九年级数学下第一次月考试题及答案

合集下载

湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)

湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)
A.4B.8
C.10D.16
【9题答案】
【答案】B
【解析】
【分析】由题意知,盒子中白球的个数可能是 ,计算求解即可.
【详解】解:由题意知
∴盒子中白球的个数可能是8个
故选B.
【点睛】本题考查了频率.解题的关键在于明确大量试验可以用频率估计概率.
10.在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是()
【详解】解:A.不是中心对称图形,故本选项不符合题意;
B.不是中心对称图形,故本选项不符合题意;
C.是中心对称图形,故本选项符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 后与原图重合,掌握中心对称图形的概念是解题的关键.
14.已知扇形的圆心角为 ,半径为 ,则扇形的弧长是 .
15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.
16.如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则tan∠BCD的值为________.
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别 所对应扇形的圆心角度数为__________ ;
(4)类别 的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.

人教版数学九年级(下)第一次月考数学试卷(含答案)

人教版数学九年级(下)第一次月考数学试卷(含答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是质数?()(1分)A. 12B. 29C. 27D. 204. 下列哪个数是合数?()(1分)A. 31B. 37C. 41D. 395. 下列哪个数是立方数?()(1分)A. 27B. 28C. 30D. 32二、判断题1. 任何两个奇数相加的和一定是偶数。

()(1分)2. 任何两个偶数相加的和一定是偶数。

()(1分)3. 任何两个质数相加的和一定是合数。

()(1分)4. 任何两个合数相加的和一定是合数。

()(1分)5. 任何两个立方数相加的和一定是立方数。

()(1分)三、填空题1. -3的相反数是______。

()(1分)2. 6的绝对值是______。

()(1分)3. 15的平方根是______。

()(1分)4. 64的立方根是______。

()(1分)5. 1/4的倒数是______。

()(1分)四、简答题1. 请简述质数的定义及其在数学中的应用。

(2分)2. 请简述偶数和奇数的定义及其在数学中的应用。

(2分)3. 请简述立方数的定义及其在数学中的应用。

(2分)4. 请简述绝对值的定义及其在数学中的应用。

(2分)5. 请简述相反数的定义及其在数学中的应用。

(2分)五、应用题1. 已知一个正方形的边长是4,求这个正方形的面积。

(2分)2. 已知一个长方形的长是6,宽是4,求这个长方形的面积。

(2分)3. 已知一个三角形的底是8,高是5,求这个三角形的面积。

(2分)4. 已知一个圆的半径是3,求这个圆的面积。

(2分)5. 已知一个球的半径是4,求这个球的体积。

(2分)六、分析题1. 分析并解答:已知两个质数p和q,证明p+q是偶数。

(5分)2. 分析并解答:已知两个合数a和b,证明ab是合数。

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

沪科版九年级数学下学期第一次月考试卷及答案(2020年安徽版)

2019—2020学年度第二学期九年级质量检测试卷(一)数学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.下列事件中的不可能事件是( )A.三角形的两个内角的和小于第三个内角B.未来3天内将下雨C.经过交通信号灯的路口遇到红灯D.三根长度分别为2cm 、3cm 、5cm 的木棒摆成三角形2.二次函数y =2x 2的图象向右平移3个单位,得到新的图象的函数表达式是( ) A.y =2x 2+3 B.y =-2x 2+3 C.y =2(x -3)2 D.y =-2(x -3)23.如图所示的几何体,从上边看得到的图形是( )4.如图,一个小球由地面沿着坡角为30°的坡面向上前进了10m ,此时小球距离地面的 高度为( ) A.5mB.35mC.355 D.3510 5.下列说法中,不正确的是( )A.圆既是轴对称图形又是旋转对称图形B.一个圆的直径的长是它半径的2倍C.圆的每一条直径都是它的对称轴D.直径是圆的弦,但半径不是弦6.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠ADE =∠B ,已知AE =6,73AB AD , 则EC 的长是( ) A.4.5 B.8 C.10.5 D.147.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BAC=20°,则∠D的度数为()A.100°B.110°C.120°D.130°8.从-2,3,-8,10,12中任意选两个数,记作a和b,那么点(a,b)在函数y=x24-的图象上的概率是()A.41B.51C.52D.619.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为25,AC=4,则sinB的值是()A.53B.54C.85D.6110.如图,在△ABC中,LACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP’,连接DP’,则DP’的最小值是()A.222- B.224- C.222- D.12-二、填空题(本大题共4小题,每小题5分,满分20分)11.已知A(-1,6)与B(2,m-3)是反比例函数xky=图象上的两个点,则m的值是_______。

扬州市梅岭中学九年级下第一次月考数学试卷含答案解析

扬州市梅岭中学九年级下第一次月考数学试卷含答案解析

2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.42.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b43.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或85.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.106.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为米(科学记数法表示).11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是同学.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.16.若α为锐角,且,则m的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在组,中位数在组.(2)样本中,女生体重在E组的人数有人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=,P1Q1=.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD 交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.4【分析】根据开立方的方法,求出的值,即可判断出64的立方根是多少.【解答】解:∵=4,∴64的立方根是4.故选:D.2.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、应为a6÷a3=a3,故本选项错误;D、(ab2)2=a2b4,正确.故选D.3.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误.故选C.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或8【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣6x+8=0得,x1=2,x2=4;当底为2,腰为4时,4﹣2<4<4+2,能构成三角形,等腰三角形的周长为10;当底为4,腰为2时,2+2=4,不能构成三角形.故此等腰三角形的周长为10.故选B.5.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.6.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°【分析】首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5的度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.【解答】解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,故∠3的度数是70°.故选:A.7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【分析】由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.【解答】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是: =.故选:A8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n【分析】过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.【解答】解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是﹣2π.【分析】根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为 1.2×105米(科学记数法表示).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n是整数数位减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:设实际距离约为x厘米,∵比例尺为1:300 0000,∴4:x=1:3000000,∴x=12000000厘米=120000米=1.2×105米.故答案为:1.2×105.11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【解答】解:如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是乙同学.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2>s丙2>s乙2,∴成绩相对稳定的是乙.故答案为:乙.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3.【分析】过O作OM⊥AB于M,此时线段OM的长最短,连接OA,根据垂径定理求出AM,根据勾股定理求出OM即可.【解答】解:过O作OM⊥AB于M,此时线段OM的长最短,连接OA,∵OM过O,OM⊥AB,∴AM=AB=×8=4,在Rt△AMO中,由勾股定理得:OM===3,故答案为:3.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为6cm.【分析】利用底面周长=展开图的弧长可得.【解答】解:,解得r=6.16.若α为锐角,且,则m的取值范围是.【分析】根据余弦值的取值范围,列不等式求解.【解答】解:∵0<cosα<1,∴0<<1,解得,故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.【解答】解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即: =×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(3,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=9+2+1﹣3=9;(2)去分母得:2+x2+2x=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.【分析】(1)根据题意画出图形即可;(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.就可以表示出整个挂画的面积,由风景画的面积是整个挂图面积的72%建立方程求出其解即可.【解答】解:(1)如图所示:(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.由题意得(90+2x)×(40+2x)72%=90×40,解得:x1=﹣70(舍去),x2=5.答:画框四周的宽度为5cm.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【分析】过点A,C作出21°,45°所在的直角三角形,设出河宽,利用相应的三角函数表示出SE,BT的长,利用等量关系SC=AT,把相关数值代入即可求得河宽.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.【分析】(1)连接AC,根据菱形的性质可得AC平分∠DAE,再根据角平分线的性质可得CE=FC;(2)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°﹣30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°;连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=2且∠BAC=30°,得到AC=ABcos∠BAC=.最后在等边△PAC中,可得PA=AC=.【解答】证明:(1)连接AC,∵四边形ABCD为菱形,∴AC平分∠DAC,又∵CE⊥AB,CF⊥AD,∴CE=CF;解:(2)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,即∠PAB=90°.∵∠BAC=30°,∴∠PAC=90°﹣30°=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,可得△PAC是等边三角形,得∠P=60°.如图,连结BC.∵AB是直径,∠ACB=90°,∴在Rt△ACB中,AB=2,∠BAC=30°,可得AC=ABcos∠BAC=2×cos30°=.又∵△PAC是等边三角形,∴PA=AC=.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.【分析】(1)把m=200,p甲=0.5代入中求得得k甲=100,然后根据p乙始终为0.4,得到,从而求得k乙的值即可;(2)当购买总金额都为m元,且在200≤m<400的条件下时,代入可得甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)根据当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.然后据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.从而确定哪家更优惠.【解答】解:(1)把m=200,p甲=0.5代入中,得k甲=100.由于p乙始终为0.4,即,∴k乙=0.4m.(2)由(1)及优惠率p的含义可知:当购买总金额都为m元,且在200≤m<400的条件下时,甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)由上可知,当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.再由图象易知,当200≤m<250时,甲商场更优惠;当250<m<400时,乙商场更优惠.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在B组,中位数在C组.(2)样本中,女生体重在E组的人数有2人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)×1600+(15%+5%)×1500=540(人).答:估计该校体重超重的学生约有540人.26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是0≤x≤4;(2)d=3,m=2,n=25;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【分析】(1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间.【解答】解:(1)∵BC=AD=4,4÷1=4,∴0≤x≤4;故答案为:0≤x≤4;(2)根据题意,当点E、F分别运动到AD、BC的中点时,EF=AB最小,所以正方形EFGH的面积最小,此时,d2=9,m=4÷2=2,所以,d=3,根据勾股定理,n=BD2=AD2+AB2=42+32=25,故答案为:3,2,25;(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,∴EI=DC=3,CI=DE=x,∵BF=x,∴IF=4﹣2x,在Rt△EFI中,EF2=EI2+IF2=32+(4﹣2x)2,∵y是以EF为边长的正方形EFGH的面积,∴y=32+(4﹣2x)2,当y=16时,32+(4﹣2x)2=16,整理得,4x2﹣16x+9=0,解得,x1=,x2=,∵点F的速度是1cm/s,∴F出发或秒时,正方形EFGH的面积为16cm2.27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.【分析】(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△PNE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.【解答】解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△PNE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=a,P1Q1= a.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)【分析】(1)根据矩形的对角线互相平分且相等可得BP=PD,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理列式求解即可得到PQ,同理求出P1Q1∥CD,然后求出的值,再求出的值,然后根据平行线分线段成比例定理可得=,再代入数据进行计算即可求出P1Q1;(2)先根据AB∥CD求出,然后求出,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理可得=,代入数据进行计算即可得解;(3)根据(2)的结论依次表示出PQ、P1Q1、P2Q2…P n Q n,再根据两直线平行,同位角相等求出∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,然后利用60°角的正弦值列式计算即可得解.【解答】解:(1)∵四边形ABCD是矩形,∴BP=PD,∵PQ⊥BC,∴PQ∥CD,∴==,∴PQ=CD=a,∵P1Q1⊥BC,∴P1Q1∥CD,∴==,∴==,又∵=,∴P1Q1=a;(2)∵AB∥CD,∴==,∴=,∵AB∥CD,∠ABC=90°,PQ⊥BC,∴PQ∥CD,∴==,∴PQ=•CD=;(3)根据(2)的结论,PQ=,P1Q1==,P2Q2==,P3Q3==,…,依此类推,P n Q n=,∵AB∥CD,PQ∥CD,P1Q1∥CD,P2Q2∥CD,…,∴AB∥PQ∥P1Q1∥P2Q2∥…∥P n Q n∥CD,∴∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,∴点P1的纵坐标为:P1Q1•sin60°=×=,点P n的纵坐标为为P n Q n•sin60°=×=.故答案为:(1)a, a;(2);(3),.。

初三数学月考试题及答案

初三数学月考试题及答案

第 1 页 共 3 页D.C.B.A.122212122212大庆六十九中学初三数学第一次月考试题一、单项选择题(每小题3分,共36分)1.若分解因式x 2-mx-15=(x-3)(x+5), 则m 的值为 ( ) A 、-2 B 、2 C 、-5 D 、52.本次“保护湿地”知识竞赛中共20道题,对于每一道题,答对了得10分,答错了或 不答扣5分,选手至少要答对几道题,其得分才会不少于80分?( ) A 、14 B 、13 C 、12 D 、113.一次函数323+-=x y 的图象如图所示, 当-3≤y <3时,x 的取值范围是( )A 、x >4B 、0<x <2C 、0≤x <4D 、0<x ≤44. 下列各式能用完全平方公式分解因式的是( ) A.4x 2+1 B.x 2-2x+4C.x 2+xy +y 2D.x 2-4x +45. 下列多项式,不能运用平方差公式分解的是( )A 、42+-mB 、22y x --C 、122-y xD 、()()22a m a m +--6.若不等式组⎩⎨⎧>-≤111x m x 无解,则m 的取值范围是( )A 、m <-11B 、m >-10C 、m ≤-11D 、m ≥-107.下列各式是因式分解的是( )A 、(a +3)(a -3)=a 2-9B 、x 2+x -5=(x -2)(x +3)+1C 、a 2b +ab 2=ab(a +b)D 、x 2+1=x (x +x1)8. 在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A 、3<x <5B 、-3<x <5C 、-5<x <3D 、-5<x <-3 9. 若不等式组⎩⎨⎧-<<-1312a x x 的解集是x<2,则a 的取值范围是( )A .3<aB .3≤aC .3≥aD .无法确定10. 已知a 、b 、c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b+ac 2,则△ABC 的形状是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形 11.下列数学表达式:①2x -1<0 ②x -7=0 ③ y ≠4 ④x -2>x -1 ⑤4<0 ⑥ a 2b+ab 2其中是不等式的有( )A .2个B .3 个C .4个D .5个 12.不等式组212x x <⎧⎪⎨≥⎪⎩ 的解集在数轴上应表示为( )二、填空题: (每小题3分,共27分) 13. 若8m n +=,12m n =,则49212122-+mnn m 的值为 .14.若不等式组⎩⎨⎧--3212b >x a <x 的解集为11<x<-,那么)1)(1(++b a 的值等于 。

泰州市泰兴实验中学九年级下第一次月考试卷含答案解析

泰州市泰兴实验中学九年级下第一次月考试卷含答案解析

2022-2023江苏省泰州市泰兴实验中学九年级(下)第一次月考数学试卷一、选择题(每题3分):1.四个数﹣5,,﹣0.1,中为无理数的是()A.﹣5 B. C.﹣0.1 D.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2 D.5a﹣2a=33.已知下列函数:①y=2﹣3x;②y=﹣(x>0);③y=x﹣2;④y=2x2﹣1(x>1),其中y随x的增大而增大的函数有()A.1个B.2个C.3个D.4个4.不等式组的解集是x>a,则a的取值范围是()A.a<﹣2 B.a=﹣2 C.a>﹣2 D.a≥﹣25.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A.4种B.3种C.2种D.1种二、填空题(每题3分):7.若有意义,则x的取值范围是.8.因式分解:x4﹣16x2=.9.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.10.已知a m=3,a n=2,则a3m﹣2n=.11.用去分母的方法解关于x的方程产生增根,那么a的值是.12.若x2+(m﹣3)x+4是完全平方式,则m的值等于.13.若化简后的二次根式与是同类二次根式,则x=.14.若(x﹣2)x=1,则x=.15.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第次输出的结果为.16.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.三、解答题:17.(1)计算:|﹣3|﹣(﹣π)0+()﹣1+(2)解方程:.18.先化简,再从﹣2,﹣1,0,1四个数中选取一个适当的数作为x的值代入求值.19.鼓楼商场搞换季促销活动,若每件羽绒服按标价的5折销售可赚50元,按标价的6折销售可赚80元,?(请你在横线上提出一个问题然后再解答)20.某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题(1)试求出优秀员工人数所占百分比;(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为m ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为n .(1)用列表法或画树状图表示出(m ,n )的所有可能出现的结果;(2)小明认为点(m ,n )在一次函数y=x+2的图象上的概率一定大于在反比例函数y=的图象上的概率,而小华却认为两者的概率相同.你赞成谁的观点?分别求出点(m ,n )在两个函数图象上的概率,并说明谁的观点正确.22.我校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式并确定花费最少的购买方案.23.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而“作差法”就是常用的解决问题的策略之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.(1)利用“作差法”解决问题如图1,把边长为a+b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,设两个小正方形面积之和为M ,两个矩形面积之和为N ,试比较M 与N 的大小. (2)类比应用①已知甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时(x 、y 是正数,且x ≠y ),试比较V 甲、V 乙的大小.②如图2,在边长为a 的正方形ABCD 中,以A 为圆心,为半径画弧交AB 、AD 于点E 、F ,以CD 为直径画弧,若图中阴影部分的面积分别为S 1,S 2,试比较S 1与S 2的大小.24.甲、乙两车在相距300千米的A 、B 两地匀速相向而行,两车同时出发,途中甲车配货停留1小时.甲、乙两车离B 地的距离y (千米)与出发时间x (小时)之间的关系如图①所示,甲、乙两车间的距离s(千米)与出发时间x(小时)之间的关系如图②所示,(1)求甲、乙两车的速度;(2)求甲车到B地所用的时间,并将图②补充完整;(3)乙出发多少小时时,两车相距20千米?25.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,(1)求证:AB=EF;(2)若∠CAE=∠BCE,AB=6,AC=8,①求EC的长;②求线段PE的长.26.如图,已知点A(0,a),B(b,0),C(0,c),且|a+4|+=0,(c+1)2≤0,点D与点C关于直线AB对称,(1)求直线AB的解析式和点C、D的坐标;(2)点E在直线AB上,直接写出|EO﹣ED|的最大值和最小值及对应的点E的坐标;(3)点F(﹣1,0),在平面内有一点P,使得△OAP∽△DAF,求点P的坐标.2022-2023江苏省泰州市泰兴实验中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分):1.四个数﹣5,,﹣0.1,中为无理数的是()A.﹣5 B. C.﹣0.1 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是无理数,选项正确;C、﹣0.1是有限小数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选B.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2 D.5a﹣2a=3【考点】多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方分别进行解答,即可得出答案.【解答】解:A、(ab3)2=a2b6,故本选项正确;B、a2•a3=a5,故本选项错误;C、(a+b)(a﹣2b)=a2﹣ab﹣2b2,故本选项错误;D、5a﹣2a=3a,故本选项错误.故选A.3.已知下列函数:①y=2﹣3x;②y=﹣(x>0);③y=x﹣2;④y=2x2﹣1(x>1),其中y随x的增大而增大的函数有()A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】直接根据一次函数、二次函数和反比例函数的性质进行判断即可.【解答】解:①y=2﹣3x,y随x增大而减小;②y=﹣(x>0),y随x的增大而增大;③y=x﹣2,y随x的增大而增大;④y=2x2﹣1(x>1),y随x的增大而增大;其中y随x的增大而增大的函数有3个,故选C.4.不等式组的解集是x>a,则a的取值范围是()A.a<﹣2 B.a=﹣2 C.a>﹣2 D.a≥﹣2【考点】不等式的解集.【分析】根据不等式组的解集:同大取大,可得答案.【解答】解:由的解集是x>a,得a≥﹣2,故选:D.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵ =0.65, =0.55, =0.50, =0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.6.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A.4种B.3种C.2种D.1种【考点】三元一次方程组的应用.【分析】首先设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意可得方程组,解方程组可得y+2z=8,又由x,y,z是非负整数,即可求得答案.【解答】解:设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意得:,解得:y+2z=8,y=8﹣2z,∵x,y,z是正整数,当z=1时,y=6,x=1;当z=2时,y=4,x=2;当z=3时,y=2,x=3;当z=4时,y=0,x=4;(不符合题意,舍去)∴租房方案有3种.故选:B.二、填空题(每题3分):7.若有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为:x≥1.8.因式分解:x4﹣16x2=x2(x+4)(x﹣4).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(x2﹣16)=x2(x+4)(x﹣4).故答案为:x2(x+4)(x﹣4).9.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.10.已知a m=3,a n=2,则a3m﹣2n=.【考点】同底数幂的除法.【分析】先将a3m﹣2n变形为a3m÷a2n,再利用幂的乘方得出(a m)3÷(a n)2,代入计算即可.【解答】解:∵a m=3,a n=2,∴a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2,=33÷22=27÷4=,故答案为.11.用去分母的方法解关于x的方程产生增根,那么a的值是2.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x﹣3),得a﹣2(x﹣3)=x﹣1,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3.当x=3时,a=2.故答案为:2.12.若x2+(m﹣3)x+4是完全平方式,则m的值等于m=7或﹣1.【考点】完全平方式.【分析】根据完全平方公式的特征判断即可得到m的值.【解答】解:∵多项式x2+(m﹣3)x+4是完全平方式,∴(m﹣3)=±4,解得:m=7或m=﹣1,则m的值为﹣1或7.故答案为:m=7或﹣1.13.若化简后的二次根式与是同类二次根式,则x=3或﹣6.【考点】同类二次根式.【分析】根据同类二次根式的定义得到:x2+4x=x+18,即可解答【解答】解:∵二次根式与是同类二次根式,∴x2+4x=x+18,解得:x1=﹣6,x2=3,故答案为:3或﹣6.14.若(x﹣2)x=1,则x=0或3.【考点】零指数幂;有理数的乘方.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.15.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第次输出的结果为3.【考点】代数式求值.【分析】由图示知,当输入的数x为偶数时,输出x,当输入的数x是奇数时,输出x+3.按此规律计算即可求解.【解答】解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…故第次输出的结果为3,故答案为:3.16.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【考点】抛物线与x轴的交点.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.三、解答题:17.(1)计算:|﹣3|﹣(﹣π)0+()﹣1+(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3﹣1+4+2=8;(2)去分母得:x﹣5+x2﹣1=3x﹣3,即x2﹣2x﹣3=0,解得:x=3或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.18.先化简,再从﹣2,﹣1,0,1四个数中选取一个适当的数作为x的值代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=÷=•=﹣,由题意得到x≠±1且x≠2,取x=0,原式=﹣1.19.鼓楼商场搞换季促销活动,若每件羽绒服按标价的5折销售可赚50元,按标价的6折销售可赚80元,每件羽绒服的标价是多少元?(请你在横线上提出一个问题然后再解答)【考点】二元一次方程组的应用.【分析】可以问:每件羽绒服的标价是多少元?首先设每件羽绒服的标价是x元,由题意得等量关系:标价×5折﹣50元=标价×6折﹣80元,根据等量关系列出方程,再解即可.【解答】问题:每件羽绒服的标价是多少元?解:设每件羽绒服的标价是x元,由题意得:50%x﹣50=60%x﹣80,解得:x=300.答:每件羽绒服的标价是300元.20.某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题(1)试求出优秀员工人数所占百分比;(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.【考点】条形统计图;中位数;众数.【分析】(1)首先求出总人数与优秀营业员人数,进而求出优秀营业员人数所占百分比,(2)根据中位数、众数的意义解答即可.(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.【解答】解:(1)根据条形图可以得出:优秀营业员人数为3人,总人数为:30人,则优秀营业员人数所占百分比:×100%=10%;(2)∵所有优秀和称职的营业员为21人,最中间的是第11个数据,第11个数据为22,∴中位数为:22,∵20出现次数最多,∴众数为:20;故所有优秀和称职的营业员中月销售件数的中位数22、众数20.(3)奖励标准应定为22件.中位数是一个位置代表值,它处于这组数据的中间位置,因此大于或等于中位数的数据至少有一半.所以奖励标准应定为22件.21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为m;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为n.(1)用列表法或画树状图表示出(m,n)的所有可能出现的结果;(2)小明认为点(m,n)在一次函数y=x+2的图象上的概率一定大于在反比例函数y=的图象上的概率,而小华却认为两者的概率相同.你赞成谁的观点?分别求出点(m,n)在两个函数图象上的概率,并说明谁的观点正确.【考点】列表法与树状图法;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由点(m,n)在一次函数y=x+2的图象上的有(1,3),(2,4);在反比例函数y=的图象上的有(2,3),(3,2),直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)小华正确.∵点(m,n)在一次函数y=x+2的图象上的有(1,3),(2,4);在反比例函数y=的图象上的有(2,3),(3,2),∴P(点(m,n)在一次函数y=x+2的图象上)=P(点(m,n)在反比例函数y=的图象上)==.∴小华正确.22.我校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式并确定花费最少的购买方案.【考点】一次函数的应用.【分析】(1)设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)根据花费=购买单价×购买数量,可以得出W 关于m 的函数解析式,由已知给定的条件可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,结合函数的单调性即可得出结论.【解答】解:(1)设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意可得:,解得:.答:A 种奖品的单价为10元,B 种奖品的单价为15元. (2)购买A 种奖品m 件,则购买B 种奖品100﹣m 件, 根据题意可知:W=10m+15=1500﹣5m , 且m 满足,即70≤x ≤75.由于W (元)关于m (件)之间的函数单调递减,故当m=75时,W 最小,且此时W=1125,100﹣75=25(件).答:W (元)与m (件)之间的函数关系式为W=1500﹣5m (70≤x ≤75),当A 种奖品购买75件,B 种奖品购买25件时,花费最少,最少费用为1125元.23.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而“作差法”就是常用的解决问题的策略之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.(1)利用“作差法”解决问题如图1,把边长为a+b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,设两个小正方形面积之和为M ,两个矩形面积之和为N ,试比较M 与N 的大小. (2)类比应用①已知甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时(x 、y 是正数,且x ≠y ),试比较V 甲、V 乙的大小.②如图2,在边长为a 的正方形ABCD 中,以A 为圆心,为半径画弧交AB 、AD 于点E 、F ,以CD 为直径画弧,若图中阴影部分的面积分别为S 1,S 2,试比较S 1与S 2的大小.【考点】四边形综合题.【分析】(1)利用作差法比较M 与N 大小即可;(2)①利用甲、乙两人的速度作差,进而结合完全平方公式,比较即可; ②分别利用扇形面积求法表示出S 1,S 2的值,进而比较得出答案. 【解答】解:(1)根据题意得:M=a 2+b 2,N=ab+ab , ∵M ﹣N=a 2+b 2﹣2ab=(a ﹣b )2>0, ∴M >N ;(2)①∵甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时,∴﹣=﹣=>0,∴V 甲、V 乙的大小关系为:V 甲>V 乙; ②设两阴影部分的公共空白面积为d ,则S 1=﹣d=a 2﹣d ,S 2=﹣d=﹣d ,∵a 2>,∴S 1>S 2.24.甲、乙两车在相距300千米的A 、B 两地匀速相向而行,两车同时出发,途中甲车配货停留1小时.甲、乙两车离B 地的距离y (千米)与出发时间x (小时)之间的关系如图①所示,甲、乙两车间的距离s (千米)与出发时间x (小时)之间的关系如图②所示,(1)求甲、乙两车的速度;(2)求甲车到B 地所用的时间,并将图②补充完整; (3)乙出发多少小时时,两车相距20千米?【考点】一次函数的应用.【分析】(1)结合图①图②可知,当1.5≤x ≤2.5时,甲车在装货,结合图②中点的坐标即可求出甲、乙两车的速度;(2)由时间=路程÷速度+停留时间,即可得出甲车到达的时间,结合一次函数的性质,可补充完整图②;(3)由图②中点的意义可得知两车两次相距20千米时,甲车都在装货,由时间=路程÷速度即可得出结论.【解答】解:(1)结合图形①②可知:乙车的速度为30÷(2﹣1.5)=60(千米/小时);甲车的速度为÷1.5﹣60=120(千米/小时).答:甲车的速度为120千米/小时,乙车的速度为60千米/小时.(2)甲车到乙地的时间为300÷120+1=3.5(小时).答:甲车到B地所用的时间为3.5小时.补充完图②如下图所示.(3)由图形②可知,当两车相距20千米时,甲车正在装货.当两车第一次相距20千米时,乙车出发时间为:1.5+(30﹣20)÷60=(小时);当两车第二次相距20千米时,乙车出发时间为:1.5+(30+20)÷60=(小时).答:乙出发或小时时,两车相距20千米.25.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,(1)求证:AB=EF;(2)若∠CAE=∠BCE,AB=6,AC=8,①求EC的长;②求线段PE的长.【考点】切线的性质.【分析】(1)证得△ABC∽△DEC,得出∠ACB=∠ECD,即可求得=,得出AB=EF;(2)①连接OE,根据勾股定理得出半径,进一步证得△COE是等腰直角三角形,解直角三角形即可求得;②由△DEF和△ADC是等腰直角三角形,求得DE和AD,即可求得AE,设BG=x,则CG=10﹣x,证得△ABG∽△CEG,根据相似三角形的性质得出AG=,EG=,根据题意得出AE=+=7,解得x的值,得出AG=,根据切线的性质得出OE⊥PE,进而得出BC∥PE,根据平行线分线段成比例定理得出,即可求得PE的值.【解答】解:(1)∵BC是⊙O的直径,∴AB⊥AC,∵AE⊥CF,∠CED=∠ABC,∴△ABC∽△DEC,∴∠ACB=∠ECD,∴=,∴AB=EF;(2)①连接OE,∵AB=6,AC=8,∴BC==10,∴⊙O的半径为5,∵∠BAE=∠CAE=∠BCE,∠BAC=90°,∴∠BAE=∠CAE=∠BCE=45°,∴=,∴OE⊥BC,∴△COE是等腰直角三角形,∴EC==5;②由(1)可知EF=AB=6,∵∠EFC=∠EAC=45°,AE⊥CF,∴△DEF和△ADC是等腰直角三角形,∴DE=EF=3,AD=AC=4,∴AE=7,设BG=x,则CG=10﹣x,∵∠BAG=∠ECG,∠ABG=∠CEG,∴△ABG∽△CEG,∴==,即==,解得AG=,EG=,∴AE=+=7,解得x=,∴AG=,∵PE是⊙O的切线,∴OE⊥PE,∵OE⊥BC∴BC∥PE,∴,即=,解得PE=.26.如图,已知点A(0,a),B(b,0),C(0,c),且|a+4|+=0,(c+1)2≤0,点D与点C关于直线AB对称,(1)求直线AB的解析式和点C、D的坐标;(2)点E在直线AB上,直接写出|EO﹣ED|的最大值和最小值及对应的点E的坐标;(3)点F(﹣1,0),在平面内有一点P,使得△OAP∽△DAF,求点P的坐标.【考点】一次函数综合题.【分析】(1)由非负数的性质可求得a、b、c的值,从而得到点A、B、C的坐标,然后依据待定系数法可求得AB的解析式,由等腰直角三角形的性质和翻折的性质可证明△ADC为等腰直角三角形,从而可求得点D的坐标;(2)由轴对称图形的性质可知EC=ED,由三角形的三边关系可知当点E与点A重合时,|EO﹣ED|有最大值,当EO=EC时,|EO﹣ED|有最小值;(3)依据两边对应成立且夹角相等的两个三角形相似可知∠PAO=∠FAD且,从而可求得点P的坐标,作P关于y轴对称点P′,由轴对称的性质可知△OAP′∽△DAF.【解答】解:(1)∵|a+4|+=0,∴a+4=0,b﹣4=0.解得:a=﹣4,b=4.∴A(0,﹣4)、B(4,0).设直线AB的解析式为y=kx+b.∵将A(0,﹣4)、B(4,0)代入得,解得:,∴直线AB的解析式为y=x﹣4.∵(c+1)2≤0,(c+1)2≥0,∴c+1=0.解得:c=﹣1.∴点C(0,﹣1).如图1所示:∵A(0,﹣4)、B(4,0),∴OB=OA.∴∠OAB=45°.∵点C与点D关于AB对称,∴∠DAE=45°,CA=DA=3.∴∠CAD=90°.∴点D的纵坐标为(3,﹣4).(2)如图2所示:∵点D与点C关于AB对称,∴CE=DE.∴|EO﹣ED|=|EO﹣ED|=|EO﹣EC|.∴当点O、C、E在一条直线上时,|EO﹣EC|有最大值.∴当点E的坐标为(0,﹣4)时,|EO﹣EC|的最大值为1,即|EO﹣ED|的最大值为1.∵EO=EC时,|EO﹣ED|=|EO﹣EC|=0,∴点E在OC的垂直平分线上.∴点E的纵坐标为﹣.∵将y=﹣代入y=x﹣4得:x=,∴E(,﹣).∴点E的坐标为(,﹣)时,|EO﹣ED|的最小值为0.(3)如图3所示:过点P作PG⊥AD,垂足为G.当∠PAO=∠FAD且时,△OAP∽△DAF.∵∠PAO=∠FAD,∴∠FAO=∠PAG.∴=.设PG=a,则AG=4a.则由勾股定理可知:AP==a.∵OF=1,OA=4,∴AF=.∴.解得:a=.∴PG=,AG=.∴点G的坐标为(﹣,).作点P关于y轴对称点P′,由轴对称图形的性质可知△OAP≌△OAP′,P′(,).∵△OAP∽△DAF,∴△OAP′∽△DAF.综上所述,点P的坐标为(﹣,)或(,)时,△OAP∽△DAF.。

2022-2023学年九年级下学期第一次月考 (数学)(含答案)101906

2022-2023学年九年级下学期第一次月考 (数学)(含答案)101906

2022-2023学年九年级下学期第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 数轴上的,,,分别表示数,,,,已知在的右侧,在的左侧,在,之间,则下列式子成立的是( )A.B.C.D.2. 化简的结果是 ( )A.B.C.D.3. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,4. 一个立体图形的三视图如图所示,则这个立体图形是( )A.B.C.A B C D a b c d A B C B D B C b <c <d <ac <d <b <ac <d <a <ba <b <c <d−1x+11x−1x−1x 2−2−1x 22x−1x 2−2x−1x 2123234345456D.5. 下列说法中,正确的有()个.①两直线被第三条直线所截,同旁内角互补;②同位角相等,两直线平行;③内错角相等;④平行于同一条直线的两条直线平行A.B.C.D.6. 下列四个等式:();();();().其中正确的算式有.A.个B.个C.个D.个7. 某一周我市每天的最高温度(单位:)分别为,,,,,,则下列数据不正确的是()A.众数是B.中位数是C.方差是D.平均数是8. 如图所示,中,,.尺规作图如下:作直线,使上的各点到,两点的距离相等;设直线与,分别交于点,,作一个圆,使得圆心在线段上,且与边,相切,则的面积为( )A.B.C.D.9. 一个两位数,十位上的数字比个位上的数字大,若将个位与十位上数字对调,得到新数比原数小1432()C∘745,35655555△ABC BC=AB=445∠ABC=60∘l lB C l AB BC M N OMN AB BC△ABO33–√22–√53–√372–√219. 一个两位数,十位上的数字比个位上的数字大,若将个位与十位上数字对调,得到新数比原数小,设个位上的数字为,十位上的数字为,根据题意,可列方程为( )A.B.C.D.10. 小明家、食堂、图书馆在同一条直线上,且食堂在小明家和图书馆之间.小明先从家出发去食堂吃早餐,接着去图书馆看报,然后回家,所示图象反映了这个过程中,小明离家的距离()与时间()之间的对应关系.由此给出下列说法:小明家与食堂相距,小明从家去食堂用时.食堂与图书馆相距.小明从图书馆回家的速度是其中正确的是( )A.B.C.D.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 计算:________.12. 如果关于的一元二次方程=有实数根,那么的取值范围是________.13. 任意抛掷一枚质地均匀的正方体骰子次,骰子的六个面上分别刻有到的点数,掷得面朝上的点数大于的概率是________.14. 如图,点在上,若,则的长度为________.15. 如图,已知中,,是高和的交点,,则线段的长度为________.19x y {x−y =110x+y =10y+x+9{x−y =110y+x =10x+y+9{y−x =110x+y =10y+x+9{y−x =110y+x =10x+y+9y km x min ①0.6km 8min ②0.2km ③0.08km/min.①②①③②③①②③(π−3−(−=)012)−1x (m−2)−4x−1x 20m 1164C AB ˆAB =1+,AC =,∠BAC =3–√2–√45∘AB ˆ△ABC ∠ABC =45∘F AD BE CD =4DF三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 先化简,再求值:,其中,其中 . 17. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:活动后被测查学生视力数据:活动后被测查学生视力频数分布表分组频数根据以上信息回答下列问题:(1)填空:________=________,________=________,活动前被测查学生视力样本数据的中位数是________,活动后被测查学生视力样本数据的众数是________;(2)若视力在及以上为达标,估计七年级名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.18. 达州市凤凰小学位于北纬,此地一年中冬至日正午时刻,太阳光与地面的夹角最小,约为;夏至日正午时刻,太阳光与地面的夹角最大,约为.已知该校一教学楼窗户朝南,窗户高,如图所示.请你为该窗户设计一个直角形遮阳棚,如图所示,要求最大限度地节省材料,并使其夏至日正午刚好遮住全部阳光,冬至日正午能射入室内的阳光没有遮挡.在图中画出设计草图;求,的长度(结果精确到个位).(参考数据:,,,,,)(1)(−6a −7)−(−3a +3)a 2a 2a =−13(2)5(3b −a )−4(−a +3b)a 2b 2b 2a 2a =1,b =−2304.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.14.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.14.0≤x <4.214.2≤x <4.424.4≤x <4.6b 4.6≤x <4.874.8≤x <5.0125.0≤x <5.244.860031∘35.5∘82.5∘207cm (1)BCD (2)(1)(3)(2)BC CD sin ≈0.5835.5∘cos ≈0.8135.5∘tan ≈0.7135.5∘sin ≈0.9982.5∘cos ≈0.1382.5∘tan ≈7.6082.5∘19. 如图,过点分别作轴,轴的垂线,交双曲线于,两点.若,求点,的坐标;若,求此双曲线的解析式.20. 如图,已知四边形是正方形.先以为圆心,为半径作,再以的中点为圆心,为半径在正方形的内部作半圆,交于点,连接.证明:与半圆相切;如图,延长交于点,若正方形的边长为,求的长度;如图,连接,,求的度数.21. 学校准备购进一批甲、乙两种办公桌若干张,并且每买张办公桌必须买把椅子,椅子每把元,若学校购进张甲种办公桌和张乙种办公桌共花费了元;购买张甲种办公桌比购买张乙种办公桌多花费元.求甲、乙两种办公桌每张各多少元?若学校购买甲乙两种办公桌共张,且甲种办公桌数量不多于乙种办公桌数量的倍,购买总费用不能超过元,此时共有几种购买方案?哪种方案费用最少?22. 已知抛物线=与轴交于、两点.(1)求的取值范围;(2)若、满足,求的值.23. 如图,在正方形中,点在边上,交于点,于,的平分线分别交,于点,,连接.P(−2,2)x y y=(k>0)kxE F(1)k=2E F(2)EF=52–√1ABCD A AD BD CD E ED ABCD E BD F AF(1)AF E(2)2AF BC G ABCD4BG(3)3BF CF∠BFC12 1002015240001052000(1)(2)40326400y+2(m+1)x+−1x2m2x A(,0)x1B(,0)x2mx1x2mABCD E BC AE BD F DG⊥AE G∠DGEGH BD CD P H FH求证: ;求证: .求:的值.(1)∠DHG =∠DFA (2)FH//BC (3)DG−AG PG参考答案与试题解析2022-2023学年九年级下学期第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】有理数大小比较【解析】依据数轴上右边的数总比左边的数大来比较.【解答】解:由题意得,,,,所以.故选.2.【答案】B【考点】分式的加减运算【解析】【解答】解:原式.故选.3.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;a >bc <b c <d <b c <d <b <a B ==x−1−(x+1)(x+1)(x−1)−2−1x 2B A 1+2=3B 2+3>4C 4+3>5,因为,所以本组数能构成三角形.故本选项不符合题意.故选.4.【答案】D【考点】由三视图判断几何体【解析】根据三视图的定义,可得几何体的形状.【解答】从俯视图是圆环,推出几何体的上下是圆,由此利用推出几何体的选项.5.【答案】D【考点】平行线的判定与性质平行线的性质【解析】此题暂无解析【解答】解:两平行直线被第三条直线所截,同旁内角互补,故①错误;同位角相等,两直线平行,故②正确;两直线平行,内错角相等,故③错误;平行于同一条直线的两条直线平行,故④正确.故选.6.【答案】C【考点】幂的乘方及其应用【解析】由幂的乘方的运算法则得,错误:,正确:错误:正确所以正确的有个.故选.【解答】D 4+5>6A D D (1)=()x 44x 4.=x≠λ14(2)==[]()y 222y 2.2y 3(3)=−+y6(−)y 22y 2(4)=(−x =[−x ])32)4x 62C此题暂无解答7.【答案】C【考点】众数中位数方差【解析】【解答】解:由题意得,,,,,,,,众数为,故选项不符合题意;中位数为,故选项不符合题意;,故选项不符合题意;,故选项符合题意.故选.8.【答案】C【考点】线段垂直平分线的性质角平分线的性质三角形的面积【解析】此题暂无解析【解答】解:如图所示,直线,即为所描述图形.如图所示,过点作于.34555675A 5B ==5x ¯¯7+4+5+3+5+6+57D =[(7−5+(4−5+(5−5+(3−5+(5−5+(6−5+(5−5]=S 217)2)2)2)2)2)2)2107C C 1l ⊙O 2O OE ⊥AB E设.∵,垂直平分线段,∴.∴,∴.故选.9.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】先表示出颠倒前后的两位数,然后根据十位上的数字比个位上的数字大,若颠倒个位与十位数字的位置,得到新数比原数小,列方程组即可.【解答】解:由题意得,.故选.10.【答案】D【考点】函数的图象【解析】根据题意,分析图象,结合简单计算,可以得到答案.【解答】解:根据图象可知:小明家离食堂,小明从家到食堂用了,故正确;小明家离食堂,食堂离图书馆,故正确;小明从图书馆回家的平均速度为,故正确.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.OE =ON =r BC =4MN BC BN =CN =2ON=OE =2×tan =30∘23–√3==×5S △ABO AB ⋅OE 212×=23–√353–√3C x y 19{y−x =110y+x =10x+y+9D ①0.6km 8min ①②0.6km 0.8−0.6=0.2(km)②③0.8÷(68−58)=0.08(km/min)③D【考点】零指数幂负整数指数幂【解析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:.故答案为:.12.【答案】且【考点】一元二次方程的定义根的判别式【解析】根据方程有实数根得出=,解之求出的范围,结合,即从而得出答案.【解答】∵关于的一元二次方程=有实数根,∴=,解得:,又∵,即,∴且,13.【答案】【考点】概率公式【解析】根据掷得面朝上的点数大于情况有种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有种情况,出现点数大于的情况有种,掷得面朝上的点数大于的概率是:.故答案为:.14.3(π−3−(−=1−(−2)=1+2=3)012)−13m≥−2m≠2△(−4−4×(m−2)×(−1)≥0)2m m−2≠0m≠2x (m−2)−4x−1x 20△(−4−4×(m−2)×(−1)≥0)2m≥−2m−2≠0m≠2m≥−2m≠213426424=261313【考点】勾股定理解直角三角形锐角三角函数的定义圆周角定理含30度角的直角三角形弧长的计算等边三角形的性质与判定【解析】如图,设圆心为,连接, , , , 过点作于.证明是等边三角形,求出即可解决问题.【解答】解:如图,设圆心为,连接过点作于,∵∴,∵,∴,∴,∴,∴,,∵,∴是等边三角形,∴,∴的弧长,故答案为:.15.【答案】【考点】三角形内角和定理等腰三角形的判定与性质全等三角形的性质π52–√6O OA OB OC BC C CT ⊥AB T △AOC OA ,∠AOB O OA ,OB ,OC ,BC ,C CT ⊥AB T ∠CTA =,∠CAT =,AC =2,90∘45∘AT =TC =1AB =1+3–√BT =3tan ∠CBT ==BT CT 3–√3∠CBT =30∘∠AOC =2∠CBT =60∘∠COB =2∠CAB =90∘OA =OC ΔAOC OA =,∠AOB =2–√150∘AB ˆ==π150×π×2–√18052–√6π52–√64求出,根据,,推出,根据证,推出即可.【解答】解:∵是的高,∴,∴,∵,∴,∴,∵,∴,∴,,∴,在和中∴,∴.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:().当时,原式.(2) 当时,原式【考点】零指数幂、负整数指数幂特殊角的三角函数值负整数指数幂分式的化简求值实数的运算【解析】此题暂无解析【解答】解:().当时,原式.(2) 当时,原式17.【答案】,,,,,估计七年级名学生活动后视力达标的人数有(人);活动开展前视力在及以上的有人,活动开展后视力在及以上的有人,视力达标人数有一定的提升(答案不唯一,合理即可).【考点】AD =BD ∠FBD+∠C =90∘∠CAD+∠C =90∘∠FBD =∠CAD ASA △FBD ≅△CAD CD =DF AD △ABC AD ⊥BC ∠ADB =∠ADC =90∘∠ABC =45∘∠BAD ==∠ABD 45∘AD =BD BE ⊥AC ∠BEC =90∘∠FBD+∠C =90∘∠CAD+∠C =90∘∠FBD =∠CAD △FBD △CAD ∠ADB =∠ADC ,BD =AD ,∠FBD =∠CAD ,△FBD ≅△CAD(ASA)CD =DF =441(−6a −7)−(−3a +3)=−6a −7−+3a −3=a 2a 2a 2a 2−3a −10a =−13=1−10=−95(3b −a )−4(−a +3b)=15b −5a +4a −12b =a 2b 2b 2a 2a 2b 2b 2a 23b −a ,a 2b 2a =1,b =−2=−6−4=−10.1(−6a −7)−(−3a +3)=−6a −7−+3a −3=a 2a 2a 2a 2−3a −10a =−13=1−10=−95(3b −a )−4(−a +3b)=15b −5a +4a −12b =a 2b 2b 2a 2a 2b 2b 2a 23b −a ,a 2b 2a =1,b =−2=−6−4=−10.a 5b44.654.8600600×=32012+4304.811 4.816用样本估计总体频数(率)分布表频数(率)分布直方图中位数众数【解析】(1)根据已知数据可得、的值,再根据中位数和众数的概念求解可得;(2)用总人数乘以对应部分人数所占比例;(3)可从及以上人数的变化求解可得(答案不唯一).【解答】由已知数据知=,=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是,故答案为:,,,;估计七年级名学生活动后视力达标的人数有(人);活动开展前视力在及以上的有人,活动开展后视力在及以上的有人,视力达标人数有一定的提升(答案不唯一,合理即可).18.【答案】解:如图所示:由题意可得出:,,设,则,∴,∴在中,,解得:,∴,答:的长度是,的长度是.【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意结合入射角度进而画出符合题意的图形即可;首先设,则,表示出的长,进而利用求出的长,进而得出答案.【解答】解:如图所示:a b 4.8a 5b 4=4.654.6+4.724.854 4.65 4.8600600×=32012+4304.811 4.816(1)(2)∠CDB =35.5∘∠CDA =82.5∘CD =x tan =35.5∘BC CD BC =0.71x Rt △ACD tan ===7.682.5∘AC CD 207+0.71x x x ≈30BC =0.71×30≈21(cm)BC 21cm CD 30cm (1)(2)CD =x tan =35.5∘BC CD BC tan =82.5∘AC CDDC (1)由题意可得出:,,设,则,∴,∴在中,,解得:,∴,答:的长度是,的长度是.19.【答案】解:若,则双曲线为,当时,,当时,,∴,.根据题意得:,,且,∴,∴,解得:或(舍去),∴此双曲线的解析式为.【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式勾股定理【解析】此题暂无解析【解答】解:若,则双曲线为,当时,,当时,,∴,.根据题意得:,,且,∴,∴,解得:或(舍去),(2)∠CDB =35.5∘∠CDA =82.5∘CD =x tan =35.5∘BC CD BC =0.71x Rt △ACD tan ===7.682.5∘AC CD 207+0.71x x x ≈30BC =0.71×30≈21(cm)BC 21cm CD 30cm (1)k =2y =2x x =−2y ==−12−2y =2x ==122E(−2,−1)F (1,2)(2)E(−2,−)k 2F (,2)k 2∠P =90∘P +P =E E 2F 2F 2+=(5(2+)k 22(+2)k 222–√)2k =6k =−14y =6x(1)k =2y =2xx =−2y ==−12−2y =2x ==122E(−2,−1)F (1,2)(2)E(−2,−)k 2F (,2)k 2∠P =90∘P +P =E E 2F 2F 2+=(5(2+)k 22(+2)k 222–√)2k =6k =−14=6∴此双曲线的解析式为.20.【答案】解:连接,.在和中,,,与半圆相切.,是半圆的切线,.设,则.在直角中,,,解得,.连接,∵,∴,.在四边形中,,∴.∵为圆的直径,∴,∴.【考点】全等三角形的性质与判定切线的判定勾股定理切线长定理圆周角定理多边形的内角和等腰三角形的性质y =6x(1)AE EF △ADE △AFE AD =AF,AE =AE,DE =FE,∴△ADE ≅△AFE ∴∠AFE =∠ADE =90∘∴AF E (2)∵CG ⊥CE ∴CG E ∴CG =CF CG =CF =x BG =BC −CG =4−x△ABG A +B =A B 2G 2G 2∴+=42(4−x)2(4+x)2x =1∴BG =3(3)FD AB =AD =AF ∠ABF =∠AFB ∠ADF =∠AFD ABFD ∠BAD+∠ABF +∠BFD+∠AFD=+2∠BFD =90∘360∘∠BFD =135∘CD E ∠CFD =90∘∠BFC =−∠BFD−∠CFD =360∘135∘【解析】()连接,,,得出,根据切线的判定定理解答;()首先证明是半圆的切线,根据切线长定理得出,然后设,在直角中,由勾股定理得出,代入数值列方程解答;【解答】解:连接,.在和中,,,与半圆相切.,是半圆的切线,.设,则.在直角中,,,解得,.连接,∵,∴,.在四边形中,,∴.∵为圆的直径,∴,∴.21.【答案】解:设甲种办公桌每张元,乙种办公桌每张元,根据题意,得:解得:答:甲种办公桌每张元,乙种办公桌每张元.1AE EF 证明△ADE ≅△AFE ∠AFE =∠ADE =90∘2CG E CG =CF CG =CF =x △ABG A +B =A B 2G 2G 2(1)AE EF △ADE △AFE AD =AF,AE =AE,DE =FE,∴△ADE ≅△AFE ∴∠AFE =∠ADE =90∘∴AF E (2)∵CG ⊥CE ∴CG E ∴CG =CF CG =CF =x BG =BC −CG =4−x△ABG A +B =A B 2G 2G 2∴+=42(4−x)2(4+x)2x =1∴BG =3(3)FD AB =AD =AF ∠ABF =∠AFB ∠ADF =∠AFD ABFD ∠BAD+∠ABF +∠BFD+∠AFD=+2∠BFD =90∘360∘∠BFD =135∘CD E ∠CFD =90∘∠BFC =−∠BFD−∠CFD =360∘135∘(1)x y {20x+20×2×100+15y+15×2×100=24000,10x+10×2×100−2000=5y+5×2×100{x =400,y =600400600设甲种办公桌购买张,则购买乙种办公桌张,则,,解得:,,即有种购买方案.,即乙种办公桌单价甲种办公桌单价,∴甲种办公桌数量越多,总费用越少,∴当时,费用最少.答:共有种购买方案,当甲种办公桌购买张乙种购买张时费用最少.【考点】二元一次方程组的应用——销售问题一次函数的性质【解析】本题考查二元一次方程组的实际应用.设甲种办公桌每张元,乙种办公桌每张元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数,张甲种桌子钱数+对应椅子的钱数张乙种桌子钱数+对应椅子的钱数”列方程组求解可得.设甲种办公桌购买张,则购买乙种办公桌张,根据已知条件列一元一次不等式即可求解.【解答】解:设甲种办公桌每张元,乙种办公桌每张元,根据题意,得:解得:答:甲种办公桌每张元,乙种办公桌每张元.设甲种办公桌购买张,则购买乙种办公桌张,则,,解得:,,即有种购买方案.,即乙种办公桌单价甲种办公桌单价,∴甲种办公桌数量越多,总费用越少,∴当时,费用最少.答:共有种购买方案,当甲种办公桌购买张乙种购买张时费用最少.22.【答案】根据题意得:==,解得;根据题意得=,,∵,∴,即,∴=,整理得=,解得=,=,而;∴的值为.【考点】(2)a (40−a)a ≤3(40−a)400a +200a +600(40−a)+200(40−a)≤2640028≤a ≤30∴a =28,29,30,40−a =12,11,103∵600>400>a =3033010(1)x y =2400010−2000=5(2)a (40−a)(1)x y {20x+20×2×100+15y+15×2×100=24000,10x+10×2×100−2000=5y+5×2×100{x =400,y =600400600(2)a (40−a)a ≤3(40−a)400a +200a +600(40−a)+200(40−a)≤2640028≤a ≤30∴a =28,29,30,40−a =12,11,103∵600>400>a =3033010△4(m+1−4(−3))3m 28m+8>8m>−1+x 1x 4−2(m+1)4(m+2−3(−1))2m 716+2m−9m 20m 7−9m 27m>−1m 1抛物线与x 轴的交点二次函数图象与系数的关系【解析】此题暂无解析【解答】此题暂无解答23.【答案】证明:∵四边形是正方形,∴,∵,∴,∵平分,∴,∴,∵,∴ .证明:由可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .解:连接,过点作于,于,交于 . 由证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . 【考点】勾股定理正方形的性质相似三角形的性质与判定全等三角形的性质与判定【解析】(1)∵四边形是正方形,∴,(1)ABCD ∠BDC =45∘DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DFA (2)(1)∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∽△FPH ∠DGP =∠HFP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC (3)PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q (2)∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠ADB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG ≅△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG PG2–√ABCD ∠BDC =45∘∵,∴,∵平分,∴,∴,∵,∴ .(2)由(1)可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .(3)连接,过点作于,于,交于 . 由(2)证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . 【解答】证明:∵四边形是正方形,∴,∵,∴,∵平分,∴,∴,∵,∴ .证明:由可知:,,∴,∴,∴,又∵,∴,∴ ,又∵,∴,∴ .解:连接,过点作于,于,交于 . 由证法,易证,∵,,平分,∴,,∴,∵四边形是正方形,,∴,∴,∴,∴,∵ ,∴是等腰直角三角形,∴,∴,∴ . DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DPA ∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∼△FPH ∠DGP =∠HPP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q ∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠AOB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG =△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG FG2–√(1)ABCD ∠BDC =45∘DG ⊥AE ∠DGE =90∘GH ∠DGE ∠DGH =∠EGH =45∘∠BDC =∠EGH =45∘∠DPH =∠GPF ∠DHG =∠DFA (2)(1)∠BDC =∠EGH =45∘∠DPH =∠GPF △GPF ∽DPH =PG PD PF PH =PG PF PD PH ∠GPD =∠FPH △GPD ∽△FPH ∠DGP =∠HFP =45∘∠DBC =45∘∠DBC =∠DFH FH//BC (3)PA P PM ⊥AE M PN ⊥DG N QP ⊥GP GD Q (2)∠PAG =∠PDG PM ⊥AE PN ⊥DG GH ∠DGE PM =PN Rt △PMA ≅Rt △PND PA =PD ABCD ∠ADB =45∘∠APD ==∠GPQ 90∘∠APG =∠DPQ △APG ≅△DPQ QD =AG ∠PGQ =45∘△PGQ GQ =PG 2–√DG−AG =DG−DQ =GQ =PG 2–√=DG−AG PG 2–√。

云南省曲靖市麒麟区第七中学2021-2022学年九年级下学期第一次月考数学试题及考试答案

云南省曲靖市麒麟区第七中学2021-2022学年九年级下学期第一次月考数学试题及考试答案

云南省曲靖市麒麟区第七中学2021-2022学年九年级下学期第一次月考数学试题一、单选题(本题12个小题,每小题4分,共48分)1.﹣2022等于()A.0B.2022C.1D.﹣20222.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1D.(2a3﹣a2)÷a2=2a﹣13.如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.第14届全运会于2021年9月15日至9月27日在陕西举行,西安奥体中心是第十四届全运会主会场,规划面积约5平方公里,投资约170亿元.将数据170亿用科学记数法表示为()A.0.17×1010B.1.7×1010C.1.7×1011D.17×10105.若3x+2y=3,求27x×9y的值为()A.9B.27C.6D.06,某校九年级I班的同学毕业时都将自已的生活照片向全班其他同学各送一张表示留念,全班共送I540张照片,求全班的学生人数,设全班有x名学生,根据题意,列出方程为()A.x(x+1)=1540B.C.x(x﹣1)=1540D.2x(x+1)=15407.如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为()A.B.C.D.8.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形,现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为()A.B.C.D.9.为了迎接暑假的购物高峰,北碚万达广场耐克专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元10.在同一坐标系中,一次函数y=ax+2与二次函数y=x 2﹣a 的图象可能是()A.B.C.D.11.如图,直线OA 的解析式为y=x,点P 1坐标为(1,0),过P 1作P 1⊥x 轴交OA 于Q 1,过Q 1作P 2Q 1⊥OA 交x 轴于P 2,过P 2作P 2Q 2⊥x 轴交OA 于Q 2,过Q 2作P 3Q 2⊥OA 交x 轴于P 3,…,按此规律进行下去,则P 100的坐标为()A.(2100﹣1,0)B.(5050,0)C.(299,0)D.(100,0)12.如果数m 使关于x 的方程(m+1)x 2﹣(2m﹣1)x+m=0有实数根,且使关于x 的分式方程有正分数解,那么所有满足条件的整数m 的值的和为()A.﹣6B.﹣5C.﹣4D.﹣3二、填空题(本题6个小题,每小题4分,共24分)13.分解因式3x2﹣27y2=.14.计算;﹣12022+(π﹣314)0+sin60°=.15.函数中自变量x的取值范围是.16.已知一个正多边形的内角和为1260°,则这个正多边形的每个外角比每个内角小度.17.已知图锥的底面半径为3,侧面积为15π,则这个圆锥的母线长为.18.如图,在平面直角坐标系中,菱形OABC的面积为8,点B在y轴上,点C在反比例函数上的图象上,则k的值为.三、解答题(本题6个小题共48分)19.先化简,再求值:,请从不等式组的整数解中选择一个合适的值代入求值.20.根据“五项管理”文件精神,某学校优化学校作业管理,探索减负增效新举措,学校就学生做作业时间进行问卷调查,将收集信息进行统计分成A、B、C、D四个层级,其中A:90分钟以上:B:60~90分钟;C:30~60分钟;D:30分钟以下.并将结果绘制成两幅不完整的统计图,请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有人;(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”层级的学生约有多少人?(4)学校从“A”层级的的3名女生和2名男生中随机抽取2人参加现场深入调研,则恰好抽到1名男生和1名女生的概率是多少?21.汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速(如图),学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40km/h.数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为C.测得PC=30m,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6$,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.2022.年冬奥会吉祥物冰墩墩一夜之间火遍全球,各种冰墩墩的玩偶,挂件,灯饰等应运而生.某学校决定购买A,B两种型号的冰墩墩饰品作为纪念品,已知A种比B种每件多25元,预算资金为1700元:其中800元购买A种商品,其余资金购买B种商品,且购买B种的数量是A种的3倍,(1)求A,B两种饰品的单价,(2)购买当日,正逢开学季搞促销,所有商品均按原价八折销售,学校调整了购买方案:超过预算资金且购买A种饰品的资金不少于720元,A,B两种饰品共I00件:问购买A,B两种饰品有哪几种方案?23.如图,已知Rt△ABC中,∠ACB=90°,AD平分∠BAC,交BC于点D,以AB上某一点O为圆心作⊙O使⊙O经过点A和点D,交AB于点E,连接ED并延长交AC的延长线于点F,(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=12,∠BAC=60°.求阴影区域的面积..24.如图,抛物线y=ax2+bx+c与x轴分别交于点A、B与y轴交于点C,OB=6,顶点D(2,8),对称轴交x轴于点Q,(1)求抛物线的解析式:(2)点P是抛物线的对称轴上一动点,以点P为圆心的圆经过A、B两点,当⊙P与直线CD相切时,求P的坐标:(3)动点M在对称轴上运动时,是否存在△DCM和△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.。

人教版九年级数学秋学期第一次月考测试题(含答案)

人教版九年级数学秋学期第一次月考测试题(含答案)

人教版九年级数学秋学期第一次月考测试题(含答案)检测时间:120分钟总分:150分一、选择题(共10题,每题4分,共40分)1.关于x的一元二次方程(m−1)x2+5x+m2−3m+2=0的常数项为0,则m等于()A、1B、2C、1或2D、02.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A、y=3(x−1)2−2B、y=3(x+1)2−2C、y=3(x+1)2+2D、y=3(x−1)2+23.下列图案中,既是轴对称图形又是中心对称图形的是()4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能()5.下列关于抛物线y=−x2+2的说法正确的是()A、抛物线开口向上B、顶点坐标为(−1,2)C、在对称轴的右侧,y随x的增大而增大D、抛物线与x轴有两个交点6.若m是方程x2−x−1=0的一个根,则2m2−2m+2020的值为()A、2019B、2020C、2021D、20227.如图,以点P为圆心作圆,所得的圆与直线l相切的是()A、以PA为半径的圆B、以PB为半径的C、以PC为半径的圆D、以PD为半径的圆8.如图,A、B、C在⊙O上,∠ACB=40°,点D在弧ACB上,M为半径OD 上一点,则∠AMB的度数不可能为()A、45°B、60°C、75°D、85°9.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A、5000(1+2x)=7500B、5000×2(1+x)=7500C、5000(1+x)2=7500D、5000+5000(1+x)+5000(1+x)2=7500 10.如图,点A,B是半径为1的圆上的任意两点,则下列说法正确的是()A、A,B两点间的距离可以是⎷5B、以AB为边向⊙O内构造等边三角形,则三角形的最大面积为3/2 ⎷3C、以AB为边向⊙O内构造正方形,则正方形的面积可以为3D、以AB为边向⊙O内构造正六边形,则正六边形的最大面积为3/2 ⎷3第7题第8题第10题二、填空题(共6题,每题4分,共24分)11.若a,b是一元二次方程x2+2x−2022=0的两个实数根,则a2+4a+2b的值是.12.若二次函数y=a(x+m)2+b(a,m,b均为常数,a≠0)的图象与x轴两个交点的坐标是(−2,0)和(1,0),则方程a(x+m+2)2+b=0的解是.13.某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=−0.25t2+8t,无人机着陆后滑行秒才能停下来.14.如图,边长为2的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE将线段CE绕点C顺时针旋转60°得到CF,连接DF,则在点E运动过程中,DF的最小值是.15.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=35°,则∠CAD=.16.如图,在平行四边形ABCD中,AC=3cm,BD=⎷13cm,AC⊥CD,⊙O是△ABD的外接圆,则AB的弦心距等于cm.第14题第15题第16题三、解答题(共9题,共86分)17.计算题(共2题,每题4分,共8分)18.(8分)已知关于x的一元二次方程mx2−(3m−1)x+2m=1.(1)如果方程根的判别式的值为1,求m的值.(2)如果方程有一个根是−1,求此方程的根的判别式的值.19.(8分)对于二次函数y=x2+bx+b−1(b>0),在函数值y=−1的情况下,只有一个自变量x的值与其对应.(1)求二次函数的解析式;(2)若在自变量x的值满足m≤x≤m+2的情况下,与其对应的函数值y的最小值为3,求m的值.20.(8分)2022北京冬奥会期间,冰墩墩和雪容融受到人们的广泛喜爱.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次的调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.(1)若销售价格每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,需尽快将这批冰墩墩和雪容触售出,决定降价出售、经过市场调查发现:销售单价每降价10元,每天多卖出2套,当降价钱数m为多少元时每天的利润W(元)可达到最大,最大利润是多少?21.(8分)如图,抛物线y=−x2+bx+c与x轴交于点A(−1,0),B(3,0),与y轴交于点C,点D是直线BC上方抛物线上一动点.(1)求抛物线的解析式;(2)若过点D作DE⊥x轴于点E,交直线BC于点M.当DM=2ME时,求点D 的坐标.22.(10分)如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作⊙O的切线,交BC于点E,连接BD.(1)判断∠ABD与∠CDE的数量关系,并说明理由.(2)若∠EDB=40°,OB=4,求弧BD的长.23.(10分)如图,已知Rt△ABC中,∠ACB=90°,先把△ABC绕点C顺时针旋转90°至△EDC后,再把△ABC沿射线BC平移至△GFE,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结AG,求证:四边形ACEG是正方形.24.(12分)如图,正方形ABCD是⊙O的内接正方形,E在边AB上,F在DC的延长线上,且∠F=∠BEC,BF交⊙O于点G,连接DG,交BC于点H.(1)求证:四边形BECF是平行四边形;(2)求证:DH=CE.25.(14分)如图,抛物线y=ax2+bx+c过点A(−1,0),点B(3,0),与y 轴负半轴交于点C,且OC=3OA,抛物线的顶点为D,对称轴交x轴于点E.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)若点P是抛物线上一点,过点P作PQ⊥x轴交直线BC于点Q,试探究是否存在以点E,D,P,Q为顶点的平行四边形.若存在,求出点P坐标;若不存在,请说明理由.。

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)一.单选题。

(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。

〖湘教版〗九年级数学下册第一次月考数学试卷3

〖湘教版〗九年级数学下册第一次月考数学试卷3

〖湘教版〗九年级数学下册第一次月考数学试卷创作人:百里见州创作日期:2021.04.01审核人:北堂过什创作单位:北京市智语学校一、填空题(本题有10小题,每小题2分,共20分)1.(2分)函数的自变量x的取值范围是.2.(2分)上海世博会预计约有69000000人次参观,69000000用科学记数法表示为.3.(2分)分解因式:2a2﹣4a+2=.4.(2分)若2a﹣b=2,则6+8a﹣4b=.5.(2分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.6.(2分)将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于.7.(2分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.8.(2分)在平面直角坐标系中,将直线y=﹣2x+1向下平移4个单位长度后.所得直线的解析式为.9.(2分)在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有个.10.(2分)观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:.二、选择题(共6小题.每小题3分.共18分)11.(3分)计算 10﹣()×(﹣2)的结果是()A.﹣2 B.﹣1 C.2 D.312.(3分)如图,如果甲、乙两图关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.D.13.(3分)甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是()A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率14.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.415.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°16.(3分)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人、绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为()A.129 B.120 C.108 D.96三、解答题(共4小题,每小题5分.共20分)17.(5分)先化简,再求值:选一个你所喜欢的数带入求值.18.(5分)如图,在正方形网格中,每个小正方形的边长都是1.四边形ABCD的四个顶点都在格点上,点O为AD的中点.把四边形ABCD绕点O顺时针旋转180°,(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中所经过的线路的长(结果保留π)19.(5分)如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹).20.(5分)上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?四、解答题(共2小题,每小题6分.共12分)21.(6分)如图,已知二次函数y=﹣x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.22.(6分)如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.(1)求证:AC=CP;(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).(参考数据:,π=3.14)五、解答题(共2小题,每小题7分.共14分)23.(7分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 1524.(7分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01m)sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732.六、解答题(共2小题,每小题8分.共16分)25.(8分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是;②当k=2时,是;③当k=3时,是.26.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.七、解答题(共2小题,每小题10分.共20分)27.(10分)如图:二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x 轴的交点A,B的坐标;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.28.(10分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C、平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC 于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l 的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(本题有10小题,每小题2分,共20分)1.(2分)函数的自变量x的取值范围是x≤2.【解答】解:依题意,得2﹣x≥0,解得x≤2.故答案为:x≤2.2.(2分)上海世博会预计约有69000000人次参观,69000000用科学记数法表示为 6.9×107.【解答】解:69 000 000=6.9×107.3.(2分)分解因式:2a2﹣4a+2=2(a﹣1)2.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.4.(2分)若2a﹣b=2,则6+8a﹣4b=14.【解答】解:∵2a﹣b=2,代入6+8a﹣4b,得6+4(2a﹣b)=6+4×2=14.5.(2分)直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.6.(2分)将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于144.【解答】解:圆锥的底面周长为2π×3=6π,∴=6π,解得n=144,故答案为:144.7.(2分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.【解答】解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的判定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直的平行四边形是菱形”的判定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确的有(1)、(3)两个,所以可推出平行四边形ABCD是菱形的概率为: =.故答案为:.8.(2分)在平面直角坐标系中,将直线y=﹣2x+1向下平移4个单位长度后.所得直线的解析式为y=﹣2x﹣3.【解答】解:由题意得:平移后的解析式为:y=﹣2x+1﹣4=y=﹣2x﹣3.故答案为:y=﹣2x﹣3.9.(2分)在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有12个.【解答】解:坐标轴上到圆心距离为5的点有4个,由勾股定理,四个象限中,到圆心距离为5的点有8个,共12个,如图所示.10.(2分)观察等式:①9﹣1=2×4;②25﹣1=4×6;③49﹣1=6×8…按照这种规律写出第n个等式:(2n+1)2﹣1=2n(2n+2)(n为大于或等于1的自然数).【解答】解:①9﹣1=32﹣1=(2×1+1)2﹣1=2×(2+2)=2×4;②25﹣1=52﹣1=(2×2+1)2﹣1=(2×2)×(2+2×2)=4×6;③49﹣1=72﹣1=(2×3+1)2﹣1=(2×3)×(2+2×3)=6×8,…因此第n个等式为:(2n+1)2﹣1=2n(2n+2)(n为大于或等于1的自然数).二、选择题(共6小题.每小题3分.共18分)11.(3分)计算 10﹣()×(﹣2)的结果是()A.﹣2 B.﹣1 C.2 D.3【解答】解:原式=1﹣(﹣×2)×(﹣2)=1+2=3.故选D.12.(3分)如图,如果甲、乙两图关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.D.【解答】解:观察甲、乙两图,C的图案在绕点O旋转180°后,不能互相重合,因此乙图中不符合题意的一块是C的图案;故选C.13.(3分)甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是()A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率【解答】解:∵甲箱装有40个红球和10个黑球,球的总个数为:40+10=50个;黑球的个数为:10个,∵乙箱装有60个红球、40个黑球和50个白球,球的总个数为:60+40+50=150个,黑球的个数为:40个,于是:从甲箱摸到黑球的概率=;从乙箱摸到黑球的概率=;由此可得从乙箱摸到黑球的概率较大,故选B.14.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.15.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.16.(3分)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人、绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为()A.129 B.120 C.108 D.96【解答】解:设1艘大船的载客量为x人,一艘小船的载客量为y人.由题意可得:,解得,∴3x+6y=96.∴3艘大船与6艘小船,一次可以载游客的人数为96人.故选:D.三、解答题(共4小题,每小题5分.共20分)17.(5分)先化简,再求值:选一个你所喜欢的数带入求值.【解答】解:原式=×﹣,=﹣,=﹣,当a=0时,原式=﹣.18.(5分)如图,在正方形网格中,每个小正方形的边长都是1.四边形ABCD的四个顶点都在格点上,点O为AD的中点.把四边形ABCD绕点O顺时针旋转180°,(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中所经过的线路的长(结果保留π)【解答】解:(1)如图所示:(2)易知点C的旋转路径是以O为圆心,OC为半径的半圆.因为OC==,所以半圆的长为.19.(5分)如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹).【解答】解:△ABC就是所求的三角形.20.(5分)上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?【解答】解:(1)树状图如图:所有情况有6种;(2)她从入口A进入展厅并从北出口或西出口离开的概率是=.四、解答题(共2小题,每小题6分.共12分)21.(6分)如图,已知二次函数y=﹣x2+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.【解答】解:(1)把A(2,0)、B(0,﹣6)的坐标代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+4x﹣6.(2)∵抛物线的对称轴x=﹣=﹣=4,∴C(4,0),∵A(2,0)、B(0,﹣6),∴AC=2,BO=6,∴S△ACB=•AC•BO=×2×6=6.22.(6分)如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P.(1)求证:AC=CP;(2)若PC=6,求图中阴影部分的面积(结果精确到0.1).(参考数据:,π=3.14)【解答】(1)证明:连接OC.∵AB是⊙O的直径,∴AO=OC,∴∠ACO=∠A=30°.∴∠COP=2∠ACO=60°.∵PC切⊙O于点C,∴OC⊥PC.∴∠P=30°.∴∠A=∠P.∴AC=PC.(2)解:在Rt△OCP中,tan∠P=,∴OC=2∵S△OCP=CP•OC=×6×2=且S扇形COB=2π,∴S阴影=S△OCP﹣S扇形COB=.五、解答题(共2小题,每小题7分.共14分)23.(7分)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15【解答】解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.(7分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B 的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01m)sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732.【解答】解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,∴AD﹦20×sin60°﹦10≈17.32.在Rt△BEC中,∵BC﹦24,∠BCE﹦45°,∴BE﹦24×sin45°﹦12≈16.97.∵17.32>16.97,∴风筝A比风筝B离地面更高.(2)在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,∴DC﹦20×cos60°﹦10.在Rt△BEC中,∵BC﹦24,∠BEC﹦90°,∴EC=BC×cos45°≈24×0.707≈16.97(m),∴EC﹣DC≈16.97﹣10﹦6.97(m).即风筝A与风筝B的水平距离约为6.97m.六、解答题(共2小题,每小题8分.共16分)25.(8分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是平行四边形;②当k=2时,是直角梯形;③当k=3时,是等腰梯形.【解答】(1)证明:∵AE∥BC,∴∠EDO=∠FBO,∠DEO=∠OFB,∴△BOP∽△DOE.(2)解:①如图1中,∵AE=ED,k=1,∴AE=ED=BP,∵AE∥PB,∴四边形ABPE是平行四边形.故答案为平行四边形.②如图2中,∵AE=DE,k=2,∴PB=2ED=2AE,∵AD:BC=2:3,∴PC=DE,∵DE∥PC,∴四边形CDEP是平行四边形,∵∠C=90°,∴四边形CEEP是矩形,∴∠EPB=∠EPC=90°,∵AE∥PB,AE≠PB,∴四边形ABPE是直角梯形.故答案为直角梯形.③如图③中,作BM⊥AD于M.∵AE=DE,AD:BC=2:3,k=3,∴PB=3DE,∵BC=3DE,∴点P与C重合,∵∠M=∠BCD=∠BDM=90°,∴四边形BCDM是矩形,∴BM=DC,DM=BC,∵BC=3DE,AE=DE,∴AM=DE,∵∠M=∠CDE=90°,∴△ABM≌△ECD,∴AB=EC,∴四边形ABPE是等腰梯形.故答案为等腰梯形.26.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度.【解答】解:(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴解得∴y=﹣75x+1050∴y=.(2)当x=7时,y=﹣75×7+1050=525,V乙==75(千米/小时).七、解答题(共2小题,每小题10分.共20分)27.(10分)如图:二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x轴的交点A,B的坐标;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.【解答】解:(1)∵顶点M(1,﹣4),∴m=﹣1,k=﹣4,∴二次函数的解析式为:y=(x﹣1)2﹣4,当y=0时,y=(x﹣1)2﹣4=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0);(2)如图所示,当直线y=x+b过点B时,直线y=x+b(b<1)与此图象有一个公共点,把B(3,0)代入得:3+b=0,b=﹣3,当直线y=x+b过点A时,直线y=x+b(b<1)与此图象有三个公共点,把A(﹣1,0)代入得:﹣1+b=0,b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.28.(10分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C、平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC 于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l 的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)设AB的解析式为y=kx+b,把A(8,0)、B(0,)分别代入解析式得,,解得k=﹣,则函数解析式为y=﹣x+8.将y=﹣x+8和y=x组成方程组得,,解得.故得C(4,),∴t的取值范围是:0≤t≤4.(2)作EM⊥y轴于M,DG⊥y轴于点G,∵D点的坐标是(t,),E的坐标是(t,)∴DE=﹣=;∴等边△D EF的DE边上的高为:sin60°•DE=DE=12﹣3t;根据E点的坐标(t,),以及∠MNE=60°,故ME=t,MN=tan30°ME=t,同理可得:GH=t,∴可求梯形上底为:﹣,∴当点F在BO边上时:12﹣3t=t,∴t=3;当0≤t<3时,重叠部分为等腰梯形,可求梯形面积为:S===;当3≤t≤4时,重叠部分为等边三角形S==.(3)存在,P(,0);说明:∵FO≥,FP≥,OP≤4,△DEF是等边三角形,∴以P,O,F为顶点的等腰三角形,腰只有可能是FO,FP,若FO=FP时,t=2(12﹣3t),解得:t=,∴P(,0).创作人:百里见州创作日期:2021.04.01审核人:北堂过什创作单位:北京市智语学校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省耒阳市冠湘中学2015届九年级数学下学期第一次月考试题
总分:120分 时间:120分钟
一、选择题(每小题3分,共36分) 1、-5的相反数是( ) A.5
B.-5
C.
D.
2、实数
7
22
,sin30º,2+1,π2,-0.1010010001,38中,无理数的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个
3、2012年我省各级政府将总投入594亿元教育经费用于“教育强省”战略,将594亿元用于科学记数法(保留两个有效数字)表C . 5 6.0×104. 二元一次方程组42x y x y -=⎧⎨+=⎩的解是( )
A .3
7x y =⎧⎨=-⎩
B .1
1x y =⎧⎨=⎩
C .7
3x y =⎧⎨=⎩
D .3
1x y =⎧⎨=-⎩
5.下列各式计算结果中正确的是( )
A .a 2+a 2=a 4
B .(a 3)2=a 5
C .(a +1)2=a 2+1
D .a ·a =a 2
6、在函数x
y 5
-
=的图象上有三点1(2)A y -,、2(1)B y -,、3(2)C y ,则( )。

A .321y y y >> B .312y y y >> C .231y y y >> D .1231y y y >> 7、一次函数3
12
y x =
-图象大致是( )。

8、抛物线2
y x =-向左平移1个单位,再向上平移3个单位,则平移后抛物线的解析式是( )。

A .2
(1)3y x =--- B .2
(1)3y x =-+- C .2
(1)3y x =--+ D .2
(1)3y x =-++ 9、某农场挖一条960m 长的渠道,开工后每天比原计划多挖20m ,结果提前4天完成了任务。

若设原计划每天挖xm ,则根据题意可列出方程( )
10、抛物线 图像如图所示,则一次函数
与反比例函数 在同一坐标系内的图像大致为( )
c
bx ax y ++=22
4b ac bx y +--=420960960.=+-x x A 420960960.=--x x C 496020960.
=-+x x B 496020960.=--x x D a b c y x ++=
5
1-
5
1
11. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的
距离s (千米)和行驶时间t (小时)的函数关系的图象如图所示。

根据图中提供的信息,
有下列说法:
(1)他们都行驶了18千米; (2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时;
(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地。

其中,符合图象描述的说法有( ) A.2个 B.3个 C.4个 D.5个
12.函数x y =1(x≥0)、x >0)的图象如图,则
结论
①两函数图象的交点A 的坐标为(2,2);
②当x >2时,y 2>y 1;③当x=1时,BC=3;
④当x 逐渐随x 的增大而增大,y
2
随x 的增大而
减小.
其中正确的结论是( )
A.①②
B.①③
C.①③④
D.①②③④ 二、填空题(每小题3分,共24分)
13、计算:﹣×= .14、化简:=-+-x x x 11
1 .
15、函数 中,自变量x 的取值范围是 16、已知x = 1是一元二次方程02
=++n mx x
的一
个根,则222n mn m ++的值为 . 17、因式分解:a 3
﹣ab 2
= .
18、抛物线2
23y x x =--的对称轴是 。

19、如图,反比例函数y=的图象经过点P ,则k= .
20、下图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子
用了 块石子。

=
三、解答题(共60分)
21、(6分)
计算:01
sin 30(π4)2
-+- 22、(6分)解方程
14143=-+--x x x
25、(8分)如图,已知点A(一8,n),B(3,—8)是一次函数y kx b =+的图象和反比例函数m
y x
=
图象的两个交点. (1)求反比例函数和一次函数的解析式;
(2)求直线A B 与x 轴的交点C 的坐标及∆AOB 的面积,
(3)求方程0m
kx b x +-=的解(请直接写出答察); (4)求不等式0m
kx b x
+->的解集(请直接写出答案).
26、(8分)某市政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
27、(10分)如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,则△BPQ 的形状是 ;
24、(6分)先化简,再求值:
,其中

23、(6分)解不等式组:;
并把解集在数轴上表示出来.
(2)设△BPQ 的面积为S (cm 2
),求S 与t 的函数关系式;
(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?
28、(10分)如图,已知抛物线 m mx x y
42++-= 的图象与x 轴交于A 、B 两点,与y
轴交于点C(0,8).
(1)求抛物线的解析式,并写出顶点D 的坐标;
(2)抛物线上是否存在点E ,使△ABE 的面积为15,若存在,请求出所有符合条件E 的 坐标,若不存在,请说明理由;
(3)连结BD ,动点P 在线段B D 上运动(不含端点B 、D),连结CP ,过点P 作x 轴的垂线,垂足为H ,设OH 的长度为t ,四边形PCOH 的面积为S.试探究:四边形PCOH 的面积S 有无最大值?如果有,请求出这个最大值;如果没有,请说明理由。

初三数学第一次段考答案
解答题(共60分)
26、16001202)802)(20()1(2-+-=+--=x x x x w (2分)
200)30(2)2(2+--=x w 元时当最大值20030==W x (3分) 25150)3(1==,x w 时当 )x 舍(352=(3分)。

相关文档
最新文档