高考物理牛顿运动定律的应用练习题及解析

合集下载

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。

“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。

2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析


B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos

(物理) 高考物理牛顿运动定律的应用专项训练100(附答案)及解析

(物理) 高考物理牛顿运动定律的应用专项训练100(附答案)及解析

(物理) 高考物理牛顿运动定律的应用专项训练100(附答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析
由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;

高考物理牛顿运动定律的应用练习题及答案含解析

高考物理牛顿运动定律的应用练习题及答案含解析

高考物理牛顿运动定律的应用练习题及答案含解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1=112a L =5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2 联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.3.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s4.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。

物理牛顿运动定律的应用专项习题及答案解析

物理牛顿运动定律的应用专项习题及答案解析

物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高考物理牛顿运动定律的应用真题汇编(含答案)含解析

高考物理牛顿运动定律的应用真题汇编(含答案)含解析

高考物理牛顿运动定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11v a =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22vx m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t =后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离; (2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.6.如图所示,始终绷紧的水平传送带以的恒定速率沿顺时针方向转动,质量的平板车停在传送带的右端.现把质量可视为质点的行李箱轻轻放到距传送带右端位置.行李箱与传送带、平板车间的动摩擦因数分别为、,平板车与水平地面间的动摩擦因数为.(不计空气阻力,g=10m/s 2)试求:(1)行李箱在传送带上运动的时间(2)若行李箱由传送带滑到平板车上时速度不变,要想行李箱恰不从平板车上滑出,平板车的最小长度.【答案】(1)2.25s (2)见解析 【解析】(1) 行李箱在传送带加速时的加速度满足,则行李箱在传送带能加速的时间,能加速的距离,所以行李箱在传送带上先加速后匀速。

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC长度L=10m,重力加速度g=10m/s2,sin37º=0.6,cos37º=0.8,求:(1)包裹P沿传送带下滑过程中的加速度大小和方向;(2)包裹P到达B时的速度大小;(3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象.【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s(4)222200.4/80.4/ca a m sva m s⎧<=⎨≥⎩()()如图所示:【解析】【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

高考物理牛顿运动定律的应用练习题及解析

高考物理牛顿运动定律的应用练习题及解析

高考物理牛顿运动定律的应用练习题及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数3μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.2.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。

高考物理牛顿运动定律的应用练习题含解析

高考物理牛顿运动定律的应用练习题含解析

高考物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25Ncos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1 竖直方向有 Ncosθ+μNsinθ﹣mg=0 对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.3.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.4.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t =后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离;(2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.5.如图所示,倾角30θ=o 的光滑斜面的下端有一水平传送带,斜面和传送带相接处有一小段光滑圆弧物体经过A 点时,无论是从斜面到传送带还是从传送带到斜面,其速率都不发生变化.传送带以4/v m s =的速度顺时针转动,一个质量为1kg 的物体(可视为质点)从 1.8h m =高处由静止开始沿斜面下滑,物体与传送带间的动摩擦因数04μ=,传送带左右两端A 、B 间的距离7AB L m =,重力加速度210/.g m s =求:()1物体第一次由静止沿斜面下滑到斜面末端速度; ()2物体在传送带上距B 点的最小距离;()3物体第一次从距B 点最近处运动到斜面上最高点所经历的时间.【答案】(1)16m /s v = (2) 2.5m x = (3)3 0.8s t = 【解析】 【分析】(1)先根据牛顿第二定律求加速度,再由速度位移关系求到达斜面末端的速度; (2)先由牛顿第二定律求出物体在传送带上减速的加速度,再根据速度位移关系求出速度减为0时向右运动的位移,即可得出离B 最近的距离;(3)由前的分析可判断出物体先做匀加速运动,再做匀速运动,最后沿斜面向上做匀减速运动,求出加速度与速度,根据速度与时间关系及位移与时间的关系即可求时间. 【详解】(1)物体沿光滑斜面下滑,由牛顿第二定律得:1sin mg ma θ=解得:215/a m s =由几何关系沿光滑斜面下滑位移1cos hs θ=由运动学公式21112v a s =解得物体滑到斜面末端速度16/v m s =(2)物体在传送带上受到向右的滑动摩擦力而做匀减速直线运动,由牛顿第二定律得:2mg ma μ=代入数据解得:224/a m s =当物体速度减为0时物体距B 最近,有运动学公式可得:21222v a S =解得物体距B 点的最小距离:2AB x L S =-2.5x m =(3)物体返回时距A 点 2 4.5S m =,仍受到向右的摩擦力,从速度为0开始做匀加速直线运动,加速度大小为:2324/a a m s ==若物体一直做匀加速运动,有运动对称性可知到A 点时物体速度6/A v m s =大于传送带速度4/v m s =,故物体先做匀加速直线运动,达到速度v 后匀速运动,到达A 点速度4/A v v m s ==物体沿斜面上升过程中,加速度大小仍为1a 物体做匀加速直线运动31v a t = 匀加速直线运动位移233112s a t = 解得11t s = 32s m = 匀速运动 232s s vt -= 解得20.625t s =物体沿斜面匀减速上升13v a t = 解得30.8t s =物体第一次从距B 点最近处运动到斜面上最高点所经历的时间:123 2.425t t t t s =++=6.如图甲所示,长木板A 静止在水平地面上,其右端叠放着物块B ,左端恰好在O 点,水平面以O 点为界,左侧光滑、右侧粗糙。

高考物理牛顿运动定律的应用试题经典含解析

高考物理牛顿运动定律的应用试题经典含解析

高考物理牛顿运动定律的应用试题经典含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

高考物理牛顿运动定律的应用练习题及解析

高考物理牛顿运动定律的应用练习题及解析

高考物理牛顿运动定律的应用练习题及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大? (3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv = 解得:2210 3.28m/s v gh =⨯⨯=(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.3.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)203.6m 2v x a==(2)t=1s (3)121x x m +=【解析】 【分析】 【详解】试题分析:(1)225m /s a g μ==20 3.6m 2v x a==(2)对m :2125/a g m s μ==,对M :221()Ma mg m M g μμ=-+,221m /s a =012v a t a t -=t=1s(3)木板共速前先做匀加速运动2110.52x at m == 速度121m /s v a t ==以后木板与物块共同加速度a 3匀减速运动231/a g m s μ==,22310.52x vt a t m =+=X=121x x m +=考点:牛顿定律的综合应用4.如图所示,水平传送带长为L =11.5m ,以速度v =7.5m/s 沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=- 滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V5.研究物体的运动时,常常用到光电计时器.如图所示,当有不透光的物体通过光电门时,光电计时器就可以显示出物体的挡光时间.光滑水平导轨MN 上放置两个物块A 和B ,左端挡板处有一弹射装置P ,右端N 处与水平传送带平滑连接,将两个宽度为d =3.6×10-3m 的遮光条分别安装在物块A 和B 上,且高出物块,并使遮光条在通过光电门时挡光.传送带水平部分的长度L =9.0m ,沿逆时针方向以恒定速度v =6.0m/s 匀速转动。

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为2222243()()1223a t a tx ma a∆=-=--整个过程物块与木板的相对位移为1282.673x x x m m∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.2..某校物理课外小组为了研究不同物体水下运动特征,使用质量m=0.05kg的流线型人形模型进行模拟实验.实验时让模型从h=0.8m高处自由下落进入水中.假设模型入水后受到大小恒为F f=0.3N的阻力和F=1.0N的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型(1)落到水面时速度v的大小;(2)在水中能到达的最大深度H;(3)从开始下落到返回水面所需时间t.【答案】(1)4m/s(2)0.5m(3)1.15s【解析】【分析】【详解】(1)模型人入水时的速度记为v,自由下落的阶段加速度记为a1,则a1=g;v2=2a1h解得v=4m/s;(2)模型人入水后向下运动时,设向下为正,其加速度记为a2,则:mg-F f-F=ma2解得a2=-16m/s2所以最大深度:220.52vH ma-==(3)自由落体阶段:1t0.4vsg==在水中下降220.25vt sa-==在水中上升:F-mg-F f=ma3解得a3=4.0m/s2所以:3320.5Ht sa==总时间:t=t1+t2+t3=1.15s3.如图,光滑绝缘水平面上静置两个质量均为m、相距为x0的小球A和B,A球所带电荷量为+q,B球不带电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理牛顿运动定律的应用练习题及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【解析】【详解】(1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且加速大小为的匀减速直线运动,对其受力分析,由牛顿第二定律得:可解得:μ=0.875.(2)根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s 内物体的位移0~8 s s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量之和,为(3) 0~8 s内只有前6s发生相对滑动. 0~6 s内传送带运动距离为:0~6 s内物体位移为:则0~6 s内物体相对于皮带的位移为0~8 s内物体与传送带因为摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,代入数据得:Q=126 J故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J【点睛】对物体受力分析并结合图像的斜率求得加速度,在v-t图像中图像包围的面积代表物体运动做过的位移。

3.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.4.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37º=0.6,cos37º=0.8,求:(1)包裹P 沿传送带下滑过程中的加速度大小和方向; (2)包裹P 到达B 时的速度大小;(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处; (4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s(4)222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 如图所示:【解析】 【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。

【详解】(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-=代入数据得:210.4/a m s =-,方向:沿传送带向上;(2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220L=2v v a-代入数据得:1/v m s =;(3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-=得220.4/a m s =当包裹P 的速度达到传送带的速度所用时间为:12250.4v t s s a === 速度从零增加到等于传送带速度时通过的位移有:2245220.4v x m m a ===⨯ 因为x<L ,所以包裹先加速再匀速,匀速运动时间:21052.52L x t s s v --=== 则P 从B 处到C 处总时间为:127.5t t t s =+=;(4)若20.4/a m s <,则包裹相对传送带静止一起做匀加速运动,加速位移等于传送带的长度,即:22C v aL = 即:220C v a =若20.4/a m s ≥,则包裹在传送带上有相对滑动,包裹以a 2=0.4m/s 2向上匀加速运动,有:222C v a L = 即228/?C v m s =() 两种情况结合有:222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 图像如图所示:【点睛】解决本题的关键会根据物体的受力分析物体的运动规律,结合牛顿第二定律和运动学公式分析求解。

5.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

小物块通过圆弧轨道后以6m/s 的速度滑上与C 点等高、静止在粗糙水平面的长木板M 上.已知长木板的质量M =2kg ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.1,OB 与竖直方向OC 间的夹角θ=37°,取g =10m/s 2,sin37°=0.6,cos37°=0.8,则:(1)求小物块运动至B 点时的速度;(2)若小物块恰好不滑出长木板,求此情景中自小物块滑上长木板起、到它们最终都停下来的全过程中,它们之间的摩擦力做功的代数和? 【答案】(1) 05m/s cos B v v θ== 过B 点时的速度方向与水平方向成37度 (2) 12=15J W W W +=-总【解析】 【详解】(1)分解v B ,得:0cos x y yv v v v θ== 变形得:05m/s cos B v v θ== 过B 点时的速度方向与水平方向成37°(2)因()125N>3N mg M m g μμ=+=,故木板将在地面上滑行,则对小物块有:11mg ma μ=,得 215m/s a = 对长木板有:()22M m g Ma μ+=,得 221m/s a =设它们经过时间t ,共速v 共,则有:12=C v v a t a t 共-=,解得:1t s =,=1m/s v 共 则对小物块在相对滑动有:1 3.5m 2C v v x t +=⋅=共, 故11117.5J W mgx μ=-=- 则对长木板在相对滑动有:200.5m 2v x t +=⋅=共, 故212 2.5J W mgx μ==共速后,假设它们一起减速运动,对系统有:()()2M m g M m a μ+=+共,21m/s a 共=,则它们间的摩擦力1f ma mg μ=<共,所以假设成立,之后它们相对静止一起滑行至停下,此过程中它们间的静摩擦力对堆放做功一定大小相等、一正一负,代数和为零.综上所述,自小物块滑上长木板起,到它们最终停下来的全过程中,它们之间的摩擦力做功的代数和12=15J W W W +=-总6.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,210/g m s =,求:(1)拉力撤去时,木板的速度v B ;(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,得:24/B a m s =对木块有2A mg ma μ=,22/A a m s =所以木块相对木板滑动撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-22122B mgt mgt mv mv μμ--=-,可得20.2t s =,v=2.4m/s在撤掉F 之前,二者的相对位移11122B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=(3)获得共同速度后,对木块,有22102A mgx mv μ-=-, 对木板有()2211202B mg mg x mv μμ-=-二者的相对位移3A B x x x ∆=-木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.7.如图所示,地面上有一固定的斜面体ABCD ,其AB 边的长度2S m =,斜面倾角为370.光滑水平地面上有一块质量3M kg =的足够长的木板紧挨着斜面体静止放置.质量为1m kg =物体由A 点静止滑下,然后从B 点滑上长木板(由斜面滑至长木板时速度大小不变),已知物体与斜面体的动摩擦因数为0.25,物体与长木板的动摩擦因数为0.3,210/g m s =,0370.6sin =,0370.8cos =.求:(1)物体到达斜面底端B 点时的速度大小;(2)物体从B 点滑上长木板时,物体和长木板的加速度大小; (3)物体在长木板上滑行的最大距离.【答案】(1)4/m s (2)213/a m s = ;221/a m s = (3)2m【解析】 【分析】该题是应用牛顿第二定律解决运动问题中的物体在粗糙斜面上滑行问题和板块模型的结合题.分别根据两种题型的解答思路和方法, 求解即可. 【详解】(1)对沿斜面下滑的物体受力分析,据牛顿第二定律得:0013737mgsin mgcos ma μ-=解得:物体沿斜面下滑的加速度24/a m s =对物块沿斜面下滑的过程,应用速度位移公式得:202B v aS -=解得:物体到达斜面底端B 点时的速度4B m v s= (2)物体刚滑上长木板,对物体受力分析,由牛顿第二定律可得:21mg ma μ=解得:物体滑上长木板后物体的加速度213/a m s =,方向水平向左物体刚滑上长木板,对长木板受力分析,由牛顿第二定律可得:22mg Ma μ=解得:物体滑上长木板后长木板的加速度221/a m s =,方向水平向右(3)设经过时间t ,物体和长木板的速度相等,则:12B v a t a t -= 解得:1t s =这段时间内物体的位移2211114131 2.522B x v t a t m m =-=⨯-⨯⨯= 这段时间内长木板的位移222211110.522x a t m m ==⨯⨯= 物体在长木板上滑行的最大距离122d x x m =-=8.如图所示,长L =2m ,质量M=1kg 的木板B 静止在水平地面上,其正中央放置一质量m=2kg 的小滑块A ,现对B 施加一水平向右的恒力F .已知A 与B 、B 与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-, 解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -= 联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.9.如图所示,在倾角37θ=︒ 的足够长的固定的斜面上,有一质量m=1kg 的物块,物块与斜面间 因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F=9.6N 的作用,从静止开始运动,经2s 绳子突然断了,求:(1)绳断瞬间物体的速度大小为多少?(2)绳断后多长时间物体速度大小达到22m/s.(sin37°=0.6,g=10m/s2) 【答案】(1) 14/v m s = (2) 5.53t s =【解析】(1)在最初2s 内,物体在F=9.6 N 拉力作用下,从静止开始沿斜面做匀加速运动,根据受力分析图可知:沿斜面方向:F-mgsinθ-F f =ma 1 沿y 方向:F N =mgcosθ 且F f =μF N 得: 21sin cos 2m/s F mg mg a mθμθ--==2 s 末绳断时瞬时速度1114/v a t m s ==(2)从撤去F 到物体继续沿斜面向上运动到达速度为零的过程,设加速度为a 2则()22sin cos 7.6m/s mg mg a m θμθ-+==-设从断绳到物体到达最高点所需时间为t 2据运动学公式v 2=v 1+a 2t 2所以12200.53v t s a -== 物体从最高点沿斜面下滑,第三阶段物体加速度为a 3,所需时间为t 3由牛顿第二定律可知:a 3=gsinθ-μgcosθ=4.4m/s 2速度达到v 3=22m/s所需时间33305v ts a -== 则从绳断到速度为22m/s 所经历的总时间230.535 5.53t t t s s s =+=+=综上所述本题答案是:(1) 1v 4m /s = (2)t 5.53s =10.如图,在水平地面上有一质量为4.0kg 的物块,它与地面的动摩擦因数μ=0.2,在与水平方向夹角为θ=30°的斜向上的拉力F 作用下,由静止开始运动.经过2.0s 的时间物块发生了4.0m 的位移.(g=10m/s 2).试求:(1)物块的加速度大小;(2)拉力F 的大小;(3)若拉力F 方向任意而使物块向右做匀速直线运动,则力F 的最小值为多大?【答案】(1)(2)16.6N (3) 【解析】【分析】【详解】(1)由x=at 2得(2)由力的平衡和牛顿第二定律有:Fcosθ-f=ma ①F N +Fsinθ=mg ②f =μF N ③由①②③得:F ≈16.6N(3)由力的平衡条件得解得解之得【点睛】此题是牛顿第二定律的应用已知运动求力的问题,加速度是联系力学和运动学的桥梁,通过加速度,可以根据力求运动,也可以根据运动求力;第(3)问考查学生利用数学知识解决物理问题的能力.。

相关文档
最新文档