几何意义,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只需利用转化即可.选修4-5:不等式选讲23. 已知函数.(1)求不等式;(2)若正数,满足,求证:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)对分三种情况讨论,分别求解不等式组,然后求并集,即可得不等式的解集;(2)先利用基本不等式成立的条件可得,所以.试题解析:(1)此不等式等价于或或解得或或.即不等式的解集为.(2)∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。

精品解析:【全国百强校】河北省衡水中学2018届高三上学期一轮复习周测数学(理)试题(解析版)

精品解析:【全国百强校】河北省衡水中学2018届高三上学期一轮复习周测数学(理)试题(解析版)

河北省衡水中学2017-2018学年度高三一轮复习周测卷(一)理数一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法正确的是()A. 0与的意义相同B. 高一(1)班个子比较高的同学可以形成一个集合C. 集合是有限集D. 方程的解集只有一个元素【答案】D【解析】因为0是元素,是含0的集合,所以其意义不相同;因为“比较高”是一个不确定的概念,所以不能构成集合;当时,,故集合是无限集;由于方程可化为方程,所以(只有一个实数根),即方程的解集只有一个元素,应选答案D。

2. 已知集合,则()A. B. C. D.【答案】D【解析】试题分析:,,所以.考点:集合交集,一元二次不等式.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.在求交集时注意区间端点的取舍.熟练画数轴来解交集、并集和补集的题目.3. 设命题“”,则为()A. B. C. D.【答案】B【解析】因为全称命题的否定是存在性命题,所以为,应选答案B。

4. 已知集合,则集合()A. B. C. D.【答案】C【解析】因为,所以,应选答案C。

5. 设,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】当时,,所以,,但时,即,不能保证为正数,所以“”是“”的充分不必要条件,故选A.6. 设,若是的充分不必要条件,则实数的取值范围是()A. B. C. D.【答案】B【解析】因为,所以由题意可得:,应选答案B。

7. 已知命题有解,命题,则下列选项中是假命题的为()A. B. C. D.【答案】B【解析】试题分析:对于m命题p:方程x2-mx-1=0,则△=m2+4>0,因此:∀m∈R,x2-mx-1=0有解,可得:命题p是真命题.对于命题q:由x2-x-1≤0,解得,,因此存在x=0,1∈N,使得x2-x-1≤0成立,因此是真命题.∴下列选项中是假命题的为,故选:B.考点:复合命题的真假8. 已知集合,则集合不可能是()A. B. C. D.【答案】D【解析】因为,所以当时,则;由于是点集,所以;当时,则;由于,所以,应选答案D。

(完整word版)2018年河北省衡水中学高三一模理科数学试题(1)

(完整word版)2018年河北省衡水中学高三一模理科数学试题(1)

河北省衡水中学2018高三第一次模拟理科数学试题一、选择题(本大题共12小题,每小题5分,共60分)1.设全集为实数集R ,{}24M x x =>,{}13N x x =<≤,则图中阴影部分表示的集合是( )A .{}21x x -≤<B .{}22x x -≤≤C .{}12x x <≤D .{}2x x <2.设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的( ) A 。

充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2011B .2012C .4022D .40234. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。

A .①②B.③④C.③④⑤D.④⑤5。

在长方体ABCD —A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1相交于点E,则点E 为△A 1BC 1的( )A .垂心B .内心C .外心D .重心6。

设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是( )A .613B . 365C .65D .36137.已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A .16πB .4π C .8πD .2π 8.已知函数()2sin()f x x =+ωϕ(0,)ω>-π<ϕ<π图像的一部分(如图所示),则ω与ϕ的值分别为( )A .115,106π-B .21,3π-C .7,106π-D .4,53π-9。

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. B.C. D.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 33. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.6. 已知数列为等比数列,且,则( )A. B. C. D.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A.B.C.D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )...A. B. C. D.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( ) A.为真 B.为假 C.为真 D. 为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A.B.C. D.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为. (Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.21. 已知函数,其中为自然对数的底数.(Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.。

【全国百强校】河北省衡水中学2018届高三十六模理科数学试题(解析版)

【全国百强校】河北省衡水中学2018届高三十六模理科数学试题(解析版)

2017-2018学年度第二学期高三年级十六模考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )A. B. D.【答案】A.的实部是,虚部是 A.点睛:本题主要考查复数的基本概念与基本运算,属于简单题.2. )C. D.【答案】C考点:集合的运算3. )A. B. C. D.【答案】B对称,且.详解:曲线关于对称,且,可知,故选B.点睛:本题主要考查正态分布,正态曲线有两个特点,(1(24. 下列有关命题的说法正确的是()A. ”的否命题为“若B. ,则互为相反数”的逆命题是真命题C.D. 命题“若,则”的逆否命题为真命题【答案】B【解析】分析:逐一判断四个选项中的命题是否正确即可.详解:“的否命题为“逆命题是“若则互为相反数,”,正确;的否定是“,都有“若,则”为假命题,所以其逆否命题也为假命题, B.点睛:判断命题的真假应注意以下几个方面:(l)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系;(2)要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假;(3)判断命题真假时,可直接依据定义、定理、性质直接判断,也可使用特值进行排除.5. )C. D.【答案】A,选A.6. 某几何体的三视图如图所示,俯视图中的两条曲线均为圆弧,则该几何体的体积为()【答案】D,故体积为D.7.倍,纵坐标不变,得到函数的图象,则在)A. B. C. D.【答案】A的图象,再将所得图象个点的横坐标缩短为原来的到函数的图象,在上的值域为,故选A.8. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算术——“辗转相除法”实质一样,如图的程序框图即源于“辗转相除法”,当输入)【答案】A【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.第一次循环,;;;退出循环,输出 A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.为()【答案】A,即,原问题转化为求解函数的最小值,整理函数的解析式有:令,则,令,则在区间上单调递减,在区间,据此可得,当取得最大值,则此时函数取得最小值,最小值为:本题选择A选项.10.,则最大值为()A. C. D.【答案】C【解析】,当时,时,,从而,因为,所以当时,;当时,;因此当时,,选C.或;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.11. 若,且是的一个四等分点,则双曲线)【答案】B,则可设再由双曲线的定义,得到,这与所以是直角三角形,且,故选B.【点睛】本题考查了双曲线的定义与简单几何性质,直角三角形的判定与性质,考查转化思想与运算能力,立,经过分析,是直角三角形,之间的关系,是直角三角形是解决问题的关键.12. 时,上有且只有个整数解,则实数的取值范围是()A. C. D.【答案】D个周期,且有个整数解,每个周期内有.详解:由于函数是偶函数,的周期函数,上递增,在由选项可知,解得根据单调性和周期性画出图象如图所示,由图可知,个整数解,D.点睛:本题主要考查函数的图象与性质以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. ,,,__________.【解析】分析:,求出向量平面向量,然后利用向量的坐标运算求解.设出,的最大值为点睛:平面向量数量积公式有两种形式,一是面:(1)求向量的夹角,;(2上的投影是(3;(4)求向量.14. __________.展开式中的常数项是.15. 已知点是抛物线上一点,为圆心,的圆与抛物线的两个公共点,且为等边三角形,则的值是__________.【解析】由题意,可知16. 中,在正视图的投影面与投影面所成角为,设正视图的面积为,侧视图的面积为变化时,值是__________.【解析】分析:利用与投影面,求解最大值.详解:与投影面,故正视图的面积为,所以,侧视图的面积为,,故得的最大值为点睛:求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,利用三角函数法求最值常见类型有:①方法求最值;②求最值 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 是等比数列,,,(1和的通项公式;(2【答案】(1),2【解析】分析:(1)根据等差数列的前项和为,数列列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2))由(1,利用分组求和与裂项相消法求和,结合等比数列范求和公式可得结果.详解:(1)设等差数列,,,(2)由(1点睛:本题主要考查等差数列的通项与等比数列的通项公式、求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)(2(3)(4;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.与平面交于点.(1)已知平面平面,求证:;(2与平面所成角的正弦值.【答案】(1)见解析(2【解析】试题分析:(1)由三角形中位线定理可得在(2)由勾股定理可得,,由此可以点分别为轴建立空间直角坐标系,利用两直线垂直数量积为零列出方程组,分别求出的方向向量与平面.试题解析:(1,平面.(2)∵底面是菱形平面则以点为原点,直线分别为轴建立如图所示空间直角坐标系,设平面的法向量为,有得,则,设直线与平面所成角为∴所成角的正弦值为【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. 作为加班拍档、创业伴侣、春运神器,曾几何时,方便面是我们生活中重要的“朋友”,然而这种景象统计显示,2011年之前,2013年的年销量更是创下2013年下跌,只剩体如下表.相交于方便面,网络订餐成为大家更加青睐的消费选择.近年来,网络订餐市场规模的“井喷式”增长,也充分反映了人们消费方式的变化.全国方便面销售情况(单位:亿包/桶)(数据来源:世界方便面协会)(12017销量;(2)方便面销量遭遇滑铁卢受到哪些因素影响?中国的消费业态发生看怎样的转变?某媒体记者随机对身位受访者表示超过年未吃过方便面,位受访者有过网络订餐的经历.现从这人中抽取人进行深度访谈,记认为方便面是健康食品的人数,求随机变量的分布列及数学期望.【答案】(1)356(2)见解析【解析】分析:(1)根据平均数公式可求出的回归方程;(2)的可能值为从而可得分布列,利用期望公式可得结果.详解:(1),所以当时,(2)依题意,人中认为方便面是健康食品的有点睛:求回归直线方程的步骤:①确定两个变量具有线性相关关系;②计算是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 如图,与的右焦点点,轴上方一点,连接并延长其交之间移动.(1(2的方程.【答案】(12【解析】试题分析:(1)由椭圆的性质可得,故可得,故而可求得和(2),可得,求出点到直线的距离,结合面积公式可得最值.试题解析:(1)因为,此时,所以椭圆的方程为(2,设椭圆的标准方程为或,代入抛物线方程,于是.此时抛物线方程为,,则直线的方程为设,当时,所以的面积最大值为.此时21. (为常数,是自然对数的底数).(1)求(2【答案】(1)单调递增区间是2)见解析【解析】试题分析:(1)根据曲线处的切线与轴垂直即切线斜率为值,即得函数(2)所以整理,分别证明和11)知求出其在上的最大值即可证得,利用导数求出其最小值,根据不等式的性质即可得到要证明的结论.试题解析:(1,由已知得,,则知,当时,从而,单调递减区间是(2恒成立,时,由(1)知1,时,时,时,,即时,.综上所述,对任意.①,则恒成立,即②时,由①②式,时,考点:导数的几何意义、利用导数研究函数在给定区间上的最值及不等式的证明.方法点睛:本题主要考查了导数的几何意义及利用导数研究函数的单调性和通过求给定区间上的最值来证明不等式,考查考生讨论和转化的数学思想,属于难题.本题解答的难点是第二问转化的过程,在第一问解答的基础上,利用不等式的性质把要证明的不等式转化为证明两个不等式,分别构造函数,再利用导数研究其单调性求得其最值,考查了考生应用所学函数、导数、不等式知识解决问题的能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程的极坐标方程为(1的普通方程和的直角坐标方程;(2的直线两点,与..【答案】(1(2【解析】试题分析:(1)利用平方法消去参数,即可得到的普通方程,两边同乘以利用即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1(2(为参数)存在两个交点,因此可得23. 选修4-5:不等式选讲已知,.(1;(2有三个解,求实数.【答案】(12【解析】试题分析:(1)不等式即为.利用分类讨论的方法去掉绝对值符号,可求其解集;........................(2作出函数的图像,由图像可求方程有三个解时实数.试题解析:(1)不等式即为,,,此时不等式的解集为.,综上,的解集为(2作出函数的图像如图所示,,,所以实数的取值范围是。

【全国百强校word】河北省衡水中学2018届高三第十六次模拟考试理数试题

【全国百强校word】河北省衡水中学2018届高三第十六次模拟考试理数试题

2017-2018学年度第二学期高三年级十六模考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则复数37iz i+=集合的实部和虚部分别是( ) A .7,3- B .7,3i - C .7-,3 D .7-,3i 2.已知集合{1,0,2}P =-,Q {sin ,R}y y θθ==∈,则P Q =( ) A .∅ B .{0} C .{1,0}- D .{1,0,2}-3.已知随机变量X 服从正态分布(,4)N a ,且(1)0.5P X >=,(2)0.3P X >=,(0)P X <等于( ) A .0.2 B .0.3 C .0.7 D .0.84.下列有关命题的说法正确的是( )A .命题“若0xy =,则0x =”的否命题为“若0xy =,则0x ≠”B .命题“若0x y +=,则x ,y 互为相反数”的逆命题是真命题C .命题“x R ∃∈,使得2210x -<”的否定是“x R ∀∈,都有2210x -<”D .命题“若cos cos x y =,则x y =”的逆否命题为真命题5.已知α满足1sin 3α=,则cos()cos()44ππαα+-=( ) A .718 B .2518C.718- D .2518-6.某几何体的三视图如图所示,三个视图中的正方形的边长均为6,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .2163π-B .216 4.5π- C.2166π- D .2169π-7.已知函数()2sin(2)6f xx π=+,现将()y f x =的图形向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象,则()g x 在5[0,]24π上的值域为( ) A .[1,2]- B .[0,1] C.[0,2] D .[1,0]-8.我国古代著名《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入6402a =,2046b =,输出的a =( )A .66B .12 C.36 D .1989.已知实数x ,y 满足约束条件5001202x y y x y x ⎧⎪+-≥⎪-≥⎨⎪⎪--≤⎩若不等式2(1)2a x xy -+2(42)0a y +-≥恒成立,则实数a 的最大值为( )A .73 B .5356 10.已知函数()ln f x x =,()(23)g x m x n =++,若对任意的(0,)x ∈+∞,总有()()f x g x ≤恒成立,记(23)m n +的最小值为(,)f m n ,则(,)f m n 最大值为( )A .1B .1e C. 21e D e11.设双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过2F 的直线与双曲线的右支交于两点A ,B ,若1:3:4AF AB =,且2F 是AB 的一个四等分点,则双曲线C 的离心率是( )A .5B.10C.52D5.12.已知偶函数()f x满足(4)(4)f x f x+=-,且当(0,4]x∈时,ln(2)()xf xx=,关于x的不等式2()()0f x af x+>在区间[200200]-,上有且只有300个整数解,则实数a的取值范围是()A.1(ln2ln6)3--, B.1(ln2ln6]3--, C.13ln2(ln6)34--, D.13ln2(ln6)34--,第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量a,b,1a=,2b=且1a b⋅=,若e为平面单位向量,则()a b e+⋅的最大值为.14.二项式65()xx x+展开式中的常数项是.15.已知点A是抛物线C:22x py=(0p>)上一点,O为坐标原点,若A,B是以点(08)M,为圆心,OA 的长为半径的圆与抛物线C的两个公共点,且ABO△为等边三角形,则p的值是.16.已知在直三棱柱111ABC A B C-中,120BAC∠=︒,1AB AC==,12AA=,若1AA棱在正视图的投影面α内,且AB与投影面α所成角为θ(3060θ︒≤≤︒),设正视图的面积为m,侧视图的面积为n,当θ变化时,mn的最大值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{}n a的前n(*n∈N)项和为n S,数列{}n b是等比数列,13a=,11b=,2210b S+=,5232a b a-=.(1)求数列{}n a和{}n b的通项公式;(2)若2nnnnScb n⎧⎪=⎨⎪⎩奇偶,,为数为数,设数列{}n c的前n项和为n T,求2n T.18. 如图,在底面是菱形的四棱锥P ABCD-中,PA⊥平面ABCD,60ABC∠=︒,2PA AB==,点E、F 分别为BC、PD的中点,设直线PC与平面AEF交于点Q.(1)已知平面PAB 平面PCD l =,求证:AB l ∥;(2)求直线AQ 与平面PCD 所成角的正弦值.19.作为加班拍档、创业伴侣、春运神器,曾几何时,方便面是我们生活中重要的“朋友”,然而这种景象却在近5年出现了戏剧性的逆转.统计显示.2011年之前,方便面销量在中国连续18年保持两位数增长,2013年的年销量更是创下462亿包的辉煌战绩;但2013年以来,方便面销量却连续3年下跌,只剩385亿包,具体如下表.相较于方便面,网络订餐成为大家更加青睐的消费选择.近年来,网络订餐市场规模的“井喷式”增长,也充分反映了人们消费方式的变化.全国方便面销量情况(单位“亿包/桶)(数据来源:世界方便面协会)年份 201320142015 2016时间代号t 12 3 4年销量y (亿包/桶)462444404385(1)根据上表,求y 关于t 的线性回归方程y bt a =+.用所求回归方程预测2017 年(5t =)方便面在中国的年销量;(2)方便面销量遭遇滑铁卢受到哪些因素影响? 中国的消费业态发生了怎样的转变? 某媒体记者随机对身边的10位朋友做了一次调查,其中5位受访者表示超过1年未吃过方便面,3位受访者认为方便面是健康食品;而9位受访者有过网络订餐的经历,现从这10人中抽取3人进行深度访谈,记ξ表示随机抽取的3人认为方便面是健康食品的人数,求随机变量ξ的分布列及数学期望()E ξ.参考公式:回归方程:y bt a =+,其中121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =-.参考数据:41()()135.5i i i t t y y =--=-∑.20.如图,设抛物线1:C 24y mx =-(0m >)的准线l 与x 轴交于椭圆2C :22221x ya b+=(0a b >>)的右焦点2F ,1F 为2C 的左焦点,椭圆的离心率为12e =,抛物线1C 与椭圆2C 交于x 轴上方一点P ,连接1PF 并延长其交1C 于点Q ,M 为1C 上一动点,且在P ,Q 之间移动.(1)当32a +1C 和2C 的方程; (2)若12PF F △的边长恰好时三个连续的自然数,当MPQ △面积取最大值时,求面积最大值以及此时直线MP 的方程.21.已知函数()(ln 2)x f x e x k -=-(k 为常数, 2.71828e =是自然对数的底数),曲线()y f x =在点(1(1))f ,处的切线与y 轴垂直. (1)求()f x 的单调区间; (2)设1(ln 1)()xx x g x e-+=,对任意0x >,证明:2(1)()x x x g x e e -+⋅<+. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线1C 的参数方程为2sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的极坐标方程为2sin 4cos ρθθ=. (1)求1C 的普通方程和2C 的直角坐标方程;(2)若过点(10)F ,的直线l 与1C 交于A ,B 两点,与2C 交于M ,N 两点,求FA FB FM FN的取值范围.23.选修4-5:不等式选讲已知()11f x x =-+,()3()1233f x x F x x x ≤⎧=⎨->⎩,,,,(1)解不等式()23f x x ≤+;(2)若方程()F x a =有三个解,求实数a 的取值范围.参考答案及解析一、选择题1-5:ACBBA 6-10:DAAAC 11、12:BD二、填空题5 15.2316.三、解答题17.解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , ∵13a =,11b =,2210b S +=,5232a b a -=, ∴331034232q d d q d+++=⎧⎨+-=+⎩,∴2d =,2q =, ∴21n a n =+,12n n b -= (2)由(1)知(321)(2)2n n n S nn ++==+ ∴11122n n n c n n n -⎧-⎪=+⎨⎪⎩奇偶,,为数为数∴211111(1)3352121n T n n =-+-++--+13521(2222)n -+++++21121321n n ++=-+18.解:(1)∵AB CD ∥,AB ⊄平面PCD ,CD ⊂平面PCD ∴AB ∥平面PCD , ∵AB ⊂平面PAB ,平面PAB 平面PCD l =,∴AB l ∥.(2)∵底面是菱形,E 为BC 的中点,2AB =, ∴1BE =,3AE =,AE BC ⊥, ∴AE AD ⊥,∵PA ⊥平面ABCD ,则以点A 为原点,直线AE AD 、AP 分别为轴建立如图所示空间直角坐标系.则(020)D ,,,(002)P ,,,(310)C ,,(300)E ,,∴(011)F ,,,(300)AE =,,(011)AF =,,,(310)DC =-,,(022)DP =-,,,设平面PCD 的法向量为()n x y z =,,, 得(133)n =,,.设(1)AQ AC AP λλ=+-,则(32(1))AQ λλλ=-,,AQ mAE nAF =+,则2(1)n n λλ==⎨⎪-=⎩,, 解得23m n λ===, ∴222()333AQ =,,, 设直线AQ 与平面PCD 所成角为α, 则3sin cos n AQ α=<>=, ∴直线AQ 与平面PCD 19.解:(1) 2.5t =,423.75y =,241()5i i t t =-=∑,135.527.15b -==-,423.75(27.1) 2.5491.5a =--⨯=, 所以27.1491.5y t =-+当5t =时,27.15491.5356y =-⨯+=(2)依题意,10人中认为方便面是健康食品的有3人,ξ的可能值为0,1,2,3,所以373107(0)24C P C ξ===;123731021(1)40C C P C ξ===;21373107(2)40C C P C ξ===;333101(3)120C P C ξ===,721719()012324404012010E ξ=⨯+⨯+⨯+⨯=.20.解:(1)因为c m =,12c e a ==, 则2a m =,b = 所以2a +1m =, 此时抛物线1C :24y x =-,此时2a =,23b =,所以椭圆2C 的方程为22143x y +=.(2)因为c m =,12c e a ==,则2a m =,b =, 设椭圆2222143x y m m +=,00()P x y ,,11()Q x y , 由222221434x y m m y mx ⎧+=⎪⎨⎪=-⎩得22316120x mx m --=, 所以023x m =-或06x m =(舍去),代入抛物线方程得0y =,即2(3m P -, 于是153m PF =,21723m PF a PF =-=,12623mF F m ==, 又12PF F △的边长恰好是三个连续的自然数,所以3m =,此时抛物线方程为212y x =-,1(30)F =-,,(2P -,,则直线PQ的方程为3)y x =+,联立23)12y x y x⎧=+⎪⎨=-⎪⎩,得192x =-或12x =-(舍去)于是9(2Q --,所以252PQ ==,设2()12t M t -,((t ∈-)到直线PQ 的距离为d ,则275(2d t =+-当t =时,max 752d ==所以MPQ △的面积最大值为12522⨯=,MP:y =21.解:(1)因为1ln 2()x x kx f x e-+'=(0x >),由已知得12(1)0k f e +'==,所以12k =-, 所以1ln 1()xx x f x e --'=,设1()ln 1k x x x=--,则211()0k x x x'=--<在(0)+∞,上恒成立, 即()k x 在(0)+∞,上单调递减, 由(1)0k =知,当01x <<时,()0k x >,从而()0f x '>,当1x >时,()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(01),,单调递减区间是(1)+∞,, (2)因为0x >,要证原式成立即证2()11x g x e e x -+<+成立.当1x ≥时,由(1)知2()01g x e -≤<+成立;当01x <<时,1x e >,且由(1)知,()0g x >,所以1ln ()1ln xx x xg x x x x e --=<--.设()1ln F x x x x =--,(01)x ∈,, 则()(ln 2)F x x '=-+, 当2(0)x e -∈,时,()0F x '> 当2(1)x e -∈,时,()0F x '<, 所以当2x e -=时,()F x 取得最大值22()1F e e --=+, 所以2()()1g x F x e -<≤+, 即当01x <<时,2()1g x e -<+,①综上所述,对任意0x >,2()1g x e -<+恒成立,令()1x G x e x =--(0x >),则()10x G x e '=->恒成立,所以()G x 在(0)+∞,上单调递增,()(0)0G x G >=恒成立,即10x e x >+>, 即1101x e x <<+.② 当1x ≥时,有2()101x g x e e x -+≤<+;当01x <<时,由①②式,2()11x g x e e x -+<+.综上所述,当0x >时,2()11x g x e e x -+<+成立,故原不等式成立.22.解:(1)曲线1C 的普通方程为2212x y +=,曲线2C 的直角坐标方程为24y x =.(2)设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩,(t 为参数),又直线l 与曲线22:4C y x =存在两个交点,因此sin 0α≠.联立直线l 与曲线1C :2212x y +=, 可得22(1sin )2cos 10t t αα++-=,则12211sin FA FB t t α⋅==+, 联立直线l 与曲线2C :24y x =,可得22sin 4cos 40t t αα--=.则1224sin FM FN t t α⋅==,即2221111sin 4141sin sin FA FB FM FN ααα+==⋅+108⎛⎤∈ ⎥⎝⎦, 23.解:(1)不等式()23f x x ≤+,即为1123x x -+≤+.当1x ≥时,即化为1123x x -+≤+,得3x ≥-,此时不等式的解集为1x ≥,当1x <时,即化为(1)123x x --+≤+,解得13x ≥-, 此时不等式的解集为113x -≤<. 综上,不等式()23f x x ≤+的解集为1[)3-+∞,. (2)113()1233x x F x x x ⎧-+≤⎪=⎨->⎪⎩,,,即21()131233x x F x x x x x -<⎧⎪=≤≤⎨⎪->⎩,,,,. 作出函数()F x 的图象如图所示,当直线y a =与函数()y F x =的图象有三个公共点时,方程()F x a =有三个解,所以13a <<.所以实数a 的取值范围是(13),.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考衡水猜题卷
理科数学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集{}2250,Q x x x x =-≤∈N ,且P Q ⊆,则满足条件的集合P 的个数是( )
A .3
B .4
C .7
D .8
2.已知i 是虚数单位,复数512i i
-的虚部为( ) A .1- B .1 C .i - D .i
3.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的数为1,则样本方差为( )
A .2
B .65
C .2
D . 305
4.双曲线)0,0(1:22
22>>=-b a b
y a x C 的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( ) A .4 B .22 C.2 D .42
5.若不等式组0,2,10x y x kx y ≥⎧⎪≥⎨⎪-+≥⎩
表示的平面区域是一个直角三角形,则该直角三角形的面积是( )
A .15
B .14 C.12
D .15或14 6.已知10sin 2cos 2αα-=
,则tan 2α=( ) A .43 B .34- C.34 D .43
- 7.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为35,则输入a 的值为( )
A .4
B .5 C.7 D .11
8.如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若2BC BF =,且3AF =,则此抛物线方程为( )
A .29y x =
B .26y x = C.23y x = D .23y x =
9.已知以下三视图中有三个同时表示某一个三棱锥,则不是..
该三棱锥的三视图的是( ) A . B . C.
D .
10.在ABC ∆中,()2,cos 1AB AC BC A π==-=,则cos A 的值所在区间为( )
A .()0.4,0.3--
B .()0.2,0.1-- C.()0.3,0.2-- D .()0.4,0.5
11.已知符号函数()1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩
那么()32sgn 31y x x x =-++的大致图象是( )
A .
B . C.
D .
12.已知函数()2x x e a f x e =-,对于任意的[]12,1,2x x ∈,且()()()121212,0x x f x f x x x ⎡⎤≠-->⎣⎦恒成。

相关文档
最新文档