山东省滨州市高考数学一轮复习 62 平行垂直关系提升学案
高三数学高考一轮数学(理)教案:第7章 第4节 垂直关系 Word版含解析
第四节垂直关系[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任意一条直线都垂直,那么称这条直线和这个平面垂直.(2)定理文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直⎭⎪⎬⎪⎫aαbαl⊥al⊥ba∩b=A⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b(1)定义:从一条直线出发的两个半平面所组成的图形叫作二面角.这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的度量——二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直⎭⎬⎫l⊥αlβ⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βlβα∩β=al⊥a⇒l⊥α1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两条直线与一个平面所成的角相等,则这两条直线平行.()(4)若两个平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()[答案](1)×(2)×(3)×(4)×2.(教材改编)设α,β是两个不同的平面,l,m是两条不同的直线,且l α,mβ.()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥mA[∵l⊥β,lα,∴α⊥β(面面垂直的判定定理),故A正确.]3.(·浙江高考)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥nC[∵α∩β=l,∴lβ.∵n⊥β,∴n⊥l.]4.如图7-4-1,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.图7-4-14[∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.]5.边长为a的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________.【导学号:57962336】a[如图所示,取BD的中点O,连接A′O,CO,则∠A′OC是二面角A′BD-C 的平面角.即∠A′OC=90°,又A′O=CO=22a,∴A′C=a22+a22=a,即折叠后AC的长(A′C)为a.]线面垂直的判定与性质如图7-4-2,在三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .图7-4-2(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积. [解] (1)证明:因为AB ⊥平面BCD ,CD 平面BCD ,所以AB ⊥CD .2分又因为CD ⊥BD ,AB ∩BD =B , AB平面ABD ,BD平面ABD ,所以CD ⊥平面ABD .5分(2)由AB ⊥平面BCD ,得AB ⊥BD . 又AB =BD =1,所以S △ABD =12×12=12. 8分因为M 是AD 的中点,所以S △ABM =12S △ABD =14. 根据(1)知,CD ⊥平面ABD , 则三棱锥C -ABM 的高h =CD =1, 故V A -MBC =V C -ABM =13S △ABM ·h =112. 12分[规律方法] 1.证明直线和平面垂直的常用方法: (1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α); (3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β); (4)面面垂直的性质.2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.[变式训练1]如图7-4-3所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC=3AC,PD⊥平面ABC,PD=DB.图7-4-3求证:P A⊥CD.[证明]因为AB为圆O的直径,所以AC⊥CB,在Rt△ABC中,由3AC =BC,得∠ABC=30°. 3分设AD=1,由3AD=DB,得DB=3,BC=23,由余弦定理得CD2=DB2+BC2-2DB·BC cos 30°=3,所以CD2+DB2=BC2,即CD⊥AO. 8分因为PD⊥平面ABC,CD平面ABC,所以PD⊥CD,由PD∩AO=D,得CD⊥平面P AB,又P A平面P AB,所以P A⊥CD. 12分面面垂直的判定与性质H分别为AC,BC的中点.图7-4-4(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.[证明](1)如图所示,连接DG,CD,设CD∩GF=M,连接MH. 1分在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形. 3分则M为CD的中点,又H为BC的中点,所以HM∥BD,由于HM平面FGH,BD⊆/平面FGH,故BD∥平面FGH. 5分(2)连接HE,CE,CD.因为G,H分别为AC,BC的中点,所以GH∥AB. 6分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE. 10分由于CF⊥BC,所以HE⊥BC.又HE,GH平面EGH,HE∩GH=H.所以BC⊥平面EGH.又BC平面BCD,所以平面BCD⊥平面EGH. 12分[规律方法] 1.面面垂直的证明的两种思路:(1)用面面垂直的判定定理,即先证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.2.垂直问题的转化关系:[变式训练2]如图7-4-5,在三棱锥P-ABC中,平面P AB⊥平面ABC,P A⊥PB,M,N分别为AB,P A的中点.图7-4-5(1)求证:PB∥平面MNC;(2)若AC=BC,求证:P A⊥平面MNC.[证明](1)因为M,N分别为AB,P A的中点,所以MN∥PB,2分又因为MN平面MNC,PB⊆/平面MNC,所以PB∥平面MNC. 5分(2)因为P A⊥PB,MN∥PB,所以P A⊥MN.因为AC=BC,AM=BM,所以CM⊥AB. 7分因为平面P AB⊥平面ABC,CM平面ABC,平面P AB∩平面ABC=AB.所以CM⊥平面P AB. 10分因为P A平面P AB,所以CM⊥P A.又MN∩CM=M,所以P A⊥平面MNC. 12分平行与垂直的综合问题(·江苏高考)如图7-4-6,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.图7-4-6求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.[证明](1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1. 3分又因为DE⊆/平面A1C1F,A1C1平面A1C1F,所以直线DE∥平面A1C1F. 5分(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1平面A1B1C1,所以A1A⊥A1C1. 7分又因为A1C1⊥A1B1,A1A平面ABB1A1,A1B1平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D平面ABB1A1,所以A1C1⊥B1D. 10分又因为B1D⊥A1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D平面B1DE,所以平面B1DE⊥平面A1C1F. 12分[规律方法] 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.2.垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.☞角度2平行垂直中探索开放问题(·秦皇岛调研)如图7-4-7(1)所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE 的位置,使A1F⊥CD,如图7-4-7(2)所示.(1)(2)图7-4-7(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?并说明理由.【导学号:57962337】[证明](1)由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,因为DC∩DA1=D,所以DE⊥平面A1DC. 2分由于A1F平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE平面BCDE,所以A1F⊥BE. 5分(2)线段A1B上存在点Q,使A1C⊥平面DEQ. 6分理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,则PQ∥BC.又因为DE∥BC,则DE∥PQ.所以平面DEQ即为平面DEQP. 9分由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ. 12分[规律方法] 1.对命题条件探索性的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.2.平行(垂直)中点的位置探索性问题:一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.线面角的求法与应用ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.图7-4-8(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.[解](1)证明:延长AD,BE,CF相交于一点K,如图所示. 1分因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,3分因此,BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD. 5分(2)因为BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.8分在Rt△BFD中,BF=3,DF=32,得cos∠BDF=217,所以直线BD与平面ACFD所成角的余弦值为217. 12分[规律方法] 1.利用综合法求空间角的步骤:(1)找:根据图形找出相关的线面角或二面角.(2)证:证明找出的角即为所求的角.(3)算:根据题目中的数据,通过解三角形求出所求角.2.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.[变式训练3]如图7-4-9,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.图7-4-9(1)求PB和平面P AD所成的角的大小;(2)证明:AE⊥平面PCD.[解](1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,AB平面ABCD,故P A⊥AB.又AB⊥AD,P A∩AD=A,从而AB⊥平面P AD,2分故PB在平面P AD内的射影为P A,从而∠APB 为PB 和平面P AD 所成的角.在Rt △P AB 中,AB =P A ,故∠APB =45°.∴PB 和平面P AD 所成的角的大小为45°.5分 (2)证明:在四棱锥P -ABCD 中,∵P A ⊥底面ABCD ,CD 平面ABCD ,故CD ⊥P A .由条件CD ⊥AC ,P A ∩AC =A ,∴CD ⊥平面P AC .7分 又AE 平面P AC ,∴AE ⊥CD .由P A =AB =BC ,∠ABC =60°,可得AC =P A .∵E 是PC 的中点,∴AE ⊥PC .10分 又PC ∩CD =C ,故AE ⊥平面PCD .12分[思想与方法]1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任一直线都垂直⇒a ⊥α;(2)判定定理1: ⎭⎬⎫m ,n α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α;(3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面垂直的性质:α⊥β,α∩β=l ,a α,a ⊥l ⇒a ⊥β.2.证明面面垂直的方法.(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a α,a ⊥β⇒α⊥β.3.转化思想:垂直关系的转化[易错与防范]1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.。
高中数学垂直关系图解教案
高中数学垂直关系图解教案
目标:学生能够理解和应用垂直关系的相关知识,解决与垂直关系相关的问题。
教学内容:垂直关系
教学步骤:
1.引入:通过展示一幅包含垂直关系的图形,引出垂直关系的概念。
让学生观察图形并讨
论其中的垂直关系。
2.讲解:介绍垂直角、垂直平分线、垂直线段等概念,并通过示意图和实例进行讲解。
帮
助学生理解这些概念在几何问题中的应用。
3.实例演练:提供一些垂直关系的练习题,让学生尝试解答并讨论解题思路。
引导他们通
过观察图形特点、运用几何知识来解决问题。
4.拓展应用:引导学生思考垂直关系在日常生活中的应用,并设计相关问题进行讨论。
鼓
励他们灵活运用垂直关系的知识解决实际问题。
5.总结:通过回顾学习内容和解题思路,总结垂直关系的重要性和应用方法。
同时鼓励学
生在今后的学习中注重观察图形特点,灵活使用垂直关系的知识。
扩展阅读:推荐一些相关的数学教材和参考书籍,帮助学生深入了解垂直关系的更多知识。
注:教师应根据实际教学情况和学生水平调整教学内容和步骤,确保教学效果。
高三数学一轮复习 8-4空间中的平行关系学案
授课时间 年 月 日 第 周 星期 编号 课题 空间中的平行关系课型复习学习目标掌握空间中的各种平行关系会应用平行的判定定理和性质定理解题,培养学生的空间想象能力学习重点 平行中的四个定理 学习难点 利用平行定理求综合问题导学设计一.学情调查,情景导入1、直线与直线平行定义:2、直线与平面平行定义:3、直线与平面平行的判定定理:4、直线与平面平行的性质定理:5、直线与平面所成的角:6、平面与平面平行的判定定理:7、平面与平面平行的性质定理:8、二面角:二.问题展示,合作探究探究类型一:共线、共点和共面问题例1、如图所示,平面ABD 平面BCD =直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。
试证明三直线BD 、MQ 、NP 共点。
探究类型二:直线与平面平行的判定和性质例2、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。
探究类型三:平面与平面平行的判定和性质例3、P 是△ABC 所在平面外一点,A′、B′、C′分别是△PBC 、△PCA 、△PAB 的重心。
求证:平面A′B′C′∥平面ABC 。
三. 达标训练,巩固提升1.若直线a 不平行于平面α,则下列结论成立的是( )A. α内的所有直线均与直线a 异面B. α内不存在与直线a 平行的直线C. 直线a 与平面α有公共点D. α内的直线均与a 平行 2.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是 A.过A 有且只有一个平面平行于a 、b B.过A 至少有一个平面平行于a 、b C.过A 有无数个平面平行于a 、bD.过A 且平行a 、b 的平面可能不存在3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定4.如图,四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB//面MNP 的图形的序号是__________.(写出所有符合要求的图形的序号)QPMNFEDC B A5.平面α//平面β,βα⊂⊂b a ,,则直线a 、b 的位置关系是( ) A 、平行 B 、相交 C 、异面 D 、平行或异面 6.在正方体ABCD -1111D C B A 中,M 、N 、P 分别是11111,,D C C B CC 的中点,则平面MNP 与平面BD A 1的位置关系__________.7.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =_______.8.如果一条直线和一个平面平行,那么这条直线只和这个平面内的( ) A .一条直线不相交 B .两条相交直线不相交 C .无数条直线不相交 D .任意一条直线都不相交 四.知识梳理,归纳总结这一节课我们学到了什么?五、预习指导,新课链接空间中的垂直关系。
高中数学两平面垂直教案
高中数学两平面垂直教案
教学内容:高中数学
教学目标:
1. 理解两平面垂直概念;
2. 掌握两平面垂直的判定方法;
3. 能够应用两平面垂直的性质解决实际问题。
教学重点和难点:
重点:两平面垂直的判定方法;
难点:应用两平面垂直性质解决实际问题。
教学准备:
1. 教材《高中数学》;
2. 教学投影仪;
3. 教具:黑板、粉笔、尺子、直角三角尺。
教学流程:
一、引入
通过一个实际问题引入两平面垂直概念,引导学生思考两平面垂直的条件。
二、讲解
1. 通过示意图和几何常识解释两平面垂直的定义;
2. 分别介绍两平面垂直的判定方法:法向量垂直法和两平面交线平行法。
三、练习
1. 给学生几道简单的题目,让他们应用两平面垂直的判定方法来判断两平面是否垂直;
2. 给学生提供应用题,让他们应用两平面垂直性质解决实际问题。
四、拓展
引导学生思考两平面垂直概念在现实生活中的应用,并提出相关问题进行讨论。
五、总结
对本节课所学内容进行总结,强调两平面垂直的重要性和应用价值。
六、作业
布置相关练习题目,巩固学生对两平面垂直概念的理解和掌握。
教学反思:
通过本节课的教学,学生应该能够清楚地理解两平面垂直的概念、掌握两平面垂直的判定方法,并能够灵活应用这些知识解决实际问题。
在教学中,可以通过更多的实例和练习来加深学生的理解,并引导他们思考两平面垂直的应用场景,以提高他们的综合能力。
6.2垂直关系的性质2
A.SG⊥平面 EFG C.GF⊥平面 SEF
B.SD⊥平面 EFG D.GD⊥平面 SEF
第25页
高考调研 ·新课标 ·数学(必修二) Nhomakorabea答案 A
第26页
高考调研 ·新课标 ·数学(必修二)
3.下列五个正方体图形中,如图,l 是正方体的一条对角线, 点 M、N、P 分别为其所在棱的中点,能得出 l⊥面 MNP 的图形 的序号是__________(写出所有符合要求的图形序号).
第12页
高考调研 ·新课标 ·数学(必修二)
探究 2 (1)计算也是论证的一种方法; (2)勾股定理、余弦定理是常用的工具.
第13页
高考调研 ·新课标 ·数学(必修二)
◎思考题 2 如图所示,在长方体 ABCD-A1B1C1D1 中,A1A =AD=a,AB=2a,E 为棱 C1D1 的中点.
求证:DE⊥平面 BCE.
高考调研 ·新课标 ·数学(必修二)
要点 1 直线与平面垂直的定义 如果直线 l 与平面 α 内的任意一条直线都垂直,我们就说直 线 l 与平面 α 互相垂直,记作 l⊥α(如图甲).
甲
乙
第1页
高考调研 ·新课标 ·数学(必修二)
要点 2 直线与平面垂直的判定定理 (1)文字语言:一条直线与一个平面内的两条相交直线都垂 直,则该直线与此平面垂直. (2)图形表示:图乙. (3)符号表示:m⊂α,n⊂α,m∩n=A,l⊥m,l⊥n⇒l⊥ α.
由(1)知 AC⊥HD′,又 AC⊥BD,BD∩HD′=H,所以 AC⊥
平面 BHD′,于是 AC⊥OD′.
又由 OD′⊥OH,AC∩OH=O,
所以 OD′⊥平面 ABC.
又由AECF =DDOH得 FE=92.
2020届一轮复习人教B版 立体几何中的平行与垂直的证明 学案
考查角度1立体几何中的平行与垂直的证明分类透析一证明平行关系如图,在菱形ABCD中,∠BAD=π,ED⊥平面ABCD,EF∥DB,M3AD=2.是线段AE的中点,DE=EF=12(1)证明:DM∥平面CEF.ABCDEF的表面积.连接AC,设AC,BD的交点为O,连接MO,可证平面MOD∥从而DM∥平面CEF;(2)先判断各个面的形状,找出垂直关系,,再计算表面积.连接AC,设AC与BD的交点为O,连接MO.EF,DO⊄平面CEF,∴DO∥平面CEF.∵M是线段AE的中点,O为AC的中点,∴MO是△ACE的中位线,∴MO∥EC.又MO⊄平面CEF,∴MO∥平面CEF.又MO∩DO=O,∴平面MDO∥平面CEF.又DM⊂平面MDO,∴DM∥平面CEF.(2)连接FO,由菱形ABCD可得AC⊥BD.∵ED⊥平面ABCD,AC⊂平面ABCD,∴ED⊥AC.又BD∩ED=D,∴AC⊥平面EDBF.又OF⊂平面EDBF,∴AC⊥OF.∵EF∥DO,且EF=DO,ED⊥DO,ED=DO,∴四边形EDOF为正方形,ED=DO=OF=FE=2.在Rt△ADE和Rt△CDE中,∵AD=CD=4,DE=2,∴AE=EC=2√5,∴S△ADE=S△CDE=4.在Rt△AOF和Rt△COF中,∵AO=CO=2√3,OF=2,AF=CF=4,∴△AEF和△CEF是直角三角形,∴S△AEF=S△CEF=4.∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,S ABCD=8√3.又AF=CF=AB=CB=4,FB=2√2,∴S△AFB=S△CFB=2√7.∴多面体ABCDEF的表面积为4×2+4×2+2√7×2+8√3=16+4√7+8√3.证明线面平行的常用方法:①利用线面平行的判定定理,直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两条直线平行.②利用面面平行的性质,即两个平面平行,在其中一个平面内的任意一条直线平行于另一个平面.分类透析二证明垂直关系如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,为菱形,∠BAD=60°.(1)证明:PB⊥BC.(2)若平面PAD⊥底面ABCD,E为线段PD上的点,且PE=2ED,求三的体积.设AD的中点为O,通过证线面垂直得到线线垂直;(2),寻找三棱锥P-ABE的体积与三棱锥B-PAD的体积间的关系,然后求出三棱锥B-PAD的体积,最后得到三棱锥P-ABE的体积.解析 (1)如图,设AD的中点为O,连接PO,BO.,∴PO⊥AD.∵四边形ABCD为菱形,∠BAD=60°,∴OB⊥AD,OP∩OB=O,∴AD⊥平面POB.又AD∥BC,∴BC⊥平面POB.∵PB⊂平面POB,∴PB⊥BC.V B-PAD.(2)连接BD,由题知V P-ABE=V B-PAE=23∵平面PAD⊥底面ABCD,∴OP,OA,OB两两垂直且OP=OB=√3.则V B-PAD =13×12×2×√3×√3=1,故V P-ABE =2V B-PAD =23.有关空间中垂直关系的证明:主要用到线线垂直、线,再结合题意进行推理或证明完成,有些题目需要添加一些辅助线.分类透析三 平行关系和垂直关系的综合应用如图,在三棱锥P-ABC 中,AB ⊥平面PAC ,∠APC=90°,E 是AB ,M 是CE 的中点,点N 在PB 上,且4PN=PB.证明:(1)平面PCE ⊥平面PAB ; ∥平面PAC.先证明直线PC ⊥平面PAB ,再证平面PCE ⊥平面PAB ;(2)设AE Q ,连接MQ ,NQ ,证明平面MNQ ∥平面PAC ,从而MN ∥平面∵AB ⊥平面PAC ,PC ⊂平面PAC , PC.∵∠APC=90°,∴AP ⊥PC.又AP ⊂平面PAB ,AB ⊂平面PAB ,AP ∩AB=A , ∴PC ⊥平面PAB.∵PC ⊂平面PCE , ∴平面PCE ⊥平面PAB.(2)取AE 的中点Q ,连接NQ ,MQ. ∵M 是CE 的中点,∴MQ ∥AC. ∵PB=4PN ,AB=4AQ ,∴QN ∥AP.又AP ∩AC=A ,AP ⊂平面APC ,AC ⊂平面APC ,QN ∩QM=Q ,QN ⊂平面MNQ ,QM ⊂平面MNQ ,∴平面MNQ ∥平面PAC.∵MN ⊂平面MNQ ,∴MN ∥平面PAC.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB=2,BE=√3.(1)证明:平面ACD ⊥平面ADE.(2)记AC=x ,V (x )表示三棱锥A-CBE 的体积,求V (x )的最大值.要证平面ACD ⊥平面ADE ,只需证明DE ⊥平面ADC ,DC ⊥BC ,BC ⊥AC ,从而得证;(2)先利用体积公式求出V (x x 的解析式,再利用不等式求出最值.∵四边形DCBE 为平行四边形,BE ,BC ∥DE.∵DC ⊥平面ABC ,BC ⊂平面ABC , ∴DC ⊥BC.∵AB 是圆O 的直径, ∴BC ⊥AC.又DC ∩AC=C , ∴BC ⊥平面ADC. ∵DE ∥BC ,∴DE ⊥平面ADC. 又∵DE ⊂平面ADE ,∴平面ACD ⊥平面ADE.(2)在Rt△ABC 中,∵BC=√AB 2-AC 2=√4-x 2(0<x<2),∴S △ABC =12AC ·BC=12x √4-x 2,又BE=√3, ∴V (x )=V E-ABC =13S △ABC ·BE=√36x ·√4-x 2(0<x<2).若V (x )取得最大值,则x √4-x 2=√x 2(4-x 2)取得最大值.∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x=√2时,“=”成立,故V (x )的最大值为√33.立体几何中最值问题的求解策略主要有:(1)转化为函解有些立体几何的最值问题可先引入线参数或角参数,再建立关于这些变量的函数关系,转化为函数的最值问题来解决.(2)利用重要不等式求最值.1.(2018年全国Ⅱ卷,文19改编)如图,在三棱锥P-ABC 中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC.(2)若点M 在棱BC 上,且MC=2MB ,求V C-POM ∶V P-ABMO .因为AP=CP=AC=4,O 为AC 的中点, 所以OP ⊥AC ,且OP=2√3.如图,连接OB ,因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2.由OP 2+OB 2=PB 2知,OP ⊥OB.由OP ⊥OB ,OP ⊥AC ,OB ∩AC=O 知,PO ⊥平面ABC. (2)作CH ⊥OM ,垂足为H.又由(1)可得OP ⊥CH ,所以CH ⊥平面POM. 故CH 的长为点C 到平面POM 的距离. 由题设可知OC=12AC=2,CM=23BC=4√23,∠ACB=45°, 所以OM=2√53,CH=OC ·MC ·sin∠ACB OM =4√55. 所以V C-POM =13S △COM ×PO=13×12×2√53×4√55×PO=49PO , V P-ABMO =13×(12×2√2×2√2-12×2√53×4√55)×PO=89PO , 所以V C-POM ∶V P-ABMO =1∶2.2.(2018年全国Ⅲ卷,文19改编)如图,矩形ABCD 所在平面与半圆弧CD⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点. (1)证明:CM ⊥平面AMD.(2)设P 是AM 的中点,求证:MC ∥平面PDB.∵平面ABCD⊥半圆面CMD,CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD⊥CM.又M是半圆弧CD⏜上异于C,D的点,∴CM⊥MD.又AD∩MD=D,∴CM⊥平面AMD.(2)连接AC与BD交于点O,连接PO.在矩形ABCD中,O是AC的中点,P是AM的中点,∴OP∥MC.∵OP⊆平面PDB,MC⊄平面PDB,∴MC∥平面PDB.3.(2017年全国Ⅰ卷,文18改编)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PCD⊥平面PAD.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为83,求AB 的长度.由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.AB∥CD,故AP⊥CD.因为AP∩PD=P,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.(2)在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,AB∩AD=A,可得PE⊥平面ABCD.设AB=x,则由已知可得AD=√2x,PE=√22x.故四棱锥P-ABCD的体积V P-ABCD=13AB·AD·PE=13x3.由题设得13x3=83,故x=2.从而AB=2.1.(2018年湖北省八校高三第二次联考测试)如图,在三棱锥P-ABC 中,PA ⊥AB ,PA=AB=BC=4,∠ABC=90°,PC=4√3,D 为线段AC 的中点,E 是线段PC 上一动点.(1)当DE ⊥AC 时,求证:PA ∥平面EDB.(2)当△BDE 的面积最小时,求三棱锥E-BCD 的体积.在Rt△ABC 中,AC=4√2.在△PAC 中,由PA 2+AC 2=PC 2知,PA ⊥AC , ∵DE ⊥AC ,∴PA ∥DE.又PA ⊄平面EDB ,∴PA ∥平面EDB. (2)在等腰直角△ABC 中, 由D 为AC 的中点知,DB ⊥AC.∵PA ⊥AC ,PA ⊥AB ,AB ∩AC=A ,∴PA ⊥平面ABC. ∵DB ⊂平面ABC ,∴PA ⊥DB.又DB ⊥AC ,PA ∩AC=A ,∴DB ⊥平面PAC. ∵DE ⊂平面PAC ,∴DE ⊥DB , 即△EBD 为直角三角形,∴当DE 最小时,△BDE 的面积最小,过点D 作PC 的垂线,当E 为垂足时,DE 最小,为2√63, 此时,EC=√(2√2)2-(2√63)2=4√33,∴V E-BCD =13×S △BDE ×EC=13×12×2√2×2√63×4√33=169.2.(2018年辽宁大连高三上学期期末)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AB=BC.证明: (1)BC 1∥平面A 1CD.(2)1EC ⊥平面ACC 1A 1.如图,连接AC 1,交A 1C 于点O ,连接DO ,则O 是AC 1的中点.因为D 是AB 的中点,所以OD ∥BC 1. 因为OD ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD.(2)取AC 的中点F ,连接EO ,OF ,FB ,因为O 是AC 1的中点,所以OF ∥AA 1且OF=12AA 1.显然BE ∥AA 1,且BE=12AA 1,所以OF ∥BE 且OF=BE.则四边形BEOF 是平行四边形,所以EO ∥BF.因为AB=BC ,所以BF ⊥AC.又BF ⊥CC 1,AC ∩CC 1=C , 所以直线BF ⊥平面ACC 1A 1.因为EO ∥BF ,所以EO ⊥平面ACC 1A 1.因为EO ⊂平面A 1EC ,所以平面A 1EC ⊥平面ACC 1A 1.3.(四川省德阳市2018届高三二诊考试)如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠DAB=60°,PD ⊥平面ABCD ,PD=AD=2,点E 、F 分别为AB 、PD 的中点.(1)求证:直线AF ∥平面PEC ; (2)求点A 到平面PEC 的距离.取PC 的中点Q ,连接EQ ,FQ ,由题意知,FQ ∥DC 且FQ=12CD ,AE ∥CD 且AE=12CD ,故AE ∥FQ 且AE=FQ ,所以四边形AEQF 为平行四边形. 所以AF ∥EQ.又EQ ⊂平面PEC ,AF ⊄平面PEC , 所以AF ∥平面PEC.(2)连接AC ,设点A 到平面PEC 的距离为d. 由题意知在△EBC 中,EC=√EB 2+BC 2-2EB ·BC ·cos∠EBC =√1+4+2×1×2×12=√7,在△PDE 中,PE=√PD 2+DE 2=√7,在△PDC 中,PC=√PD 2+CD 2=2√2,故EQ ⊥PC ,EQ=AF=√5,S △PEC =12×2√2×√5=√10,S △AEC =12×1×√3=√32,所以由V A-PEC =V P-AEC ,得13×√10·d=13×√32×2,解得d=√3010.4.(山东省枣庄市2018届高三第二次模拟考试)在四棱锥S-ABCD 中,底面ABCD 为矩形,平面SAB ⊥平面ABCD ,平面SAD ⊥平面ABCD ,且SA=2AD=3AB.(1)证明:SA ⊥平面ABCD ;(2)若E 为SC 的中点,三棱锥E-BCD 的体积为89,求四棱锥S-ABCD 外接球的表面积.由底面ABCD 为矩形,得BC ⊥AB ,SAB ⊥平面ABCD ,平面SAB ∩平面ABCD=AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,所以BC ⊥SA.同理可得CD ⊥SA. 又BC ∩CD=C ,BC ⊂平面ABCD ,CD ⊂平面ABCD , 所以SA ⊥平面ABCD.(2)设SA=6a ,则AB=2a ,AD=3a.V E-BCD =13×S △BCD ×h=13×(12×BC ×CD)×(12SA)=13×(12×2a ×3a)×(3a )=3a 3.又V E-BCD =89,所以3a 3=89,解得a=23.四棱锥S-ABCD 的外接球是以AB ,AD ,AS 为棱的长方体的外接球,设其半径为R ,则2R=√AB 2+AD 2+AS 2=7a=143,即R=73,所以四棱锥S-ABCD 外接球的表面积为4πR 2=196π9.。
高考数学(理)一轮复习考点突破学案:《直线、平面垂直的判定与性质》
第5讲 直线、平面垂直的判定与性质[最新考纲]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形垂直关系的简单命题.知 识 梳 理1.直线与平面垂直(1)定义:若直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a ⊂α,b ⊂α,l ⊥a ,l ⊥b ,a ∩b =P ⇒l ⊥α.(3)性质定理:垂直于同一个平面的两条直线平行.即:a ⊥α,b ⊥α⇒a ∥b .2.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a ⊂α,a ⊥β⇒α⊥β.(3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.即:α⊥β,a ⊂α,α∩β=b ,a ⊥b ⇒a ⊥β.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2. 4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.辨 析 感 悟1.对线面垂直的理解(1)直线a ,b ,c ;若a ⊥b ,b ⊥c ,则a ∥c .(×)(2)直线l 与平面α内无数条直线都垂直,则l ⊥α.(×)(3)(教材练习改编)设m,n是两条不同的直线,α,β是两个不同的平面,若m∥n,m⊥α,则n⊥α.(√)(4)(教材习题改编)设l为直线,α,β是两个不同的平面,若α⊥β,l∥α,则l⊥β.(×) 2.对面面垂直的理解(5)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(×)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)[感悟·提升]三个防范一是注意在空间中垂直于同一直线的两条直线不一定平行,还有可能异面、相交等,如(1);二是注意使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”,如(2);三是判断线面关系时最容易漏掉线在面内的情况,如(6).考点一直线与平面垂直的判定和性质【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA =AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.学生用书第118页规律方法三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E 为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.证明过B作CD的垂线交CD于F,则BF=AD=2,EF=AB-DE=1,FC=2.在Rt△BEF中,BE= 3.在Rt△CFB中,BC= 6.在△BEC中,因为BE2+BC2=9=EC2,故BE⊥BC.由BB1⊥平面ABCD,得BE⊥BB1,又BB1∩BC=B,所以BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.证明∵ABC-A1B1C1是棱柱,且AB=BC=AA1=BB1,∴四边形BCC1B1是菱形,∴B1C⊥BC1.由AA1⊥平面ABC,AA1∥BB1,得BB1⊥平面ABC.∵AB⊂平面ABC,∴BB1⊥AB,又∵AB=BC,且AC=2BC,∴AB⊥BC,而BB1∩BC=B,BB1,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AB⊥B1C,而AB∩BC1=B,AB,BC1⊂平面ABC1.∴B1C⊥平面ABC1,而B1C⊂平面B1CD,∴平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.证明由长方体的性质可知A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=B1C21+MC21=2,同理BM=BC2+CM2=2,又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M,因为BM⊂平面ABM,所以平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题【例3】如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N 分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.审题路线(1)取PA的中点H⇒证明四边形DCEH是平行四边形⇒CE∥DH⇒根据线面平行的判定定理可证.(2)证明AB⊥EF⇒证明AB⊥FG⇒证明AB⊥平面EFG⇒证明MN⊥平面EFG⇒得到结论.证明 (1)如图,取PA 的中点H ,连接EH ,DH .因为E 为PB 的中点,所以EH ∥AB ,且EH =12AB . 又AB ∥CD ,且CD =12AB , 所以EH 綉CD .所以四边形DCEH 是平行四边形.所以CE ∥DH .又DH ⊂平面PAD ,CE ⊄平面PAD ,所以CE ∥平面PAD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA .又AB ⊥PA ,且EF ,PA 共面,所以AB ⊥EF .同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG ,因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点,所以MN ∥DC .又AB ∥DC ,所以MN ∥AB ,因此MN ⊥平面EFG .又MN ⊂平面EMN ,所以平面EFG ⊥平面EMN .学生用书第119页规律方法 依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】 如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(2)连接OG并延长交AC于M,连接QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC,又O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC.所以平面QMO∥平面PBC.因为QG⊂平面QMO,所以QG∥平面PBC.考点四线面角、二面角的求法【例4】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA =AB=BC,E是PC的中点.(1)求PB和平面PAD所成的角的大小;(2)证明AE⊥平面PCD;(3)求二面角A-PD-C的正弦值.审题路线(1)先找出PB和平面PAD所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角.(1)解在四棱锥P-ABCD中,因PA⊥底面ABCD,AB⊂平面ABCD,故PA⊥AB.又AB⊥AD,PA∩CD=A,从而AB⊥平面PAD,故PB 在平面PAD 内的射影为PA ,从而∠APB 为PB 和平面PAD 所成的角.在Rt △PAB 中,AB =PA ,故∠APB =45°.所以PB 和平面PAD 所成的角的大小为45°.(2)证明 在四棱锥P -ABCD 中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD ⊥PA .由条件CD ⊥AC ,PA ∩AC =A ,∴CD ⊥平面PAC .又AE ⊂平面PAC ,∴AE ⊥CD .由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .又PC ∩CD =C ,综上得AE ⊥平面PCD .(3)解 过点E 作EM ⊥PD ,垂足为M ,连接AM ,如图所示.由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM ⊥PD .因此∠AME 是二面角A -PD -C 的平面角.由已知,可得∠CAD =30°.设AC =a ,可得PA =a ,AD =233a ,PD =213a ,AE =22a . 在Rt △ADP 中,∵AM ⊥PD ,∴AM ·PD =PA ·AD ,则AM =PA ·AD PD =a ·233a 213a =277a . 在Rt △AEM 中,sin ∠AME =AE AM =144. 所以二面角A -PD -C 的正弦值为144. 规律方法 (1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.【训练4】 在正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为A.23B.33C.23 D.63解析 如图,连接BD 交AC 于O ,连接D 1O ,由于BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1所成的角.易知∠DD 1O 即为所求.设正方体的棱长为1,则DD 1=1,DO =22,D 1O=62,∴cos ∠DD 1O =DD 1D 1O =26=63.∴BB 1与平面ACD 1所成角的余弦值为63.答案 D1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破7——求解立体几何中的探索性问题【典例】 (2012·北京卷) 如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.(1)求证:DE ∥平面A 1CB ;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.学生用书第120页突破1翻折后:DE ∥BC,DE⊥A1D,DE⊥CD.突破2:要证A1F⊥BE,转化为证A1F⊥平面BCDE.突破3:由A1D=CD,可想到取A1C的中点P,则DP⊥A1C,进而可得A1B的中点Q为所求点.(1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,又A1D∩DE=D,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误. 【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AD =CD =12AB =2,点E 为AC 中点,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2.(1)求证:DA ⊥BC ;(2)在CD 上找一点F ,使AD ∥平面EFB .(1)证明 在图1中,可得AC =BC =22,从而AC 2+BC 2=AB 2,∴AC ⊥BC ,∵平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴BC ⊥平面ADC ,又AD ⊂平面ADC , ∴BC ⊥DA .(2)解 取CD 的中点F ,连接EF ,BF , 在△ACD 中,E ,F 分别为AC ,DC 的中点, ∴EF 为△ACD 的中位线, ∴AD ∥EF ,又EF⊂平面EFB,AD⊄平面EFB,∴AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、选择题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b ⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.答案 A2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是( ).A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD.若m∥α,n∥β,m⊥n,则α⊥β解析与α,β两垂直平面的交线垂直的直线m,可与α平行或相交,故A错;对B,存在n∥α情况,故B错;对D;存在α∥β情况,故D错;由n⊥α,n⊥β,可知α∥β,又m⊥β,所以m⊥α,故C正确.答案 C3.(2013·新课标全国Ⅱ卷)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l ⊥m,l⊥n,l⊄α,l⊄β,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析假设α∥β,由m⊥平面α,n⊥平面β,则m∥n,这与已知m,n为异面直线矛盾,那么α与β相交,设交线为l1,则l1⊥m,l1⊥n,在直线m上任取一点作n1平行于n,那么l1和l都垂直于直线m与n1所确定的平面,所以l1∥l.答案 D4.(2014·深圳调研)如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是( ).A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,所以选C.答案 C5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是( ).A.①④B.②④C.②③D.③④解析如图,由题意,β∩γ=l,∴l⊂γ,由α⊥γ,α∩γ=m,且l⊥m,∴l⊥α,即②正确;由β∩γ=l,∴l⊂β,由l⊥α,得α⊥β,即④正确;而①③条件不充分,不能判断.答案 B二、填空题6.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).解析 ∵PC 在底面ABCD 上的射影为AC ,且AC ⊥BD ,∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD ,而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD . 答案 DM ⊥PC (或BM ⊥PC )7.已知平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为π4和π6,过A ,B 分别作两平面交线的垂线,垂足为A ′,B ′,则AB ∶A ′B ′=________.解析 连接AB ′和A ′B ,设AB =a ,可得AB 与平面α所成的角为∠BAB ′=π4,在Rt △BAB ′中,有AB ′=22a ,同理可得AB 与平面β所成的角为∠ABA ′=π6,所以A ′A =12a ,因此在Rt △AA ′B ′中,A ′B ′=⎝ ⎛⎭⎪⎫22a 2-⎝ ⎛⎭⎪⎫12a 2=12a ,所以AB ∶A ′B ′=a ∶12a =2∶1. 答案 2∶18.设α,β是空间两个不同的平面,m ,n 是平面α及β外的两条不同直线.从“①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).解析 逐一判断.若①②③成立,则m 与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确. 答案 ①③④⇒②(或②③④⇒①) 三、解答题9.如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明(1)因为平面PAD∩平面ABCD=AD.又平面PAD⊥平面ABCD,且PA⊥AD.所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,且四边形ABED为平行四边形.所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD,从而CD⊥PD,且CD⊂平面PCD,又E,F分别是CD和CP的中点,所以EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,∴CD⊥平面BEF.所以平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.(1)证明由直四棱柱,得BB1∥DD1,又∵BB1=DD1,∴BB1D1D是平行四边形,∴B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.(2)证明∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC.又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D.而MD⊂平面BB1D,∴MD⊥AC.(3)解当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D.证明如下:取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.∵N是DC的中点,BD=BC,∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.又可证得O是NN1的中点,∴BM∥ON且BM=ON,即BMON是平行四边形.∴BN∥OM.∴OM⊥平面CC1D1D.∵OM⊂平面DMC1,∴平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、选择题1.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( ).A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部解析 由BC 1⊥AC ,又BA ⊥AC ,则AC ⊥平面ABC 1,因此平面ABC ⊥平面ABC 1,因此C 1在底面ABC 上的射影H 在直线AB 上.答案 A2.(2014·北京东城区期末)如图,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( ).A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四面体A ′-BCD 的体积为13解析 取BD 的中点O ,连接A ′O ,OC ,∵A ′B =A ′D ,∴A ′O ⊥BD ,又平面A ′BD ⊥平面BCD .平面A ′BD ∩平面BCD =BD ,∴A ′O ⊥平面BCD ,∵CD ⊥BD ,∴OC 不垂直于BD .假设A ′C ⊥BD ,又A ′C ∩A ′O =A ′,∴BD ⊥平面A ′OC ,∴BD ⊥OC 与OC 不垂直于BD 矛盾,∴A ′C 不垂直于BD ,A 错误.∵CD ⊥BD ,平面A ′BD ⊥平面BCD ,∴CD ⊥平面A ′BD ,∴CD ⊥A ′D ,∴A ′C =2,∵A ′B =1,BC =BD 2+CD 2=3,∴A ′B 2+A ′C 2=BC 2,A ′B ⊥A ′C ,B 正确.∠CA ′D 为直线CA ′与平面A ′BD 所成的角,∠CA ′D =45°,C 错误.V A ′-BCD =13S △A ′BD ·CD =16,D 错误,故选B. 答案 B 二、填空题3.(2013·河南师大附中二模)如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析 由PA ⊥平面ABC ,AE ⊂平面ABC ,得PA ⊥AE ,又由正六边形的性质得AE ⊥AB ,PA ∩AB =A ,得AE ⊥平面PAB ,又PB ⊂平面PAB ,∴AE ⊥PB ,①正确;又平面PAD ⊥平面ABC ,∴平面ABC ⊥平面PBC 不成立,②错;由正六边形的性质得BC ∥AD ,又AD ⊂平面PAD ,∴BC ∥平面PAD ,∴直线BC ∥平面PAE 也不成立,③错;在Rt △PAD 中,PA =AD =2AB ,∴∠PDA =45°,∴④正确. 答案 ①④ 三、解答题4.如图,在四棱锥S -ABCD 中,底面ABCD 为矩形,SA ⊥平面ABCD ,二面角S -CD -A 的平面角为45°,M 为AB 的中点,N 为SC 的中点.(1)证明:MN ∥平面SAD ; (2)证明:平面SMC ⊥平面SCD ;(3)记CD AD=λ,求实数λ的值,使得直线SM 与平面SCD 所成的角为30°. (1)证明 如图,取SD 的中点E ,连接AE ,NE ,则NE =12CD =AM ,NE ∥CD ∥AM ,∴四边形AMNE 为平行四边形, ∴MN ∥AE .∵MN ⊄平面SAD ,AE ⊂平面SAD ,∴MN ∥平面SAD . (2)证明 ∵SA ⊥平面ABCD , ∴SA ⊥CD .∵底面ABCD 为矩形, ∴AD ⊥CD . 又SA ∩AD =A , ∴CD ⊥平面SAD ,∴CD ⊥SD ,∴∠SDA 即为二面角S -CD -A 的平面角,即∠SDA =45°,∴△SAD 为等腰直角三角形,∴AE ⊥SD .∵CD ⊥平面SAD ,∴CD ⊥AE ,又SD ∩CD =D ,∴AE ⊥平面SCD . ∵MN ∥AE ,∴MN ⊥平面SCD ,又MN ⊂平面SMC , ∴平面SMC ⊥平面SCD .(3)解 ∵CD AD=λ,设AD =SA =a ,则CD =λa .由(2)知MN ⊥平面SCD ,∴SN 即为SM 在平面SCD 内的射影, ∴∠MSN 即为直线SM 与平面SCD 所成的角,即∠MSN =30°. 在Rt △SAM 中,SM =a 2+⎝⎛⎭⎪⎫λa 22,而MN =AE =22a ,∴在Rt △SNM 中,由sin ∠MSN =MN SN 得12=22a a 2+⎝⎛⎭⎪⎫λa 22,解得λ=2,∴当λ=2时,直线SM 与平面SCD 所成的角为30°.基础回扣练——空间几何体及点、线、面之间的位置关系(建议用时:90分钟)一、选择题1.(2014·中山模拟)一个几何体的正视图和侧视图如图所示,则这个几何体的俯视图不可能是( ).解析∵该几何体的正视图和侧视图都是正方形,∴其可能为正方体或底面直径与高相等的圆柱或底面是等腰直角三角形且其腰长等于高的直三棱柱,但不可能是一个底面矩形长与宽不相等的长方体.∴选D.答案 D2.(2013·豫西五校联考)如图是一个无盖的正方体盒子展开后的平面图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC的值为( ).A.30° B.45°C.60° D.90°解析还原正方体,如图所示,连接AB,BC,AC,可得△ABC是正三角形,则∠ABC=60°.答案 C3.(2013·浙江五校联盟联考)关于直线l,m及平面α,β,下列命题中正确的是( ).A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ∥α,则l ∥mC .若l ⊥α,l ∥β,则α⊥βD .若l ∥α,m ⊥l ,则m ⊥α 答案 C4.若直线m ⊂平面α,则条件甲:直线l ∥α是条件乙:l ∥m 的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 若l ∥α,m ⊂α,不一定有l ∥m ;若l ∥m ,m ⊂α,则l ⊂α或l ∥α,因而甲乙,乙甲. 答案 D5.(2014·揭阳二模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图所示,则该几何体的体积为( ).A .7 B.223 C.476D.233解析 依题意可知该几何体的直观图如图所示,其体积为23-2×13×12×1×1×1=233.答案 D6.(2013·温州二模)下列命题正确的是( ).A .若平面α不平行于平面β,则β内不存在直线平行于平面αB .若平面α不垂直于平面β,则β内不存在直线垂直于平面αC .若直线l 不平行于平面α,则α内不存在直线平行于直线lD .若直线l 不垂直于平面α,则α内不存在直线垂直于直线l 答案 B7.(2014·潍坊模拟)设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ).A .m ∥α,n ∥β,且α∥β,则m ∥nB .m ⊥α,n ⊥β,且α⊥β,则m ⊥nC .m ⊥α,n ⊂β,m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β解析 A 中的直线m ,n 也有可能异面,所以不正确.B 正确.C 中α,β不一定垂直,错误.D 中当m ,n 相交时,结论成立,当m ,n 不相交时,结论不成立.所以选B. 答案 B8.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为 ( ).A .48B .64C .80D .120解析 据三视图知,该几何体是一个正四棱锥(底面边长为8 cm),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5 cm.∴此几何体的侧面积是S =4S △PAB =4×12×8×5=80 (cm 2).答案 C9.(2013·广州二模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是A .12πB .24πC .32πD .48π解析 该几何体的直观图如图所示,它是有一条侧棱垂直于底面的四棱锥,其中底面ABCD 是边长为4的正方形,高为CC 1=4,该几何体的所有顶点在同一球面上,则球的直径为AC 1=43=2R ,所以球的半径为R =23,所以球的表面积是4πR 2=4π×(23)2=48π.答案 D10.(2013·山东卷)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为A.5π12B.π3C.π4D.π6解析 如图,O 为底面ABC 的中心,连接PO ,由题意知PO 为直三棱柱的高,∠PAO 为PA 与平面ABC 所成的角,S △ABC =12×3×3×sin 60°=334.∴=S △ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1,∴tan ∠OAP =OPOA=3,又0<∠OAP <π2,∴∠OAP =π3.答案 B 二、填空题11.(2014·苏锡常镇四市二调)设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:①若α∥β,m ⊂β,n ⊂α,则m ∥n ;②若α∥β,m ⊥β,n ∥α,则m ⊥n ;③若α⊥β,m ⊥α,n ∥β,则m ∥n ;④若α⊥β,m ⊥α,n ⊥β,则m ⊥n .上面命题中,所有真命题的序号为________.解析 ①只要画出两个平行平面,可以发现分别在两个平面内的直线是可以异面的,即m 与n 可以异面,不一定平行;③满足条件的两条直线m 和n 也可以相交或异面,不一定平行. 答案 ②④12.(2013·深圳二调)某机器零件的俯视图是直径为24 mm 的圆(包括圆心),正视图和侧视图完全相同,如图所示,则该机器零件的体积是________mm 3(结果保留π).解析 依题意,该机器零件可视为是从一个圆柱中挖去一个圆锥,因此该机器零件的体积为π×122×24-13×π×122×12=2 880π(mm 3).答案 2 880π13.正六棱锥P -ABCDEF 中,G 为PB 的中点,设三棱锥D -GAC 的体积为V 1,三棱锥P -GAC 体积为V 2,则V 1∶V 2=________.解析 设棱锥的高为h ,V 1=V D -GAC =V G -ADC =13S △ADC ·12h ,V 2=V P -GAC =12V P -ABC =V G -ABC =13S △ABC ·h2.又S △ADC ∶S △ABC =2∶1,故V 1∶V 2=2∶1. 答案 2∶114.(2014·皖南八校第三次联考)点E ,F ,G 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,BC ,B 1C 1的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形; ②过点F ,D 1,G 的截面是正方形; ③点P 在直线FG 上运动时,总有AP ⊥DE ;④点Q 在直线BC 1上运动时,三棱锥A -D 1QC 的体积是定值;⑤点M 是正方体的平面A 1B 1C 1D 1内的到点D 和C 1距离相等的点,则点M 的轨迹是一条线段. 解析 对于①,三棱锥A -BCC 1的四个面都是直角三角形,故①为假命题;对于②,截面为矩形FGD 1D ,易知其边长不等,故②为假命题;③易证DE ⊥平面AFG ,又AP ⊂平面AFG ,故DE ⊥AP ,故③为真命题;④由于BC 1∥平面ACD 1,故三棱锥Q -ACD 1的高为定值,即点Q 到平面ACD 1的距离为定值,而底面积S △ACD 1也为定值,故三棱锥体积VA -D 1QC =VQ -ACD 1为定值,故④为真命题;⑤到D ,C 1距离相等的点的轨迹为平面A 1BCD 1(中垂面),又点M 在平面A 1B 1C 1D 1中,故点M 的轨迹为线段A 1D 1,故⑤为真命题. 答案 ③④⑤ 三、解答题15.(2014·济南一模)在如图的多面体中,AE ⊥底面BEFC ,AD ∥EF ∥BC ,BE =AD =EF =12BC ,G 是BC 的中点.(1)求证:AB ∥平面DEG ; (2)求证:EG ⊥平面BDF .证明 (1)∵AD ∥EF ,EF ∥BC ,∴AD ∥BC . 又∵BC =2AD ,G 是BC 的中点,∴AD 綉BG , ∴四边形ADGB 是平行四边形,∴AB ∥DG . ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴AB ∥平面DEG .(2)连接GF ,四边形ADFE 是矩形, ∵DF ∥AE ,AE ⊥底面BEFC ,∴DF ⊥平面BCFE ,EG ⊂平面BCFE ,∴DF ⊥EG . ∵EF 綉BG ,EF =BE , ∴四边形BGFE 为菱形, ∴BF ⊥EG ,又BF ∩DF =F ,BF ⊂平面BFD ,DF ⊂平面BFD , ∴EG ⊥平面BDF .16.(2014·成都一模)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,△ABF 是等边三角形,棱EF ∥BC ,且EF =12BC .(1)求证:EO ∥面ABF ;(2)若EF =EO ,证明:平面EFO ⊥平面ABE .证明 (1)取AB 的中点M ,连接FM ,OM .∵O 为矩形ABCD 的对角线的交点, ∴OM ∥BC ,且OM =12BC ,又EF ∥BC ,且EF =12BC ,∴OM =EF ,且OM ∥EF ,∴四边形EFMO 为平行四边形,∴EO ∥FM , 又∵FM ⊂平面ABF ,EO ⊄平面ABF ,∴EO ∥平面ABF . (2)由(1)知四边形EFMO 为平行四边形,又∵EF =EO ,∴四边形EFMO 为菱形,连接EM ,则有FO ⊥EM , 又∵△ABF 是等边三角形,且M 为AB 中点, ∴FM ⊥AB ,易知MO ⊥AB ,且MO ∩MF =M , ∴AB ⊥面EFMO ,∴AB ⊥FO .∵AB ∩EM =M ,∴FO ⊥平面ABE . 又∵FO ⊂平面EFO ,∴平面EFO ⊥平面ABE .17.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .证明 (1)如图,在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF ∥平面PCD . (2)连接BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形. 因为F 是AD 的中点,所以BF ⊥AD . 因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面BEF , 所以平面BEF ⊥平面PAD .18.如图1,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图2所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .(1)证明 在等边△ABC 中,AD =AE , 在折叠后的图形中,仍有AD =AE ,AB =AC , 因此AD AB =AEAC,从而DE ∥BC .因为DE ⊄平面BCF ,BC ⊂平面BCF , 所以DE ∥平面BCF .(2)证明 在折叠前的图形中,因为△ABC 为等边三角形,BF =CF ,所以AF ⊥BC ,则在折叠后的图形中,AF ⊥BF ,AF ⊥CF ,又BF =CF =12,BC =22.,所以BC 2=BF 2+CF 2,所以 BF ⊥CF .又BF ∩AF =F ,BF ⊂平面ABF ,AF ⊂平面ABF , 所以CF ⊥平面ABF .(3)解 由(1)知,平面DEG ∥平面BCF , 由(2)知AF ⊥BF ,AF ⊥CF , 又BF ∩CF =F ,所以AF ⊥平面BCF , 所以AF ⊥平面DEG ,即GF ⊥平面DEG . 在折叠前的图形中,AB =1,BF =CF =12,AF =32. 由AD =23知AD AB =23,又DG ∥BF ,所以DG BF =AG AF =AD AB =23,所以DG =EG =23×12=13,AG =23×32=33,所以FG =AF -AG =36.故V 三棱锥F -DEG =V 三棱锥E -DFG =13×12DG ·FG ·GE =16·⎝ ⎛⎭⎪⎫132·36=3324.。
《垂直与平行》教案设计
《垂直与平行》教案设计【教案设计】一、教学目标1. 知识目标:通过本节课的学习,学生能够理解垂直和平行的概念,并能够区分它们。
2. 能力目标:学生能够通过实际练习,灵活运用垂直和平行的概念,解决相关问题。
3. 情感目标:培养学生观察、思考和解决问题的兴趣,增强他们对数学的积极态度。
二、教学重难点1. 教学重点:让学生掌握垂直和平行的定义及其相互关系,能够应用到实际问题中。
2. 教学难点:引导学生理解垂直和平行的概念,并能够从图形中判断出垂直和平行的关系。
三、教学过程1. 导入(5分钟)教师出示两个垂直线和两个平行线的图像,让学生观察并思考它们的特点。
引导学生讨论并总结垂直和平行的概念。
2. 概念讲解(10分钟)通过幻灯片或黑板写出垂直和平行的定义,并做出图示说明。
引导学生理解垂直和平行的概念,并与已知的图像进行对比。
3. 实例分析与讨论(15分钟)教师出示几个图形,要求学生判断其中是否存在垂直或平行的线段,并进行解释。
学生可以结合定义和图形特点来判断,并能够互相交流讨论。
4. 练习巩固(15分钟)教师发放练习题,让学生独立完成。
练习题包括判断垂直或平行的线段以及应用垂直和平行概念解决实际问题。
学生完成后,教师进行讲解和订正。
5. 拓展应用(10分钟)教师出示一些日常生活中的图像,如建筑物、道路、交通标志等,要求学生找出其中垂直和平行的线段,并解释其特点和意义。
6. 归纳总结(5分钟)教师引导学生回顾本节课所学的垂直和平行的概念,并做简要总结。
学生可以自己用自己的话表达出来,教师进行点评和补充。
7. 实践应用(15分钟)教师将学生分成小组,要求他们通过观察周围环境,找出垂直和平行的线段,并解释其特点和作用。
学生通过实际操作和讨论,进一步加深对垂直和平行的理解。
四、教学反思本节课通过实际的图像让学生理解和区分垂直和平行的概念,并通过具体的练习和应用题让学生加深对垂直和平行的理解和应用能力。
同时,通过生活化的拓展应用和实践操作,培养了学生的观察和思考能力。
《平行与垂直》第三课时教学设计一等奖
《平行与垂直》第三课时教学设计一等奖《《平行与垂直》第三课时教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《平行与垂直》第三课时教学设计一等奖一、【教学目标】1.知识技能(1).了解平行线与垂线的性质。
(2).利用平行线与垂线的性质解决生活中的问题。
2.过程与方法技能(1)通过让学生经历画、量、比、想的过程,了解点到直线间垂直线段最短的性质,培养学生的观察与发现能力;(2)在对知识的探究过程中,培养学生观察、想象、动手操作的能力,发展初步的空间观念。
3.情感态度与价值观通过活动,让学生从中感受到学习的乐趣,使学生体验数学与生活的密切联系。
二、【教学重点】巩固对平行线和垂线的认识,运用垂线的性质解决实际问题。
三、【教学难点】理解“点到直线的距离”的概念。
四、【教具、学具】教具:多媒体课件、三角板学具:学案、三角板五、【教学过程】一、情景导入师:同学们,请你们看大屏幕,上面的`图画熟悉吗?齐答师:奔跑吧都有哪些人物?谁来说一下?举手答师:这些人物里面你最喜欢谁呢?为什么?找几名同学答师:今天奔跑吧里面的三位兄弟来和我们一起做一个游戏。
出示课件,这三个人是谁?今天的游戏规则是李晨、鹿晗和郑恺一起出发进过一个100米的赛道后,一起去拔对面的旗子,先拔到的人胜出,哪谁会胜出呢?为什么?指名答师:今天我们就带着这个问题一起来探寻其中的奥秘吧。
二、展示目标。
1出示本节课的学习目标2师生齐读三、复习引入1、过点A画已知直线的垂线2、找两名同学进行板演,其他同学做学案上的。
3、反馈交流。
师:今天我们就在垂线的基础上来探讨有关垂线的性质。
四、探究新知1、探寻垂线的性质(1)引入我们把上面游戏里的问题抽象为数学问题,大家请看:从直线外一点A,到这条直线画几条线段。
量一量所画线段的长度,哪一条最短?大家拿起你们的学案按上面的图自己来画一画,量一量,看看什么样的线段最短?我们的发现:______________________________________________。
高考数学一轮复习 第十章 立体几何初步 第72课 平行与垂直的综合应用教案(1)
平行与垂直的综合应用一、教学目标1.理解直线与平面及平面和平面相关判断定理、性质定理;2.能熟练地解决有一定综合性的立体几何证明问题.二、知识梳理【回顾】证明线面平行、垂直有哪些方法?证明面面平行、垂直有哪些方法?【解析】1.由面面平行可推出线面平行.2.根据面面垂直的性质定理可推出线面垂直.3.线面、面面平行和垂直最终都可归纳为求证线线平行和垂直,因此积累常见的平行和垂直的结构,可以为证题带来很大方便.三、诊断练习1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
找出学生错误的原因,设计“问题串”,将知识问题化,通过问题驱动,使教学言而有物,帮助学生内化知识,初步形成能力。
点评时要简洁,要点击要害。
2、诊断练习点评题1.PA⊥矩形ABCD所在平面,M、N分别是AB和PC的中点,则MN与平面PAD的关系为______. 【分析与点评】取PD中点E,连AE及NE,因四边形AMNE是平行四边形,可判断MN//平面PAD.利用中点制造平行关系是常方法。
题2.已知直线l⊥平面α,直线m⊂平面β,下面有三个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β.则真命题的个数为________.【分析与点评】对于①,由直线l⊥平面α,α∥β,得l⊥β,又直线m⊂平面β,故l⊥m,故①正确;对于②,由条件不一定得到l∥m,还有l与m垂直和异面的情况,故②错误;对于③,显然正确.故正确命题的个数为2.题3.如图,在正方体ABCD-A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1;②A1D1与平面BCD1相交;③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.上面结论中,所有正确结论的序号为.【分析与点评】对于①,由于平面A1ABB1∥平面CDC1D1,而D1C⊂平面CDC1D1,故D1C与平面A1ABB1没有公共点,所以D1C∥平面A1ABB1正确;对于②,由于A1D1∥BC,所以A1D1⊂平面BCD1,错误;对于③,只有AD⊥D1D,AD与平面BCD1内其他直线不垂直,错误;对于④,容易证明BC⊥平面A1ABB1,而BC⊂平面BCD1,故平面BCD1⊥平面A1ABB1.正确.题4.已知两条不同的直线m,n,两个不同的平面α,β,则下列命题中正确的是________.①若m⊥α,n⊥β,α⊥β,则m⊥n②若m⊥α,n∥β,α⊥β,则m⊥n③若m∥α,n∥β,α∥β,则m∥n④若m∥α,n⊥β,α⊥β,则m∥n【分析与点评】易知①正确.而②中α⊥β且m⊥α⇒m∥β或m⊂β,又n∥β,容易知道m,n的位置关系不定,因此②错误.而③中分别平行于两平行平面的直线的位置关系不定,因此③错误.而④中因为②不对,此项也不对.综上可知①正确.3、要点归纳(1)线面关系是各类位置关系的核心,利用线面关系可判断面面关系,也可确定线线关系;BCD A1A B1C1D1(2)空间问题落实到平面上解决,常利用中位线构造平行关系,利用等腰三角形“三线合一”构造垂直关系,在有线段长度时可通过计算证平行或垂直;(3)要关注学生文字语言与符号语言及图形语言之间的相互转化的训练。
2021年高考数学一轮复习 9.5 空间中的垂直关系精品教学案(学生版) 新人教版
2021年高考数学一轮复习 9.5 空间中的垂直关系精品教学案(学生版)新人教版【考纲解读】1.以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.理解以下判定定理:◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.立体几何是历年来高考重点内容之一,在选择题、填空题与解答题中均有可能出现,难度不大,主要考查空间中线线、线面、面面的位置关系的判定与证明,考查表面积与体积的求解,考查三视图等知识,在考查立体几何基础知识的同时,又考查数形结合思想、转化与化归等数学思想,以及分析问题、解决问题的能力.2.xx年的高考将会继续保持稳定,坚持考查立体几何的基础知识,命题形式相对会较稳定.【要点梳理】1.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。
推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a 的位置,并注意两定理交替使用。
2.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
山东省滨州市18届高考数学一轮复习62空间中的平行垂直关系课件
3、菱形对角线,等几何图形
4、直径所对的圆周角是直角 5、点在线上的射影。 。 6、如果一条直线和一个平面垂直,那么这条直线就和这个 平面内任意的直线都垂直。
7、如果两条平行线中的一条垂直于一条直线,则另一条也
垂直于这条直线。
二、线面垂直的证明方法:
1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影 。 3、如果一条直线和一个平面内的两条相交直线垂直,那么 这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于
这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于
另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂
直于第三个平面。(小题用) 8、过一点,有且只有一条直线与已知平面垂直。(小题用) 9、过一点,有且只有一个平面与已知直线垂直。(小题用)
三、面面垂直的证明方法:
1、定义法:两个平面的二面角是直二面角。
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行
于另一个平面。
4、如果一条直线和两个平行平面中的一个平面平行,那么 它也平行于另一个平面。切记直线不在平面内. 5、如果两条平行直线中的一条和一个平面平行,那么另一 条也平行于这个平面。切记直线不在平面内.
三、面面平行的证明方法:
1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、垂直于同一直线的两个平面平行。 5、面面平行的判定定理的推论。
山东省滨州市高考数学一轮复习62平行垂直关系提升学案(new)
62 平行垂直关系拓展提升案【学习目标】1.说出直线、平面平行垂直的判定和性质定理;2.运用八个定理证明直线平面平行、垂直关系。
1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和② B。
②和③ C. ③和④D。
②和④2.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A。
若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D。
若m,n不平行,则m与n不可能垂直于同一平面3.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A。
若l m⊥,mα⊂,则lα⊥ B.若lα⊥,l m//,则mα⊥C.若lα//,mα⊂则l m// D.若lα//,mα//,则l m// 4。
已知αβ,表示两个不同的平面,m为平面α内的一条直线,则“βα⊥"是“β⊥m”的( )A.充分不必要条件B.必要不充分条件C。
充要条件D。
既不充分也不必要条件5. 若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l ∥α,l ⊥β⇒α⊥β.其中正确的命题有( )A .0个B .1个C .2个D .3个二、填空题6。
如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD 。
(只要填写一个你认为是正确的条件即可)7。
α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①n m ⊥ ②βα⊥ ③β⊥m ④α⊥n以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题(用序号表示,如: 若①②③,则④)。
【高考A计划】高考数学第一轮复习 第60课时 平面与平面垂直学案
【高考A 计划】2014高考数学第一轮复习 第60课时 平面与平面垂直学案 新人教A 版课题一:平面与平面垂直 一.复习目标:1.掌握平面与平面垂直的概念和判定定理性质定理,并能运用它们进行推理论证和解决有关问题。
2.在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使得问题获得解决 二.主要知识: 1.二面角的范围: ;二面角平面角的作法: ;二面角的求解步骤: ; 2.平面与平面垂直的概念: ; 3.平面与平面垂直的性质定理 ;符号语言表示为 . 4.平面与平面垂直的判定定理 ;符号语言表示为 . 三.课前预习:1.已知PA ⊥正方形ABCD 所在的平面,垂足为A ,连结,,,,PB PC PD AC BD ,则互相垂直的平面有 ( ) ()A 5对 ()B 6对 ()C 7对 ()D 8对 2.平面α⊥平面β,αβ=l ,点P α∈,点Q l ∈,那么PQ l ⊥是PQ β⊥的( ) ()A 充分但不必要条件 ()B 必要但不充分条件 ()C 充要条件 ()D 既不充分也不必要条件3.若三个平面γβα,,,之间有α⊥γ,β⊥γ,则α与β ( )()A 垂直 ()B 平行 ()C 相交 ()D 以上三种可能都有4.已知α,β是两个平面,直线l ⊄α,l ⊄β,设(1)l α⊥,(2)//l β,(3)αβ⊥,若以其中两个作为条件,另一个作为结论,则正确命题的个数是 ( ) ()A 0 ()B 1 ()C 2 ()D 3 四.例题分析:例1.在四面体ABCD 中,3,2AB AC AD ===,且60DAC BAC BAD ∠=∠=∠=,求证:平面BCD ⊥平面ADCB A DC例2.如图,ABC ∆为正三角形,EC ⊥平面ABC ,//BD CE ,且2CE C A B D ==,M 是EA 的中点, 求证:(1)DE DA =;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA 。
高三数学第一轮复习 第60课时——平面与平面垂直学案
平面与平面垂直一.复习目标:1.掌握平面与平面垂直的概念和判定定理性质定理,并能运用它们进行推理论证和解决有关问题。
2.在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使得问题获得解决二.主要知识: 1.二面角的范围: ;二面角平面角的作法: ;二面角的求解步骤: ; 2.平面与平面垂直的概念: ; 3.平面与平面垂直的性质定理 ;符号语言表示为 . 4.平面与平面垂直的判定定理 ;符号语言表示为 . 三.课前预习:1.已知PA ⊥正方形ABCD 所在的平面,垂足为A ,连结,,,,PB PC PD AC BD ,则互相垂直的平面有 ( )()A 5对 ()B 6对 ()C 7对 ()D 8对 2.平面α⊥平面β,αI β=l ,点P α∈,点Q l ∈,那么PQ l ⊥是PQ β⊥的( )()A 充分但不必要条件 ()B 必要但不充分条件 ()C 充要条件 ()D 既不充分也不必要条件3.若三个平面γβα,,,之间有α⊥γ,β⊥γ,则α与β ( ) ()A 垂直 ()B 平行 ()C 相交 ()D 以上三种可能都有4.已知α,β是两个平面,直线l ⊄α,l ⊄β,设(1)l α⊥,(2)//l β,(3)αβ⊥,若以其中两个作为条件,另一个作为结论,则正确命题的个数是 ( )()A 0 ()B 1 ()C 2 ()D 3 四.例题分析:例1.在四面体ABCD 中,3,2AB AC AD ===,且60DAC BAC BAD ∠=∠=∠=o,求证:平面BCD ⊥平面ADCBA DC例2.如图,ABC ∆为正三角形,EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,M 是EA 的中点,求证:(1)DE DA =;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA 。
例3.如图,四棱锥P ABCD -是的底面ABCD 是矩形,PA ⊥平面ABCD ,,E F 分别是,AB PD 的中点,又二面角P CD B --的大小为45o,(1)求证://AF 面PEC ;(2)求证:平面PEC ⊥平面PCD ;(3)设2,AD CD ==A 到平面PEC 的距离;A C M E DB AB CDPEF五.课后作业: 班级 学号 姓名 1.过平面α外两点且垂直于平面α的平面 ( ) ()A 有且只有一个 ()B 不是一个便是两个 ()C 有且仅有两个 ()D 一个或无数个2.若平面α⊥平面β,直线n ⊂α,m ⊂β,m n ⊥,则 ( )()A n ⊥β ()B n ⊥β且m ⊥α ()C m ⊥α ()D n ⊥β与m ⊥α中至少有一个成立3.对于直线,m n 和平面,αβ,α⊥β的一个充分条件是( ) ()A m n ⊥,//,//m n αβ ()B ,,m n m n αβα⊥=⊂I ()C //,,m n n m βα⊥⊄ ()D ,,m n m n αβ⊥⊥⊥4.设,,l m n 表示三条直线,,,αβγ表示三个平面,给出下列四个命题:①若,l m αα⊥⊥,则//l m ;②若,m n β⊂是l 在β内的射影,m l ⊥,则m n ⊥; ③若,//m m n α⊂,则//n α; ④若,αγβγ⊥⊥,则//αβ. 其中真命题是 ( ) ()A ①② ()B ②③ ()C ①③ ()D ③④5.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足__________时,平面MBD ⊥平面PCD 。
高考数学一轮复习 第4讲 立体几何(平行与垂直)教学案-人教版高三全册数学教学案
第4讲立体几何(平行与垂直)【学习目标】(1)主要考查空间概念,空间想象能力,点线面位置关系判断,表面积与体积计算等(2)主要考查线线、线面、面面平行与垂直的证明.【知识要点】1.平行关系(1)判定两直线平行,可供选用的定理有:①公理4:若a∥b,b∥c,则a∥c.②线面平行的性质定理:若a∥α,a⊂β,α∩β=b,则a∥b.③线面垂直的性质定理:若a⊥α,b⊥α,则a∥b.④面面平行的性质定理:若α∥β,r∩α=a,r∩β=b,则a∥b.(2)线面平行的判定,可供选用的定理有:①若a∥b,a⊄α,b⊂α,则a∥α.②若α∥β,a⊂α,则a∥β.(3)判定两平面平行,可供选用的定理有:若a,b⊂α,a,b相交,且a∥β,b∥β,则α∥β.2.垂直关系(1)判定两直线垂直,可供选用的定理有:①若a∥b,b⊥c,则a⊥c.②若a⊥α,b⊂α,则a⊥b.(2)线面垂直的判定,可选用的定理有:①若a⊥b,a⊥c,b,c⊂α,且b与c相交,则a⊥α.②若a∥b,b⊥α,则a⊥α.③若α⊥β,α∩β=b,a⊂α,a⊥b,则a⊥β.(3)判定两平面垂直,可供选用的定理有:若a⊥α,a⊂β,则α⊥β.3.重视容易忽视的问题,如证平行时,由于过分强调线线、线面、面面平行的转化,而忽视由垂直关系证平行关系;证垂直时,同样忽视由平行关系来证明或利用勾股定理计算证明.【自主学习】1.(09某某)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直。
上面命题中,真命题...的序号(写出所有真命题的序号).2.(12·某某)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.3.(13某某)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .4.(14某某)设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是.5.(15某某)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。
高中数学第一章立体几何初步1.6.2垂直关系的性质学案北师大版必修2(2021年整理)
2018-2019高中数学第一章立体几何初步1.6.2 垂直关系的性质学案北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第一章立体几何初步1.6.2 垂直关系的性质学案北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第一章立体几何初步1.6.2 垂直关系的性质学案北师大版必修2的全部内容。
6。
2 垂直关系的性质学习目标 1.掌握直线与平面垂直,平面与平面垂直的性质定理(重点);2。
能运用性质定理解决一些简单问题(重点);3。
了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系(重、难点)。
知识点一直线与平面垂直的性质定理文字语言如果两条直线同垂直于一个平面,那么这两条直线平行符号语言错误!⇒a∥b图形语言作用①线面垂直⇒线线平行②作平行线【预习评价】(1)垂直于同一平面的两条直线一定共面吗?提示共面。
由线面垂直的性质定理可知这两条直线是平行的,故能确定一个平面。
(2)过一点有几条直线与已知平面垂直?提示有且仅有一条.假设过一点有两条直线与已知平面垂直,由直线与平面垂直的性质定理可得这两条直线平行,即无公共点,这与过同一点相矛盾,故只有一条直线。
知识点二平面与平面垂直的性质定理文字语言如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面符号语言错误!⇒a⊥β图形语言作用①面面垂直⇒线面垂直②作面的垂线(1)如果α⊥β,则α内的直线必垂直于β内的无数条直线,对吗?提示正确.若设α∩β=l,aα,bβ,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线。
高三数学高效课堂资料一轮复习57平行与垂直(二)
高三数学高效课堂资料山东省昌乐一中2015级高三数学(文)翻转课堂课时学案课题平行与垂直(二)编制人张磊审核人自学质疑学案学案内容班级小组姓名________使用时间______年______月______日编号一轮复习57学案内容学习指导一、基础自测1.设m,n是两条不同的直线,,,是三个不同的平面,给出下列命题:①若m,,则m;②若m//,m,则;③若,,则;④若m,n,m//n,则//.上面命题中,真命题...的序号是_______(写出所有真命题的序号).二、考点突破考点1:平行垂直关系的证明在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.考向二:体积的计算如图,四边形ABCD 中,AB AD ,AD ∥BC ,AD =6,BC =4,AB =2,点E 、F 分别在BC 、AD上,EF ∥AB .现将四边形ABEF 沿EF 折起,使平面ABCD平面EFDC ,设AD 中点为P .( I )当E 为BC 中点时,求证:CP//平面ABEF (Ⅱ)设BE=x ,问当x 为何值时,三棱锥A-CDF 的体积有最大值?并求出这个最大值。
三、合作与检测A 组1.点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,给出下列四个命题:①三棱锥A -D 1PC 的体积不变;②A 1P ∥平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的命题序号是________.2.设a b 、是两条不同的直线,、是两个不同的平面,则下列四个命题①若,a b a,则//b , ②若,a ,则//a ,③若则,,//a a ④若,,ab ab,则,其中正确的命题序号是____.【微课助学1】(问题2和变式答案;重点讲解变式)【微课助学2】(问题3答案;重点讲解问题3)训练展示学案要求:先自己做,再讨论,小组展示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
62 平行垂直关系 拓展提升案
【学习目标】
1.说出直线、平面平行垂直的判定和性质定理;
2.运用八个定理证明直线平面平行、垂直关系.
1.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )
A. ①和②
B. ②和③
C. ③和④
D. ②和④
2.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m ,n 平行于同一平面,则m 与n 平行
C.若α,β不平行,则在α内不存在与β平行的直线
D.若m ,n 不平行,则m 与n 不可能垂直于同一平面
3.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A.若l m ⊥,m α⊂,则l α⊥ B.若l α⊥,l m //,则m α⊥ C.若l α//,m α⊂则l m // D.若l α//,m α//,则l m //
4.已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“βα⊥”是“β⊥m ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5. 若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α
⊥β;②α⊥γ,β∥γ⇒α⊥β;③l ∥α,l ⊥β⇒α⊥β.其中正确的命题有( ) A .0个 B .1个 C .2个 D .3个
二、填空题
6.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)
7. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①n m ⊥ ②βα⊥ ③β⊥m ④α⊥n
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题 (用序号表示,如: 若①②③,则④).
8.已知m ,n 是两条不同直线,α,β是两个不同平面,有下列四个命题: ①如果m n ⊥,m α⊥,//n β,那么αβ⊥. ②如果m α⊥,//n α,那么m n ⊥. ③如果βα//,m α⊂,那么//m β.
④如果//m n , //αβ,那么m 与α所成的角和n 与β所成的角相等. 以上命题正确的命题有 .
9.如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,
1
2
AB BC AD ==
,o 90BAD ABC ∠=∠=, E 是PD 的中点. 求证:直线//CE 平面PAB ;
E
M D
C
B
A
P
10.如图所示,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1BC =,E ,
F 分别为11A C ,BC 的中点.
(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.
C 1
B 1
A 1
F
E C
B
A。