国家开放大学(电大)离散数学形考任务三

合集下载

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={,},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={,,,},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图题目7设图G=,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。

2020年国家开放大学电大《离散数学》形成性考核三次

2020年国家开放大学电大《离散数学》形成性考核三次

电大离散数学作业答案3-7合集离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次.内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习.基本上是按照考试的题型(除单项选择题外)安排练习题目.目的是通过综合性书面作业.使同学自己检验学习成果.找出掌握的薄弱知识点.重点复习.争取尽快掌握。

本次形考书面作业是第一次作业.大家要认真及时地完成集合论部分的综合练习作业。

一、填空题1.设集合{1,2,3},{1,2}A B==.则P(A)-P(B )={{3}.{1,3}.{2,3}.{1,2,3}} .A⨯ B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素.那么A的幂集合P(A)的元素个数为 1024.3.设集合A={0, 1, 2, 3}.B={2, 3, 4, 5}.R是A到B的二元关系.},,{BAyxByAxyxR⋂∈∈∈><=且且则R的有序对集合为 {<2, 2>.<2, 3>.<3, 2>}.<3,3> .4.设集合A={1, 2, 3, 4 }.B={6, 8, 12}. A到B的二元关系R=},,2,{ByAxxyyx∈∈=><那么R-1= {<6,3>,<8,4>}5.设集合A={a, b, c, d}.A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}.则R具有的性质是没有任何性质.6.设集合A={a, b, c, d}.A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>}.若在R中再增加两个元素{<c,b>,<d,c>} .则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系.则R1∪R2.R1∩R2.R1-R2中自反关系有 2个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A.y∈A, x+y =10}.则R的自反闭包为 {<1,1>,<2,2>} .9.设R是集合A上的等价关系.且1 , 2 , 3是A中的元素.则R中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A={1.2}.B={a.b}.C={3.4.5}.从A到B的函数f ={<1, a>, <2, b>}.从B 到C 的函数g ={< a .4>, < b .3>}.则Ran(g ︒ f )= {3,4} .二、判断说明题(判断下列各题.并说明理由.)1.若集合A = {1.2.3}上的二元关系R={<1, 1>.<2, 2>.<1, 2>}.则(1) R 是自反的关系; (2) R 是对称的关系.(1) 错误。

最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案:最新电大《离散数学》形考作业任务01-07网考试题及答案 100%通过考试说明:《离散数学》形考共有7个任务。

任务3、任务5、任务7是主观题,任务2、任务4、任务6是客观题,任务2、任务4、任务6需在考试中多次抽取试卷,直到出现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就可以按照该套试卷答案答题。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他教学考一体化答案,敬请查看。

01任务一、单项选择题(共 8 道试题,共 80 分。

)1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲. A. 18 B. 20 C. 19 D. 17 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(). A. 复习指导 B. 视频 C. 课件 D. 自测二、作品题(共 1 道试题,共 20 分。

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5题目3设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图D.对偶图题目7设图G=<V,E>,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对错题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对错题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。

中央电大形成性测评系统离散数学作业3答案(集合论部分)

中央电大形成性测评系统离散数学作业3答案(集合论部分)

精选离散数学作业3离散数学集合论部分形成性考核书面作业一、填空题1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )= {{1,2},{2,3},{1,3},{1,2,3}} ,A B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 1024 . 3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 {<2,2>,<2,3>,<3,2>,<3,3>} .4.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1= {<6,3>,<8,4>}5.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 反自反性 .6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c ,d >},若在R 中再增加两个元素 <c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有 2 个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x A ,y A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是姓 名: 学 号: 得 分: 教师签名:{<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由. 解:结论成立.因为R 1和R 2是A 上的自反关系,即I A R 1,I A R 2. 由逆关系定义和I A R 1,得I A R 1-1; 由I A R 1,I A R 2,得I A R 1∪R 2,I AR 1R 2.所以,R 1-1、R 1∪R 2、R 1R 2是自反的.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元。

国家开放大学电大本科《离散数学》网络课形考任务3作业及答案

国家开放大学电大本科《离散数学》网络课形考任务3作业及答案

国家开放大学电大本科《离散数学》网络课形考任务3作业及答案屐任务3 g选择题题目1 命题公式T。

的主合取范式是()、选择一项:• A、1 PVO^ B、(PVp)A(PVn p)A(i O D n p/\O 题目2 设P:我将去打球,Q:我有时间、命题“我将去打球,仅当我有时间时”符号化为()、选择一项: A、1 PV-1 Q B、 0 —P • C Pt* D、 P — Q 题目3 命题公式 ~ 的主析取范式是()、选择一项: A、 n PVO B pAq C、 PV-i O Di B(x))B (Vx)(、4(x)AB(x))C n (3xX、4(、v)A5(x))D i (Vx)(“Dz 题目6 前提条件FT“1 Q,P的有效结论是()、选择一项: A、 Q B、i P 题目7 命题公式(PVQ)-R的析取范式是()、选择一项: A、 (PVQ)VR B、1 PAn Q)VR 题目8 下列等价公式成立的为()、选择一项: B、“v(PaQ)OQ C、 Qt(PvQ)5Q 人(PvQ)D、 i P人i 题目9 下列等价公式成立的为()、选择一项:A、“八 B、 C、 iQtFQP—Q 下列公式中()为永真式、选择一项: A、i AA-i B —AVB C、B(x)前提引入⑵ A(y)-B(y)US (1)选择一项:对错题目14 含有三个命题变项P,Q,R的命题公式PAQ的主析取范式(PAQAR)V(PAQAnR)、()选择一项:对错题目15 命题公式P-(QVP)的真值是T、() 选择一项:对题目16 命题公式“iPAP的真值是T、()选择一项:对错题目17 谓词公式1 (Vx)P(x)U»Gx)iP(x)成立、()选择一项:对错题目18 命题公式1 (P~Q)的主析取范式是PV-iQ、()选择一项:对错题目19 设个体域D={a, b},则谓词公式(Vx)(A(x)AB(x))消去量词后的等值式为(A(a)/\B(a))/\(A(b)/\B(b))、()选择一项:对错题目20 设个体域D={a, b},那么谓词公式Ox)A(x)V(Vy)B(y)消去量词后的等值式为A(a)VB(b)、() 选择一项:对错。

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。

国开电大离散数学(本)形考任务1-3参考答案

国开电大离散数学(本)形考任务1-3参考答案
A.对称
B.自反
C.自反和传递
D.传递
【答案】:对称
29.设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().
A. f°g ={<5,a >, <4,b >}
B. f°g ={<a,5>, <b,4>}
B. {<2, 1>, <3, 2>, <4, 3>}
C. {<2, 3>, <4, 5>, <6, 7>}
D. {<2, 1>, <4, 3>, <6, 5>}
【答案】:{<2, 3>, <4, 5>, <6, 7>}
3.设集合A={a},则A的幂集为( ).
【答案】:
4.设集合A = {1, a },则P(A) = ( ).


【答案】:错
15.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()


【答案】:对
16.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()


【答案】:对
20.设A={1,2},B={ a, b, c },则A×B的元素个数为8.()

国开电大离散数学(本)形考任务1-3参考答案

国开电大离散数学(本)形考任务1-3参考答案

本课程题目随机请使用Ctrl+F搜索题目1.若集合A的元素个数为10,则其幂集的元素个数为().A. 100B. 1024C. 1D. 10【答案】:10242.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ( ).A. {<2, 2>, <3, 3>, <4, 6>}B. {<2, 1>, <3, 2>, <4, 3>}C. {<2, 3>, <4, 5>, <6, 7>}D. {<2, 1>, <4, 3>, <6, 5>}【答案】:{<2, 3>, <4, 5>, <6, 7>}3.设集合A={a},则A的幂集为( ).【答案】:4.设集合A = {1, a },则P(A) = ( ).【答案】5.设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最小元B. 最大元C. 极大元D. 极小元【答案】:极大元6.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, yA},则R的性质为().A. 传递且对称的B. 对称的C. 自反的D. 反自反且传递的【答案】:对称的7.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).【答案】:8.若集合A={2,a,{ a },4},则下列表述正确的是( ).【答案】:9.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().A. 2B. 3C. 8D. 6【答案】:810.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, yA},则R的性质为().A. 不是自反的B. 传递的C. 不是对称的D. 反自反【答案】:传递的11.空集的幂集是空集.()对错【答案】:错12.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>,<d, c>,则新得到的关系就具有反自反性质.()对错【答案】:错13.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则R是自反的关系.()对错【答案】:错14.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 4>, <2, 2,>, <4, 6>, <1, 8>}可以构成函数f:.()对错【答案】:错15.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()对错【答案】:对16.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()对错【答案】:对17.如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()对错【答案】:对18.设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()对错【答案】:对19.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()对错【答案】:对20.设A={1,2},B={ a, b, c },则A×B的元素个数为8.()对错【答案】:错21.设函数f:N→N,f(n)=n+1,下列表述正确的是().A. f是满射的B. f是单射函数C. f存在反函数D. f是双射的【答案】:f是单射函数22.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 3C. 1D. 2【答案】:223.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A. 无、2、无、2B. 8、1、6、1C. 6、2、6、2D. 8、2、8、2【答案】:无、2、无、224.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的().A. 最大下界B. 最小上界C. 下界D. 最小元【答案】:最小上界25.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. g?fB. f?fC. g?gD. f?g【答案】:f?g26.设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).A. {1, 2, 3, 4}B. {2, 3, 4, 5}C. {4, 5, 6, 7}D. {1, 2, 3, 5}【答案】:{1, 2, 3, 4}27.设A、B是两个任意集合,则A-B = ( ).A. B =B. A=BD.【答案】:28.设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 对称B. 自反C. 自反和传递D. 传递【答案】:对称29.设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().A. f°g ={<5,a >, <4,b >}B. f°g ={<a,5>, <b,4>}C. g°f ={<5,a >, <4,b >}D. g°f ={<a,5>, <b,4>}【答案】:g°f ={<a,5>, <b,4>}30.若集合A={ a,{a},{1,2}},则下列表述正确的是().【答案】:31.设A={2, 3},B={1, 2},C={3, 4},从A到B的函数f={<2, 2>, <3, 1>},从B到C的函数g={<1,3>, <2,4>},则Dom(g°f) ={2,3}.()对错【答案】:对32.若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()对错【答案】:错33.设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1,b>, <2, a >},则g°f ={<1,2 >, <2,1 >}.()对错【答案】:错34.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,极小元不存在.()35.对错【答案】:错35.设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()对错【答案】:错36.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>,<2, 2>,<3, 3> 等元素.()对错【答案】:对37.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()对错【答案】:对38.设集合A={1, 2, 3},B={1, 2},则A×B={<1,1>, <1,2>, <2,1>, <2,2>, <3,1>, <3,2>}.()对错【答案】:对39.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>,<3, 3>}.()对错【答案】:对40.设A={1,2,3 },R={<1,1 >, <1,2 >,<2,1 >, <3,3 >},则R是等价关系.()对错【答案】:错41.设无向图G的邻接矩阵为则G的边数为( ).A. 4B. 3C. 5D. 6【答案】:542.无向完全图K4是().A. 非平面图B. 树C. 欧拉图D. 汉密尔顿图【答案】:汉密尔顿图43.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e+v+2D. e-v-2【答案】:e-v+244.图G如图四所示,以下说法正确的是( ) .A. {(b, d)}是边割集B. {(a, d) ,(b, d)}是边割集C. {(a, d)}是割边D. {(a, d)}是边割集【答案】:{(a, d) ,(b, d)}是边割集45.结点数v与边数e满足e=v的无向连通图就是树.( )对错【答案】:错46.设图G如图七所示,则图G的点割集是{f}.( )对错【答案】:错47.无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )对错【答案】:对48.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和小于n-1,则在G 中存在一条汉密尔顿路.( )对错【答案】:错49.如图二所示,以下说法正确的是( ).图二A. e是割点B. {b, e}是点割集C. {d}是点割集D. {a, e}是点割集【答案】:e是割点50.设连通平面图G的结点数为5,边数为6,则面数为4.( )对错【答案】:错51.设完全图K有n个结点(n2),m条边,当n为奇数时,K中存在欧拉回路.( )对错【答案】:对52.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b,c).( )对错【答案】:对53.设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )对错【答案】:对54.无向图G的结点数比边数多1,则G是树.( )对错【答案】:错55.两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.( ) 对错【答案】:对56.无向树T有8个结点,则T的边数为( ).A. 9B. 7C. 6D. 8【答案】:757.无向简单图G是棵树,当且仅当( ).A. G连通且结点数比边数少1B. G的边数比结点数少1C. G中没有回路.D. G连通且边数比结点数少1【答案】:G连通且边数比结点数少158.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五A. (d)是强连通的B. (c)是强连通的C. (b)是强连通的D. (a)是强连通的【答案】:(a)是强连通的59.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 3B. 8C. 4D. 5【答案】:560.已知无向图G的邻接矩阵为,则G有().A. 6点,7边B. 5点,7边C. 6点,8边D. 5点,8边【答案】:5点,7边61.设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A. (c)只是弱连通的B. (d)只是弱连通的C. (a)只是弱连通的D. (b)只是弱连通的【答案】:(d)只是弱连通的62.图G如图三所示,以下说法正确的是( ).A. {b, c}是点割集B. {c}是点割集C. a是割点D. {b, d}是点割集【答案】:{b, c}是点割集63.无向图G存在欧拉回路,当且仅当().A. G中至多有两个奇数度结点B. G中所有结点的度数全为偶数C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点【答案】:G连通且所有结点的度数全为偶数64.如图一所示,以下说法正确的是( ) .A. {(a, e) ,(b, c)}是边割集B. {(a, e)}是割边C. {(a, e)}是边割集D. {(d, e)}是边割集【答案】:{(d, e)}是边割集65.若G是一个汉密尔顿图,则G一定是( ).A. 欧拉图B. 平面图C. 对偶图D. 连通图【答案】:连通图66.以下结论正确的是( ).A. 树的每条边都是割边B. 无向完全图都是平面图C. 无向完全图都是欧拉图D. 有n个结点n-1条边的无向图都是树【答案】:树的每条边都是割边67.若G是一个欧拉图,则G一定是( ).A. 平面图B. 对偶图C. 连通图D. 汉密尔顿图【答案】:连通图68.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.( )对错【答案】:错69.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )对错【答案】:对70.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W|S|.( ) 对错【答案】:对71.设G是一个图,结点集合为V,边集合为E,则.( )对错【答案】:对72.汉密尔顿图一定是欧拉图.( )对错【答案】:错73.如图八所示的图G存在一条欧拉回路.( )图八对错【答案】:错74.设G是一个有7个结点16条边的连通图,则G为平面图.( )对错【答案】:错75.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( )对错【答案】:对76.设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( )对错【答案】:错77.如图九所示的图G不是欧拉图而是汉密尔顿图.( )对错【答案】:对78.命题公式为( )A. 矛盾式B. 合取范式C. 可满足式D. 重言式【答案】:可满足式79.下列公式( )为重言式.【答案】:80.( ) 对错【答案】:对81.设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )对错【答案】:错82.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(?x)A(x) 的真值为T.( )对错【答案】:对83.设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(?x)A(x)的真值为T.( )对错【答案】:错84.命题公式P→(Q∨P)的真值是T.( )对错【答案】:对85.谓词命题公式(?x)((A(x)∧B(x))∨C(y))中的自由变元为x.( )对错【答案】:错86.设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为.( ) 对错【答案】:错87.设个体域D={a, b},则谓词公式(?x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( )对错【答案】:对88.设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.( )对错【答案】:对89.设个体域D是整数集合,则命题的真值是().A. TB. 不确定C. 以上说法都不是D. F【答案】:T90.设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )对错【答案】:对91.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 对错【答案】:对92.设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).A. 0, 1, 0B. 0, 0, 0C. 0, 0, 1D. 1, 0, 0【答案】:1, 0, 093.设个体域为整数集,则公式的解释可为( ).A. 任一整数x对任意整数y满足x+y=0B. 存在一整数x对任意整数y满足x+y=0C. 对任一整数x存在整数y满足x+y=0D. 存在一整数x有整数y满足x+y=0【答案】:对任一整数x存在整数y满足x+y=094.前提条件的有效结论是( ).A. PB. QC. ┐QD. ┐P【答案】:┐Q95.命题公式(P∨Q) 的合取范式是( ) .A. ┐(┐P∧┐Q)B. (P∧Q)C. (P∨Q)D. (P∧Q)∨(P∨Q)【答案】:(P∨Q)96.命题公式(P∨Q)→R的析取范式是( ).A. (┐P∧┐Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. ┐(P∨Q)∨R【答案】:(┐P∧┐Q)∨R97.下列等价公式成立的为( ).【答案】:98.谓词公式成立.( )对错【答案】:对99.设个体域D={a, b},那么谓词公式(?x)A(x)∨(?y)B(y)消去量词后的等值式为A(a)∨B(b).( )对错【答案】:错100.下面的推理是否正确.( )(1) (?x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1)对错【答案】:错101.设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(?x)(P(x)∧Q(x)).( )对错【答案】:错102.谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

电大《离散数学》形成性考核三

电大《离散数学》形成性考核三

一、单项选择题(每小题2分,共38分)题目1正确获得2.00分中的2.00分未标记标记题目题干假定一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为()。

选择一项:A. 16B. 47C. 15D. 17题目2正确获得2.00分中的2.00分未标记标记题目题干二叉树第k层上最多有()个结点。

选择一项:A. 2k-1B. 2k-1C. 21 kD. 2k题目3正确获得2.00分中的2.00分未标记标记题目题干将含有150个结点的完全二叉树从根这一层开始,每一层从左到右依次对结点进行编号,根结点的编号为1,则编号为69的结点的双亲结点的编号为()。

选择一项:A. 34B. 35C. 33D. 36题目4正确获得2.00分中的2.00分未标记标记题目如果将给定的一组数据作为叶子数值,所构造出的二叉树的带权路径长度最小,则该树称为()。

选择一项:A. 二叉树B. 哈夫曼树C. 完全二叉树D. 平衡二叉树题目5正确获得2.00分中的2.00分未标记标记题目题干在一棵度具有5层的满二叉树中结点总数为()。

选择一项:A. 33B. 32C. 31D. 16题目6正确获得2.00分中的2.00分未标记标记题目题干一棵完全二叉树共有6层,且第6层上有6个结点,该树共有()个结点。

选择一项:A. 37B. 72C. 38D. 31题目7正确获得2.00分中的2.00分未标记标记题目题干利用3、6、8、12这四个值作为叶子结点的权,生成一棵哈夫曼树,该树中所有叶子结点中的最长带权路径长度为()。

选择一项:A. 18B. 30D. 16题目8正确获得2.00分中的2.00分未标记标记题目题干在一棵树中,()没有前驱结点。

选择一项:A. 叶结点B. 树根结点C. 分支结点D. 空结点题目9正确获得2.00分中的2.00分未标记标记题目题干设一棵采用链式存储的二叉树,除叶结点外每个结点度数都为2,该树结点中共有20个指针域为空,则该树有()个叶结点。

电大 离散数学 形成性考核册 作业(三)答案

电大 离散数学 形成性考核册 作业(三)答案

离散数学形成性考核作业〔三〕集合论与图论综合练习本课程形成性考核作业共4次,内容由中心电大确定、统一布置。

本次形考作业是第三次作业,大伙儿要认真及时地完成图论局部的形考作业,字迹工整,抄写题目,解答题有解答过程。

一、单项选择题1.假设集合A ={2,a ,{a },4},那么以下表述正确的选项是(B). A .{a ,{a }}∈A B .{a }⊆A C .{2}∈A D .∅∈A2.设B ={{2},3,4,2},那么以下命题中错误的选项是〔B 〕.A .{2}∈B B .{2,{2},3,4}⊂BC .{2}⊂BD .{2,{2}}⊂B3.假设集合A ={a ,b ,{1,2}},B ={1,2},那么〔B 〕. A .B ⊂A ,且B ∈A B .B ∈A ,但B ⊄A C .B ⊂A ,但B ∉A D .B ⊄A ,且B ∉A4.设集合A ={1,a },那么P (A )=(C). A .{{1},{a }}B .{∅,{1},{a }}C .{∅,{1},{a },{1,a }}D .{{1},{a },{1,a }}5.设集合A ={1,2,3,4,5,6}上的二元关系R ={<a ,b >⎢a ,b ∈A ,且a +b =8},那么R 具有的性质为〔B 〕. A .自反的B .对称的C .对称和传递的D .反自反和传递的6.设集合A ={1,2,3,4,5},B ={1,2,3},R 从A 到B 的二元关系,R ={<a ,b >⎢a ∈A ,b ∈B 且1=-b a } 那么R 具有的性质为〔〕.A .自反的B .对称的C .传递的D .反自反的[注重]:此题有误!自反性、反自反性、对称性、反对称性以及传递性指 某一个集合上的二元关系的性质。

7.设集合A ={1,2,3,4}上的二元关系R ={<1,1>,<2,2>,<2,3>,<4,4>},S ={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>}, 那么S 是R 的〔C 〕闭包.A .自反B .传递C .对称D .以上都不对8.非空集合A 上的二元关系R ,满足(A),那么称R 是等价关系. A .自反性,对称性和传递性B .反自反性,对称性和传递性 C .反自反性,反对称性和传递性 D .自反性,反对称性和传递性9.设集合A ={a ,b },那么A 上的二元关系R={<a ,a >,<b ,b >}是A 上的(C)关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系10.设集合A ={1,2,3,4,5}上的偏序关系的哈斯图如右图所示,假设A 的子集B ={3,4,5}, 那么元素3为B 的〔C 〕.A .下界B .最大下界C .最小上界D .以上答案都不对11.设函数f :R →R ,f (a )=2a +1;g :R →R ,g (a )=a 2.那么〔C 〕有反函数. A .g •f B .f •g C .f D .g12.设图G 的邻接矩阵为 那么G 的边数为(D). A .5B .6C .3D .413.以下数组中,能构成无向图的度数列的数组是(C). A .(1,1,2,3)B .(1,2,3,4,5)C .(2,2,2,2)D .(1,3,3) 14.设图G =<V ,E >,那么以下结论成立的是(C). A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈D .E v Vv =∑∈)deg(解;C 为握手定理。

离散数学形成性考核作业三_百度文库

离散数学形成性考核作业三_百度文库

★形成性考核作业★离散数学作业5离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第15周末前完成并上交任课教师(不收电子稿)。

并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是 15 .2.设给定图G(如右由图所示),则图G的点割集是.3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于 n-1 ,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W 7.设完全图Kn有n个结点(n≥3),m条边,当 n为奇数时,Kn中存在欧拉回路. 8.结点数v与边数e满足9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 10.设正则5叉树的树叶数为17,则分支数为i二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..★形成性考核作业★解错误.只有当G是连通图且其结点度数均为偶数时,图G才存在一条欧拉回路.2.如下图所示的图G存在一条欧拉回路.解错误.因为图G是有两个结点b、c的度数均为奇数3,不是偶数,所以不存在欧拉回路.3.如下图所示的图G不是欧拉图而是汉密尔顿图.解正确. G图G有4个3度结点a,b,d,f,所以图G不是欧拉图.图G有汉密尔顿回路abefgdca,所以图G是汉密尔顿图.4.设G是一个有7个结点16条边的连通图,则G为平面图.解错误.因为图G中 v=7, 3v-6=15, e=16>15,不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”这个定理,所以不是平面图.5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.解正确.因为连通平面图G有v=6个结点,e=11条边,那么由欧拉公式:v-e+r=2计算得:r =2+ 11- 6 = 7个面.三、计算题 2★形成性考核作业★1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形.解(1)G的图形为:(2)图G的邻接矩阵为:⎛0 0A= 1 00⎝0100⎫⎪0110⎪1011⎪⎪1101⎪0110⎪⎭(3)图G的每个结点的度数为:deg(v1)=1,deg(v2)=2,deg(v3)=4,deg(v4)=3,deg(v5)=2.(4)图G的补图为:2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)G的图形表示如图3:★形成性考核作业★图3(2)邻接矩阵:⎡0⎢1⎢A(G)=⎢1⎢⎢0⎢⎣11101⎤0011⎥⎥0011⎥⎥1101⎥1110⎥⎦(3)粗线表示最小的生成树,如图4图4最小的生成树的权为:1+1+2+3=7.3.已知带权图G如右图所示.(1) 求图G的最小生成树; (2)计算该生成树的权值.解(1)图G有6个结点,其生成树有5条边,用Kruskal 算法求其权最小的生成树T,做法如下:①选边1;②选边2;③选边3;④选边5;⑤选边7最小生成树为{1,2,3,5,7}.所求最小生成树T如右图.(2)该最小生成树的权为W(T)=1+2+3+5+7=18.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优 4★形成性考核作业★二叉树的权.解方法(Huffman算法):(1){2,3,5,7,17,31}(2){5,5,7,17,31}(3){7,10,17,31}(4){17,17,31}(5){}得最优二叉树,如图6所示.该最优二叉树的权为:(2+3)×5+5×4+7×3+17×2+31×1=131.四、证明题1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.证明设G=<V,E>,G=<V,E'>.则E'是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u∈V,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n-1 (≥2)度),于是若u∈V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.2.设连通图G有k个奇数度的结点,证明在图G中至少要添加使其成为欧拉图.证明由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数.又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图. k故最少要加条边到图G才能使其成为欧拉图. 2k条边才能2。

离散数学形考任务3数理逻辑部分概念及性质

离散数学形考任务3数理逻辑部分概念及性质

离散数学形成性考核作业3数理逻辑部分的概念及性质判断题●含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P Q∧┐R).( ) 对●命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 错●命题公式┐P∧(P→┐Q)∨P为永真式.( ) 对●命题公式┐P∧(P∨Q)⇒Q成立.( ) 对●命题公式┐P∧P的真值是T.( ) 错●命题公式P→(Q∨P)的真值是T.( ) 对●设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为∃x(P(x)→Q(x)).( ) 错●设P(x):x是人,Q(x):x学习努力,那么命题““所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).( ) 错●设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q) →┐R.( ) 错●设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.( ) 错●设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→ Q.( ) 对●设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.( ) 对●设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 对●设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( ) 错●设个体域D={a, b},那么谓词公式∃xA(x)∨∀yB(y)消去量词后的等值式为A(a)∨B(b).( ) 错●设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 对●谓词公式┐(∀x)P(x) ⇔(∃x) ┐P(x)成立.( ) 对●谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.( ) 错●谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.( ) 对●下面的推理是否正确.( )(1) (∀x)A(x)→B(x)前提引入(2) A(y)→B(y) US (1) 错单选∀的辖域是( ).B.P(x, ●表达式(∀x)(P(x,y)∨Q(z))∧∃y (R(x, y) →∀z Q(z))中x。

国家开放大学(电大)离散数学形考任务三

国家开放大学(电大)离散数学形考任务三

设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目2正确获得5.00分中的5.00分标记题目题干命题公式(P∨Q)→R的析取范式是( ).选择一项:A. (┐P∧┐Q)∨RB. ┐(P∨Q)∨RC. (P∨Q)∨RD. (P∧Q)∨R反馈你的回答正确正确答案是:(┐P∧┐Q)∨R题目3不正确获得5.00分中的0.00分标记题目题干命题公式的主合取范式是( ).选择一项:A.B.C.D.反馈你的回答不正确正确答案是:题目4正确获得5.00分中的5.00分标记题目题干命题公式为( )选择一项:A. 合取范式B. 重言式C. 可满足式D. 矛盾式反馈你的回答正确正确答案是:可满足式题目5正确获得5.00分中的5.00分标记题目题干设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目6不正确获得5.00分中的0.00分标记题目题干命题公式(P∨Q) 的合取范式是( ) .选择一项:A. (P∧Q)∨(P∨Q)B. (P∨Q)C. (P∧Q)D. ┐(┐P∧┐Q)反馈你的回答不正确正确答案是:(P∨Q)题目7不正确获得5.00分中的0.00分标记题目题干前提条件的有效结论是( ).选择一项:A. ┐PB. QC. ┐QD. P反馈你的回答不正确正确答案是:┐Q题目8不正确获得5.00分中的0.00分标记题目题干设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).选择一项:A. 1, 0, 0B. 0, 1, 0C. 0, 0, 1D. 0, 0, 0反馈你的回答不正确正确答案是:1, 0, 0题目9不正确获得5.00分中的0.00分标记题目题干设个体域D是整数集合,则命题的真值是().选择一项:A. TB. 以上说法都不是C. 不确定D. F反馈你的回答不正确正确答案是:T题目10不正确获得5.00分中的0.00分标记题目题干下列等价公式成立的为( ).选择一项:A. ┐P∨P QB. ┐Q→P P→QC. P∧Q P∨QD. ┐P∧P┐Q∧Q反馈你的回答不正确正确答案是:┐P∧P┐Q∧Q标记题目信息文本判断题题目11不正确获得5.00分中的0.00分标记题目题干设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).( )选择一项:对错反馈正确的答案是“错”。

离散数学形考任务3集合论部分概念及性质

离散数学形考任务3集合论部分概念及性质

离散数学形考任务3集合论部分概念及性质本文档将介绍离散数学形考任务3中集合论部分的概念及性质。

以下是相关内容:集合的定义集合是由一些确定的、互不相同的元素组成的整体。

集合中的元素可以是任何事物,如数字、字母、符号等。

一般使用大写字母表示集合,元素用小写字母表示,并用大括号{}将元素括起来。

集合的性质1. 互异性:集合中的元素是互不相同的,即集合中的每个元素只出现一次。

2. 无序性:集合中的元素没有先后之分,元素的排列顺序不影响集合本身。

3. 确定性:一个元素要么属于集合,要么不属于集合,不存在中间状态。

4. 外延性:两个集合中的元素完全相同,则这两个集合相等。

5. 空集:不包含任何元素的集合称为空集,用符号{}或∅表示。

集合的运算1. 并集:将两个集合中的所有元素合并在一起,形成一个新的集合。

用符号∪表示。

例如,A∪B表示集合A和集合B的并集。

2. 交集:两个集合中共同拥有的元素组成的集合。

用符号∩表示。

例如,A∩B表示集合A和集合B的交集。

3. 差集:从一个集合中排除掉与另一个集合中相同的元素,得到的新集合。

用符号-表示。

例如,A-B表示集合A和集合B的差集。

4. 补集:相对于全集U,集合A在全集U中未包含的元素组成的集合。

用符号A'表示。

例如,A'表示集合A的补集。

应用举例1. 假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},则A∪B = {1, 2, 3, 4},A∩B = {2, 3},A-B = {1}。

2. 如果全集U是整数集,A = {x | x > 0}表示大于0的整数集合,补集A' = {x | x ≤ 0}。

以上是离散数学形考任务3集合论部分的概念及性质。

希望本文档能对您有所帮助!。

离散数学形成性考核作业(三)

离散数学形成性考核作业(三)

离散数学形成性考核作业(三)本次活动是本学期的第二次活动(2020.11.18),主要是针对第二单元图论的重点学习内容停止辅导,方式是经过解说一些典型的综合练习标题,协助大家进一步了解和掌握图论的基本概念和方法。

图论作为团圆数学的一局部,主要引见图论的基本概念、实际与方法。

教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路效果、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其运用等。

本次综合练习主要是温习这一局部的主要概念与计算方法,与集合论一样,也布置了五种类型,有单项选择题、填空题,判别说明题、计算题、证明题。

这样的布置也是为了让同窗们熟习期末考试的题型,可以较好地完成这一局部主要内容的学习。

下面区分解说。

一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100000100 那么G 的边数为( ).A .5B .6C .3D .4正确答案:D上学期的作业中,有的同窗选择答案B 。

主要是对邻接矩阵的概念了解不到位。

我们温习定义:定义3.3.1 设G =<V ,E >是一个复杂图,其中V ={v 1,v 2,…, v n },那么 n 阶方阵A 〔G 〕=〔a ij 〕称为G 的邻接矩阵.其中各元素⎪⎩⎪⎨⎧==ji v v v v a j i j i ij 不相邻或与相邻与01 而当给定的复杂图是无向图时,邻接矩阵为对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以衔接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有8个1,故有8÷2=4条边。

2.设图G =<V , E >,那么以下结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v V v 2)deg(=∑∈D .E v Vv =∑∈)deg(正确答案:C该题主要是反省大家对握手定理掌握的状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目2正确获得5.00分中的5.00分标记题目题干命题公式(P∨Q)→R的析取范式是( ).选择一项:A. (┐P∧┐Q)∨RB. ┐(P∨Q)∨RC. (P∨Q)∨RD. (P∧Q)∨R反馈你的回答正确正确答案是:(┐P∧┐Q)∨R题目3不正确获得5.00分中的0.00分标记题目题干命题公式的主合取范式是( ).选择一项:A.B.C.D.反馈你的回答不正确正确答案是:题目4正确获得5.00分中的5.00分标记题目题干命题公式为( )选择一项:A. 合取范式B. 重言式C. 可满足式D. 矛盾式反馈你的回答正确正确答案是:可满足式题目5正确获得5.00分中的5.00分标记题目题干设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目6不正确获得5.00分中的0.00分标记题目题干命题公式(P∨Q) 的合取范式是( ) .选择一项:A. (P∧Q)∨(P∨Q)B. (P∨Q)C. (P∧Q)D. ┐(┐P∧┐Q)反馈你的回答不正确正确答案是:(P∨Q)题目7不正确获得5.00分中的0.00分标记题目题干前提条件的有效结论是( ).选择一项:A. ┐PB. QC. ┐QD. P反馈你的回答不正确正确答案是:┐Q题目8不正确获得5.00分中的0.00分标记题目题干设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).选择一项:A. 1, 0, 0B. 0, 1, 0C. 0, 0, 1D. 0, 0, 0反馈你的回答不正确正确答案是:1, 0, 0题目9不正确获得5.00分中的0.00分标记题目题干设个体域D是整数集合,则命题的真值是().选择一项:A. TB. 以上说法都不是C. 不确定D. F反馈你的回答不正确正确答案是:T题目10不正确获得5.00分中的0.00分标记题目题干下列等价公式成立的为( ).选择一项:A. ┐P∨P QB. ┐Q→P P→QC. P∧Q P∨QD. ┐P∧P┐Q∧Q反馈你的回答不正确正确答案是:┐P∧P┐Q∧Q标记题目信息文本判断题题目11不正确获得5.00分中的0.00分标记题目题干设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(∀x)(P(x)∧Q(x)).( )选择一项:对错反馈正确的答案是“错”。

题目12不正确获得5.00分中的0.00分标记题目题干谓词命题公式(∀x)((A(x)∧B(x))∨C(y))中的自由变元为x.( ) 选择一项:对错反馈正确的答案是“错”。

题目13正确获得5.00分中的5.00分标记题目题干含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( )选择一项:对错反馈正确的答案是“对”。

题目14不正确标记题目题干设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( ) 选择一项:对错反馈正确的答案是“错”。

题目15不正确获得5.00分中的0.00分标记题目题干命题公式┐P∧P的真值是T.( )选择一项:对错反馈正确的答案是“错”。

题目16正确标记题目题干设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( )选择一项:对错反馈正确的答案是“对”。

题目17正确获得5.00分中的5.00分标记题目题干设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.( )选择一项:对错反馈正确的答案是“对”。

题目18获得5.00分中的0.00分标记题目题干设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为(∃x)(P(x)→Q(x)).( ) 选择一项:对错反馈正确的答案是“错”。

题目19正确获得5.00分中的5.00分标记题目题干命题公式P→(Q∨P)的真值是T.( )选择一项:对错反馈正确的答案是“对”。

题目20获得5.00分中的5.00分标记题目题干命题公式┐P∧(P∨Q)Q成立.( )选择一项:对错反馈正确的答案是“对”。

命题公式的主析取范式是( ).选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目2正确获得5.00分中的5.00分标记题目题干设个体域D={a, b, c},那么谓词公式消去量词后的等值式为( ).选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目3不正确获得5.00分中的0.00分标记题目题干下列等价公式成立的为( ).选择一项:A. ┐P∧┐Q P∨QB. ┐P∨(P∧Q)QC. Q→(P∨Q)┐Q∧(P∨Q)D. P→(┐Q→P)┐P→(P→Q)反馈你的回答不正确正确答案是:P→(┐Q→P)┐P→(P→Q)题目4不正确获得5.00分中的0.00分标记题目题干下列公式成立的为( ).选择一项:A. ┐P∧(P∨Q)QB.C. ┐P∧┐Q P∨QD. P→┐Q┐P→Q反馈你的回答不正确正确答案是:┐P∧(P∨Q)Q题目5正确获得5.00分中的5.00分标记题目题干谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

选择一项:A. x是自由变元,y都是约束变元B. x是约束变元,y都是自由变元C. x,y都是约束变元D. x,y都是自由变元反馈你的回答正确正确答案是:x是约束变元,y都是自由变元题目6不正确获得5.00分中的0.00分标记题目题干下列公式( )为重言式.选择一项:A. ┐P∧┐Q↔P∨QB. (Q→(P∨Q)) ↔(┐Q∧(P∨Q))C. (┐P∨(P∧Q)) ↔QD. Q→(P∨(P∧Q))↔Q →P反馈你的回答不正确正确答案是:Q→(P∨(P∧Q))↔Q →P题目7正确获得5.00分中的5.00分标记题目题干设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目8正确获得5.00分中的5.00分标记题目下列公式中( )为永真式.选择一项:A. ┐A∧┐B ↔┐A∨┐BB. ┐A∧┐B ↔┐(A∨B)C. ┐A∧┐B ↔ ┐(A∧B)D. ┐A∧┐B ↔A∨B反馈你的回答正确正确答案是:┐A∧┐B ↔┐(A∨B)题目9不正确获得5.00分中的0.00分标记题目题干设个体域为整数集,则公式的解释可为( ).选择一项:A. 对任一整数x存在整数y满足x+y=0B. 存在一整数x有整数y满足x+y=0C. 存在一整数x对任意整数y满足x+y=0D. 任一整数x对任意整数y满足x+y=0你的回答不正确正确答案是:对任一整数x存在整数y满足x+y=0题目10不正确获得5.00分中的0.00分标记题目题干表达式中的辖域是( ).选择一项:A.B.C.D.反馈你的回答不正确正确答案是:标记题目信息文本判断题题目11获得5.00分中的0.00分标记题目题干设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书” 符号化的结果为P∨Q.( )选择一项:对错反馈正确的答案是“错”。

题目12不正确获得5.00分中的0.00分标记题目题干下面的推理是否正确.( )(1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1)选择一项:对错反馈正确的答案是“错”。

题目13正确获得5.00分中的5.00分标记题目题干命题公式┐(P→Q)的主析取范式是P∨┐Q.( )选择一项:对错反馈正确的答案是“错”。

题目14不正确获得5.00分中的0.00分标记题目题干设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( )选择一项:对错反馈题目15正确获得5.00分中的5.00分标记题目题干命题公式┐P∧(P→┐Q)∨P为永真式.( )选择一项:对错反馈正确的答案是“对”。

题目16不正确获得5.00分中的0.00分标记题目题干设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )选择一项:对错反馈题目17正确获得5.00分中的5.00分标记题目题干设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( )选择一项:对错反馈正确的答案是“对”。

题目18正确获得5.00分中的5.00分标记题目题干设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )选择一项:对错正确的答案是“对”。

题目19正确获得5.00分中的5.00分标记题目题干谓词命题公式(∀x)(P(x)→Q(x)∨R(x,y))中的约束变元为x.( ) 选择一项:对错反馈正确的答案是“对”。

题目20正确获得5.00分中的5.00分标记题目题干谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( )选择一项:对错正确的答案是“对”。

命题公式为( )选择一项:A. 矛盾式B. 可满足式C. 合取范式D. 重言式反馈你的回答不正确正确答案是:可满足式题目2正确获得5.00分中的5.00分标记题目题干设个体域D={a, b, c},那么谓词公式消去量词后的等值式为( ).选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目3正确获得5.00分中的5.00分标记题目题干设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目4正确获得5.00分中的5.00分标记题目谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

选择一项:A. x是约束变元,y都是自由变元B. x是自由变元,y都是约束变元C. x,y都是自由变元D. x,y都是约束变元反馈你的回答正确正确答案是:x是约束变元,y都是自由变元题目5不正确获得5.00分中的0.00分标记题目题干设个体域为整数集,则公式的解释可为( ).选择一项:A. 存在一整数x对任意整数y满足x+y=0B. 对任一整数x存在整数y满足x+y=0C. 任一整数x对任意整数y满足x+y=0D. 存在一整数x有整数y满足x+y=0你的回答不正确正确答案是:对任一整数x存在整数y满足x+y=0题目6不正确获得5.00分中的0.00分标记题目题干下列公式成立的为( ).选择一项:A.B. ┐P∧┐Q P∨QC. P→┐Q┐P→QD. ┐P∧(P∨Q)Q反馈你的回答不正确正确答案是:┐P∧(P∨Q)Q题目7不正确获得5.00分中的0.00分标记题目题干下列公式( )为重言式.选择一项:A. (┐P∨(P∧Q)) ↔QB. Q→(P∨(P∧Q))↔Q →PC. (Q→(P∨Q)) ↔(┐Q∧(P∨Q))D. ┐P∧┐Q↔P∨Q反馈你的回答不正确正确答案是:Q→(P∨(P∧Q))↔Q →P题目8不正确获得5.00分中的0.00分标记题目题干前提条件的有效结论是( ).选择一项:A. QB. PC. ┐QD. ┐P反馈你的回答不正确正确答案是:┐Q题目9不正确获得5.00分中的0.00分标记题目题干设个体域D是整数集合,则命题的真值是().选择一项:A. FB. 不确定C. 以上说法都不是D. T反馈你的回答不正确正确答案是:T题目10不正确获得5.00分中的0.00分标记题目题干下列公式中( )为永真式.选择一项:A. ┐A∧┐B ↔ ┐(A∧B)B. ┐A∧┐B ↔A∨BC. ┐A∧┐B ↔┐(A∨B)D. ┐A∧┐B ↔┐A∨┐B反馈你的回答不正确正确答案是:┐A∧┐B ↔┐(A∨B)标记题目信息文本判断题题目11正确获得5.00分中的5.00分标记题目题干设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对错反馈正确的答案是“对”。

相关文档
最新文档