高中物理分子的热运动教案
人教版高中物理教案-分子的热运动
2、分子的熱運動三維教學目標1、知識與技能(1)知道並記住什麼是布朗運動,知道影響布朗運動激烈程度的因素,知道布朗運動產生的原因;(2)知道布朗運動是分子無規則運動的反映;(3)知道什麼是分子的熱運動,知道分子熱運動的激烈程度與溫度的關係。
2、過程與方法:分析概括出布朗運動的原因;培養學生概括、分析能力和推理判斷能力。
從對懸浮顆粒無規則運動的原因分析,使學生初步接觸到用概率統計的觀點分析大量偶然事件的必然結果。
3、情感、態度與價值觀教學重點:通過學生對布朗運動的觀察,引導學生思考、分析出布朗運動不是外界影響產生的,是液體分子撞擊微粒不平衡性產生的。
布朗運動是永不停息的無規則運動,反映了液體分子的永不停息的無規則運動。
這一連串結論的得出是這堂課的教學重點。
教學難點:學生觀察到的布朗運動不是分子運動,但它又間接反映液體分子無規則運動的特點。
這是課堂上的難點。
這個難點要從開始分析顯微鏡下看不到分子運動這個問題逐漸分散解疑。
教學教具:氣體和液體的擴散實驗:分別裝有二氧化氮和空氣的玻璃儲氣瓶、玻璃片;250mL水杯內盛有淨水、紅墨水。
(一)引入新課讓學生觀察兩個演示實驗:1.把盛有二氧化氮的玻璃瓶與另一個玻璃瓶豎直方向對口相接觸,看到二氧化氮氣體從下面的瓶內逐漸擴展到上面瓶內。
2.在一燒杯的淨水中,滴入一二滴紅墨水後,紅墨水在水中逐漸擴展開來。
提問:上述兩個實驗屬於什麼物理現象?這現象說明什麼問題?在學生回答的基礎上總結:上述實驗是氣體、液體的擴散現象,擴散現象是一種熱現象。
它說明分子在做永不停息的無規則運動。
而且擴散現象的快慢直接與溫度有關,溫度高,擴散現象加快。
這些內容在初中物理中已經學習過了。
(二)新課教學過程1.介紹布朗運動現象1827年英國植物學家布朗用顯微鏡觀察懸浮在水中的花粉,發現花粉顆粒在水中不停地做無規則運動,後來把顆粒的這種無規則運動叫做布朗運動。
不只是花粉,其他的物質如藤黃、墨汁中的炭粒,這些小微粒懸浮在水中都有布朗運動存在。
高中物理分子热运动教案热力学第一定律
高中物理分子热运动教案热力学第一定律热力学第一定律1.教学目标:(1)了解基本的热力学概念;(2)理解热力学第一定律的含义;(3)学会应用热力学第一定律进行热力学计算。
2.教学重点:(1)理解热力学第一定律的涵义;(2)掌握热力学计算方法。
3.教学难点:(1)理解能量守恒定律;(2)掌握热量和功的计算方法。
4.教学前置知识:(1)分子运动论;(2)热力学基本概念。
5.教学过程:一、引言:讲述热力学的基本概念(1)能量守恒定律;(2)热力学第一定律;(3)热量和功的概念;(4)内能的概念。
二、分子的热运动(1)分子间的相互作用力;(2)温度的概念;(3)绝对零度;(4)分子热运动的相关参数。
三、热力学第一定律(1)内能的概念;(2)内能变化与热量和功的关系;(3)热力学第一定律的数学表达式。
四、热力学计算(1)容器内的热力学计算;(2)无限绝热容器的热力学计算;(3)等容过程的热力学计算;(4)等压过程的热力学计算。
五、案例讲解(1)汽车热效率的计算;(2)简单循环热力学计算。
6.教学方法:(1)讲义授课;(2)多媒体课件支持;(3)案例讲解结合练习。
7.教学评价:(1)考试;(2)实验;(3)作业提交。
8.教学时长:25学时。
9.教学后期:开展相关实验,以加深学生对理论知识的理解。
同时进行更加深入的案例讲解,了解实际应用背景下的热力学计算方法。
对于学习热力学的同学,建议继续深入学习热力学的相关内容,例如热力学第二定律、热平衡等内容。
高中物理分子动理论分子的热运动教案
章节课题:第2节分子的热运动一、教学目标:(1)了解扩散现象是由于分子的热运动产生的。
(2)知道什么是布朗运动,理解布朗运动的成因。
(3)知道什么是热运动及决定热运动激烈程度的因素。
二、教学重难点:重点:扩散现象的原理、布朗运动的成因及影响因素。
难点:扩散现象和布朗运动的判断与区分。
三、教学过程:(1)复习导入:扩散现象指不同物质彼此进入对方的现象。
扩散现象是物质分子永不停息做无规则运动的证明。
(2)新课教学:影响扩散快慢的因素有哪些?●物质处于固、液、气各态时均能发生扩散现象。
在短时间内,气态物质的扩散现象最显著,而固态物质最不明显。
●温度越高,扩散现象越显著。
●已进入对方的分子浓度较低时,扩散现象较为显著;当进入对方的分子浓度较高时,扩散现象就较缓慢。
布朗运动:气体或液体中悬浮微粒的无规则运动。
布朗运动并不是分子的运动,但是是由液体分子的无规则运动引起的,布朗运动间接地证实了液体分子的无规则运动。
介绍布朗运动形成的原因后可得出布朗运动剧烈程度跟液体温度有关。
热运动:温度越高,扩散越快;温度越高,布朗运动越明显。
表明,分子的无规则运动与温度有关,温度越高,这种运动越激烈。
把分子永不停息的无规则运动叫做热运动。
“永不停息”,不分季节,不分白天与黑夜。
“无规则”不是“无规律”,单个分子的运动是无规则的,但大量分子的运动是有规律性的。
(3)巩固提高举例让学生判断哪些现象是扩散现象,哪些是布朗运动墨水滴入水中冠状病毒的传播红糖加入水中变甜大风天气尘土飞扬四、课堂小结扩散现象指的是分子的无规则运动产生的不同物质进入对方;布朗运动指的是液体悬浮颗粒的无规则运动;间接反映了分子的无规则运动。
用肉眼观察到的都不是布朗运动。
分子永不停息的无规则运动叫做热运动。
五、板书设计第二节分子的热运动扩散现象:不同物质彼此进入对方的现象。
由物质分子的无规则运动产生的。
温度越高,扩散得越快。
布朗运动:液体中悬浮微粒的无规则运动。
分子的热运动教案3篇
分子的热运动教案3篇分子的热运动教案篇1教学目标(1)知道什么是热运动,知道分子热运动剧烈程度与温度有关(2)知道布朗运动和扩散现象,并能简单解释其原因教学建议教材分析分析一:本节教材内容特点是先实验(扩散现象和布朗运动两个实验现象),后得出结论(分子的无规则运动),并根据现象说明热运动与温度有关,因此做好演示实验是关键。
分析二:由于液体或空气分子在热运动过程中对悬浮于其中的颗粒的碰撞的不平衡性,使这些颗粒受力不平衡而开始运动,这就是布朗运动。
由于分子运动的无规则性,造成布朗运动的不规则性。
另外,温度越高,分子热运动越快,对颗粒的撞击更强,布朗运动更显著。
分析三:温度越高,分子无规则运动平均速度越快,这是一个宏观统计结果,而对于具体某个分子,温度与其运动速度并不一定存在这一关系,也许温度升高,这个分子的运动速度相反可能在降低。
教法建议建议一:做好演示实验是关键,扩散现象实验和布朗运动实验都需要认真做。
在做观察布朗运动的实验过程中,用稀释的墨汁做悬浊液,过稀时液体中的微粒太少,过浓时亮度变暗,而且微粒连在一起,不便观察,可以多试几次。
墨汁也可以不放在载片玻璃的凹槽中而只简单地滴一滴在载片玻璃上,盖上盖玻璃就可以。
显微镜的放大率在40倍左右最合适。
建议二:在实验的基础上,推出分子在不停地热运动后,要注意再用热运动的观点解释造成该实验现象的原因,以便巩固、加深学生的认识。
建议三:有关布朗运动和扩散运动的实验除做好演示实验外,若有条件,最好能用计算机模拟一下该运动的微观机制,这样有利于学生对该实验现象的理解。
教学设计方案教学重点:知道分子不停地无规则热运动,知道布朗运动和扩散运动教学难点:布朗运动和扩散运动的微观解释一、扩散运动1、演示实验空气与二氧化氮气体间的扩散现象2、概念:扩散现象3、扩散现象的微观解释:分子的无规则热运动4、计算机演示扩散过程5、对比实验:红墨水在热水和冷水中的扩散快慢。
结论:温度越高,分子运动越剧烈,扩散越快6、列举日常生活中的扩散现象:如香水味等二、布朗运动1、学生观察布朗运动现象2、微观解释布朗运动:分子撞击不平衡3、观察布朗运动与温度高低、颗粒大小关系:温度越高,布朗运动越显著;颗粒越小,布朗运动越显著。
高中物理-高二分子的热运动教案
高中物理-高二分子的热运动教案一、教学目标1. 了解分子热运动的基本概念和内涵。
2. 了解热运动与温度之间的关系以及加热和冷却过程中分子的运动状态的变化。
3. 掌握热力学第一定理的基本内容。
4. 加深对内能和热容的理解。
二、教学重难点1. 分子热运动的概念和内涵。
2. 热力学第一定律的内涵和基本应用。
3. 内能、热容等概念的理解。
三、教学过程【导入】(10分钟)1. 通过示意图或辅助实验来展示物体的热传导、对流、热辐射现象,并引入高温和低温两种概念。
2. 用简单的语言介绍分子运动的基本概念并比较固体、液体和气体的区别。
【讲授】(40分钟)1. 分子热运动的概念和内涵。
(1)分子是怎样运动的?将气体分子的非实在性形象化,比如引导学生想象分子像小球一样弹来弹去,但是分子运动的实际情况比这复杂得多,可以让学生观察分子的运动速度、运动方式等,让学生理解分子运动的多种形式。
(2)温度与分子热运动之间的关系。
(3)分子热运动与物态变化之间的关系。
2. 热力学第一定律(1)内能的概念和内能变化的计算方式。
(2)热容的概念和计算方式。
(3)热力学第一定律的表述和应用。
【梳理】(10分钟)1. 总结所学的基本概念和公式。
2. 回答一些典型问题,反思和归纳所学的知识点。
【练习】(20分钟)安排一些练习,让学生通过练习巩固所学的知识。
四、作业布置1. 完成相关的作业题。
2. 查找有关分子热运动的资料,了解其他有关内容。
3. 准备下一课的学习内容。
五、板书设计本节课主要板书如下,其中公式、图示可适当增加:1. 分子热运动的概念和内涵。
2. 热力学第一定律3. 内能、热容等概念的理解。
六、教学反思通过教学本节课,学生可以理解分子的热运动是物质热学基础,并且能够计算物体内能变化及其热容,掌握热力学第一定律的内涵和基本应用。
此外,还应通过实验和生活中的常见例子来帮助学生更加深入、生动地理解知识。
高中物理分子热运动教案理想气体分子的平均动能
高中物理分子热运动教案理想气体分子的平均动能理想气体分子的平均动能一、教学目标1.了解理想气体分子的运动规律和动能特征。
2.掌握理想气体分子的动量、动能和速率的计算方法。
3.深入理解分子热运动的物理本质和与物理现象的关系。
二、教学过程1.分子热运动的基本规律分子热运动是指物质分子在其内部或与外部环境的相互作用下所具有的运动状态和变化。
分子热运动具有以下基本规律:(1)分子始终在做无规则、无序的热运动;(2)分子热运动的速率与温度有关,温度越高,分子运动速率越大;(3)分子具有动量和动能,分子热运动的能量主要体现在分子的动能上。
2.理想气体分子的平均动能理想气体分子是指分子之间的相互作用可以被忽略不计的气体。
根据热力学理论,气体分子的平均动能与温度和分子质量有关。
(1)单原子分子的平均动能对于单原子分子的气体,其平均动能可以表示为:$\frac{1}{2}mv^2=\frac{3}{2}kT$其中,m为分子质量,v为分子速率,k为玻尔兹曼常数,T为温度。
由此可以看出,单原子分子的平均动能仅与温度有关。
(2)多原子分子的平均动能对于多原子分子的气体,其平均动能可以表示为:$\frac{1}{2}mv^2=\frac{3}{2}kT+\frac{1}{2}k\theta$其中,m为分子质量,v为分子速率,k为玻尔兹曼常数,T为温度,θ为分子的振动能量。
由此可以看出,多原子分子的平均动能不仅与温度有关,还与分子结构和振动能量有关。
3.理想气体分子的速率分布理想气体分子的速率分布是指在一定温度下,不同速率的分子数分布的规律。
理想气体分子的速率分布符合麦克斯韦速率分布定律,即在一定温度下,速率较慢的分子数较多,速率较快的分子数较少。
麦克斯韦速率分布定律可以用以下公式表示:$f(v)=\sqrt{\frac{m}{2\pi kT}}exp(-\frac{mv^2}{2kT})$其中,f(v)为速率为v的分子数与总分子数之比,m为分子质量,k为玻尔兹曼常数,T为温度。
《16.1分子热运动》教案
《16.1分子热运动》教案一、课程背景作为物理学科的一门重要内容,热力学在高中教育中占有重要地位。
作为热力学的一个基础概念,分子热运动是学生掌握热力学的关键。
因此,本教案旨在通过理论授课及实验操作,帮助高中学生全面了解分子热运动的特性和规律。
二、教学目标1.掌握分子热运动的基本概念,理解分子热运动是物体内能的表现形式。
2.了解分子热运动对物体的宏观性质的影响。
3.通过实验操作,探究分子热运动对物体的影响。
4.提高学生的实验操作技能,增强学生观察问题和解决问题的能力。
三、教学内容1.分子热运动的基本概念2.分子热运动与温度的关系3.分子热运动对物体的性质(如体积、压强等)的影响4.实验操作:热胀冷缩实验四、教学重点和难点1.如何清晰准确地描述分子热运动的概念和规律;2.如何引导学生观察实验现象和归纳出规律。
五、教学方法1.讲授法2.实验探究法3.讨论交流法六、教学过程1.分子热运动的基本概念导入:通过插入一段描述粒子运动的视频,引导学生探究微观粒子的运动规律,并在互动中引出分子热运动的概念。
讲授:对分子热运动的概念和性质进行讲解,其中包括分子热运动对物质的内能的贡献、与温度的关系等。
2.分子热运动与温度的关系导入:通过将温度计浸入不同温度的水中来引导学生理解分子热运动与温度的关系。
讲授:讲解分子热运动与温度之间的关系,引导学生理解分子热运动是温度的表现形式,温度的高低是由物体分子热运动的快慢所决定的。
3.分子热运动对物体性质的影响导入:通过实验操作,呈现热胀冷缩的现象,引导学生思考热胀冷缩是由什么引起的。
讲授:通过讲解实验中的现象和规律,引导学生理解分子热运动对物体性质的影响,如体积、压强等。
4.实验探究:热胀冷缩实验实验目的:通过对物体在不同温度下的长度变化的观察,探究分子热运动对物体的影响。
实验步骤:1.准备热水和冷水两个水槽,分别将向钢质棒直接加热后,浸入冷水。
2.调整热水和冷水的温度,使两个水槽的水温分别为60°C和10°C。
教师资格证面试高中物理教案:分子的热运动
教师资格证面试高中物理教案:分子的热运动教案名称:分子的热运动教学目标:1. 理解分子热运动的概念及其特点。
2. 掌握分子热运动与物质性质之间的关系。
3. 能够运用分子热运动的概念解释物质热现象。
4. 培养学生观察、实验和思考的能力。
教学重难点:1. 理解分子热运动的概念及其特点。
2. 掌握分子热运动与物质性质之间的关系。
教学准备:1. 多媒体教学设备。
2. 热能和分子运动实验装置。
3. 相关教学素材。
教学过程:一、导入(5分钟)1. 向学生提问:你们知道物质是由什么构成的吗?2. 引入分子热运动的概念:告诉学生物质是由微小不可见的分子构成的,并进行热运动。
二、知识讲解(15分钟)1. 讲解分子热运动的概念:分子热运动是指分子不停地做无规则的运动,速度大小和运动方式都是随机的。
2. 讲解分子热运动的特点:分子热运动具有无规则、高速度、高能量、碰撞等特点。
3. 讲解分子热运动与物质性质之间的关系:分子热运动决定了物质的状态、性质和变化过程。
三、实验展示(20分钟)1. 进行实验:使用热能和分子运动实验装置进行实验展示,观察分子热运动对物体的影响。
2. 让学生根据实验结果回答问题:为什么物体在受热时会膨胀?为什么气体会占据大空间?四、小组合作探究(15分钟)1. 将学生分成小组,进行小组合作探究活动。
2. 每个小组选择一个物质,观察该物质的性质,并运用分子热运动的概念解释该物质的性质。
五、案例分析(15分钟)1. 提供一些物质的案例,让学生思考并讨论该物质的性质与分子热运动之间的关系。
2. 引导学生从分子热运动角度解释物质的性质。
六、总结与展望(5分钟)1. 总结分子热运动的概念及其特点。
2. 展望下节课内容。
教学评估:1. 实验观察记录。
2. 小组合作探究活动成果。
3. 布置相关练习题进行课后作业。
板书设计:分子的热运动概念:分子不停地做无规则的运动。
特点:无规则、高速度、高能量、碰撞分子热运动与物质性质的关系实验装置:热能和分子运动实验装置。
人教版高中物理教案-分子的热运动
2分子的熱運動1.擴散現象(1)定義:不同的物質能夠彼此進入對方的現象。
擴散現象是分子永不停息地做無規則運動的證據。
溫度越高,擴散進行得越快。
(2)產生:擴散現象不受外界影響,也不是化學反應的結果,而是由物質分子的無規則運動產生的。
(3)應用:生產半導體器件時,通常在高溫條件下通過分子的擴散在純淨半導體材料中摻入其他元素。
【例1】下列關於擴散現象的說法正確的是()A.擴散現象只能發生在氣體與氣體間B.擴散現象只能發生在液體與液體間C.擴散現象只能發生在固體與固體間D.任何物質間都可發生相互擴散現象解析:不同物質之間,由於分子的運動,總會存在著擴散現象,只是進行的快慢程度有所不同(溫度、物體形態等因素影響)。
如牆角放一堆煤,牆及牆內都會變黑,所以擴散現象不僅存在於氣體與氣體、液體與液體、固體與固體之間,同樣也存在於液體與固體、氣體與固體、液體與氣體之間。
答案:D點評:理解擴散現象產生的原因是構成物質的分子永不停息運動的結果,就能快速準確地得出結論。
談重點擴散現象是否明顯的影響因素(1)物質處於固態、液態和氣態時均能發生擴散現象,只是氣態物質的擴散現象最顯著;常溫下處于固態時擴散現象不明顯。
(2)在兩種物質一定的前提下,擴散現象發生的顯著程度與物質的溫度有關,溫度越高,擴散現象越顯著。
這表明溫度越高,分子運動得越劇烈。
(3)擴散現象發生的顯著程度還受到“已進入對方”的分子濃度的限制,當進入對方的分子濃度較低時,擴散現象較為顯著;當進入對方的分子濃度較高時,擴散現象發生得就較緩慢。
擴散現象具有方向性。
2.布朗運動(1)布朗運動是懸浮在液體中的固體微粒的無規則運動,是在顯微鏡下觀察到的。
(2)布朗運動的三個主要特點:①微粒在永不停息地做無規則運動;②顆粒越小,布朗運動越明顯;③溫度越高,布朗運動越明顯。
(3)產生布朗運動的原因:由於液體分子無規則運動對固體微小顆粒各個方向撞擊的不均勻性所造成。
(4)對布朗運動認識的誤區①誤認為布朗運動是液體分子的運動。
2024-2025学年高中物理第7章分子动理论2分子的热运动教案新人教版选修3-3
【例题】解释扩散现象,并计算两种不同浓度气体混合后的扩散速率。
【解析】扩散是分子从高浓度区域向低浓度区域的运动,遵循分子动理论。扩散速率可以通过以下公式计算:
v_diff = (D * (c_1 - c_2) / L) / 2
其中,D是扩散系数,c_1和c_2是两种气体的初始浓度,L是两种气体之间的距离。将给定的数据代入公式,可以得到两种不同浓度气体混合后的扩散速率。
1.分子动理论的概念理解和应用能力,通过观察和分析实际案例,让学生深入理解分子热运动的特点和规律。
2.科学思维的能力,通过课堂讨论和小组合作,培养学生的逻辑思维、批判性思维和创新思维。
3.科学探究的能力,通过实验观察和数据分析,培养学生的观察能力、实验能力和数据处理能力。
4.科学态度和价值观的培养,通过学习分子动理论的应用,使学生认识到科学知识在解决实际问题中的重要性,培养学生的科学态度和社会责任感。
2.课中强化技能
教师活动:
-导入新课:通过展示布朗运动的视频,引出分子热运动的概念。
-讲解知识点:详细讲解分子间作用力、分子速度分布等核心概念。
-组织课堂活动:进行小组讨论,分析实际案例中分子热运动的表现。
-解答疑问:针对学生的疑问,进行解答和指导。
学生活动:
-听讲并思考:学生专注听讲,积极思考老师提出的问题。
2.通过动画、模型等教学辅助工具,形象地展示分子间作用力和分子热运动的特点和规律,帮助学生理解和计算。
3.通过分组讨论和课堂互动,激发学生的思考和探究,引导学生将分子动理论应用于实际问题中,培养学生的科学思维和科学探究能力。
4.对于分子动理论的抽象思维,可以通过比喻、类比等方法,帮助学生建立直观的理解,引导学生从感性认识上升到理性认识。
高中物理人教版选修3-3教案 《分子的热运动》(2篇)
第2节分子的热运动目标导航(1)了解扩散现象是由于分子的热运动产生的。
(2)知道什么是布朗运动,理解布朗运动产生的原因。
(3)知道什么是热运动及决定热运动激烈程度的因素。
(4)注重理论联系实际,勤观察、多思考,养成良好的学习习惯。
诱思导学1.扩散现象扩散现象是指当两种物质相接触时,物质分子可以彼此进入对方的现象。
例如:某些物质的气味可以传得很远,又如堆在墙角的煤可以深入到墙壁中去。
说明:①物质处于固态、液态和气态时均能发生扩散现象,只是气态物质的扩散现象最显著,处于固态时扩散现象非常不明显。
②在两种物质一定的前提下,扩散现象发生的显著程度与物质的温度有关,温度越高,扩散现象越显著。
这表明温度越高,分子运动得越剧烈。
③扩散现象发生的显著程度还受到“已进入对方”的分子浓度的限制,当进入对方的分子浓度较低时,扩散现象较为显著;当进入对方的分子浓度较高时,扩散现象发生得就较缓慢。
2.布朗运动悬浮在液体中的固体微粒不停地做无规则运动,称为布朗运动。
说明:①布郎运动是悬浮的固体微粒的运动,不是单个分子的运动,但是布朗运动间接反映了液体分子的无规则运动。
②固体微粒的运动是极不规则的,课本中画出的图7.2—5并非固体微粒的运动轨迹,而是每隔30s微粒位置的连线。
即使在这30s内,分子的运动也是极不规则的。
③做布朗运动的固体颗粒非常的小,肉眼是看不到的,人们必须借助显微镜才能观察到。
④影响布朗运动的因素。
布朗运动是大量液体分子对固体微粒撞击的集体行为的结果。
影响布郎运动的因素有二:即颗粒的大小和液体温度的高低,具体解释如下:布朗运动在相同温度下,悬浮颗粒越小,它的线度越小,表面积亦小,在某一瞬间跟它相撞的分子数越少,颗粒受到来自各方向的冲击力越不平衡;另外,颗粒线度越小,它的体积和质量比表面积减少得更快,因冲击力引起的加速度更大;因此悬浮颗粒越小,布朗运动就越显著。
相同的颗粒悬浮在同种液体中,液体温度升高,分子运动的平均速率大,对悬浮颗粒的撞击作用也越大,颗粒受到来自各方向的冲击力越不平衡,由冲击力引起的加速度更大,所以温度越高,布朗运动就越显著。
《分子热运动》教学设计
《分子热运动》教学设计分子热运动是物理学领域中的重要概念,也是高中物理中的核心内容之一。
针对这一内容,我们需要制定出一份合理的教学设计,让学生能够全面、深入地了解分子热运动。
一、教学目标1.理解分子热运动的基本概念,能够用自己的语言简单描述分子热运动的特点和规律。
2.掌握分子热运动的量化方法,能够对温度和分子速度的关系进行简单分析。
3.能够通过实验和计算,深度认识温度、热量、热容量与分子热运动的关系。
二、教学重难点1.分子热运动的基本概念和规律。
2.温度、热量、热容量与分子热运动之间的关系。
三、教学策略本教学设计采用学生主体+讨论式教学方法,将教学重点放在探究中,让学生在解决具体问题和研究问题的过程中对物理概念进行深入理解。
同时,为了激发学生的兴趣,将设计一些趣味性实验和案例。
四、教学过程安排1.导入环节通过一些有趣的小案例引入分子热运动的基本概念,并引导学生讨论分子运动的规律和特点,从而让学生自主形成对该概念的初步认知。
2.探究环节(1)分子热运动的量化分析:安排温度计测量不同温度下的水的温度,并观测水分子的运动状态。
以此探究温度和分子运动状态之间的关系,由此引出温度计的工作原理和分子热运动的速率等概念。
学生通过这个实验,能够了解温度的概念和量化方法,并探究温度与分子速率之间的规律。
(2)温度、热量、热容量与分子热运动的关系:通过分组讨论的形式,让学生认识温度、热量和热容量等与分子热运动的关系。
引导学生探讨热量和热容量的概念,帮助学生理解蒸发、沸腾等现象发生的原理。
同时,让学生通过计算分子动能和系统总能量的方式,来计算热容量,进一步探究热量和热容量与分子热运动之间的关系。
3.拓展环节在教学过程中,加入一些拓展模块,例如利用气体状态方程探究温度与压力的关系、分子运动的模拟等,激发学生的兴趣和探究热情。
五、教学评估采用综合考查的方式,包括小组探究报告、实验报告、个人答辩等多种方式。
通过教学反馈、参观课等方式,不断收集学生的建议和实际情况,及时调整和改进教学设计。
分子热运动教案
分子热运动教案年级:高中学科:物理本教案旨在帮助学生理解分子热运动的概念,认识分子运动与物质性质之间的关系,并探索分子热运动对温度、压强以及状态变化等方面的影响。
教学目标:1. 了解分子热运动的概念和特征;2. 掌握分子热运动与温度、压强以及状态变化之间的关系;3. 能够运用所学知识解释和预测相关现象;4. 培养学生观察、实验和探究的能力。
教学准备:1. PowerPoint或白板等教学工具;2. 分子模型或者分子动画;3. 相关实验器材,如温度计、容器等。
教学过程:步骤1:导入(5分钟)使用分子模型或分子动画向学生展示分子热运动,并引发学生对分子热运动的思考。
教师可以提出问题,例如:“为什么热水比冷水容易蒸发?”或者“为什么相同温度下气体的压强比液体小?”以激发学生的兴趣。
步骤2:知识讲解(15分钟)通过PPT或白板等教学工具,向学生介绍分子热运动的基本概念和特征,包括:- 分子的热运动是无规则的、碰撞的运动;- 高温下分子热运动快、能量大,低温下分子热运动慢、能量小;- 分子间碰撞引起的压强和分子热运动的关系。
步骤3:案例分析(15分钟)教师提供几个真实案例,让学生通过分子热运动解释现象,如:- 为什么咖啡在搅拌后会变热?- 为什么酒精温度计的液体随温度变化而上升?让学生自由讨论并总结出分子热运动与这些现象的关系,引导他们运用所学知识解释并预测其他类似现象。
步骤4:实验探究(20分钟)教师设计一个简单的实验来探究分子热运动对温度和压强的影响。
例如,用一个气球分别装入冷水和热水,分别测量气球内水蒸气的压强,并进行对比分析。
步骤5:知识总结(10分钟)学生根据所学内容,总结分子热运动与温度、压强以及状态变化之间的关系,可通过小组讨论、个人写作等形式进行。
步骤6:作业布置(5分钟)给学生布置相关作业,例如,要求学生通过观察其他物质的现象,运用分子运动的概念进行解释。
教学评估:1. 教师观察学生在课堂上的参与和回答问题的能力;2. 针对学生的作业进行评估,检查他们是否理解了分子热运动的概念及其在现象解释中的应用;3. 可以设计小测验或者期末考试,以检查学生对分子热运动的理解和应用能力。
分子热运动教案
分子热运动教案分子热运动教案1教材分析:教材从分子的组成入手,先说明分之在做无规则运动,然后讲到扩散现象,并对分子热运动进行讲解,说明分子间存在相互作用力。
教学目标:1、知识与技能●知道物质是由分子组成的,一切物质的分子都在不停地做无规则的运动。
●能识别扩散现象,并能用分子热运动的观点进行解释。
●知道分子热运动的快慢与温度的关系彩缤纷。
●知道分子之间存在相互作用力。
2、过程与方法●通过演示实验说明一切物质的分子都在不停地做无规则的运动。
●通过演示实验使学生推测出物体温度越高,热运动越剧烈。
●通过演示实验以及与弹簧的弹力类比使学生了解分子之间既存在斥力又存在引力。
3、情感态度与价值观●用演示实验激发学生的学习兴趣,通过交流讨论培养学生的合作意识和能力。
教学重点与难点:重点:分子的热运动。
难点:通过直接感知的现象,推测无法直接感知的事实。
教学器材:二氧化氮气体的广口瓶、空瓶、铅圆柱。
教学课时:1时教学过程:引入新课我们生活在物质世界中,我们的周围充满着物质:水、空气、石头、金属、动物、植物等都是物质。
而对于物质是怎样构成的,这一古老课题,很早就有过种种猜测,有的主张万物之源是“气”,有的主张万物之源是“火”。
公元前5世纪墨子提出的物质的最小单位是“端”,公元前4世纪古希腊的德漠克利特认为宇宙万物,是由大小和质量不同的,不可入的,运动不息的原子组成。
此后经过近20xx年的探索,直到17世纪末,才科学地认识到物质是由分子组成的。
进行新课(1)分子和分子运动①物质是由分子组成的,分子是极小的微粒。
如果把分子看做球形,它的直径约10—10米,这是一个极小的长度,不仅肉眼看不到,即使用现代的显微镜也看不清分子。
由于分子极小,所以物体含分子数目大得惊人。
通常情况下,1厘米3空气里大约有2。
7×1019个分子,如果人数的速度能达到每秒数100亿个,要数完这个数,也得用80多年。
②构成物质的分子永不停息地运动着。
高中物理-分子的热运动教学设计
高中物理-分子的热运动教学设计一、三维目标1.知识与技能:(1)了解扩散现象是由于分子的热运动产生。
(2)知道什么是布朗运动,理解布朗运动产生的原因。
通过实验,培养学生概括、分析能力和逻辑推理能力。
(3)知道什么是分子的热运动及决定分子热运动激烈程度的因素。
2.过程与方法:采用实验演示与观察法、小组合作学习与探究法、分析推理归纳法。
3.情感态度与价值观:通过对实验的探究,培养学生注重理论联系实际、勤于观察、永于探究、善于思考的良好学习习惯。
激发对自然科学的兴趣。
二、重难点重点:布朗运动及产生的原因。
难点:布朗运动与分子热运动的关系。
三、教学流程观察演示实验【演示1】将空的集气瓶倒扣在盖有毛玻片的充满红棕色二氧化氮气体的集气瓶上,抽去中间的毛玻片,将会发生什么现象?说明了什么?【演示2】将高锰酸钾溶液滴入一杯清水中,会有什么现象?又说明了什么?【演示3】同样的现象在固体与固体之间、固体与液体等之间能否发生呢?举例说明?(一)扩散现象1.扩散:问题:扩散现象说明了什么?2.意义:问题:扩散现象反映了组成物质的分子总在运动,那么分子又是做何种运动的?是否有规律呢?观察实验现象实验:这是绘画用的颜料,在杯中放入少许,用水稀释后,取出少许液体放在光学显微镜下观察问题:1.在这个实验中,你看到了什么现象?2.你观察到的是什么在运动?3. 是怎样运动的呢?4.你能设计方案验证吗?演示实验实验:在气垫平台追踪红色棋子的踪迹,描点连线。
思考:连成的折线反映了什么?折线是微粒的运动轨迹吗?(二)布朗运动1.布朗运动:(1)概念:问题:为什么微粒在液体中不停地无规则运动?演示实验实验:摇动演示器材手柄,观察观察小钢珠和小圆柱的状态。
问题:有什么现象?为什么小圆柱会动起来?(2)布朗运动成因:问题:1.大一点圆柱,为什么几乎不动?2.影响布朗运动剧烈程度的因素,与什么有关?(3)影响布朗运动剧烈程度因素:问题:那么我们观察到的布朗运动有什么意义呢?(4)意义:(三)热运动:叫做热运动问题:为什么叫做热运动呢?(四)针对训练:1.关于扩散现象下列说法中,正确的是()A.扩散现象在固体与液体、液体与气体之间不可以发生。
高中物理人教版选修1-2教案-分子及其热运动_教学设计_教案_1
教学准备1. 教学目标教学目标1.能简单说明物质是由分子、原子构成的。
2.通过实验知道一切物质的分子都在不停地做无规则运动。
3.能够识别扩散现象,并能用分子热运动的观点进行解释。
4.知道分子间存在相互作用力。
2. 教学重点/难点重点:知道一切物质的分子都在不停地做无规则的运动。
难点:知道分子间存在相互作用力。
3. 教学用具4. 标签教学过程你能闻到不同食物的香味吗?是怎样判断的呢?课前在自己身上喷香水,在教室内走一圈,你们能闻到味道吗?我们是如何闻到各种味道的?物质的构成展示显微镜看到的小颗粒是由更小的颗粒构成的。
你对物质的构成有什么想法?展示玻璃管,如果在玻璃管内装入半管水,再加半管酒精,混合后总体积应该是多少?演示实验:在一个玻璃管内装入半管水,再在管内装入酒精,直至装满。
堵住管口,把试管倒置几次,观察现象。
你能解释此现象吗?(可以利用水倒入沙子中进行类比)现代科学研究发现,常见的物质是由极其微小的粒子构成的,这些粒子就是分子、原子。
并且这些粒子间存在空隙。
展示一些物质分子结构图,这些图是利用电子显微镜观察提到的,人的肉眼和普通显微镜无法直接观察到。
分子的直径只有百亿分之几米,约为10-10m数量级。
物质是由分子、原子构成的,我们是如何闻到物体的味道的呢?分子间有没有作用力?分子热运动实验1.在讲台上打开一个花露水瓶盖,前排同学有没有闻到味道?实验2.在装着二氧化氮气体的瓶子上面,倒扣一个空瓶子,使两个瓶口相对,之间用一块玻璃板隔开。
抽掉玻璃板,会发生什么变化?(实验中不能把二氧化氮气体放在上面。
)你能说说其中的原因吗?像这样,不同的物质在互相接触时彼此进入对方的现象,叫做扩散。
扩散只能发生在气体间吗?能举一些实例吗?小结:通过前面的实验和视频,可以知道固体、液体和气体分子都在不停地做无规则运动。
实验4.两个相同的烧杯,一个装入半杯热水,一个装入等质量的半杯凉水。
用滴管在两个烧杯中分别滴入一滴红墨水,观察哪个烧杯中墨水扩散得快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理教案——分子的热运动
一、教学目标
(1)知道并记住什么是布朗运动,知道影响布朗运动激烈程度的因素,知道布朗运动产生的原因。
(2)知道布朗运动是分子无规则运动的反映。
(3)知道什么是分子的热运动,知道分子热运动的激烈程度与温度的关系。
二、教学重点与难点
1.通过学生对布朗运动的观察,引导学生思考、分析出布朗运动不是外界影响产生的,是液体分子撞击微粒不平衡性产生的。
布朗运动是永不停息的无规则运动,反映了液体分子的永不停息的无规则运动。
这一连串结论的得出是这堂课的教学重点。
2.学生观察到的布朗运动不是分子运动,但它又间接反映液体分子无规则运动的特点。
这是课堂上的难点。
这个难点要从开始分析显微镜下看不到分子运动这个问题逐渐分散解疑。
三、教学用具
1.气体和液体的扩散实验:分别装有二氧化氮和空气的玻璃储气瓶、玻璃片;250毫升水杯内盛有净水、红墨水。
2.制备好的有藤黄悬浮颗粒的水、显微镜用载物片、显微摄像头、大屏幕投影电视。
四、主要教学过程
(一)引入新课
让学生观察两个演示实验:
1.把盛有二氧化氮的玻璃瓶与另一个玻璃瓶竖直方向对口相接触,看到二氧化氮气体从下面的瓶内逐渐扩展到上面瓶内。
2.在一烧杯的净水中,滴入一二滴红墨水后,红墨水在水中逐渐扩展开来。
提问:上述两个实验属于什么物理现象?这现象说明什么问题?
在学生回答的基础上总结:上述实验是气体、液体的扩散现象,扩散现象是一种热现象。
它说明分子在做永不停息的无规则运动。
而且扩散现象的快慢直接与温度有关,温度高,扩散现象加快。
这些内容在初中物理中已经学习过了。
(二)新课教学过程
1.介绍布朗运动现象
1827年英国植物学家布朗用显微镜观察悬浮在水中的花粉,发现花粉颗粒在水中不停地做无规则运动,后来把颗粒的这种无规则运动叫做布朗运动。
不只是花粉,其他的物质如藤黄、墨汁中的炭粒,这些小微粒悬浮在水中都有布朗运动存在。
介绍显微镜下如何观察布朗运动。
在载物玻璃上的凹槽内用滴管滴入几滴有藤黄的水滴,将盖玻璃盖上,放在显微镜载物台上,然后通过显微镜观察,在视场中看到大大小小的许多颗粒,仔细观察其中某一个很小的颗粒,会发现在不停地活动,很像是水中的小鱼虫的运动。
将一台显微镜放在讲台上,然后让用显微摄像头拍摄布朗运动,经过电脑在大屏幕上显示投影成像,让全体学生观察,最好教师用教鞭指一个颗粒在屏幕上的位置,以此点为参考点,让学生看这颗微粒以后的一些时间内对参考点运动情况。
让学生看教科书上图,图上画的几个布朗颗粒运动的路线,指出这不是布朗微粒运动的轨迹,它只是每隔30秒观察到的位置的一些连线。
实际上在这短短的30秒内微粒运动也极不规则,绝不是直线运动。
2.介绍布朗运动的几个特点
(1)连续观察布朗运动,发现在多天甚至几个月时间内,只要液体不干涸,就看不到这种运动停下来。
这种布朗运动不分白天和黑夜,不分夏天和冬天(只要悬浮液不冰冻),永远
在运动着。
所以说,这种布朗运动是永不停息的。
(2)换不同种类悬浮颗粒,如花粉、藤黄、墨汁中的炭粒等都存在布朗运动,说明布朗运动不取决于颗粒本身。
更换不同种类液体,都不存在布朗运动。
(3)悬浮的颗粒越小,布朗运动越明显。
颗粒大了,布朗运动不明显,甚至观察不到运动。
(4)布朗运动随着温度的升高而愈加激烈。
3.分析、解释布朗运动的原因
(1)布朗运动不是由外界因素影响产生的,所谓外界因素的影响,是指存在温度差、压强差、液体振动等等。
分层次地提问学生:若液体两端有温度差,液体是怎样传递热量的?液体中的悬浮颗粒将做定向移动,还是无规则运动?温度差这样的外界因素能产生布朗运动吗?
归纳总结学生回答,液体存在着温度差时,液体依靠对流传递热量,这样悬浮颗粒将随液体有定向移动。
但布朗运动对不同颗粒运动情况不相同,因此液体的温度差不可能产生布朗运动。
又如液体的压强差或振动等都只能使液体具有定向运动,悬浮在液体中的小颗粒的定向移动不是布朗运动。
因此,推理得出外界因素的影响不是产生布朗运动的原因,只能是液体内部造成的。
(2)布朗运动是悬浮在液体中的微小颗粒受到液体各个方向液体分子撞击作用不平衡造成的。
显微镜下看到的是固体的微小悬浮颗粒,液体分子是看不到的,因为液体分子太小。
但液体中许许多多做无规则运动的分子不断地撞击微小悬浮颗粒,当微小颗粒足够小时,它受到来自各个方向的液体分子的撞击作用是不平衡的。
如教科书上的插图所示。
在某一瞬间,微小颗粒在某个方向受到撞击作用强,它就沿着这个方向运动。
在下一瞬间,微小颗粒在另一方向受到的撞击作用强,它又向着另一个方向运动。
任一时刻微小颗粒所受的撞击在某一方向上占优势只能是偶然的,这样就引起了微粒的无规则的布朗运动。
悬浮在液体中的颗粒越小,在某一瞬间跟它相撞击的分子数越小。
布朗运动微粒大小在10-6m数量级,液体分子大小在10-10m数量级,撞击作用的不平衡性就表现得越明显,因此,布朗运动越明显。
悬浮在液体中的微粒越大,在某一瞬间跟它相撞击的分子越多,撞击作用的不平衡性就表现得越不明显,以至可以认为撞击作用互相平衡,因此布朗运动不明显,甚至观察不到。
液体温度越高,分子做无规则运动越激烈,撞击微小颗粒的作用就越激烈,而且撞击次数也加大,造成布朗运动越激烈。
5.布朗运动的发现及原因分析的重要意义
(1)结合上面的讲解分析提问学生:布朗运动是悬浮在液体中的固体微粒分子的运动吗?是液体分子无规则运动吗?布朗微粒是被谁无规则撞击而造成的?布朗运动间接地反映了谁的无规则运动?
综合学生回答归纳总结:
(1)固体颗粒是由大量分子组成的,仍然是宏观物体;显微镜下看到的只是固体微小颗粒,光学显微镜是看不到分子的;布朗运动不是固体颗粒中分子的运动,也不是液体分子的无规则运动,而是悬浮在液体中的固体颗粒的无规则运动。
无规则运动的原因是液体分子对它无规则撞击的不平衡性。
因此,布朗运动间接地证实了液体分子的无规则运动。
(2)布朗运动随温度升高而愈加激烈,在扩散现象中,也是温度越高,扩散进行的越快,而这两种现象都是分子无规则运动的反映。
这说明分子的无规则运动与温度有关,温度越高,分子无规则运动越激烈。
所以通常把分子的这种无规则运动叫做热运动。