2016年中考数学模拟试题汇编专题38:方案设计(含答案)
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016中考模拟试题(数学)
2016年中考模拟考试(数学)数 学 试 卷(全卷总分150分,考试时间120分钟)一、(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1. 下列各数中是无理数的是( ▲ )A.13B.﹣ 2C. 0D.2. 如图所示,几何体的主视图是( ▲ )A B C D3.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ▲ )A. 0.25×10﹣5B. 2.5×10﹣5C. 2.5×10﹣6D. 2.5×10﹣74.如图,直解三角板的直角顶点落在直尺边上,若∠1=54°,则∠2的度数为( ▲) ) A.24° B.36° C.46° D.54° 5.计算2x 3•(﹣3x )2的结果是( ▲ )A. 18x 5 B .-18x 6C. ﹣6x 5 D .6x 66. 甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S 甲2=1.4,S 乙2=18.8,S 丙2=22,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( ▲ ) A. 甲队 B. 乙队 C. 丙队 D. 哪一个都可以7. 已知反比例函数xy 1=,下列结论中不正确的是( ▲ )A. 图象经过点(-1,-1)B. 图象在第一、三象限C. 当1>x 时,10<<yD. 当0<x 时,y 随着x 的增大而增大 8. 如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,下列结论中:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.正确的有( ▲ ) A .1个 B .2个 C .3个 D .4个 9. 将代数式x 2+6x +2化成(x +p)2+q 的形式为( ▲ )A .(x -3)2+11 B .(x +3)2-7 C .(x +3)2-11 D .(x +2)2+410. 如图, 点P 为平行四边形ABCD 边AD 上一点, 点E, F 分别为PB, PC 的中点, △PEF , △PDC , △PAB 的面积分别为S, S 1, S 2, 若S =3, 则S 1+S 2=( ▲ ) A.12 B.16 C. 9 D. 24 11. 如图所示,矩形纸片ABCD 中,6cm AB =,8cm BC =,现将其沿EF对折,使得点C 与点A 重合,则AF 长为( ▲ )A.25cm 2 B.25cm 8 C. 25cm 4D.8cm 12. 如图所示,已知11()2A y ,,2(2)B y ,为反比例函数1y x=图像上的D(C ) A B CEFD第11题图第10题图第8题图CBAE FDMN 第4题图两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达 到最大时,点P 的坐标是( ▲ )A.1(0)2,B.(10),C.3(0)2,D.5(0)2,二、填空题(本大题共6小题,每小题4分,共24分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上.)13. 已知:m 、n 为两个连续的整数,且m <<n ,则m+n= ▲ .14. 分解因式:2232xy y x x+-= ▲ .15. 已知(x -y +3)2+2-y =0,则2x +y = ▲ .16. 如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是 ▲ .17. 将1、2、3、6按如图所示的方式进行排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(21,10)表示的两数之积是 ▲ .18. 如图,扇形CAB 的圆心角∠ACB=90°,半径CA=8cm ,D 为弧AB 的中点,以CD 为直径的⊙O 与CA 、CB 相交于点E 、F ,则弧AB 的长为 ▲ cm ,图中阴影部分的面积是 ▲ cm 2.三、解答题(本大题共9小题,共90分。
最新)2016年中考模拟数学试题(含答案)
最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。
A。
4/3443 B。
3443/3 C。
-4/3443 D。
-3443/42.右图是某几何体的三视图,该几何体是()。
A。
圆锥 B。
圆柱 C。
正三棱柱 D。
正三棱锥3.下列运算中正确的是()。
A。
π=1 B。
x2=x C。
2-2=-4 D。
--2=24.不等式组{x≤-2,x-2>1}的解集是()。
A。
x≤-2 B。
x>3 C。
3<x≤-2 D。
无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。
灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。
截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。
科学计数法表示为()元。
A。
8.01×107 B。
80.1×107 C。
8.01×108 D。
0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。
A。
19,15 B。
15,14.5 C。
19,14.5 D。
15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。
A。
115° B。
120° C。
100° D。
80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。
9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。
10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年中考数学模拟试卷及答案(精选两套)
1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
2016年辽宁中考数学模拟考卷及答案
2016年辽宁中考数学模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是增函数的是()A. y=x^3B. y=x^2C. y=2xD. y=2x2. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 483. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √14. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^2 = a^2 + 2ab + b^25. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 81二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 两条平行线的斜率相等。
()3. 一元二次方程的解一定是实数。
()4. 相似三角形的面积比等于边长比的平方。
()5. 互为相反数的两个数的和为0。
()三、填空题(每题1分,共5分)1. 若a=3,b=2,则a+b=______。
2. 已知平行四边形的对角线互相平分,若一条对角线长度为10,另一条对角线长度为12,则平行四边形的面积是______。
3. 函数y=2x+1的图象是一条______线。
4. 在直角坐标系中,点(3, 4)关于x轴的对称点是______。
5. 三个连续的奇数分别为2n1、2n+1、2n+3,则它们的和为______。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 请写出三角形面积的两个计算公式。
3. 什么是无理数?请举例说明。
4. 请列举两种解一元二次方程的方法。
5. 简述概率的基本性质。
五、应用题(每题2分,共10分)1. 某商品原价为200元,打折后售价为160元,求打折折扣。
2. 甲、乙两地相距600公里,一辆汽车从甲地出发,以每小时80公里的速度行驶,求汽车到达乙地所需时间。
2016年中考数学模拟试卷(含答案解析) (3)
2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应....位置..上) 7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 AB ECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线. ③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间. 其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 … y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。
2016年中考数学模拟试卷(含答案解析) (12)
2016届九年级第一次模拟考试数学试题卷 (梁溪区) 2016.4本试卷分试题和答题卷两部分,所有答案一律写在答题卷上. 考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、考试号等信息填写在答题卷的相应位置上,并仔细核对确保无误.2.答选择题必须用2B 铅笔将答题卷上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卷上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果. 一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题..卷.上相应的答案......涂黑.) 1.-3的绝对值是…………………………………………………………………………( ▲ )A .3B .-3C .13D .-132.计算(-xy 3)2的结果是…………………………………………………………………( ▲ )A .x 2y 6B .-x 2y 6C .x 2y 9D .-x 2y 93.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =40º,则∠ECD 的度数是………………( ▲ ) A .70º B .60º C .50º D .40º4.有6个相同的小正方体搭成的几何体如图所示,则它的主视图是………………( ▲ )5.下列调查中,适宜采用普查方式的是………………………………………………( ▲ ) A .了解一批圆珠笔的使用寿命 B .了解全国九年级学生身高的现状C .考察人们保护海洋的意识D .检查一枚用于发射卫星的运载火箭的各零部件6. 若⎩⎪⎨⎪⎧x =1y =2是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为………………( ▲ )A. -5B. -1C. 2D. 77.直线y =2x +2沿y 轴向下平移6个单位后与y 轴的交点坐标是…………………( ▲ )(第3题)A. B. C. D.(第4题)(第9题)A .(0,2)B .(0,8)C .(0,4)D .(0,-4)8.如图,已知菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC ,垂足为点E ,则AE 的长是………………………………………………………………………( ▲ )A .532 cmB .25cmC .485cmD .245cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为……………( ▲ ) A. 92 B. 133 C. 4313 D. 2 5 10. 如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边的中点,过D 作DE ⊥BC 于点E ,点P 是边BC 上的一个动点,AP 与CD 相交于点Q .当AP +PD 的值最小时,AQ 与PQ 之间的数量关系是………………………………………………………………( ▲ )A .AQ =5 2 PQ B .AQ =3PQ C .AQ = 83PQ D .AQ =4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题..卷.相应位置....上.) 11.函数y =x +2中自变量x 的取值范围是 ▲ . 12.因式分解ab 3-4ab = ▲ .13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为 ▲ . 14.已知扇形的圆心角为60º,半径为6cm ,则扇形的弧长为 ▲ cm.15.已知反比例函数的图象经过点(m ,4)和点(8,-2),则m 的值为 ▲ .16. 如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为 ▲ .17.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB同侧分别作等边△PAE 和等边△PBF ,M 为线段EF 的中点. 在点P 从点C 移动到点D 时,点M 运动的路径长度为 ▲ .18.如图坐标系中,O (0,0) ,A (6,63),B (12,0).将△OAB 沿直线CD 折叠,使点A恰好落在线段OB 上的点E 处,若OE =245,则CE :DE 的值是 ▲ .ABC(第16题)(第17题)FEAB·M · ·(第10题)ACBDE Q(第8题)AEBC D三、解答题(本大题共10小题,共计84.)19.(8分)(1)计算:16-||-2+2×(-3);(2)化简:(1+1a )20.(8分)(1)解方程:1+3x x -2=6x -2; (2)解不等式组:⎩⎪⎨⎪⎧x -1>2x ,12x +3≤-1.21.(8分)如图,在□ABCD 中,点E 、F 在AC 上,且∠ABE =∠CDF ,求证:BE =DF .22.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到红球的概率.(请用“画树状图”或“列表”等方式给出分析过程)23.(8分)图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角△MON ,使点N 在格点上,且∠MON =90º;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角△MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).24.(8分)某厂生产A 、B 两种产品,其单价随市场变化而做相应调整,营销人员根据前三次图1 图2A BCDFE单价变化的情况,绘制了如下统计表及不完整的折线图.并求得了A 产品三次单价的平均数和方差:—x A =5.9;s 2A =13[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=43150.(1)补全图中B 产品单价变化的折线图. B 产品第三次的单价比上一次的单价降低了 %; (2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m %(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1, 求m 的值.25.(8分)某工厂接受了20天内生产1200台GH 型电子产品的总任务. 已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品. (1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置. 请问至少需要补充多少名新工人?26.(8分)已知边长为3的正方形ABCD 中,点E 在射线..BC 上,且BE =2CE ,连结AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B 1处. (1)如图1,若点E 在线段BC 上,求CF 的长; (2)求sin ∠DAB 1的值.ADAD27.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.(10分)如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止. 直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S 与t 的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t ,使得以P 、C 、F 为顶点的三角形为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t ,使得以点D 为圆心、BD 为半径的圆与直线EF相切?若存在,请求出t 的值;若不存在,请说明理由.ABCM备用图ABC MPDEl。
2016年中考数学模拟试卷(含答案解析) (4)
OACDE(第6题)2016年质量调研检测试卷(二)九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.在实数227,0,-2, 2π中,无理数的个数有(▲)A .0个B .1个C .2个D .3个2.下列各式计算正确的是(▲)A .a 6÷a 3 =a 2B .(a 3)2=a 5C .4=±2D .3-8 =-23.某课外兴趣小组为了了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是(▲)A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了100名小区内老年邻居的健康状况D .利用派出所户籍网随机调查了该地区10%的老年人的健康状况4.右图是由3个相同的正方体组成的一个立体图形,它的三视图是(▲)A .B .C .D .5. 某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是(▲)A .10%B .15%C .20%D .30%6.如图,AB 是半圆O 直径,半径OC ⊥AB ,连接AC ,∠CAB 的平分线AD 交OC 于点E ,交BC ︵于点D ,连接CD 、OD ,以下三个结论:①AC ∥OD ;②AC =2CD ;③线段CD 是CE 与CO 的比例中项.其中,所有正确结论的序号是(▲) A .①②B .①③C .②③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直yx OAP(第15题)最高气温(℃) 25 26 27 28 天 数1213ABQCD(第16题)接填写在答题纸相应位置.......上) 7.PM2.5是指大气中直径小于或等于2.5 um (0.0000025m )的颗粒物,含有大量有毒、 有害物质,也称可吸入肺颗粒物,将0.0000025用科学记数法表示为 ▲ . 8.不等式组26,2 1.x x -<⎧⎨-+>⎩的解集是 ▲ .9.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则 他第三次抛这枚硬币时,正面向上的概率是 ▲ . 10. 函数y =3-x 中,自变量x 的取值范围是 ▲ .11.我市某一周的最高气温统计如下表:则这组数据的中位数是 ▲ .12.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,S △AOD ∶S △BOC =1∶9,AD =2,则BC 的长是 ▲ .13.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB =4,则BC 边的长为 ▲ .14.将面积为32π的半圆面围成一个圆锥的侧面,则这个圆锥的底面半径为 ▲ . 15.如图,点P 在函数y =3x(x >0)的图像上运动,O 为坐标 原点,点A 为PO 的中点,以点P 为圆心,P A 为半径作⊙P , 则当⊙P 与坐标轴相切时,点P 的坐标为 ▲ . 16.矩形ABCD 中,AB =10,BC =4,Q 为AB 边的中点,P 为CD 边上的动点,且△AQP 是腰长为5的 等腰三角形,则CP 的长为 ▲ .三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)计算:(1)()212cos 4523π-⎛⎫︒+-- ⎪⎝⎭; (2)(1x +1-1x 2-1)÷x -2x 2-2 x +1 .18.(6分)已知关于x 的一元二次方程x 2-ax +2=0的两实数根x 1 、x 2满足x 1x 2=x 1+x 2-2. (1)求a 的值; (2)求出该一元二次方程的两实数根.A BCDO(第12题)AB CDOMN(第13题)第20题图噪声声级/dB测量点数610412108642(第20题)12 3 ①567②CEF19.(7分)为了增强环境保护意识,在“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,随机抽查了全市40个噪声测量点在某时刻的噪声声级(单位:dB )根据表中提供的信息解答下列问题:(1)频数分布表中的a = ▲ ,b = ▲ ,c = ▲ ; (2)补充完整频数分布直方图;(3)如果全市共有400个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?20.(8分)(1)甲、乙两人用如图所示的①、②两个转盘做游戏,规则是:转动两个转盘各1次,若两个转盘停止转动后,指针所在区域的两个数字之积为奇数,则甲获胜, 否则乙胜.试求出甲获胜的概率.(2)若利用除颜色外其余都相同的红、黄、白色乒乓球各一个设计一个摸球试验,试写 出一个与(1)中甲获胜概率相同的事件.(友情提醒:要说明试验的方案,不需说明理由)21.(8分)如图,D 是线段AB 的中点,C 是线段AB 的垂直平分线上的一点,DE ⊥AC于点E ,DF ⊥BC 于点F . (1)求证:DE =DF ;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.22.(8分)某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商两次共购进这种玩具多少套?(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?(第24题)yM NOt82a b ②① D 45° 北东(第23题) BC60°23.(7分)如图,大海中某岛C 的周围25km 范围内有暗礁.一艘海轮沿正东方向航行,在A 处望见C 在北偏东60°处,前进20 km 后到达点B ,测得C 在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据: 2 ≈1.41, 3 ≈1.73)24.(8分)如图①,在矩形ABCD 中,动点P 从A 点出发沿折线AD –DC –CB 运动,当点P 运动到点B 时停止.已知动点P 在AD 、BC 上的运动速度为1cm /s ,在DC 上的运动速度为2 cm /s .△P AB 的面积y (cm 2)与动点P 的运动时间t (s )的函数关系图像如图②.(1)a = ▲ ,b = ▲; (2)用文字说明点N 坐标的实际意义; (3)当t 为何值时,y 的值为2 cm 2.25.(8分)如图,在△ABC 中,AB =AC .以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .过E 点作⊙O的切线,交AB 于点F . (1)求证:EF ⊥AB ;(2)若BD =2,BE =3,求AC 的长.26.(8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为 ▲ .(填写序号即可)① 矩形; ②有一个角为直角的任意凸四边形; ③有一个角为60°的菱形. (2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,∠DCB =30°,连接AD ,DC ,CE .DC (第25题) ABC DF O①求证:△BCE 是等边三角形; ②求证:四边形ABCD 是勾股四边形.27.(12分)如图,已知二次函数y =ax 2+b x -5(a ,b 是常数,a >0)的图象与x 轴交于点A (-1,0)和点B ,与y 轴交于点C .动直线y =t (t 为常数)与抛物线交于不同 的两点P 、Q .(1)若a <5,试证明抛物线的对称轴一定在y 轴的右侧. (2)若点B 的坐标为(5,0).①求a 、b 的值及t 的取值范围. ②求当t 为何值时,∠PCQ =90 °.九年级数学参考答案及评分标准一、选择题(每小题2分,共12分,将正确答案的题号填在下面的表格中)题号 1 2 3 4 5 6 答案CDDACB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.2.5×10-6 8.x >3 9.12 10.x ≤3 11.27℃12.6 13.6 14.4 15.(3,1) 或(1,3) 16. 2、7或8三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解:(1)原式=2×22+1-9 ……………………3分 (第27题) 备用图yCOAxB=2-8 ……………………4分(2) 原式=(1x +1-1x 2-1)÷x -2 (x -1)2……………………1分=x -2(x +1)(x -1)×(x -1)2x -2 ……………………3分 =x -1x +1……………………4分 18.(6分)解:(1)∵x 1+x 2=a ,x 1x 2=2,……………………1分 又x 1x 2=x 1+x 2-2, ∴a -2=2,a =4 ……………………2分 (2)x 2-4x +2=0.(x -2)2=2 ……………………4分x -2= 2 或x -2=-2 ……………………5分 x 1=2+2, x 2=2- 2 ……………………6分 (其它解法参照给分)19.(7分)解:(1)a =8,b =12,c =0.3.(答对一个给1分)……………………3分(2)略 (画对一个直方图给1分)…………………………………………………5分 (3)样本中噪声声级小于75dB 的测量点的频率是0.3 ………………………6分由0.3×400=120∴在这一时刻噪声声级小于75dB 的测量点约有120个. ……………7分20.(8分) (1)转动两个转盘各1次,所有可能出现的结果有(1,5)、(1,6)、(1,7)、 (2,5)、(2,6)、(2,7)、(3,5)、(3,6)、(3,7),共有9种可能. …………3分 它们出现的可能性相同,所有结果中,满足“积为奇数”的结果有4种, ……4分 所以转动两个转盘各1次,转出的两个数字之积为奇数的概率为49. …………5分(2)实验如:在一个不透明的袋子中放入除颜色外其余都相同的红、黄、白色乒乓球各1个,从袋子中取出一个球,记下颜色后放入袋中,再从袋子中取出一个球,记下颜色.事件:两次取出的球中有且只有一个球是红色球. ……………………8分21(2)当AB =2CD 时,四边形CEDF 为正方形.…………5分 理由:∵AD =BD ,AB =2CD , ∴AD =BD =CD . ∴∠ACD =45°,∠DCB =45°, …………6分 ∴∠ACB =∠ACD +∠BCD =90°,B(第21题)45° ABC60°D∴四边形DECF 是矩形.…………7分又∵DE =DF ,∴四边形CEDF 是正方形. …………8分22.(8分)解:(1)设第一次购进了x 套,则第二次购进了2x 套. ………1分依题意,列方程得:16000x +10=340002x ……………………………3分解得:x =100, ……………………………4分 经检验x =100是原方程的根,2x =200答:该经销商两次共购进这种玩具300套. ……………………5分(2)由(1)得第一批每套玩具的进价为16000100=160元,又因为总利润率为25%,∴售价为160(1+25%)=200元, ……………………6分 第二批玩具的进价为170元,售价也为200元.……………………7分 40×100+30×200=10000元. ……………………8分 答:这二批玩具经销商共可获利10000元.23.(7分)解:没有触礁危险.理由:过点C 作CD ⊥AB ,交AB 的延长线于点D . …1分 由题意可知: ∠ACD =60°,∠BCD =45°, 设CD =x . 在Rt △ACD 中,∵ tan ∠ACD =ADCD,∴AD = 3 x . …2分 在Rt △BCD 中,∵ tan ∠BCD =BDCD,∴BD =x ……3分 ∵AD -BD =AB ,∴ 3 x -x =20. …………5分 ∴x =203 -1≈27.4(km ). ……6分 ∵27.4>25,∴该海轮继续沿正东方向航行,没有触礁危险. …7分 24.(8分)(1)a =4,b =6;………………………2分(2)P 运动了4s 时到达点C ,此时△P AB 的面积为8cm 2, ……4分 (3)由题意AB =DC =2×2=4 cm ,要y 的值为2 cm 2,必须点P 在AD 或BC 上,且P A =1cm 或PB =1cm .当P A =1cm 时,点P 的运动时间t =1s ;当PB =1cm 时,点P 的运动时间为t =2+2+1=5s , 即当t 为1s 或5 s 时,y 的值为2 cm 2. ………8分 25.(8分)(1)证明:连结OE .∵AB =AC ,∴∠B =∠ACB .又∵OE =OC ,∴∠OEC =∠ACB ,∴∠OEC =∠ABC .………1分 ∴OE ∥AB .……………………………………2分AO∵EF 与⊙O 相切,∴OE ⊥EF ,∴∠OEF =90°.…………3分 ∵OE ∥AB ,∴∠AFE =90°,∴OE ⊥AB . …………4分 (2)连结DE 、AE .∵四边形ACED 为⊙O 的内接四边形,∴∠DEC +∠BAC =180°. 又∵∠DEB +∠DEC =180°,∴∠BED =∠BAC , ………5分 又∵∠B =∠B ,∴△BED ∽△BAC .∴BCBDAB BE =. ………6分 ∵AC 为⊙O 的直径,∴∠AEC =90°.∵在△ABC 中, AB =AC ,∴BE =CE =3,∴BC =6.………7分 ∴623=AB ,∴AB =9.即AC =AB =9. ………8分 26.(8分)(1)① ② ……………………………2分(2)①∵△ABC 绕点B 顺时针旋转了60°到△DBE ,∴BC =BE ,∠CBE =60° ……4分 ∵在△BCE 中,BC =BE ,∠CBE =60° ∴△BCE 是等边三角形.……5分②∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°, ∵∠DCB =30°,∴∠DCE =∠DCB +∠BCE = 90°,…6分 在Rt △DCE 中,有DC 2 +CE 2 =DE 2 ,∵DE =AC ,BC =CE ,∴DC 2 +BC 2 =AC 2 ,………7分 ∴四边形ABCD 是勾股四边形.………8分27.(12分)(1)∵A (-1,0)在抛物线上,∴a -b -5=0,b =a -5.………1分 ∴抛物线的对称轴为:x =-b 2a =5-a2a,……………………2分 ∵0<a <5,∴2 a >0,5-a >0,∴5-a2a>0,∴此时抛物线的对称轴一定在y 轴的右侧. ……………………3分 (2)①∵A (-1,0),B (5,0)在抛物线上,∴⎩⎨⎧a -b -5=0,25a +5b -5=0, ……………………4分 解得:⎩⎨⎧a =1,b =-4……………………5分∴二次函数关系式为y =x 2-4 x -5,由⎩⎨⎧y =x 2-4 x -5, y =t得:x 2-4 x -5=t ,即x 2-4 x -5-t =0, ABDCE∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴方程x 2-4 x -5-t =0有两个不相等的实数解,∴△=16+4(5+t )>0, 解得:t >-9. ……………………7分 (也可先求出二次函数的最小值为-9,然后结合图像,得出t 的取值范围为t >-9. 参照上述标准给分)②连接PC 、CQ ,∵y =x 2-4 x -5=(x -2)2-9,∴抛物线的对称轴为直线x =2, ∵当x =0时,y =-5,∴C (0,-5).设PQ 与y 轴交于点D ,点Q 的坐标为(m ,t )(m >0),则由P 、Q 关于直线x =2对称可得:点P 的坐标为(-m +4,t ).………8分 (Ⅰ)当t >-5时,点D 在点C上方,∵Q (m ,t )在抛物线上,∴t =m 2-4m -5,∴ t +5=m 2-4m ,∵t >-5, ∴m >4, ∴CD =t +5,DQ =m ,DP =m -4. …………9分 ∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°, ∴∠QCD =∠DPC ,又∠PDC =∠QDC =90°,∴△QCD ∽△CDP , ∴DQ DC =DC PD ,即m t +5=t +5 m -4,整理得(t +5)2=m 2-4m , ∴(t +5)2=t +5,解得t 1=-5(不合,舍去),t 2=-4,………………10分 (Ⅱ)当t =-5时,动直线y =t 经过点C ,由题意,不可能.……………………11分 (Ⅲ)当t <-5时,点D 在C 下方,P 、Q 都在y 轴右则,此时∠PCQ <∠DCQ <90 °,由题意无解.综上所述,当t =-4,∠PCQ =90 °. ……………………12分第27题备用图yC OAxBQPD。
2016中考数学模拟试卷(带答案)
2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016年中考数学仿真试卷参考答案与试题解析
2016年中考数学仿真试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.在﹣5,0,π,这四个数中,最大的有理数的是()A.﹣5 B.0 C.πD.【考点】实数大小比较.【分析】先找出四个数中的有理数,再比较大小即可.【解答】解:﹣5,0,π,这四个数中,有理数是﹣5,0,∵﹣5<0,∴这四个数中最大的有理数的是0.故选B.2.如图所示的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形的左上角去掉了一个小矩形,故选:C.3.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°【考点】平行线的性质.【分析】先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.4.下列计算正确的是()A.3a﹣2a=1 B.|﹣5|=5 C.=±2 D.2﹣3=﹣6【考点】合并同类项;绝对值;算术平方根;负整数指数幂.【分析】根据合并同类项的法则、算术平方根以及负整数指数幂进行计算即可.【解答】解:A、3a﹣2a=a,故A错误;B、|﹣5|=5,故B正确;C、=2,故C错误;D、2﹣3=,故D错误,故选B.5.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣1【考点】二次根式有意义的条件;分式有意义的条件.【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【解答】解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C7.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6【考点】方差;加权平均数;中位数;众数.【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31和34出现了2次,出现的次数最多,则众数是31和34,故本选项错误;B、把这组数据从小到大排列,最中间的数是34,则中位数是34,故本选项错正确;C、这组数据的平均数是:(31+30+34+35+36+34+31)÷7=33,故本选项错误;D、这组数据的方差是:[2(31﹣33)2+(30﹣33)2+2(34﹣33)2+(35﹣33)2+(36﹣33)2]=,故本选项错误;故选B.8.若在△ABC中,∠BAC的平分线交BC于D,AC=AB+BD,∠C=30°,则∠B的度数为()A.90°B.75°C.60°D.45°【考点】全等三角形的判定与性质;三角形的外角性质;等腰三角形的性质.【分析】利用三角形全等的性质计算.根据已知条件中,两条线段的和等于其中一条线段,可以采用延长短线段或在长线段上截取的方法.综合运用了全等三角形的判定和性质;等腰三角形的性质以及三角形的外角的性质.【解答】解:延长AB至E,使BE=BD,又AC=AB+BD,∴AE=AC,在△ADE和△ADC中,AD=AD,∠EAD=∠CAD,AE=AC,∴△ADE≌△ADC,∴∠E=∠C=30°,∴∠BDE=∠E=30°,∴∠ABD=∠E+∠BDE=60°.故选C.9.从一块半径是4m的圆形铁片上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()A.m B.2m C.4m D.m【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,解得r=1,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以圆锥的高==(m).故选D.10.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个【考点】函数的图象.【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【解答】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x﹣120)×[(50﹣30)÷]=0.4x﹣18;B:(1)当0≤x<200,y B=50,当x>200,y B=50+[(70﹣50)÷](x﹣200)=0.4x﹣30,所以当x≤120时,A方案比B方案便宜20元,故(1)正确;当x≥200时,B方案比A方案便宜12元,故(2)正确;当y=60时,A:60=0.4x﹣18,∴x=195,B:60=0.4x﹣30,∴x=225,故(3)正确;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故(4)错误;故选:C.二、填空题(本题有6个小题,每小题3分,共18分)11.“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物.2.5微米即0.0000025米,用科学记数法表示0.0000025为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.12.如果a的倒数是﹣1,那么a2016等于1.【考点】倒数.【分析】根据倒数的定义先求出a的值,再代入要求的式子即可得出答案.【解答】解:∵﹣1的倒数是﹣1,∴a=﹣1,∴a2016=(﹣1)2016=1;故答案为:1.13.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故答案为:(2,﹣2).14.已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是AF=AC或∠AFE=∠ABC.(写出一个即可)【考点】相似三角形的判定.【分析】根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.【解答】解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC或∠AFE=∠ABC.15.如图,小聪同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为45.【考点】解直角三角形的应用-方向角问题.【分析】根据题意得到PB=AB=90,根据正弦的定义计算即可.【解答】解:由题意得,∠PAB=30°,∠PBC=60°,∴∠APB=∠PBC﹣∠PAB=30°,∴∠PAB=∠APB,∴PB=AB=90,∴PC=AB×sin∠PBC=45米.故答案为:45.16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.【考点】规律型:图形的变化类.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.三、解答题(本题有9个小题,共72分,解答写出必要的演算步骤、文字说明或证明过程)17.解不等式,并把它们的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式得到x<2和x≥﹣1,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示其解集.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.18.先化简,再求值:(x+1)2+y(y﹣2x)+2x2y÷(﹣xy),其中x﹣y=.【考点】整式的混合运算—化简求值.【分析】首先根据完全平方公式和单项式与多项式相乘的法则进行计算,再合并同类项,得出化简结果,然后代入x﹣y的值计算即可.【解答】解:(x+1)2+y(y﹣2x)+2x2y÷(﹣xy)=x2+2x+1+y2﹣2xy﹣2x=x2+1+y2﹣2xy=(x﹣y)2+1把x﹣y=代入得:原式=()2+1=4.19.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?【考点】分式方程的应用.【分析】将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可.【解答】解:设乙单独整理x分钟完工,根据题意得:=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.21.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;表示男生,用a、b表示女生,列表得:8种,∴P(一男一女)==.22.如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,点E为BC的中点,连接DE、AE,AE交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为2,求AD•AC的值.【考点】切线的判定.【分析】(1)先连接OD和BD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)根据射影定理即可求得.【解答】(1)证明:连接OD,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)解:∵在RT△ABC中,BD⊥AC.∴AB2=AD•AC,∵AB=2,∴AD•AC=4.23.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.24.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E是AB 上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.【考点】正方形的性质;全等三角形的判定与性质;直角梯形.【分析】探究:求出CE=CF,DF=BE,∠ECG=∠FCG,证△ECG≌△FCG,推出EG=GF 即可;应用:过C作CH⊥AD于H,旋转△BCE到△CHM,推出四边形ABCH是正方形,CD平分∠ECM,由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理求出AE=8,设BE=x,根据BC=AB=x+8=AH 得出x+8=6+10﹣x,求出x=4即可.【解答】探究:证明:∵根据旋转的性质得:△EBC≌△FDC,∴CE=CF,DF=BE,∵CG平分∠ECF,∴∠ECG=∠FCG,在△ECG和△FCG中∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=DG+DF=DG+BE,∴EG=BE+GD;应用:解:如图3,过C作CH⊥AD于H,旋转△BCE到△CHM,则∠A=∠B=∠CHA=90°,∵AB=BC,∴四边形ABCH是正方形,∵∠DCE=45°,AH=BC,∴∠DCH+∠ECB=90°﹣45°=45°,∵由已知证明知:△EBC≌△MHC,∴∠ECB=∠MCH,∴∠DCH+∠MCH=45°,∴CD平分∠ECM,∴由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,设BE=x,则BC=AB=x+8=AH,即x+8=6+10﹣x,x=4,BE=4,AB=4+8=12,BC=AB=12,∴梯形ABCD的面积是×(6+12)×12=108.25.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD 折叠,使点B恰好落在OA边上的点E处,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求AE的长;(2)求经过O、D、C三点的抛物线的解析式;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据翻折的性质,可得CE与CB的关系,DE与BD的关系,根据勾股定理,OE的长,根据线段的和差,可得答案;(2)根据勾股定理,可得m的值,可得D点坐标,根据待定系数法,可得答案;(3)①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)∵CE=CB=OA=5,CO=AB=4,∴在Rt△COE中,OE==3,∵OE=3,∴AE=5﹣3=2,(2)在Rt△ADE中,设AD=m,则DE=BD=4﹣m,由勾股定理,得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,如图1,,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16∴M(2,16);②当EM为对角线,即四边形ECMN是平行四边形时,如图2,,则线段EM的中点,横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,如图3,,m+(﹣2)=﹣5+0,解得m=﹣3,当m=﹣3时,y=×(﹣3)2+×(﹣3)=﹣4,即M(﹣3,﹣4).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣3,﹣4).。
2016年中考数学模拟试卷及答案(精选两套)2016年中考数学模拟试卷及答案(精选两套)
图1山东省滕州市初中2016届九年级数学第一次模拟说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则(m-n )2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -12. 已知点A (a ,2013)与点A′(-2014,b )是关于原点O 的对称点,则b a 的值为 A. 1 B. 5 C. 6 D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12, B .15, C .12或15, D .184. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.图2B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上. C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖. D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是A. 0≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为 A. 4 cm B. 23cm C. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+xD. 450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ; ⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④C. ③④⑤D. ②③⑤山东省滕州初中2016届九年级第一次模拟数 学 试 题第Ⅱ卷总分表题号 二 三 四 五 六 总 分 总分人 复查人 得分第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分)只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则得 分 评卷人21____y y (填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 18. 已知101=-aa ,则a a 1+的值是______________.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.(1)计算题:20)1(3112)3(----+--; (2)解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标; (2)求点Q (x ,y )在函数y =-x +5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A .(1)画出△11OB A ,直接写出点1A ,1B 的坐标; (2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?BE五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.六、综合题(本大题满分14分)24. 如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDBCDDCBCBAB二、填空题(本大题共6个小题,每小题3分,满分18分)13. -3 14. 0或2 15. 1.6 16. > 17. 52 18. 14± D.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.计算题:(1)原式=1)13(321--+-(注:每项1分) ………………3分=13--. ……………………………………………………4分(2)解:整理原方程,得:0142=--x x . ……………………………………1分 解这个方程:……(方法不唯一,此略).52,5221-=+=∴x x ……………………………………………………4分得 分 评卷人20. 解:画树状图得:(1)点Q 所有可能的坐标有: (1,2),(1,3),(1,4) (2,1),(2,3),(2,4) (3,1),(3,2),(3,4) (4,1),(4,2),(4,3) 共12种. …………4分(2)∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),……………………………………………5分∴点(x ,y )在函数y=﹣x+5的图象上的概率为:=. …………………7分(3)∵x 、y 满足xy >6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x 、y 满足xy <6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分 公平的游戏规则为:若x 、y 满足6≥xy 则小明胜,若x 、y 满足xy <6则小红胜. …………………………………………12分四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21.(1)如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.(2)由)2,1(B 可得:5=OB , ……………4分弧1BB =πππ255241241=⨯⨯=⋅r …6分 (3)由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分B 1A 1OBA则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分 22.解:(1)设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分 又要尽可能的让利给顾客,则涨价应最少,所以52=x (舍去).∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分(2)设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W (0≤x ≤12) 即定价为:16+3=19(元)时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W (0≤z ≤6)即定价为:16-1=15(元)时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分五、几何题(本大题满分12分) 23.(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB , ∴∠CBD=∠CDB , ∵OB=OD ,∴∠OBD=∠ODB ,∴∠ODC=∠ABC=90°,即OD ⊥CD , ……………3分∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分(2)如图,∠DOE=∠ODB+∠OBD=2∠DBE ,…………………6分由(1)得:OD ⊥EC 于点D ,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分(3)作OF ⊥DB 于点F,连接AD ,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD ,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA =120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题(本大题满分14分)24.解:(1)∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分∵825)23(212232122--=--=x x x y ,∴顶点D 的坐标为)825,23(-. …………………………………………………5分(2)△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC . …6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B . ………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分 ∴△ABC 是直角三角形. ……………………………………………………9分(3)作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分当0=y 时,021241=+-x ,则4124=x ,……13分∴)0,4124(M . …………………………………14分济南市2016年初三年级学业水平考试数学全真模拟试卷3第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.)1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,106.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426-9.已知2x y 30-++=(),则x+y 的值为( )A.0B.-1C.1D.510.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°,∠C =50°,那么sin ∠AEB 的值为( )A.231C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.1513.2012-2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( )A.60°B.90°C.120°D.180°15.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3 cm的速度运动,到达B点时运动同时停止.设△AMN 的面积为y(cm2),运动时间为x(s),则下列图象中能大致反映y与x之间的函数关系的是第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”).18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm ,底面半径为3 cm ,则它的侧面展开图的面积为________cm 2(结果保留π).21.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩(2)解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?25.(本小题满分8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(本小题满分9分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P 为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA 交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.27.(本小题满分9分)已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0).(1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C16.4 17.假18.2 19.π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2,在数轴上表示为:23.(1)证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.(2)证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天. (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C类女生人数:20×25%-3=2(人);D类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12.26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP.又∵∠B=∠C=90°, ∴△ABP ∽△PCE ,2AB BP 2x 1m,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+∴当mx 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°, ∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC , ∴∠GAP=∠APB , ∴∠GAP=∠APG , ∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x ,在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①. 2221m1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC . ∵AG ∥PC ,AG=PC ,∴四边形APCG 为平行四边形,∴AP=CG .易证△ABP≌GNC,∴CN=BP=x.过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C 的坐标为(4,3).设符合条件的点P 存在,令P (a ,0). 当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F.∵∠BPC=90°, ∴∠BPO+∠CPF=90°. 又∵∠OBP+∠BPO=90°, ∴∠OBP=∠CPF, ∴Rt △BOP ∽Rt △PFC ,BO OP 1t,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0, 解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0), ∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t ,则AP=2t ,AQ=at.∵∠BAD=∠PAQ , ∴当APAQAP AQAB AD AD AB ==或时,两三角形相似.at 2t AB 5AD 333aa ,53====∴==,或∴存在a 使两三角形相似且a a 53==28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()()∵抛物线经过(0,2), 22a 042,3∴--=()解得:a=16,22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时,解得:x=2或x=6,∴A (2,0),B (6,0).(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2, BC AP CP BC ∴=∴+== ∴AP+CP的最小值为(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。
2016广东中考数学模拟试卷(有答案和评分标准)
数学模拟试卷(一) 第1页 共4页 2016年广东中考模拟考试数 学 科 试 卷说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.计算 23+- 的结果是( )A .1B .1-C . 5D . 5-2.下列计算正确的是( )A .3362x x x +=B .236x x x ⋅=C .632x x x ÷=D .326()x x -= 3.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这六次数学测验成绩的众数和中位数分别为( )A .91,88B .85,88C .85,85D .85,84.54.下列交通标志图案是轴对称图形的是( )A .B .C .D .5.一条排水管的截面如图所示,已知排水管的截面圆半径OB =5,截面圆圆心O 到水面的距离OC 是3,则水面宽AB 是( )A .3B .4C .5D .86.二元一次方程组⎩⎨⎧=-=+521y x y x 的解是( ) A .⎩⎨⎧=-=21y x B .⎩⎨⎧-==12y x C .⎩⎨⎧==12y x D .⎩⎨⎧=-=32y x 7.如图,AB 是⊙O 的直径,若10=AB ,6=BC ,则CAB ∠cos 的值为( ) A . 54 B .34 C .53 D .43第5题图 C O A B A B CO 第7题图数学模拟试卷(一) 第2页 共4页 8.要使式子x -2有意义,则x 的取值范围是( )A .0>xB .2-≥xC .2≤xD .2≥x9.如图,已知 ABCD 的周长是20cm ,若△ADC 的周长是16cm ,则对角线AC 的长为( )A .6 cmB .4 cmC .3 cmD .无法计算10.在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:=-1232x .12.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).13.如图3所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为BC 边的中点,菱形ABCD 的周长为24 cm ,则OE 的长等于 cm .14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为___________(结果保留π)15.若点A(a ,6)在一次函数y =-5x+1的图象上,则a 的值为_________.16.如下图,用同样大小的黑色棋子按如图所示的规律摆放:则第5个图形有________颗黑色棋子,第________图形有2013颗黑色棋子。
深圳市2016年中考数学模拟试卷含答案解析
(解析版)2016年中考数学模拟试卷广东省深圳市一、选择题12012 ).﹣的相反数是(C2012BDA2012..﹣..﹣2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(AC BD....3 2012330“””“,深圳市民中心附近几座地标,日年.地球一小时月提高节能,倡导低碳性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了千瓦时,将)4334 10DC3310A3.3103.4 B3.410 ×.×××...42016 ?).(深圳模拟)下列运算正确的是(336222 =4a4aa=7aB 3a3aA﹣+﹣..2333232D3aaC3a4a==12a4a?÷).(.5 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)83036282550数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.中位数.众数.平均数68001200元,后来由于该商品积压,商店准备打折元,.某种商品的进价为出售时标价为5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折.折折折...28/ 17451=20°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2 )么∠的度数是(A30 B25 C20 D15 °°°°....8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4 )停止后,指针所指区域内的数字之和为的概率是(CDA B ....9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>,得﹣.由.由>>,得Cabab Daba2b2﹣,得﹣,得>﹣><.由﹣>.由2bxca0y=axb0c10②①;()的图象如图所示,有下列四个结论:+≠+.已知二次函数<24ac0abc00b ④③)>,其中正确的个数有(;﹣ +﹣><;A1 B2 C3 D4 个个个...个.11 ).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;A1 B2 C3 D4 个个..个..个12ABCDAB=BDEFABADAE=DFBF.连接.点、中,上,且分别在、.如图,在菱形DEGCGBDH .下列结论:与相交于点,连接与相交于点28/ 22 CG=BG=6GFSAEDDFBAF=2DF③②①.;;,则若△≌△BCDG四边形)其中正确的结论(D ABC ①②③②③①②①③..只有.只有.只有二、填空题:2 2a8=13..分解因式:﹣14OxAByCD为第一象、轴的正半轴于点.如图,以原点两点,交为圆心的圆交,轴于ODAB=20OCD= °°.限内⊙上的一点,若∠,则∠15m的值.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,.是16AOBCAOBC对,反比例函数.如图,在平面直角坐标系中有一正方形经过正方形ABCk 24.角线的交点,半径为(﹣)的圆内切于△,则的值为三、解答题28/ 317..计算:18.解方程:19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数,它四个类别进行了抽样调查(每位同学仅选一项)分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1 合计n=1 m=;()表中,2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校20OABOA,与大圆为圆心的两个同心圆中,,且与小圆相交于点.如图,在以经过圆心BACDCOACB ..小圆的切线,且相交于点与大圆相交于点平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.)试判断线段(、、3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.()若,21ABCDADBCB=90AB=7AD=9BC=12°,在线段∥,中,已知,∠,.如图,在梯形,BCEDEEFDEABF .,交直线⊥上任取一点,连接于点,作1FBCE 的长;(重合,求)若点与2FABAF=CECE 的长.()若点在线段上,且,求28/ 414022销售后获利情况如表一家蔬菜公司收购到某种绿色蔬菜准备加工后进行销售,吨,.所示:精加工后销售销售方式粗加工后销售20001000每吨获利(元)155受但两种加工不能同时进行.已知该公司的加工能力是:每天能精加工吨,吨或粗加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.140112吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求(天刚好加工完2)如果先进行精加工,然后进行粗加工.(Wm①之间的函数关系式;元与精加工的蔬菜吨数试求出销售利润14010②则加工这批蔬菜若要求在不超过吨蔬菜全部加工完后进行销售,天的时间内,将最多获得多少利润?此时如何分配加工时间?20C0By23y=x1bxcxA,.如图,已知知抛物线)和点轴交于点++,与,与轴交于点((3).﹣1)求抛物线的解析式;(yG G121H0,(点轴的左侧)(,﹣在).问在抛物线上是否存在点(()如图己知点),G=SS的坐标;若不存在,请说明理由;?若存在,求出点使得GHAGHC△△OC0FE32Dx2的中点,连)如图(),抛物线上点),在(轴上的正投影为点是(﹣,PEBDFBDDFPEPF=的长.∠,求线段接,为线段上的一点,若∠28/ 52016年广东省深圳市中考数学模拟试卷参考答案与试题解析一、选择题12012 )的相反数是(.﹣C2012DA2012B...﹣.﹣相反数.【考点】根据相反数的定义,只有符号不同的两个数叫做互为相反数解答.【分析】20122012 .的相反数是【解答】解:﹣D .故选aa即可得出正确答的相反数是﹣【点评】本题考查了相反数的定义,根据相反数的定义:案,是基础题,比较简单.2 ).由七个大小相同的正方体组成的几何体如图所示,则它的左视图是(B CDA ....简单组合体的三视图.【考点】找到从左面看所得到的图形即可.【分析】3 个正方形,第二列有一个正方形.解:从左面看可得到第一列为【解答】D .故选本题考查了三视图的知识,左视图是从物体的左面看得到的视图.【点评】28/ 63 2012330““””,深圳市民中心附近几座地标月提高节能,倡导低碳地球一小时,日年.性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相33900339002个有效数字)(用科学记数法表示为(结果保留比减少了)千瓦时,将4334 10 D10C 3310A3.3103.4 B3.4×××.×...科学记数法与有效数字.【考点】n1a10nna10的,≤【分析】科学记数法的表示形式为|×为整数.确定|的形式,其中<339005n=51=4 .有值是易错点,由于﹣位,所以可以确定0 的数字起,后面所有的数字都是有效数字.有效数字的计算方法是:从左边第一个不是a10 的多少次方无关.有关,与用科学记数法表示的数的有效数字只与前面的44103.433900=3.3910.≈【解答】解:××D .故选【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.4 ).下列运算正确的是(336222 4aa=7aB 3a3aA=4a﹣.+﹣.2332323 =4aC3a4aa=12a3a D?÷)..(整式的混合运算.【考点】A 、原式合并同类项得到结果,即可作出判断;【分析】B 、原式合并同类项得到结果,即可作出判断;C 、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D 、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断.3 =7aA,错误;、原式【解答】解:2 aB=,正确;、原式﹣5 C=12a,错误;、原式336 =9aD=4aa,错误,÷、原式B故选此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.【点评】/ 75 .某商场试销一种新款衬衫,一周内销信情况如表所示:38 39 40 41 42 43 型号(厘米)8 2550302836数量(件)商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最具有意义的是)(A B C D .方差.平均数.众数.中位数统计量的选择.【考点】根据题意可知最畅销的应为众数,本题得以解决.【分析】解:由题意可知,【解答】最畅销的型号应该是销售量最多的型号,故对商场经理来说最具有意义的是众数,B .故选本题考查统计量的选择,解题的关键是明确题意,找出满足所求问题的条件.【点评】68001200元,后来由于该商品积压,出售时标价为.某种商品的进价为商店准备打折元,5% )销售,但要保证利润率不低于,则至多可打(A6 B7 C8 D9 折..折折..折一元一次不等式的应用.【考点】8001200x5%≥折,根据保持利润率不低于﹣,可列出不等式:×【分析】本题可设打5%800x 的值即可得出打的折数.×,解出8008001200x5%,×≥×﹣【解答】解:设可打折,则有7x.≥解得7折.即最多打B.故选:计算折数时本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,【点评】10.注意要除以1=20745°°,那角的直角三角板的两个顶点放在直尺的对边上.如果∠.如图,把一块含有2)的度数是(么∠28/ 8D15 C20 25A30 B°°°°....平行线的性质.【考点】本题主要利用两直线平行,内错角相等作答.【分析】解:根据题意可知,两直线平行,内错角相等,【解答】1=3,∴∠∠32=45°,+∵∠∠2=451°∠∴∠+ 1=20°,∵∠2=25°.∴∠B.故选:直尺的对边需要注意隐含条件,本题主要考查了两直线平行,内错角相等的性质,【点评】45°的利用.平行,等腰直角三角板的锐角是8.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘4)的概率是(停止后,指针所指区域内的数字之和为B CDA....几何概率.【考点】2即可求出针头扎在阴影区域分别求出两圆中【分析】根据几何概率的定义,所占的面积,内的概率.1222,【解答】解:指针指向()中的概率是,指针指向()中的概率是28/ 9=4 .指针所指区域内的数字之和为的概率是×B .故选【点评】此题考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.两步完成的= 第一步事件的概率与第二步事件的概率的积.事件的概率9 ).下列不等式变形正确的是(AabacbcBab2a2b <﹣>>,得.由.由>,得﹣Cabab Daba2b2 ﹣>,得,得﹣>.由>﹣<﹣.由不等式的性质.【考点】根据不等式的基本性质分别进行判定即可得出答案.【分析】Aabacbcc0A 选项错误;.由,当>解:,不等号的方向改变.故,得<>【解答】Bab2a2bB选项正,得﹣,不等式两边乘以同一个负数,不等号的方向改变,故.由<﹣>确;CababC,不等式两边乘(或除以)同一个负数,不等号的方向改变;故,得﹣.由>﹣>选项错误;Daba2b2D选项,得﹣﹣,不等式两边同时减去一个数,不等号方向不改变,故<.由>错误.B .故选0”“是很特殊的一个数,因此,解答不等式的此题主要考查了不等式的基本性质.【点评】00 ””““的陷阱.不等式的基本性质:存在与否,以防掉进问题时,应密切关注1 )不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2 )不等式两边乘(或除以)同一个正数,不等号的方向不变.(3 )不等式两边乘(或除以)同一个负数,不等号的方向改变.(2bxca0b10y=ax0c②①;.已知二次函数<++)的图象如图所示,有下列四个结论:(≠24ac0abcb00 ④③)>;﹣>;﹣+<,其中正确的个数有(28/ 1043 DBA1 2 C个.个个...个二次函数图象与系数的关系.【考点】0ba0y ①正确;,而对称轴在<轴左侧,即【分析】由抛物线开口向下知道,因此判断<0yc②正确;>轴的交点在正半轴得到,因此可以判断由抛物线与2 04acxb③正确;>由图象与﹣轴有两个交点得到以,因此可以判断cb0x=1y=a④错.﹣,所以判断时,对应的函数值由图象可知当>﹣+0bba0ya①,<同号,即,而对称轴在轴左侧,∴<【解答】解:、∵抛物线开口向下,∴正确;0cy②,正确;>∵抛物线与轴的交点在正半轴,∴2 b04acx③,正确;>轴有两个交点,∴﹣∵图象与0bcx=1y=a④,错误.+∵由图象可知当﹣﹣时,对应的函数值>C.故选本题考查二次函数的字母系数与图象位置之间的关系.【点评】11).已知下列命题:(②①等腰梯形的对角线相等;对角线互相平分的四边形是平行四边形;④③内错角相等.其中假命题有.对角线互相垂直的四边形是菱形;4 C3D BA1 2个.个个.个..命题与定理.【考点】等腰梯形的性质及平行线的性质分别判断后利用平行四边形的判定、菱形的判定、【分析】即可确定正确的选项.①对角线互相平分的四边形是平行四边形,正确,是真命题;【解答】解:28/ 11②等腰梯形的对角线相等,正确,是真命题;③对角线互相垂直的平行四边形是菱形,错误,为假命题;④两直线平行,内错角相等故错误,是假命题.2 个,其中假命题有B .故选【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、菱形的判定、等腰梯形的性质及平行线的性质,难度不大.12ABCDAB=BDEFABADAE=DFBF.连接.点、、上,且.如图,在菱形分别在中,DEGCGBDH .下列结论:相交于点与与,连接相交于点2AF=2DFBG=6GF=CGAEDDFBS ③②①.;;,则若△≌△BCDG四边形)其中正确的结论(A B C D ①②③②③①③①②..只有.只有.只有【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.ABDSASAEDDFB ”①“;【分析】易证△证明△为等边三角形,根据≌△CDGBGE=60=BCDBBGC=DGC=60°②°.因此∠∠∠、、,四点共圆,从而得点证明∠过、CNGDNCCMGBMCBMCDNS=S,,⊥于证明△.点,作≌△⊥于所以CMGNBCDG四边形四边形易求后者的面积.FFPAEP ③点.∥作过点于FPAE=DFDA=13FPBE=16=FGBGBG=6GF .::根据题意有:,即:::,则ABCDAB=AD ①.∵解:为菱形,∴【解答】AB=BDABD 为等边三角形.∵,∴△A=BDF=60 °.∠∴∠AE=DFAD=BD ,又∵,28/ 12AEDDFB ;∴△≌△BGE=BDGDBF=BDGGDF=60=BCD °②,+∠∠∵∠∠∠∠+BGDBCD=180 °,+即∠∠BCDG 四点共圆,∴点、、、BGC=BDC=60DGC=DBC=60 °°.∠,∠∠∴∠BGC=DGC=60 °.∴∠∠CCMGBMCNGDN .过点,作于⊥⊥于CM=CN ,∴,∵CBMCDNHL )≌△∴△,(S=S .∴CMGNBCDG四边形四边形S=2S ,CMG△CMGN四边形CGM=60 °,∵∠CM=CGGM=CG ,,∴2CG S=2S=2CG=CG×.×∴×CMG△CMGN四边形FFPAEP ③点.∥于过点作AF=2FD ,∵FPAE=DFDA=13 ,∴:::AE=DFAB=AD ,,∵BE=2AE ,∴FPBE=16=FGBG ,∴:::BG=6GF .即D .故选28/ 13不规则图形的面平行线分线段成比例、【点评】此题综合考查了全等三角形的判定和性质、积计算方法等知识点,综合性较强,难度较大.二、填空题:2 a2132a2a28=.﹣.分解因式:(﹣+))(提公因式法与公式法的综合运用.【考点】2,再对余下的多项式利用平方差公式继续分解.【分析】先提取公因式28 2a﹣【解答】解:2 =2a4),(﹣2a2a=2).+(﹣)(22a2a).)(+故答案为:﹣(一个多项式有公因式首先提取公【点评】本题考查了用提公因式法和公式法进行因式分解,因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.DCBxAy14O为第一象轴于轴的正半轴于点为圆心的圆交、两点,交.如图,以原点,65DAB=20OCD=O°°.限内⊙,则∠上的一点,若∠圆周角定理;坐标与图形性质.【考点】OCD=DOBDAB=20°∠【分析】根据∠的度数,再利用等腰三角形的性质得出∠,得出∠CDO,进而求出答案.DAB=20DO°,【解答】,∵∠解:连接28/ 14DOB=40°,∴∠40=50COD=90°°°,﹣∴∠CO=DO,∵OCD=CDO,∠∴∠2=65180OCD=50°°°.﹣)÷∴∠(65.故答案为:CDOOCD=是解决∠【点评】此题主要考查了圆周角定理以及等腰三角形的性质,得出∠问题的关键.158 15m.的值是.填在如图各正方形中的四个数之间都有相同的规律,根据这种规律,规律型:数字的变化类.【考点】nabcd,根、【分析】设第、个正方形中的四个数(从左上角开始按逆时针排列)为、nnnn22n2cc=4n ”“,依此规律即可解决问题.的变化规律++据给定的数据找出nn nabcd,【解答】解:设第、个正方形中的四个数(从左上角开始按逆时针排列)为、、nnnn 观察,发现规律:a=0a=2a=4 …,,∵,,312a=2n1 );﹣∴(n b=2b=4b=6 …,∵,,,321b=2n ;∴n d=4d=6d=8 …,,∵,,312d=2n1 );∴(+n c=8240=bdac=22=462=bdcc=44=684=bda …???,﹣﹣,,×﹣×∵﹣═×﹣﹣,32321132312122n2=4n=bcda ?.﹣+∴+nnnn a=2n1=10n=6 .令(﹣),解得:n28/ 152 2=15826c=46.+×+×∴6 158.故答案为:解题的关键是求出正方形中右下角数的变化本题考查了规律型中的数字的变化类,【点评】22c=4n2n”“.本题属于中档题,难度不大,解题的关键是根据给定的数据,找出的规律++n变化规律是关键.AOBC16AOBC对.如图,在平面直角坐标系中有一正方形,反比例函数经过正方形42ABC4k .﹣,则的值为角线的交点,半径为()的圆内切于△三角形的内切圆与内心;待定系数法求反比例函数解析式;正方形的性质.【考点】AD=BD=DO=CDNO=DNHQ=QEHC=CE,进而根据【分析】根据正方形的性质得出,,,42ABCCDDO的长,再利用勾股定﹣,得出)的圆内切于△的长,从而得出半径为(DNk 的值.的长进而得出理得出DDDMAOMDNBON ;作⊥⊥,过点,于点解:设正方形对角线交点为【解答】于点QHEQHQE .设圆心为,连接,切点为、、AOBCAOBC 对角线的交点,∵在正方形中,反比例函数经过正方形AD=BD=DO=CDNO=DNHQ=QEHC=CE ,∴,,,QHACQEBCACB=90 °,⊥,,∠⊥HQEC 是正方形,∴四边形42ABC ,﹣∵半径为()的圆内切于△DO=CD,∴222 HC=QCHQ,∵+222 2=QC2HQ=24,)×(∴﹣22 44=32QC=48,﹣∴(﹣)QC=44,∴﹣28/ 16=22CD=444 ,+(﹣)﹣∴DO=2,∴2222=8NO=DN =DO2,(+∵)2 =82NO,∴2 NO=4,∴NO=4DN,∴×xy=k=4.即:4.故答案为:【点评】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函CDDNNO=4 是解决问题的关键.的长度,进而得出×数解析式,根据已知求出三、解答题17..计算:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【考点】本题需先根据实数运算的步骤和法则分别进行计算,再把所得结果合并即可.【分析】= ,【解答】解:原式=.在解题时要注意运算顺序和公式的综合应用以及结果本题主要考查了实数的运算,【点评】的符号是本题的关键.18.解方程:解分式方程.【考点】28/ 172xx2),两边同时乘最简公分母可把分式+﹣)(【分析】观察方程可得最简公分母是:(方程化为整式方程来解答.2x2x),)(【解答】解:方程两边同乘以(+﹣2 4=x2xx22),()(﹣﹣)+得(+ x=3.解得x=3是原方程的解.经检验:1”“,把分式方程转化为整式方程求解.【点评】()解分式方程的基本思想是转化思想2)解分式方程一定注意要验根.(19”“从文学、艺术、科普和其我最喜爱的课外读物.某中学为了解学生的课外阅读情况,就并根据调查结果制作了尚不完整的频数(每位同学仅选一项),它四个类别进行了抽样调查分布表:频率类别频数(人数)0.42 m 文学0.11 22 艺术n 66 科普28 其他 1合计841n=0.33 m=;)表中,(2 )在这次抽样调查中,最喜爱阅读哪类读物的学生最少?(41200 名学生中最喜爱阅读科普读物的学生有多少人?()根据以上调查,试估计该校频数(率)分布表;用样本估计总体.【考点】1 )首先求出总人数,利用艺术类的频数与频率进而求出答案;【分析】(21 )中所求,即可得出答案;()利用(310.33 即可得出答案.()中所求,利用总数乘以)利用(1220.11=200 ,)由题意可得:÷【解答】解:(m=2000.42=84 ,×则n==0.33 ,840.33 ;故答案为:,28/ 182 )由题意可得:最喜爱阅读艺术类读物的学生最少;(3120012000.33=396 (人).)(×名学生中最喜爱阅读科普读物的学生有:mn 的值是解题关键.,【点评】此题主要考查了频数与频率,正确得出20OABOA,与大圆.如图,在以经过圆心为圆心的两个同心圆中,,且与小圆相交于点BACDCOACB .,且相交于点与大圆相交于点.小圆的切线平分∠1BC 所在直线与小圆的位置关系,并说明理由;()试判断2ACADBC 之间的数量关系,并说明理由.、(、)试判断线段3AB=8BC=10 ,求大圆与小圆围成的圆环的面积.)若,(直线与圆的位置关系;扇形面积的计算.【考点】1OEBCBC是小圆的切线,即与小圆的关系是相切.垂直【分析】()只要证明即可得出2RtOADRtOEBEB=AD,从而得到三者△△≌()利用全等三角形的判定得出,从而得出的关系是前两者的和等于第三者.3 )根据大圆的面积减去小圆的面积即可得到圆环的面积.(1BC 所在直线与小圆相切.【解答】解:()理由如下:OOEBCE ;过圆心⊥作,垂足为ACABO ,∵经过圆心是小圆的切线,OAAC ;∴⊥COACBOEBC ,又∵平分∠⊥,OE=OA ,∴BC 所在直线是小圆的切线.∴28/ 192ACAD=BC .)(+理由如下:OD .连接ACOABCOE ,于点切小圆,于点∵切小圆CE=CA ;∴RtOADRtOEB 中,△∵在△与,RtOADRtOEBHL ),≌(△∴△EB=AD ;∴BC=CEEB ,+∵BC=ACAD .∴+3BAC=90AB=8cmBC=10cm °,,(,)∵∠AC=6cm ;∴BC=ACAD ,∵+AD=BCAC=4cm ,∴﹣2222 ODS=ODOAOA=πππ),﹣﹣∵圆环的面积为:(())(222 =ADODOA,﹣又∵22=16S=4cmππ).∴(①本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,【点评】②所证切线与圆的已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.21ABCDADBCB=90AB=7AD=9BC=12°,在线段.如图,在梯形中,已知,∥,∠,,BCEDEEFDEABF .上任取一点,连接,作⊥,交直线于点28/ 201FBCE 的长;与(重合,求)若点2FABAF=CECE 的长.(上,且)若点,求在线段相似三角形的判定与性质;矩形的判定与性质;梯形.【考点】1ABECBECE ;(【分析】求出)根据题意画出图形,得出矩形,即可求出2DDMBCMABMDAD=BM=9AB=DM=7,⊥是矩形,推出于(,)过,得出四边形作CM=129=3AF=CE=aBF=7aEM=a3BE=12aBFE=DEM,∠﹣,,设,则,求出∠﹣﹣,∠﹣=a B=DMEFBEEMD即可.∠,得出比例式,证△,求出∽△B1F重合时,)当解:(和【解答】EFDE,⊥∵DEBC,∵⊥B=90°,∵∠BCAB,⊥∴DEAB,∥∴ADBC,∵∥ABED是平行四边形,∴四边形AD=EF=9,∴9=3CE=BCEF=12;﹣∴﹣MDMBC2D,⊥(作)过于B=90°,∵∠BCAB,⊥∴DMAB,∥∴ADBC,∵∥ABMD 是矩形,∴四边形9=3CM=12AD=BM=9AB=DM=7,,﹣∴,BE=123EM=aaBF=7AF=CE=aa,﹣﹣﹣设,则,,28/ 21FEC=B=DMB=90 °,∠∵∠∠FEBDEM=90BFEFEB=90 °°,∴∠++∠,∠∠BFE=DEM ,∴∠∠B=DME ,∵∠∠FBEEMD ,∴△∽△= ,∴=,∴a=5a=17 ,,FABAB=7 ,∵点上,在线段AF=CE=17 (舍去),∴CE=5 .即【点评】本题考查了直角梯形性质,矩形的性质和判定,相似三角形的性质和判定等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.22140吨,准备加工后进行销售,.一家蔬菜公司收购到某种绿色蔬菜销售后获利情况如表所示:精加工后销售粗加工后销售销售方式20001000每吨获利(元)515吨,但两种加工不能同时进行.吨或粗加工受已知该公司的加工能力是:每天能精加工季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.112140 吨蔬菜,则公司应安排几天精加工,几天粗加工?)如果要求天刚好加工完(2 )如果先进行精加工,然后进行粗加工.(28/ 22Wm ①之间的函数关系式;试求出销售利润元与精加工的蔬菜吨数10140②吨蔬菜全部加工完后进行销售,则加工这批蔬菜天的时间内,将若要求在不超过最多获得多少利润?此时如何分配加工时间?一次函数的应用.【考点】1=12=140,粗加工吨数精加工吨数粗加工天数本题等量关系为:精加工天数++【分析】(,)列出方程组求解即可.2m①来表示粗加工吨数,)(根据精加工吨数和粗加工吨数的等量关系,用精加工吨数Wm 之间的关系,与在列出mWW ②最大值.根据题意要求先确定并求出的取值范围,然后表示1xy 天进行粗加工,)设应安排解:(天进行精加工,【解答】,根据题意得,解得48 天进行粗加工.答:应安排天进行精加工,2m140m ①)吨,根据题意得:(吨,则粗加工()﹣精加工W=2000m1000140m )(+﹣=1000m140000 ;+10 ②天的时间内将所有蔬菜加工完,∵要求在不超过10 ,+∴≤5 m≤解得:50m,≤∴≤k=10000W=1000m140000,又∵在一次函数中,+>mW 的增大而增大,随∴m=5W=10005140000=145000.时,∴当+×最大55=1,∴精加工天数为÷514015=9.﹣)÷粗加工天数为(14500091元.天进行粗加工,可以获得最多利润为∴安排天进行精加工,28/ 23【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用和一次函数的应用,解题关键在于看清题意,找到正确的等量关系,列出方程式,最后解出答案.2bxcxA1y=x230ByC0,.如图,已知知抛物线,+轴交于点+)和点与(轴交于点,与(3 ).﹣1 )求抛物线的解析式;(21H01G Gy轴的左侧),).),己知点问在抛物线上是否存在点(在,﹣(点()如图(S=SG 的坐标;若不存在,请说明理由;使得?若存在,求出点GHAGHC△△32DxE20FOC 的中点,连),抛物线上点,在是轴上的正投影为点),((﹣)如图(DFPBDEPF=BDFPE 的长.,∠接为线段,求线段上的一点,若∠二次函数综合题.【考点】2bxcxA10ByC01y=x,++)和点与轴交于点轴交于点,与(【分析】()由抛物线,(3 ),利用待定系数法即可求得二次函数的解析式;﹣2GHACGHACGH的解析式,根据交(与)分别从与∥不平行去分析,注意先求得直线点问题即可求得答案,小心不要漏解;3DFPBEFDP,由相似三角形的对)利用待定系数法求得直线∽△的解析式,即可证得△(应边成比例,即可求得答案.1,【解答】解:()由题意得:,解得:22x3 y=x;+﹣∴抛物线的解析式为:2 )解法一:(28/ 24GGmnn=3HGC 不存在.(﹣,设,时,△假设在抛物线上存在点),显然,当n3 ①时,当>﹣S=m S=,﹣+﹣可得+,GHCGHA△△S=S ,∵GHAGHC△△mn1=0 ,+∴+,由,解得:或Gy 轴的左侧,在∵点G);∴(﹣,4n3 ②时,当﹣<﹣≤S=S=m ,﹣﹣﹣可得,GHCGHA△△S=S ,∵GHAGHC△△3mn1=0 ,﹣﹣∴,由,解得:或Gy 轴的左侧,∵点在G14 ).∴,﹣(﹣G14G ).,﹣∴存在点(﹣)或(﹣,解法二:AGHACCGH①①的距离相等,∥时,点如图,当到,点S=S,∴GHAGHC△△AC3y=3x,﹣可得的解析式为ACGHGHy=3x1,∵∥,得的解析式为﹣1G4);∴(﹣,﹣28/ 25GHAC ②②不平行时,,当与如图ACGH 的距离相等,,到直线∵点GHACM).过线段(∴直线的中点,﹣GHy=x1 ,∴直线﹣的解析式为﹣G),(﹣∴,GG14 ).∴存在点)或(﹣,,﹣(﹣3)解法一:(0E2③),(﹣如图,,∵D2,∴的横坐标为﹣D在抛物线上,∵点D23),∴,﹣(﹣OCF中点,∵是0F),(∴,﹣y=xDF,的解析式为:﹣∴直线xQ20),(则它与,轴交于点PDFDFPEPFQBD=QB=QDQDBBPEFPD=FPD=180°,∠,∠++∠+∠∠∠+则,得∠∠PDFEPF=,∠∵∠BPE=DFP,∴∠∠PBEFDP,∽△∴△,∴DP=PB ?,得:DP=BD= PB,+∵PB=,∴PBD 的中点,即是DE ,连接28/ 26BD=PE=RtDBE .∴在△中,解法二:ABDCBDP ′,为等腰梯形,取可知四边形的中点= F=OBPCD′,()+PFCDAB ′,∥∥EF=DF= EF,连接,可知EF=FP=FD ′,即FEPFPD ′′,即△相似△EPF=FPD=FDP ′′′,∠∠即∠EPFEPF ′重合,和∠即∠PP ′重合,即和PBC 中点,为BD=BDE PE=为直角三角形).(△28/ 27直线与二次函数的交点问题以及三角此题考查了待定系数法求二次函数的解析式,【点评】形面积问题的求解等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想、分类讨论思想与方程思想的应用28/ 28。
2016中考数学模拟试题(有答案)
2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。
A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016年中考数学模拟试题汇编专题38:方案设计(含答案)
方案设计一.解答题1.(2016·河北石家庄·一模)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是y1=0.1x+6(x≥0).乙种收费的函数关系式是y2=0.12x(x≥0).(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?第1题【考点】待定系数法求一次函数解析式;一次函数的应用.【专题】优选方案问题;待定系数法.【分析】(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x的取值范围就可以得出选择方式.【解答】解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.【点评】本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.2.(2016·河大附中·一模)(10分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润y元,要求购进空调数量不超过电冰箱数量的2倍,且购进电冰箱少于40台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调k元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案设计一.解答题1.(2016·河北石家庄·一模)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是1=0.1x+6(x≥0).乙种收费的函数关系式是y2=0.12x(x≥0).(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?第1题【考点】待定系数法求一次函数解析式;一次函数的应用.【专题】优选方案问题;待定系数法.【分析】(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x的取值范围就可以得出选择方式.【解答】解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.【点评】本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.2. (2016·河大附中·一模)(10分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润y元,要求购进空调数量不超过电冰箱数量的2倍,且购进电冰箱少于40 台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调k元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案。
答案:3.(本题8分)如图,A 、B 两个单位分别位于一条封闭式街道的两旁,A 、B 两个单位到街道的距离AC =48米、BD =24米,A 、B 两个单位的水平距离CE =96米,现准备修建一座与街道垂直的过街天桥.(1)天桥建在何处才能使由A 到B 的路线最短? (2)天桥建在何处才能使A 、B 到天桥的距离相等?分别在图1、图2中作图说明(不必说明理由)并通过计算确定天桥的具体位置.天桥BED CA天桥BED CA第3题图1 图2答案:解:(1)如答图1,平移B 点至B ’使BB ’=DE ,连接AB ’交CE 于F ,在此处建桥可使由A 到B 的路线最短;此时易知AB ’∥BG ,∴△ACF ∽△BDG ,DGBDCF AC =,设CF=x ,则GD=96-x ,∴xx -=962448,解得x=64,即CF=64米,∴将天桥建在距离C 点64米处,可使由A 到B 的路线最短;3分(2)如答图1,平移B 点至B ’使BB ’=DE ,连接AB ’交CE 于F ,作线段AB ’的中垂线交CE 于P ,在此处建桥可使A 、B 到天桥的距离相等;此时易知AB ’∥BG ,另OP 为AB ’中垂线,∴△ACF ∽△BDG ∽△POF ,CFOFAF PF =,设CP=x ,则PF=CF-x ,由(1)得CF=64,∴PF=64-x ;在Rt △ACF 中,由勾股定理得AF=80,∴FB ’=40,又O 为AB ’中点,∴FO=20,∴64208064=-x ,解得x=39,即CP=39米,∴将天桥建在距离C 点39米处,可使由A 到B 的路线最短.7分(其它如作对称点等构造方法,只要合理即可酌情得分)4.(2016·河南三门峡·一模)(10分)春节期间,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?解:(1)设从甲养殖场调运鸡蛋x公斤,从乙养殖场调运鸡蛋y公斤,根据题意得:,解得:500700 xy=⎧⎨=⎩,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500公斤,700公斤鸡蛋;(2)从甲养殖场调运了x公斤鸡蛋,从乙养殖场调运了(1200﹣x)公斤鸡蛋,根据题意得:800 1200900 xx≤⎧⎨-≤⎩解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300公斤鸡蛋,从乙养殖场调运了900公斤鸡蛋,每天的总运费最省.5. (2016·天津北辰区·一摸)(本小题10分)甲乙两家商场平时以同样的价格出售相同的商品. 春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.设x(单位:元)表示商品原价,y(单位:元)表示购物金额.(Ⅰ)根据题意,填写下表:(单位:元)(Ⅱ)分别就两家商场的让利方式,写出y关于x的函数解析式;(Ⅲ)春节期间,当在同一商场累计购物超过200元时,哪家商场的实际花费少?解:(Ⅰ)(Ⅱ)甲商场:0.8y x=(0x≥);乙商场:02000.760200.x xyx x≤≤⎧=⎨+ >⎩,,,…7分(Ⅲ)∵200x≥,∴由0.80.760x x=+,得600x=.∴当购物金额按原价大于200元而小于600元时,在甲商场购物省钱;当购物金额按原价等于600元时,在两商场购物花钱一样多;当购物金额按原价大于600元时,在乙商场购物省钱.6.(2016·天津南开区·二模)某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.考点:一次方程(组)的应用一元一次不等式的应用答案:见解析试题解析:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.7. (2016·陕西师大附中·模拟) (7分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收费10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通卡消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(本题满分7分)解:(1)选择银卡消费时:10150y x =+,选择普通卡消费时:y=20x .(2)10150y x =+,当x=0时,y=150, 所以点A 的坐标为(0,150);解方程组2010150y x y x =⎧⎨=+⎩得:15300x y =⎧⎨=⎩, 所以点B 的坐标为(15,300);解方程组60010150y y x =⎧⎨=+⎩得:45600x y =⎧⎨=⎩, 所以点C 的坐标为(45,600).(3)由图象可以看出:当0≤x ≤15时,普通卡消费更划算; 当15<x ≤45时,银卡消费更划算; 当x >45时,金卡消费更划算.。