2020-2021下海育才初级中学初一数学下期末试题(带答案)

合集下载

2020-2021下海西南位育中学初三数学下期末第一次模拟试题附答案

2020-2021下海西南位育中学初三数学下期末第一次模拟试题附答案

2020-2021下海西南位育中学初三数学下期末第一次模拟试题附答案一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.在数轴上,与表示6的点距离最近的整数点所表示的数是()A.1B.2C.3D.44.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D5.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.156.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁7.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣58.如图,下列关于物体的主视图画法正确的是()A.B.C.D.9.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩10.下列命题中,真命题的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形11.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A.B.C.D.12.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.96096054848x-=+B.96096054848x+=+C.960960548x-=D.96096054848x-=+二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n 50 100 200 400 500 800 1000 1200 1500 2000色盲患者的频数m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 16.若一个数的平方等于5,则这个数等于_____.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.18.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 19.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 20.计算:21(1)211x x x x ÷-+++=________.三、解答题21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考 (1)设,点到的距离. ①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格. 6 5 4 3.5 3 2.5 2 1 0.5 00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.24.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++25.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.26.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】46 6.25<<Q,26 2.5∴<<,则在数轴上,与表示6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.4.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.5.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A. 6.D解析:D 【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 7.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.8.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C . 【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.9.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.10.D解析:D 【解析】 【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.C解析:C 【解析】从上面看,看到两个圆形, 故选C .12.D解析:D 【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D .点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故 解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:, ∴252512BOD OACS OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5±.故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1. 19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数22.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,, 故答案为:,. (2)①当时,,当时,, 故答案为2,6. ②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为. 性质2:函数图象在第一象限,随的增大而减小.【点睛】 本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.25.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分) (2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)26.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B 组抽查的人数除以总人数,即可求出a ;用360乘以C 组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D 的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图。

专题23 期末质量评估(B卷)-2020-2021学年度人教版七年级数学下册(解析版)

专题23  期末质量评估(B卷)-2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练期末质量评估B 卷[时间:90分钟 满分:120分 范围:全册]一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020独家原创试题)下列实数中,是无理数的是( ) A.81100B.2020πC.117D.3-272.(2020上海中考,3,★☆☆)我们经常将调查收集得来的数据用各类统计图进行整理与表示下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( ) A.条形图B.扇形图C.折线图D.频数分布直方图3.(2020天津中考,8★☆☆)如图,四边形OBCD 是正方形,,D 两点的坐标分别是(0,0),(0,6),点C 在第一象限, 则点C 的坐标是( )A.(6,3)B.(3,6)C.(0,6)D.(6,6)4.(2019四川攀枝花月考,5,★☆☆)如图所示,直线AB 、CD 相交于点O,OE⊥AB 于点O,OF 平分∠AOE,∠BOD=15°,则下列结论中不正确的是( )A.∠AOF=45°B.∠AOD 与∠BOD 互为邻补角C.∠BOD=∠AOCD.∠BOD 的余角等于85°5.(2020广东深圳实验学校期末,4,★☆☆)已知方程组⎩⎨⎧4x+y =10x+4y =5,则x+y 的值为( )A.-1B.0C.3D.26.(2019广西柳州期末,5,★★☆)将一把直尺和一块含有30°角和60°角的三角板按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A.10°B.15°C.20°D.25°7.(2020福建厦门一中期末,8,★★☆)不等式组⎩⎨⎧5x -3<3x+5x<a的解集为x<4,则a 满足的条件是( )A.a<4B.a =4C.a≤4D.a≥48.(2019福建三明期末,7,★★☆)某市居民用电的电价实行阶梯收费,收费标准如下表所示:七月份是用电高峰期,李叔叔计划七月份电费支出不超过200元,则李叔叔家七月份最多可用电的度数是( ) A.100B.396C.397D.400二、填空题(本大题共8小题,每小题3分,共24分)9.(2019内蒙古包头期末,11,★☆☆)将命题“一个正数的两个平方根的和为0”改写成“如果那么”的形式: ________________________________________________________________________________。

上海市静安区育才初级中学2020-2021学年七年级下学期期末英语试题

上海市静安区育才初级中学2020-2021学年七年级下学期期末英语试题
16.—Sorry, I’m late. There was something wrong with my bike. —_________.
A.You are welcome.B.That’s all right.C.That’s right.D.All right.
17.—I’m sure you’ll pass the exam this time! —_________.
A.butB.ifC.becauseD.so
10.Alice is better than Kitty now because she works ________ Kitty.
A.so hard thanB.as hardly asC.so hard asD.harder than
11.Jackie has to give up his plan, _______ _______?
Enough laws (法律) have been made to fight against pollution. The cities in Australia have got20.air or water pollution. The sky is blue and the water is clean. You can clearly see fish swimming in the rivers. Plants grow very well.
A.hasn’t heB.hasn’t JackieC.doesn’t heD.doesn’t Jackie
12.Daisy is good at language learning. She can ______ 3 languages including Chinese.

2020-2021学年七年级数学下学期期末测试卷03(解析版)

2020-2021学年七年级数学下学期期末测试卷03(解析版)

2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。

2020-2021初一数学下期中试卷(附答案) (4)

2020-2021初一数学下期中试卷(附答案) (4)

∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确. ∵∠BAC=90°, ∴AB⊥AC, ∵AB//DE
DE AC ,故④正确.
综上所述:之前的结论有:①②③④,共 4 个, 故选 D. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学 生易混淆图形的平移与旋转或翻转.
12.C
解析:C
【解析】
试题分析:已知,△ABE 向右平移 2cm 得到△DCF,根据平移的性质得到 EF=AD=2cm,
AE=DF,又因△ABE 的周长为 16cm,所以 AB+BC+AC=16cm,则四边形 ABFD 的周长 =AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选 C.
19.若 x+1 是 125 的立方根,则 x 的平方根是_________. 20.如图,直线 a、b 被直线 l 所截,a∥b,∠1=70°,则∠2= .
三、解答题 21.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为 x 分 ( 60 x 100 ).校方从 600 幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,
3.D
解析:D
【解析】
【分析】
选项 A 中,∠C 和∠D 是直线 AC、DE 被 DC 所截形成的内错角,内错角相等,判定两直 线平行;
选项 B 中,不符合三线八角,构不成平行; 选项 C 中,∠E 和∠D 是直线 DC、EF 被 DE 所截形成的同旁内角,因为同旁内角不互 补,所以两直线不平行;
故选 D. 【点睛】 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大 小小找不到”的原则是解决问题的关键.

2020-2021下海位育初级中学七年级数学下期中一模试卷带答案

2020-2021下海位育初级中学七年级数学下期中一模试卷带答案

2020-2021下海位育初级中学七年级数学下期中一模试卷带答案一、选择题1.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是)1-,那个这个点的坐标是( )A .(-B .()1-C .)1-D .)2.下列语句中,假命题的是( )A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)4.0=,则xy 的值为( )A .0B .1C .-1D .25.已知,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <66.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,47.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .3 8.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面 9.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块10.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.811.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.14.已知3 1.732, 30 5.477≈≈,则0.3≈______.15.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.16.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.17.34330035.12=30.3512x =-,则x =_____________.18.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.19.若264a =3a =______.20.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.三、解答题21.为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为,,A B C D ,,并绘制了如下两幅不完整的统计表:(1)本次调查共调查了名学生,并补全条形统计图;(2)扇形统计图中C 类所对应的扇形圆心角的度数是 度;(3)若七年级人数为800人,请你估计体育成绩优、良的总人数.22.如图,三角形ABO 中,A (﹣2,﹣3)、B (2,﹣1),三角形A ′B ′O ′是三角形ABO 平移之后得到的图形,并且O 的对应点O ′的坐标为(4,3).(1)求三角形ABO 的面积;(2)作出三角形ABO 平移之后的图形三角形A ′B ′O ′,并写出A ′、B ′两点的坐标分别为A ′ 、B ′ ;(3)P (x ,y )为三角形ABO 中任意一点,则平移后对应点P ′的坐标为 .23.解不等式组:23132x x x ->-⎧⎪⎨<-⎪⎩①②.24.解下列方程组:(1)430210x yx y-=⎧⎨-=-⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩25.解方程组:23 238 x yx y-=⎧⎨-=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【详解】1-1)故选:C.【点睛】此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.2.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.选项C. 两直线平行,同旁内角互补,正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...就是假命题3.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.5.B解析:B【解析】【分析】【详解】∵12,∴3<m<4,故选B.【点睛】的取值范围是解题关键.6.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.B解析:B【解析】【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.9.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.10.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.11.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若a b解析:2【解析】【分析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;③若a ⊥b ,b ⊥c ,则∥c a ,本说法错误;④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题. 14.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出【详解】解:故答案为:05477【点睛】本题考查了算术平方根的应用注意:当被开方数的小数点每向左或向右移动两位平方根的小数点就向左或向解析:5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】 解:30 5.477≈Q ,0.3300.010.5477≈⨯≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.15.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE 时∠BAD=∠DAE=45°;当BC∥AD 时∠DAE=∠B=60°;当BC∥AE 时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为:45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).16.垂线段最短【解析】【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在解析:垂线段最短【解析】【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.17.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律解析:-0.0433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 20.(22)或(4-4)【解析】【分析】点P到x轴的距离表示为点P到y轴的距离表示为根据题意得到=然后去绝对值求出x 的值再写出点P 的坐标【详解】解:∵点P 到两坐标轴的距离相等∴=∴3a-1=3-a 或3a解析:(2,2)或(4,-4).【解析】【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.三、解答题21.(1)40,图形见详解;(2)72;(3)600【解析】【分析】(1)根据A 级的有16人,所占的圆心角是144°,据此即可求得测试的总人数,之后先根据百分比算出B 的人数,再根据D 的人数算出C 的人数,即可补全条形图; (2)利用360︒乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【详解】解:(1)1441640360︒÷=︒(名), 所以本次调查共调查了40名学生;4035%14⨯=(名),所以B 类学生有14名,可以求到C类学生有40-16-14-2=8(名),可以补全条形统计图如下:(2)83607240︒⨯=︒,所以扇形统计图中C类所对应的扇形圆心角的度数是72度;(3)161480060040+⨯=(名),答:体育成绩优、良的总人数约有600名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)4;(2)图见解析,点A′(2,0) 、点B′(6,2);(3)点P′的坐标为(x+4,y+3).【解析】分析:()1用矩形的面积减去3个直角三角形的面积即可.()2根据点O'的坐标,找出平移规律,画出图形,即可写出,A B''的坐标.()3根据()2中的平移规律解答即可.详解:()111134231224 4.222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯= V()2O的对应点O′的坐标为()4,3.可知向右平移4个单位长度,向上平移3个单位长度.如图所示:点A ′(2,0) 、点B ′(6,2);()3点P '的坐标为()43.x y ++,点睛:考查坐标与图形,平移.弄清楚题目的意思,根据题目给的对应点坐标,找出平移的规律即可.23.16x <<.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式①得:1x >解不等式②得:6x <∴不等式组的解集为:16x <<【点睛】此题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.24.(1)1010x y =⎧⎨=⎩(2)64x y =⎧⎨=⎩ 【解析】试题分析:(1)①×2后,利用加减消元法进行求解即可得; (2)整理后,利用加减消元法进行求解即可得. 试题解析:(1)430210x y x y -=⎧⎨-=-⎩①②, ①×2-②,得7x=70,x=10, 把x=10代入①,得40-y=30,y=10,所以1010x y =⎧⎨=⎩;(2)整理得4312 342x yx y-=⎧⎨-=⎩①②,①×4-②×3,得7x=42,x=6,把x=6代入②得18-4y=2,y=4,所以64 xy=⎧⎨=⎩.25.72 xy=⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x yx y-=⎧⎨-=⎩①②,②×2-①×3得:x=7,把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72 xy=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。

2021-2022学年七年级下学期期末考试数学试题(含答案解析)

2021-2022学年七年级下学期期末考试数学试题(含答案解析)

2021-2022学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)在平面直角坐标系中,点P(﹣2020,2021)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵P(﹣2020,2021)的横坐标小于0,纵坐标大于0,∴点P(﹣2020,2021)在第二象限,故选:B.2.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.3.(2分)如图是某电商今年1﹣5月份销售额统计图,根据图中信息,可以判断相邻两个月销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月解:1月至2月,30﹣23=7(万元),2月至3月,30﹣25=5(万元),3月至4月,25﹣15=10(万元),4月至5月,19﹣15=4(万元),则相邻两个月销售额变化最大的是3月至4月. 故选:C .4.(2分)下列说法正确的是( ) A .1的平方根是1 B .25的算术平方根是±5C .(﹣6)2没有平方根D .立方根等于本身的数是0和±1解:A .1的平方根是±1,故本选项不合题意; B .25的算术平方根是5,故本选项不合题意; C .(﹣6)2的平方根是±6,故本选项不合题意; D .立方根等于本身的数是0和±1,故本选项符合题意. 故选:D .5.(2分)如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°解:如图,∵a ∥b ,∠2=45°, ∴∠3=∠2=45°, ∴∠1=180°﹣∠3=135°, 故选:C .6.(2分)若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确;C.不等式两边都除以一个正数,不等号方向不改变,则C错误;D.因a<b,则﹣a>﹣b,于是3﹣a>3﹣b,则D错误.故选:B.7.(2分)√13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间解:∵√9<√13<√16,∴3<√13<4,故选:C.8.(2分)已知点A(2,2√2),B(5,√2),若线段CD是由线段AB沿y轴方向向下平移2√2个单位得到的,则线段CD两端点的坐标分别为()A.(2−2√2,2√2),(5−2√2,√2)B.(2,4√2),(5,3√2)C.(2,0),(5,−√2)D.(2,0),(5,﹣2)解:点A(2,2√2),B(5,√2),线段AB沿y轴方向向下平移2√2个单位,即把各点的纵坐标都减2√2,即可得到线段CD两端点的坐标.则C(2,0),D(5,−√2).故选:C.9.(2分)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等解:A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.10.(2分)为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的()A .乙种笔记本比甲种笔记本少4本B .甲种笔记本比丙种笔记本多6本C .乙种笔记本比丙种笔记本多8本D .甲种笔记本与乙种笔记本共12本解:设分别甲、乙、丙三种不同的笔记本x 、y 、z , 根据题意得:{2x +3y +4z =60①1.5x +2.5y +3.5z =49②,①﹣②得:x +y +z =22 ③, ③×3﹣①得,x ﹣z =6,故甲种笔记本比丙种笔记本多6本, 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: 2800×x10−2200≥2200×5% . 解:由题意得:2800×x10−2200≥2200×5%, 故答案为:2800×x10−2200≥2200×5%. 12.(2分)不等式组{x >a x >2的解集为x >2,则a 的取值范围是 a ≤2 .解:由不等式组{x >a x >2的解集为x >2,可得a ≤2.故答案为:a ≤213.(2分)如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOD =118°,则∠EOC 的度数为 28° .解:∵∠AOD =118°,∴∠BOC=∠AOD=118°,∵EO⊥AB,∴∠BOE=90°,∴∠EOC=∠BOC﹣∠BOE=28°,故答案为:28°.14.(2分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有300人.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.(2分)如果|a﹣2|=2﹣a,那么(a﹣3,a﹣4)在第三象限.解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,∴a﹣3<0,a﹣4<0,∴(a﹣3,a﹣4)在第三象限.故答案为:三.16.(2分)已知,a,b是正整数.若√7a+√10b是整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).解:∵a,b是正整数.√7a+√10b是整数,∴a=7,b=10或a=4×7,b=4×10,即满足条件的有序数对(a,b)为(7,10)或(28,40).故答案为(7,10)或(28,40). 三.解答题(共8小题,满分68分) 17.(8分)计算:(1)√25+√−273+√214; (2)2√2−|√2−1|. 解:(1)√25+√−273+√214 =5+(﹣3)+32=2+32 =72.(2)2√2−|√2−1| =2√2−√2+1 =√2+1.18.(8分)解方程组:{5(x −9)=6(y −2)x 4−y+13=2.解:方程组整理得:{5x −6y =33①3x −4y =28②,①×2﹣②×3得:10x ﹣12y ﹣3(3x ﹣4y )=66﹣84, 解得:x =﹣18,把x =﹣18代入①得:y =﹣20.5, 则方程组的解为{x =−18y =−20.5.19.(8分)(1)解不等式4x ﹣3<2x +1,并把解集表示在数轴上. (2)解不等式组{3x +2>x2−4(x −4)≥2x,并写出它的整数解.解:(1)移项得,4x ﹣2x <1+3, 合并同类项得,2x <4, 系数化为1得,x <2. 在数轴上表示为:.(2){3x+2>x①2−4(x−4)≥2x②,解①得:x>﹣1,解②得:x≤3,故不等式的解集为:﹣1<x≤3,其的整数解为0,1,2,3.20.(8分)南开中学为了培养学生的地理实践能力,举办了“自制地球仪”比赛.我校地理老师在全校学生的参赛作品中随机抽取了部分作品进行质量评估,成绩如下:61,62,62,63,64,64,64,65,65,65,65,65,66,67,69,71,71,72,72,72,73,73,73,74,74,75,75,75,75,75,75,76,78,78,78,82,82,83,85,85,85,87,87,88,88,291,92,95,97,98,并将成绩统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:分数x频数(人)频率60≤x<70150.370≤x<80a80≤x<90b90≤x≤1005合计c1(1)频数分布表中,a=0.4,b=10,c=50;(2)补全频数分布直方图;(3)本次比赛学校共收到参赛作品900件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.解:(1)分别统计各组的频数可得,70≤x<80的频数为20,80≤x<90的频数为10,因此a=20÷50=0.4,b=10,c=15+20+10+5=50,故答案为:0.4,10,50,(2)补全频数分布直方图如图所示:(3)900×10+550=270(人),答:全校将展出的作品数量为270件.21.(8分)完成下面的证明:如图,AB和CD相交于点O,AC∥BD,∠A=∠AOC.求证∠B=∠BOD.证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).故答案为:两直线平行,内错角相等;等量代换;∠BOD,对顶角相等.22.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.解:(1)建立平面直角坐标系如图所示;(2)体育馆C (1,﹣3),食堂D (2,0)如图所示;(3)四边形ABCD 的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2, =20﹣4.5﹣3﹣1.5﹣1, =20﹣10, =10.23.(10分)某景点的门票价格如下表:购票人数(人) 1~50 51~99 100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1有x 名学生,2班有y 名学生, 由题意得:{x +y =10248x +45y =4737,解得:{x =49y =53, 答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x 人,九年级报名y 人,分两种情况:①若x +y <100,由题意得:{48x +45y =491445(x +y)=4452, 解得:{x =154y ≈−55,(不合题意舍去); ②若x +y ≥100,由题意得:,{48x +45y =491442(x +y)=4452, 解得:{x =48y =58,符合题意; 答:八年级报名48人,九年级报名58人.24.(10分)如图,A 、B 、C 和D 、E 、F 分别在同一条直线上,且∠1=∠2,∠C =∠D ,试完成下面证明∠A =∠F 的过程.证明:∵∠1=∠2(已知),∠2=∠3( 对顶角相等 ),∴ ∠1=∠3 (等量代换)∴BD ∥CE ( 同位角相等,两直线平行 )∴∠D +∠DEC =180°( 两直线平行,同旁内角互补 ),又∵∠C =∠D ( 已知 ),∴∠C +∠DEC =180°( 等量代换 ),∴ DF ∥AC ( 同旁内角互补,两直线平行 ),∴∠A =∠F ( 两直线平行,内错角相等 ).证明:∵∠1=∠2(已知),∠2=∠3(对顶角相等),∴∠1=∠3(等量代换),∴BD ∥CE (同位角相等,两直线平行),∴∠D +∠DEC =180°(两直线平行,同旁内角互补),又∵∠C=∠D(已知),∴∠C+∠DEC=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠1=∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;已知;等量代换;DF∥AC;同旁内角互补,两直线平行;两直线平行,内错角相等.。

2020-2021下海进才中学北校初一数学下期末试题附答案

2020-2021下海进才中学北校初一数学下期末试题附答案
25.解不等式组 ,并把解集表示在数轴上,再找出它的整数解.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.
详解:
②-①得m+n=-1.
故选:D.
点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.
A.在同一平面内,垂直于同一直线的两条直线平行
B.相等的角是对顶角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
二、填空题
13.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为______________.
2020-2021下海进才中学北校初一数学下期末试题附答案
一、选择题
1.已知二元一次方程组 ,则m+n的值是( )
A.1B.0C.-2D.-1
2.如图已知直线 , , ,则 的度数为()
A. B. C. D.
3.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )
∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,
∴平移后的A坐标为(5,1),
故答案为:(1,3)或(5,1)
【点睛】
本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.
(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

2020-2021学年山西省初中七年级下期末数学试卷(有答案)-精品试卷

2020-2021学年山西省初中七年级下期末数学试卷(有答案)-精品试卷

山西省最新七年级(下)期末数学试卷(解析版)一、选择题(共10小题,每小题2分,满分20分)1.﹣27的立方根是()A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°4.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人 B.70人 C.80人 D.200人5.不等式4x﹣1>1的解集是()A.x>B.x<C.x>﹣D.x<﹣6.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×27.若m>n,下列不等式不一定成立的是()A.m﹣2>n﹣2 B.>C.m2>n2D.2m+1>2n+18.学习了统计知识后,数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形和扇形统计图.依据图中信息,得出下列结论中正确的是()A.接受这次调查的家长人数为180人B.在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为135°C.表示“无所谓”的家长人数为60人D.表示“很赞同”的家长人数为20人9.不等式组的解集在数轴上表示为()A.B.C.D.10.周末,某小组12名同学都观看了电影《甲午风云》,其中8人买了甲票,4人买了乙票,总计用了200元.已知每张乙票比甲票售价多5元,求甲票、乙票的售价分别是多少元?设每张甲票的售价为x元,每张乙票的售价为y元.根据题意,可列方程组为()A.B.C.D.二、填空题(本大题共有6小题,每小题3分,共18分)11.不等式5x﹣3<3x+5的最大整数解是______.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是______.13.实数a在数轴上的位置如图所示,则|a﹣2|=______.14.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为______.15.如图所示,在平面直角坐标系中,“鱼”的每个“顶点”都在小正方形的顶点处,点A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,则平移后点A的坐标为______.16.如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为80°,要使OD∥AC,直线OD绕点O 按逆时针方向至少旋转______度.三、解答题(本大题共有8小题,共62分)17.(1)解方程组;(2)解不等式组,并写出不等式组的整数解.18.如图所示,已知在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(﹣2,0).(1)把△ABO沿着x轴的正方向平移4个单位,请你画出平移后的△A′B′O′,其中A,B,O的对应点分别是A′,B′,O′(不必写画法);(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标.19.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.20.(10分)(2016春•平定县期末)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80 ______80≤x<100 4100≤x<120 18120≤x<140 13140≤x<160 8160≤x<180 ______180≤x<200 1(1)补全频数分布表和频数分布直方图.(2)表中组距是______次,组数是______组.(3)跳绳次数在100≤x<140范围的学生有______人,全班共有______人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线.(1)请直接写出和∠AOD能成为互为补角的角;(把符合条件的角都填出来)(2)若∠AOD=142°,求∠AOE的度数.22.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?23.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?24.(12分)(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.﹣27的立方根是()A.3 B.﹣3 C.±3 D.【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3,故选:B.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.2.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)【考点】坐标与图形变化-平移.【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).故选D.【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.3.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【考点】平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.4.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有50人,则参加人数最多的小组有()A.50人 B.70人 C.80人 D.200人【考点】扇形统计图.【分析】根据题意和统计图中的数据可以求得总的人数,进而求得参加人数最多的小组的人数.【解答】解:由题意可得,参加体育兴趣小组的人数一共有:50÷25%=200(人),∴参加人数最多的小组的有:200×(1﹣25%﹣35%)=200×40%=80(人),故选C.【点评】本题考查扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.不等式4x﹣1>1的解集是()A.x>B.x<C.x>﹣D.x<﹣【考点】解一元一次不等式.【分析】根据解不等式的基本步骤依次移项、合并同类项、系数化为1即可得.【解答】解:移项,得:4x>1+1,合并同类项,得:4x>2,系数化为1,得:x>,故选:A.【点评】本题主要考查解一元一次不等式的能力,熟练掌握解不等式的基本步骤是解题的关键.6.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【考点】解二元一次方程组.【分析】观察方程组中x与y系数特征,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2,故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若m>n,下列不等式不一定成立的是()A.m﹣2>n﹣2 B.>C.m2>n2D.2m+1>2n+1【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、如m=2,n=3,m>n,m2>n2,故C正确;D、不等式的两边都乘以2,不等号的方向不变;不等式的两边都加2,不等号的方向不变;故D错误;故选:C.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.8.学习了统计知识后,数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形和扇形统计图.依据图中信息,得出下列结论中正确的是()A.接受这次调查的家长人数为180人B.在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为135°C.表示“无所谓”的家长人数为60人D.表示“很赞同”的家长人数为20人【考点】条形统计图;扇形统计图.【分析】由家长看法为赞同的人数除以占的百分比,求出调查家长的总人数,求出家长意见很赞同的人数即可.【解答】解:根据题意得:调查总家长有50÷25%=200(人);在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角为×360°=162°;表示“无所谓”的家长人数为200×20%=40(人);表示“很赞同”的家长人数为200﹣(40+50+90)=200﹣180=20(人),故选D【点评】此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.9.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选A.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.10.周末,某小组12名同学都观看了电影《甲午风云》,其中8人买了甲票,4人买了乙票,总计用了200元.已知每张乙票比甲票售价多5元,求甲票、乙票的售价分别是多少元?设每张甲票的售价为x元,每张乙票的售价为y元.根据题意,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意,可以列出相应的二元一次方程组,本题得以解决.【解答】解:由题意可得,,故选C.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本大题共有6小题,每小题3分,共18分)11.不等式5x﹣3<3x+5的最大整数解是 3 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1 .【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.13.实数a在数轴上的位置如图所示,则|a﹣2|= 2﹣a .【考点】实数与数轴.【分析】根据数轴上的点与实数的一一对应关系得到a<2,然后利用绝对值的意义即可求解.【解答】解:∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a.故答案为:2﹣a.【点评】本题考查了实数与数轴,解决本题的关键是明确绝对值的意义以及数轴上的点与实数的一一对应关系.14.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为7 .【考点】频数(率)分布直方图.【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于6分钟的人数,本题得以解决.【解答】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于6分钟的人数为:5+2=7,故答案为:7.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.15.如图所示,在平面直角坐标系中,“鱼”的每个“顶点”都在小正方形的顶点处,点A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,则平移后点A的坐标为(﹣1,0).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:由图可知,点A的坐标为(﹣4,6).∵A为“鱼”的一个顶点,将“鱼”向右平移3个单位长度,再向下平移6个单位长度,∴平移后点A的坐标为(﹣4+3,6﹣6),即(﹣1,0).故答案为(﹣1,0).【点评】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为80°,要使OD∥AC,直线OD绕点O 按逆时针方向至少旋转10 度.【考点】旋转的性质;平行线的判定.【分析】根据平行可知:∠BOD′=∠A,计算出∠DOD′就是旋转的度数.【解答】解:要使OD∥AC,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD﹣BOD′=80°﹣70°=10°,∴直线OD绕点O按逆时针方向至少旋转10°;故答案为:10.【点评】本题考查了旋转的性质和平行线的判定,熟知对应点与旋转中心所连线段的夹角等于旋转角,根据定义要知道求哪一个角,同时,两直线平行,同位角相等.三、解答题(本大题共有8小题,共62分)17.(1)解方程组;(2)解不等式组,并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解二元一次方程组;解一元一次不等式组.【分析】(1)整理后①+②得出2x=﹣4,求出x,把x的值代入①求出y即可;(2)先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:(1)整理的:,①+②得:2x=﹣4,解得:x=﹣2,把x=﹣2代入①得:4+3y=1,解得:y=﹣1,所以原方程组的解为:;(2)∵解不等式①得:x≤4,解不等式②得:x>2,∴不等式组的解集为2<x≤4,∴不等式组的整数解为3,4.【点评】本题考查了解一元一次不等式组,解二元一次方程组,不等式组的整数解的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据找不等式组解集的规律找出不等式组的解集是解(2)的关键.18.如图所示,已知在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(﹣2,0).(1)把△ABO沿着x轴的正方向平移4个单位,请你画出平移后的△A′B′O′,其中A,B,O的对应点分别是A′,B′,O′(不必写画法);(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标.【考点】作图-平移变换.【分析】(1)根据平移条件画出图象即可.(2)根据向下平移横坐标不变,纵坐标上加下减的规律写出坐标即可.【解答】解:(1)把△ABO沿着x轴的正方向平移4个单位,平移后的△A′B′O′如图所示,(2)在(1)的情况下,若将△A′B′O′向下平移3个单位,请直接写出点B′对应点B″的坐标为(2,﹣3).【点评】本题考查作图﹣平移变换,解题的关键是记住上下平移横坐标不变,纵坐标上加下减,左右平移纵坐标不变,横坐标左减右加,属于中考常考题型.19.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【考点】立方根;有理数的乘方.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.20.(10分)(2016春•平定县期末)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80 280≤x<100 4100≤x<120 18120≤x<140 13140≤x<160 8160≤x<180 4180≤x<200 1(1)补全频数分布表和频数分布直方图.(2)表中组距是20 次,组数是7 组.(3)跳绳次数在100≤x<140范围的学生有31 人,全班共有50 人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,成绩在140≤x≤160的人数为8人,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;(2)利用频数分布表和频数分布直方图求解;(3)把第3组和第4组的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)如图,成绩在60≤x≤80的人数为2人,成绩在160≤x≤180的人数为4人,(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<140范围的学生有31人,全班人数为2+4+18+13+8+4+1=50(人);故答案为2,4;20,7;31,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.【点评】本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图,直线AB与CD相交于点O,OD恰为∠BOE的角平分线.(1)请直接写出和∠AOD能成为互为补角的角;(把符合条件的角都填出来)(2)若∠AOD=142°,求∠AOE的度数.【考点】对顶角、邻补角;角平分线的定义;余角和补角.【分析】(1)根据角平分线、对顶角及互补的定义确定∠AOD的补角.(2)根据互补先求出∠BOD,再根据角平分线的定义得到∠EOD的度数,再根据角的和差关系求出∠AOE 的度数.【解答】解:(1)由图示可得,∠AOD+∠AOC=180°,∠AOD+∠BOD=180°,又OD为∠BOE的角平分线,可得∠BOD=∠DOE,故∠AOD+∠DOE=180°,故∠AOD的补角是∠AOC、∠BOD、∠EOD;(2)∵∠AOD=142°,∴∠BOD=38°,∵OD为∠BOE的角平分线,∴∠EOD=38°,∴∠AOE=∠AOD﹣∠EOD=142°﹣38°=104°.【点评】本题利用角平分线的定义,对顶角相等和邻补角互补的性质及角的和差关系计算.22.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?【考点】二元一次方程组的应用.【分析】设甲商品单价为x元,乙商品单价为y元,根据购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元,列出方程组,继而可计算购买10件甲商品和10件乙商品需要的花费,也可得出比不打折前少花多少钱.【解答】解:设打折前甲商品的单价为x元,乙商品的单价为y元,由题意得:,解得:,则购买10件甲商品和10件乙商品需要900元,∵打折后实际花费735元,∴这比不打折前少花165元.答:这比不打折前少花165元.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.【解答】解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.24.(12分)(2016春•平定县期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【考点】平行线的性质.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.。

天津市部分区2020-2021学年七年级下学期期末考试数学试题2份(含解析)

天津市部分区2020-2021学年七年级下学期期末考试数学试题2份(含解析)

2020-2021学年天津市部分区七年级第二学期期末数学试卷一、选择题1.下列实数中无理数是()A.3.2121B.4C.D.2.在下列各图中,∠1与∠2是对顶角的是()A.B.C.D.3.的值为()A.3B.﹣3C.±3D.4.在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|5.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与26.如图,直线AB、CD与EF相交,则∠2的内错角是()A.∠8B.∠7C.∠6D.∠47.下列命题是真命题的是()A.两直线平行,同位角相等B.内错角相等C.同旁内角相等D.同位角互补8.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是()A.(3,1)B.(1,3)C.(13,31)D.(31,13)9.在下列方程中,是二元一次方程的是()A.2xy=3B.2x+3=0C.x3+2y=5D.2x=3y+710.以下调查中,适合全面调查的是()A.调查某批次汽车的抗撞击能力B.了解某班学生的体重情况C.调查春节联欢会的收视率D.调查市场上某种食品的防腐剂含量是否符合国家标准11.已知方程组的解为,则a,b的值为()A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3 12.如图,在三角形ABC中,已知∠C=90°,AC=3,BC=4,则AB的大小有可能是()A.1B.2C.3D.5二、填空题(本大题共6小题,每小题3分,共18分)13.81的算术平方根是.14.﹣5的绝对值是.15.若a<b,则a+2b+2(请用“<”或“>”填空).16.在平面直角坐标系中,点(﹣5,10)在第象限.17.为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是.18.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.三、解答题(本大题共7小题,共46分解答应写出文字说明、演算步骗或推理过程)19.解下列方程组.(1);(2).20.解下列不等式(组)(1)5x﹣3x>4;(2).21.如图,直线a、b与直线c、d分别相交,已知∠1=∠2,∠5=75°.求∠3、∠4、∠6的度数.请你完成下列解答的空缺部分:解:∵∠1=∠2∴a∥b()∴∠3+∠5=180°()∵∠5=75°∴∠3=∵∠4+∠5=180°∴∠4=∵∠6=∠5()∴∠6=.22.如图,将三角形ABC向右平移5个单位长度,然后再向上平移4个单位,得到对应的三角形A1B1C1.(1)写出点A1、B1、C1的坐标;(2)画出三角形A1B1C1.23.如图所示,直线AB与CD交于点O,EO⊥AB,垂足为O,∠COE=35°,求∠BOD 与∠AOD的度数.24.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.25.要了解某校学生对新闻、体育、动画、戏曲四类节目的喜爱情况,抽取了部分学生进行调查,整理绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=;(2)补全条形统计图;(3)扇形统计图中动画对应的圆心角为度.参考答案一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中无理数是()A.3.2121B.4C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.3.2121是有限小数,属于有理数;B.4是整数,属于有理数;C.是无理数;D.,是整数,属于有理数.故选:C.2.在下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义对各图形判断即可.解:A、∠1和∠2不是对顶角,故选项不符合题意;B、∠1和∠2不是对顶角,故选项不符合题意;C、∠1和∠2不是对顶角,故选项不符合题意;D、∠1和∠2是对顶角,故选项符合题意.故选:D.3.的值为()A.3B.﹣3C.±3D.【分析】由于(﹣3)3=﹣27,可得=﹣3,得出答案.解:∵(﹣3)3=﹣27,∴=﹣3,故选:B.4.在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|【分析】根据正数大于负数和0,0大于负数,两个负数绝对值大的反而小,即可解答.解:|﹣|=,,|﹣2|=2,∵,∴,∴最小的数是﹣,故选:C.5.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.6.如图,直线AB、CD与EF相交,则∠2的内错角是()A.∠8B.∠7C.∠6D.∠4【分析】两直线被第三条直线所截,在截线的两侧,被截线的内部的两个角是内错角.解:由题可得,∠2的内错角是∠7,故选:B.7.下列命题是真命题的是()A.两直线平行,同位角相等B.内错角相等C.同旁内角相等D.同位角互补【分析】根据平行线的性质、同位角、内错角、同旁内角的概念判断.解:A、两直线平行,同位角相等,本选项说法是真命题;B、两直线平行,内错角相等,本选项说法是假命题;C、同旁内角不一定相等,本选项说法是假命题;D、同位角不一定互补,本选项说法是假命题;故选:A.8.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是()A.(3,1)B.(1,3)C.(13,31)D.(31,13)【分析】由题意可得:第一个数字表示“排”,第二个数字表示“号”,据此即可解答问题.解:∵“5排8号”的位置,记作(5,8),∴丽丽的电影票是“3排1号”,记作(3,1).故选:A.9.在下列方程中,是二元一次方程的是()A.2xy=3B.2x+3=0C.x3+2y=5D.2x=3y+7【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.解:A、是二元二次方程,故本选项错误;B、不含有两个未知数,故本选项错误;C、是二元三次方程,故本选项错误;D、符合二元一次方程的定义,故本选项正确.故选:D.10.以下调查中,适合全面调查的是()A.调查某批次汽车的抗撞击能力B.了解某班学生的体重情况C.调查春节联欢会的收视率D.调查市场上某种食品的防腐剂含量是否符合国家标准【分析】适合普查(全面调查)的方式一般有以下特点:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.解:A、调查某批次汽车的抗撞击能力,适合抽样调查;B、了解某班学生的体重情况,适合全面调查;C、调查春节联欢晚会的收视率,适合抽样调查;D、调查市场上某种食品的防腐剂含量是否符合国家标准,适合抽样调查;故选:B.11.已知方程组的解为,则a,b的值为()A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3【分析】把x与y的值代入方程组求出a与b的值即可.解:把代入方程组得:,①+②,得4a=12,∴a=3,把a=3代入①,得6+b=7,∴b=1,∴a=3,b=1,故选:C.12.如图,在三角形ABC中,已知∠C=90°,AC=3,BC=4,则AB的大小有可能是()A.1B.2C.3D.5【分析】根据勾股定理即可求解.解:在三角形ABC中,∠C=90°,AC=3,BC=4,则AB===5.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.81的算术平方根是9.【分析】直接利用算术平方根的定义得出答案.解:81的算术平方根是:=9.故答案为:9.14.﹣5的绝对值是5.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解:根据负数的绝对值是它的相反数,得|﹣5|=5.15.若a<b,则a+2<b+2(请用“<”或“>”填空).【分析】根据不等式的性质,可得答案.解:不等式a<b两边都加2,不等号的方向不变,所以a+2<b+2.故答案为:<.16.在平面直角坐标系中,点(﹣5,10)在第二象限.【分析】根据各象限内点的坐标的符号特征,可得答案.解:点P(﹣5,10)在第二象限,故答案为:二.17.为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是50.【分析】根据样本容量则是指样本中个体的数目,可得答案.解:为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是50.故答案为:50.18.已知关于x的不等式组,解不等式①得x<m;解不等式②得x≥3;若不等式组的整数解共4个,则m的取值范围是6<m≤7.【分析】分别表示出不等式组中两不等式的解集,根据整数解有4个,确定出m的范围即可.解:已知关于x的不等式组,解不等式①得x<m;解不等式②得x≥3;∴不等式组的解集为3≤x<m,若不等式组的整数解共4个,得到整数解为3,4,5,6,∴6<m≤7,则m的取值范围是6<m≤7.故答案为:x<m;x≥3;6<m≤7.三、解答题(本大题共7小题,共46分解答应写出文字说明、演算步骗或推理过程)19.解下列方程组.(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1)把①代入②,得3x+5(x+1)=13,解这个方程,得x=1,把x=1代入①,得y=2,所以这个方程组的解是;(2)①+②,得6x=18,解得:x=3,把x=3代入①,得3+6y=﹣9,解得:y=﹣2,所以这个方程组的解是.20.解下列不等式(组)(1)5x﹣3x>4;(2).【分析】(1)合并同类项,系数化为1即可;(2)首先解每个不等式,然后确定两个不等式的解集的公共部分即可.【解答】(1)解:合并同类项,得2x>4,系数化为1,得x>2;(2)解:解不等式①,得x≥﹣2,解不等式②,得x≤1,所以,原不等式组的解集为﹣2≤x≤1.21.如图,直线a、b与直线c、d分别相交,已知∠1=∠2,∠5=75°.求∠3、∠4、∠6的度数.请你完成下列解答的空缺部分:解:∵∠1=∠2∴a∥b(内错角相等,两直线平行)∴∠3+∠5=180°(两直线平行,同旁内角互补)∵∠5=75°∴∠3=105°∵∠4+∠5=180°∴∠4=105°∵∠6=∠5(对顶角相等)∴∠6=75°.【分析】由∠1=∠2得a∥b,其性质得∠3+∠5=180°,由角的和差求得∠3=105°,邻补角和对顶角分别求得∠4=105°,∠6=75°.解:如图所示:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∴∠3+∠5=180°(两直线平行,同旁内角互补)∵∠5=75°,∴∠3=105°,∵∠4+∠5=180°,∴∠4=105°,∵∠6=∠5(对顶角相等)∴∠6=75°,故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;105°,105°,对顶角相等,75°.22.如图,将三角形ABC向右平移5个单位长度,然后再向上平移4个单位,得到对应的三角形A1B1C1.(1)写出点A1、B1、C1的坐标;(2)画出三角形A1B1C1.【分析】(1)根据点的平移方法确定点A1、B1、C1的位置,再写出点的坐标即可;(2)连结点A1、B1、C1即可.解:(1)A1(4,2)、B1(1,﹣2)、C1(4,﹣2);(2)如图所示:△A1B1C1即为所求.23.如图所示,直线AB与CD交于点O,EO⊥AB,垂足为O,∠COE=35°,求∠BOD 与∠AOD的度数.【分析】根据垂直定义求出∠AOE,求出∠AOC,即可求出答案.解:∵EO⊥AB,∴∠AOE=90°,∵∠COE=35°,∴∠AOC=90°﹣35°=55°,∴∠BOD=∠AOC=55°,∠AOD=180°﹣∠AOC=180°﹣55°=125°.24.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.【分析】设大盒与小盒每盒分别装x瓶和y瓶,根据等量关系:4大盒、3小盒共装116瓶;2大盒、3小盒共装76瓶,列出方程组求解即可.解:设大盒每盒装x瓶,小盒每盒装y瓶,根据题意得:,解得:,答:大盒每盒装20瓶,小盒每盒装12瓶.25.要了解某校学生对新闻、体育、动画、戏曲四类节目的喜爱情况,抽取了部分学生进行调查,整理绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了100名学生,a=24;(2)补全条形统计图;(3)扇形统计图中动画对应的圆心角为72度.【分析】(1)从两个统计图中可知,喜欢“体育”的有48人,占调查人数的48%,可求出调查人数;进而求出喜欢“新闻”所占的百分比;(2)求出喜欢“动画”的人数即可补全条形统计图;(3)喜欢“动画”占调查人数的,因此相应的圆心角为360°的20%即可.解:(1)48÷48%=100(人),24÷100=24%,故答案为:100,24;(2)喜欢“动画”的人数:100﹣24﹣48﹣8=20(人),补全条形统计图如图所示:(3)360°×20%=72°,故答案为:72.2020-2021学年天津市和平区七年级第二学期期末数学试卷一、选择题1.4的算术平方根()A.2B.﹣2C.D.±2.点P(﹣1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x﹣3B.y=3﹣2x C.x=D.x=4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣3c<b﹣3c D.5.如图,点D、E分别在AB和AC上,DE∥BC.∠ABC=65°,则∠BDE的度数()A.55°B.95°C.115°D.25°6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在2到3之间7.以下适合普查的是()A.了解一个班级升学考试的成绩B.了解某电视剧的收视率情况C.了解一批灯泡的使用寿命D.了解贵州省的家庭人均收入8.不等式x>2在数轴上表示正确的是()A.B.C.D.9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.B.C.D.10.如图,AB∥DE,∠ABC=20°,∠CDE=60°,则∠BCD=()A.20°B.60°C.80°D.100°11.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.012.如果关于x的不等式仅有四个整数解:﹣1,0,1,2,那么适合这个为等式组的整数m、n组成的有序实数对(m,n)最多共有()A.2个B.4个C.6个D.9个二、填空题:本大题共6小题,每小题3分共18分.13.+=.14.若方程组的解也是二元一次方程5x﹣my=﹣11的一个解,则m的值等于.15.如图所示,直线AB、CD相交于点O,若∠l=3∠2,则∠BOD=度.16.如果P(m+3,2m+4)在y轴上,那么点P的坐标是.17.若则5x﹣y﹣z﹣1的立方根是.18.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为.三、解答题:本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明过程. 19.解方程组:.20.解不等式组:.解:解不等式①得;解不等式②,得;在数轴上表示如图.故不等式组的解集是.21.2020年天津市创建文明城市期间,某区教育局为了了解全区中学生对课外体育运动项目的喜欢程度,随机抽取了某校七年级部分学生进行问卷调查(每人限选一种体育运动项目)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)在这次活动中一共调查了名学生;(2)在扇形统计图中,“跳绳”所在扇形圆心角等于度;(3)喜欢“羽毛球”的人数是.(4)若该校有七年级学生1000人,请你估计该七年级校喜欢“足球”的学生约有多少人?22.如图,a∥b,c、d是截线,∠1=80°,∠5=70°,∠2、∠3、∠4各是多少度?为什么?23.某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.25.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a ﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD 的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案一、选择题:本大愿共12小题,每小题2分,共24分在每小题给出的四个选项中,只有--项是符合题目要求的.1.4的算术平方根()A.2B.﹣2C.D.±【分析】依据算术平方根的性质求解即可.解:4的算术平方根2.故选:A.2.点P(﹣1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可.解:∵P(﹣1,5),横坐标为﹣1,纵坐标为:5,∴P点在第二象限.故选:B.3.将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x﹣3B.y=3﹣2x C.x=D.x=【分析】把x看做已知数求出y即可.解:方程2x+y=3,解得:y=3﹣2x,故选:B.4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣3c<b﹣3c D.【分析】根据不等式的基本性质进行解答.解:A、当c=0时,该不等式不成立.故本选项错误;B、不等式a<b的两边同时乘以﹣1,不等号的方向改变,即﹣a>﹣b,再在两边同时加上c,不等式仍成立,即c﹣a>c﹣b.故本选项错误;C、不等式a<b的两边同时减去3c,不等式仍成立,即a﹣3c<b﹣3c.故本选项正确;D、当c=0时,该不等式不成立.故本选项错误;故选:C.5.如图,点D、E分别在AB和AC上,DE∥BC.∠ABC=65°,则∠BDE的度数()A.55°B.95°C.115°D.25°【分析】由DE∥BC得∠BDE+∠ABC=180°,根据∠ABC=65°,计算得∠BDE的度数为115°.解:如图所示:∵DE∥BC,∴∠BDE+∠ABC=180°,又∵∠ABC=65°,∴∠BDE=115°,故选:C.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在2到3之间【分析】根据25<28<36,可得5<<6,据此判断即可.解:∵25<28<36,∴5<<6,∴的值在5到6之间.故选:C.7.以下适合普查的是()A.了解一个班级升学考试的成绩B.了解某电视剧的收视率情况C.了解一批灯泡的使用寿命D.了解贵州省的家庭人均收入【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A.了解一个班级升学考试的成绩,工作量小,无破坏性,适合普查.B.了解某电视剧的收视率情况,选项普查时要花费的劳动量太大,也不宜普查.C.了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验.D.了解贵州省的家庭人均收入,选项普查时要花费的劳动量太大,也不宜普查.故选:A.8.不等式x>2在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的解集在数轴上表示出来的方法画数轴即可.解:∵不等式x>2,∴在数轴上表示为故选:A.9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.B.C.D.【分析】根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:.故选:B.10.如图,AB∥DE,∠ABC=20°,∠CDE=60°,则∠BCD=()A.20°B.60°C.80°D.100°【分析】由AB∥DE,CF∥AB得CF∥ED,根据平行线的性质得∠FCD=∠CDE,∠ABC =∠BCF,角的和差计算出∠BCD的度数为80°.解:过点E作CF∥AB,如图所示:∵AB∥DE,CF∥AB,∴CF∥ED,∴∠FCD=∠CDE,又∵∠CDE=60°,∴∠FCD=60°,又∵CF∥AB,∠ABC=20°∴∠ABC=∠BCF=20°,又∵∠BCD=∠BCF+∠FCD,∴∠BCD=80°,故选:C.11.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.0【分析】方程组中的两个方程相减得出x﹣y=3m+2,根据已知得出不等式,求出不等式的解集即可.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.12.如果关于x的不等式仅有四个整数解:﹣1,0,1,2,那么适合这个为等式组的整数m、n组成的有序实数对(m,n)最多共有()A.2个B.4个C.6个D.9个【分析】先求出不等式组的解,得出关于m、n的不等式组,求出整数m、n的值,即可得出答案.解:∵解不等式2x﹣m≥0得:x≥,解不等式n﹣3x≥0得:x≤,∴不等式组的解集是≤x≤,∵关于x的不等式组的整数解仅有﹣1,0,1,2,∴﹣2<≤﹣1,2≤<3,解得:﹣4<m≤﹣2,6≤n<9,即m的值是﹣3,﹣2,n的值是6,7,8,即适合这个不等式组的整数m,n组成的有序数对(m,n)共有6个,是(﹣3,6),(﹣3,7),(﹣3,8),(﹣2,6),(﹣2,7),(﹣2,8).故选:C.二、填空题:本大题共6小题,每小题3分共18分.13.+=1.【分析】直接利用立方根的性质以及二次根式的性质分别计算得出答案.解:原式=﹣3+4=1.故答案为:1.14.若方程组的解也是二元一次方程5x﹣my=﹣11的一个解,则m的值等于7.【分析】先把2x﹣y=1中的y用x表示出来,代入3x+2y=12求出x的值,再代入2x﹣y=1求出y的值,最后将所求x,y的值代入5x﹣my=﹣11解答即可.解:根据题意得,∴由①得:y=2x﹣1,代入②用x表示y得,3x+2(2x﹣1)=12,解得:x=2,代入①得,y=3,∴将x=2,y=3,代入5x﹣my=﹣11解得,m=7.故答案为:7.15.如图所示,直线AB、CD相交于点O,若∠l=3∠2,则∠BOD=135度.【分析】根据邻补角的定义,对顶角相等,可得答案.解:由邻补角的定义,得∠1+∠2=180°,因为∠l=3∠2,所以3∠2+∠2=180°,所以∠2=45°,所以∠1=3×45°=135°,故答案为:135.16.如果P(m+3,2m+4)在y轴上,那么点P的坐标是(0,﹣2).【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,得m=﹣3,即2m+4=﹣2.即点P的坐标为(0,﹣2).故答案为:(0,﹣2).17.若则5x﹣y﹣z﹣1的立方根是3.【分析】先根据方程组解出x、y、z,然后代入5x﹣y﹣z﹣1后即可求出答案.解:由③可得:z=3x+2y﹣18④把④代入①中得,17x+4y=85⑤把④代入②得,7x﹣y=35⑥联立⑤⑥可得:x=5,y=0,将x=5,y=0代入④得,z=﹣3∴5x﹣y﹣z﹣1=5×5﹣0+3﹣1=27∴27的立方根是3,故答案为:318.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为x<.【分析】由不等式ax﹣b>0的解集为x<得a=3b,且b<0,将原不等式变形可得4bx >2b,两边除以4b可得答案.解:∵不等式ax﹣b>0的解集为x<,∴=,即a=3b且a<0,则b<0∴不等式(a+b)x>a﹣b整理为4bx>2b,∴x<.故答案为:x<.三、解答题:本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明过程. 19.解方程组:.【分析】把方程组整理后,利用加减消元法解答即可.解:方程组整理得:,①+②得:6x=18,解这个方程得:x=3,把x=3代入①得:9﹣2y=8,解得:y=,∴原方程组的解为:.20.解不等式组:.解:解不等式①得x≥﹣1;解不等式②,得x<2;在数轴上表示如图.故不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式①得x≥﹣1;解不等式②,得x<2;在数轴上表示如图.故不等式组的解集是﹣1≤x<2,故答案为:x≥﹣1,x<2,﹣1≤x<2.21.2020年天津市创建文明城市期间,某区教育局为了了解全区中学生对课外体育运动项目的喜欢程度,随机抽取了某校七年级部分学生进行问卷调查(每人限选一种体育运动项目)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)在这次活动中一共调查了500名学生;(2)在扇形统计图中,“跳绳”所在扇形圆心角等于36度;(3)喜欢“羽毛球”的人数是150名.(4)若该校有七年级学生1000人,请你估计该七年级校喜欢“足球”的学生约有多少人?【分析】(1)喜欢“篮球”的有200名,占调查人数的40%,可求出调查人数;(2)“跳绳”占调查人数的,因此相应的圆心角的度数占360°的,计算可得结果;(3)喜欢“羽毛球”的占调查人数的30%,即500人的30%;(4)样本中喜欢“足球”的占,因此总体1000名的是喜欢“足球”的人数.解:200÷40%=500(名),故答案为:500;(2)360°×=36°,故答案为:36;(3)500×30%=150(名),故答案为:150名;(4)1000×=200(人),答:该校七年级学生1000人中喜欢“足球”的学生约有200人.22.如图,a∥b,c、d是截线,∠1=80°,∠5=70°,∠2、∠3、∠4各是多少度?为什【分析】根据平行线的性质求解.解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°﹣∠5=180°﹣70°=110°(两直线平行,同旁内角互补),∠4=∠3=110°(两直线平行,同位角相等).23.某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.24.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.【分析】(1)根据二元一次方程组的解法即可求出x与y的表达式,从而可求出a的范围.(2)根据(1)问可求出b的范围,将z化为8﹣5b,从而可求出z的范围.解:(1)∵∴由于该方程组的解都是正数,∴∴a>1(2)∵a+b=4,∴a=4﹣b,∴解得:0<b<3,∴z=2(4﹣b)﹣3b=8﹣5b∴﹣7<8﹣5b<8,∴﹣7<z<825.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a ﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD 的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质可求出a和b,即可得到点A和B的坐标;(2)作MN∥DB,由DB∥AC知MN∥AC,从而得出∠DMN=∠BDM、∠AMN=∠MAC,再由角平分线得出∠MAC=a,∠BDM=45°,根据∠AMD=∠AMN+∠DMN可得答案;(3)连结OB,如图3,设F(0,t),根据S△AOF+S△BOF=S△AOB,得到关于t的方程,可求得t的值,则可求得点F的坐标;计算△ABC的面积,再分点P在y轴上和在x轴上讨论.当P点在y轴上时,设P(0,y),利用S△ABP=S△APF+S△BPF,可解得y的值,可求得P点坐标;当P点在x轴上时,设P(x,0),根据三角形面积公式得,同理可得到关于x的方程,可求得x的值,可求得P点坐标.解:(1)∵+(a﹣b+6)2=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,过点M作MN∥DB,交y轴于点N,∴∠DMN=∠BDM,又∵DB∥AC,∴MN∥AC,∴∠AMN=∠MAC,∵DB∥AC,∠DOC=90°,∴∠BDO=90°,又∵AM,DM分别平分∠CAB,∠ODB,∠BAC=a,∴∠MAC=a,∠BDM=45°,∴∠AMN=a,∠DMN=45°,∴∠AMD=∠AMN+∠DMN=45°+a;(3)存在.连结OB,如图3,设F(0,t),。

2020-2021初一数学下期末试题(及答案)

2020-2021初一数学下期末试题(及答案)

2020-2021初一数学下期末试题(及答案) 2020-2021初一数学下期末试题(及答案)一、选择题1.已知实数a,b,若a>b,则下列结论错误的是A。

a-7>b-7B。

6+a>b+6C。

a/5>b/5D。

-3a>-3b2.计算2-5+3-5的值是()A。

-1B。

1C。

-20D。

203.估计10+1的值应在()A。

3和4之间B。

4和5之间C。

5和6之间D。

6和7之间4.XXX对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示。

下列说法中正确的是()A。

喜欢乒乓球的人数(1)班比(2)班多B。

喜欢足球的人数(1)班比(2)班多C。

喜欢羽毛球的人数(1)班比(2)班多D。

喜欢篮球的人数(2)班比(1)班多5.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5-1/2的值()A。

在1.1和1.2之间B。

在1.2和1.3之间C。

在1.3和1.4之间D。

在1.4和1.5之间6.已知关于x,y的二元一次方程组2ax+by=3ax-by=1y=-1的解为,则a-2b的值是()A。

-2B。

2C。

3D。

-37.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()A。

(-8,-3)B。

(4,2)C。

(0,1)D。

(1,8)8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A。

≥-1B。

1C。

-3< x ≤-1D。

-39.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B到达点D,使得点A到达点C(4,2),点B到达点D,则点D的坐标是()A。

(7,3)B。

(6,4)C。

(7,4)D。

(8,4)10.在平面直角坐标系中,点A的坐标为(0,1),点B 的坐标为(3,3),将线段AB平移,使得A到达点C(1,1),B到达点D,则点D的坐标为()A。

2020-2021数学 七年级苏科下册期末(含答案)

2020-2021数学 七年级苏科下册期末(含答案)

2020-2021数学七年级苏科下册期末(含答案)一、幂的运算易错压轴解答题1.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.2.综合题。

(1)若2x+5y﹣3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.3.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.二、平面图形的认识(二)压轴解答题4.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.5.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是________(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动。

设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值:若不存在,请说明理由.6.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知,则成立吗?请说明理由.(2)如图2,已知,平分,平分 . 、所在直线交于点,若,,求的度数.(3)将图2中的线段沿所在的直线平移,使得点B在点A的右侧,若,,其他条件不变,得到图3,请你求出的度数(用含m,n的式子表示).三、整式乘法与因式分解易错压轴解答题7.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?9.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i;(3+i)i=3i+i2=3i﹣1②若他们的实部和虚部分别相等,则称这两个复数相等若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:(3i﹣2)(3+i)=________;(1+2i)3(1﹣2i)3=________;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)a的值;(3)已知(a+i)(b+i)=1﹣3i,求(a2+b2)(i2+i3+i4+…+i2019)的值.四、二元一次方程组易错压轴解答题10.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣ x(x,y为正整数).∴则有0<x<6,又∵y=4﹣ x为正整数,∴ x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.∴2x+3y=12的正整数解为 .问题:(1)请你写出方程3x+y=7的一组正整数解:________.(2)若为自然数,则满足条件的x值有 .A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.11.已知关于x,y的二元一次方程组(a为实数).(1)若方程组的解始终满足y=a+1,求a的值.(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.①探究实数a,b满足的关系式.②若a,b都是整数,求b的最大值和最小值.12.对x,y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F(3,4)=3a+4b.(1)已知F(1,﹣1)=﹣1,F(2,0)=4.①求a,b的值;②已知关于p的不等式组,求p的取值范围;(2)若运算F满足,请你直接写出F(m,m)的取值范围(用含m的代数式表示,这里m为常数且m>0).五、一元一次不等式易错压轴解答题13.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某风景区票价如下表所示:人数/人1~4041~8080以上价格/元/人150130120有甲、乙两个旅行团队共计100人,计划到该景点游玩.已知乙队多于甲队人数的,但不超过甲队人数的,且甲、乙两队分别购票共需13600元(1)试通过计算判断,甲、乙两队购票的单价分别是多少?(2)求甲、乙两队分别有多少人?(3)暑期将至,该风景区计划对门票价格做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a元,其中a>0.若甲、乙两队联合购票比分别购票最多可节约2250元,直接写出a 的取值范围15.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:原方程等价于2x+1=23 ,x+1=3,解得x=2;(2)解:原方程等价于34x=38 ,4x=8,解得x=2.【解析】【分析】(1)根据am=an(解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2;(2)解:原方程等价于34x=38,4x=8,解得x=2.【解析】【分析】(1)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案;(2)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案.2.(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b ,∴(23)2=a2=(22)b解析:(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,解得:a=±8,b=3,∴a+b=11或﹣5.【解析】【分析】(1)直接幂的乘方运算法则将原式变形进而求出答案;(2)直接利用幂的乘方运算法则将原式变形进而求出答案.3.(1)解:∵am=2,an=4,∴am+n=am×an=2×4=8(2)解:∵am=2,an=4,∴a3m+2n=(am)3×(an)2=8×16=128【解析】【分析】(1)利解析:(1)解:∵a m=2,a n=4,∴a m+n=a m×a n=2×4=8(2)解:∵a m=2,a n=4,∴a3m+2n=(a m)3×(a n)2=8×16=128【解析】【分析】(1)利用同底数幂的乘法运算法则求出即可;(2)利用同底数幂的乘法运算法则结合幂的乘方运算法则求出即可.二、平面图形的认识(二)压轴解答题4.(1)75(2)解:如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;∵∠BEC=140°,∴∠BE1C=70°;(3)【解析】【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;故答案为:75;( 3 )如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2= ∠ABE1+ ∠DCE1= ∠CE1B= ∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3= ∠ABE2+ ∠DCE2= ∠CE2B= ∠BEC;…以此类推,∠E n= ∠BEC,∴当∠B EC=α度时,∠BE n C等于 °.故答案为: .【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E2,得出∠BE2C= ∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C= ∠BEC;…据此得到规律∠E n= ∠BEC,最后求得∠BE n C的度数.5.(1)解:∠ACB+∠AOB=180°(2)解:如图1(原卷没图),∵BE是高,∴∠AEB=∠BEC=90°由(1)得:∠AOB+∠ACB=180°,∵∠AOB+∠AOE=180°,∴∠AOE=∠ACB,在△AEO和△BEC中,∵∴△AEO≌△BEC(AAS)(3)解:存在,如答图2 t=②如答图3 t=注:(3)问解题过程由题意得:OP=t,BQ=4t,∵OB=CF,∠BOP=∠QCF,①当Q在边BC上时,如图2,△BOP≌△FCQ∴OP=CQ,即t=7-4t,t=②当Q在BC延长线上时,如图3,△BOP≌△FCQ,∴OP=CQ,那t=4t-7,t=综上所述,当t= 秒或秒时,以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等。

上海市黄浦区2020-2021学年七年级下学期期末数学试题(解析版)

上海市黄浦区2020-2021学年七年级下学期期末数学试题(解析版)
= ,
=
=20.
【点睛】本题考查了二次根式的乘除,解题关键是熟练运用二次根式乘除法则,进行准确计算.
二、填空题(本大题共14题,每题2分,满分28分)
7. 的平方根是.
【答案】±2
【解析】
详解】解:∵
∴ 的平方根是±2.
故答案为±2.
8.比较大小:﹣5___﹣2 (填“>”,“=”或“<”).
【答案】<
【解析】
【分析】比较两个数的平方大小,再比较平方根大小即可.
【详解】解:∵25>24,
∴ ,即 ,
∴ +x=180°-2x,
解得:x=36°,∴∠BAC=180°-2x=180°-2×36°=108°,
故答案为:90°或108°.
【点睛】本题主要考查了等腰三角形的性质,根据题意画出图形分类讨论,利用三角形的内角和定理是解答此题的关键.
20.如图,在△ABC中,∠A=42°,点D是边A上的一点,将△BCD沿直线CD翻折斜到△B′CD,B′C交AB于点E,如果B′D∥AC,那么∠BDC=___度.
C. D. =a+b
【答案】D
【解析】
【分析】根据二次根式的性质和运算法则逐项判断即可.
【详解】解:A. ,被开方数不同,不能合并,选项错误,不符合题意;
B. ,选项错误,不符合题意;
C. ,选项错误,不符合题意;
D. =a+b,选项正确,符合题意;故选:D.
【点睛】本题考查了二次根式的性质和二次根式的运算,解题关键是熟记二次根式的性质,会运用法则进行计算.
【15
【答案】70°
【解析】
【分析】本题考查的是平行线的判定与性质,根据∠C+∠D=180°可知AD∥BC,从而可知∠A+∠B=180°,再根据∠A-∠B=40°,解答即可

2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷(学生版+解析版)

2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷(学生版+解析版)

2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a92.(3分)下列四个图形是有关垃圾分类的标志,其中标志图形(不含文字)是轴对称图形的是()A.B.C.D.3.(3分)新型冠状病毒主要依靠飞沫和直接接触传播,飞沫的直径一般是在0.000003米左右.将数据0.000003米用科学记数法表示为()A.3×10﹣5米B.3×10﹣6米C.30×10﹣7米D.0.3×10﹣6米4.(3分)用一块含30°角的透明直角三角板画已知△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)如图,点E在BC的延长线上,下列条件中,能判定AB∥CD的是()A.∠DAC=∠BCA B.∠D=∠DCEC.∠B=∠DCE D.∠BAD+∠B=180°6.(3分)在一个不透明的口袋中有三个相同的小球,将每个小球分别标号为1,2,3,从这个口袋中摸出一个小球,则下列事件不是随机事件的是()A.摸到的小球的标号为1B.摸到的小球的标号大于1C.摸到的小球的标号小于1D.摸到的小球的标号为偶数7.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.88.(3分)下列说法正确的是()A.垂直于同一条直线的两条直线互相平行B.如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是锐角三角形C.有两角与一边相等的两个等腰三角形全等D.角平分线上的点到这个角的两边的距离相等9.(3分)赛车在平坦的环形跑道上比赛,经过弯道时通常需要减速.如图表示了一辆赛车跑第二圈时它的速度随行驶的路程的变化情况.以下是4种环形跑道,其中能最恰当反映图中速度随行驶的路程的变化情况的是()A.B.C.D.10.(3分)如图,已知△ABC中,AB=AC,将△ABC绕点A沿逆时针方向旋转n°(0<n<∠BAC)得到△ADE,AD交BC于点F,DE交BC、AC于点G、H,则以下结论:①△ABF≌△AEH;②连接AG、FH,则AG⊥FH;③当AD⊥BC时,DF的长度最大;④当点H是DE的中点时,四边形AFGH的面积等于AF×GH.其中正确的个数有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共15分.请把答案填在答题卷相应的表格里.)11.(3分)已知3m=5,3n=2,则3m+n的值等于.12.(3分)如图是一个可以自由转动的转盘,转动转盘,转盘停止后,指针落在红色区域的概率是.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD、CD.若∠B=65°,则∠BCD的大小是°.14.(3分)已知m﹣n﹣2=0,则4m÷22n=.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠DAE=90°,AB =AC=5,AD=AE=4,点D在BC上,连接CE.则△CDE的面积是.三、解答题(本题共7小题,共55分)16.(8分)计算:(1)﹣12021﹣(2020﹣π)0+(−12)﹣3;(2)(﹣3xy2)2•(﹣6x2y)÷(9x4y5).17.(10分)(1)计算:(xy+2)(xy﹣2)﹣x(xy2﹣4);(2)先化简,再求值:[(2x﹣y)2﹣4(x﹣y)(x+y)]÷(−12y),其中x=2,y=−3.18.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.如图,已知BC分别交AB、DE于点B、C,且∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE().所以∠ABC=∠BCD().因为∠P=∠Q(已知),所以PB∥CQ().所以∠PBC=()(两直线平行,内错角相等).因为∠1=∠ABC﹣(),∠2=∠BCD﹣(),所以∠1=∠2(等量代换).19.(7分)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是;(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是;②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.20.(7分)疫情期间,全民检测,人人有责.安安小区某时段进行核酸检测,居民有序排队入场,医务人员开始检测后,现场排队等待检测人数y(人)与时间x(分钟)之间的关系式为y=10x+a,用表格表示为:时间x/分钟0123456…等待检测人数y/人405060708090100…医务人员已检测的总人数(人)与时间(分钟)之间的关系如图所示:(1)图中表示的自变量是,因变量是;(2)图中点A表示的含义是;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有人;(4)关系式y=10x+a中,a的值为;(5)医务人员开始检测分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;(6)如果该小区共有居民1000人,那么医务人员全部检测完该小区居民共需分钟.21.(8分)阅读下面的材料,然后解答后面的问题:在数学中,“算两次”是一种常用的方法.其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙计算则得到的答案是B,那么等式A=B成立.例如,我们运用“算两次”的方法计算图1中最大的正方形的面积,可以得到等式(a+b)2=a2+2ab+b2.理解:(1)运用“算两次”的方法计算图2中最大的正方形的面积,可以得到的等式是;应用:(2)七(1)班某数学学习小组用8个直角边长为a、b的全等直角三角形拼成如图3所示的中间内含正方形A1B1C1D1与A2B2C2D2的正方形ABCD,运用“算两次”的方法计算正方形A2B2C2D2的面积,可以得到的等式是;拓展:如图4,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,点D是AB 上一动点.求CD的最小值.22.(9分)已知△ABC.(1)如图1,按如下要求用尺规作图:①作出△ABC的中线CD;②延长CD至E,使DE=CD,连接AE;(不要求写出作法,但要保留作图痕迹.)(2)在(1)中,直线AE与直线BC的位置关系是;(3)如图2,若∠ACB=90°,CD是中线.试探究CD与AB之间的数量关系,并说明理由;(4)如图3,若∠ACB=45°,AC=BC,CD是△ABC的中线,过点B作BE⊥AC于E,交CD于点F,连接DE.若CF=3,则DE的长是.2020-2021学年广东省深圳市龙华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)计算a2•a3的正确结果是()A.a5B.a6C.a8D.a9【解答】解:a2•a3=a2+3=a5,故选:A.2.(3分)下列四个图形是有关垃圾分类的标志,其中标志图形(不含文字)是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意;故选:B.3.(3分)新型冠状病毒主要依靠飞沫和直接接触传播,飞沫的直径一般是在0.000003米左右.将数据0.000003米用科学记数法表示为()A.3×10﹣5米B.3×10﹣6米C.30×10﹣7米D.0.3×10﹣6米【解答】解:0.000003米=3×10﹣6米.故选:B.4.(3分)用一块含30°角的透明直角三角板画已知△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【解答】解:A,B,C都不是△ABC的边BC上的高.故选:D.5.(3分)如图,点E在BC的延长线上,下列条件中,能判定AB∥CD的是()A.∠DAC=∠BCA B.∠D=∠DCEC.∠B=∠DCE D.∠BAD+∠B=180°【解答】解:A、当∠DAC=∠BCA时,可得:AD∥BC,不合题意;B、当∠D=∠DCE时,可得:AD∥BC,不合题意;C、当∠B=∠DCE时,可得:AB∥CD,符合题意;D、当∠BAD+∠B=180°时,可得:AD∥BC,不合题意;故选:C.6.(3分)在一个不透明的口袋中有三个相同的小球,将每个小球分别标号为1,2,3,从这个口袋中摸出一个小球,则下列事件不是随机事件的是()A.摸到的小球的标号为1B.摸到的小球的标号大于1C.摸到的小球的标号小于1D.摸到的小球的标号为偶数【解答】解:A.摸到的小球的标号为1,有可能发生,是随机事件,不符合题意;B.摸到的小球的标号大于1,有可能发生,是随机事件,不符合题意;C.摸到的小球的标号小于1,是不可能事件,符合题意;D.摸到的小球的标号为偶数,是随机事件,不符合题意;故选:C.7.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(3分)下列说法正确的是()A.垂直于同一条直线的两条直线互相平行B.如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是锐角三角形C.有两角与一边相等的两个等腰三角形全等D.角平分线上的点到这个角的两边的距离相等【解答】解:A、在同一平面上,垂直于同一条直线的两条直线互相平行,说法错误,不符合题意;B、如果△ABC的三个内角满足∠A:∠B:∠C=1:2:3,则这个三角形是直角三角形,说法错误,不符合题意;C、有两角与一边相等的两个等腰三角形不一定全等,说法错误,不符合题意;D、角平分线上的点到这个角的两边的距离相等,说法正确,符合题意;故选:D.9.(3分)赛车在平坦的环形跑道上比赛,经过弯道时通常需要减速.如图表示了一辆赛车跑第二圈时它的速度随行驶的路程的变化情况.以下是4种环形跑道,其中能最恰当反映图中速度随行驶的路程的变化情况的是()A.B.C .D .【解答】解:根据图象横轴表示行驶的距离,纵轴表示行驶的速度的变化,赛车跑第二圈时一共三个减速,也就是三个弯道,且路程的一半左右减速最大,即弯道最大, 所以只有选项B 符合题意. 故选:B .10.(3分)如图,已知△ABC 中,AB =AC ,将△ABC 绕点A 沿逆时针方向旋转n °(0<n <∠BAC )得到△ADE ,AD 交BC 于点F ,DE 交BC 、AC 于点G 、H ,则以下结论: ①△ABF ≌△AEH ;②连接AG 、FH ,则AG ⊥FH ; ③当AD ⊥BC 时,DF 的长度最大;④当点H 是DE 的中点时,四边形AFGH 的面积等于AF ×GH . 其中正确的个数有( )A .4个B .3个C .2个D .1个【解答】解:①在△ABF 和△AEH 中, {∠BAF =∠HAEAB =AE∠B =∠E,∴△ABF ≌△AEH (SAS ),故①正确; ②∵△ABF ≌△AEH , ∴∠AFB =∠AHE ,AF =AH ,∴∠DFG=∠CHG,∵AD=AC,∴DF=CH,∴△DFG≌△CHG,∴FG=GH,∴AF垂直平分FH,故②正确;③由DF=AD﹣AF,∵AD是定长,∴AF最小时,DF最长,即AD⊥BC时,DF最大.故③正确;④当点H是DE的中点时,有AH⊥DE,∵AF=AH,FG=GH,且AG是公共边,∴△AFG≌△AHG(SSS)∴S四边形AFGH=2S△AGH=2×12×GH×AH=GH×AH,故④正确.故选:A.二、填空题(每小题3分,共15分.请把答案填在答题卷相应的表格里.)11.(3分)已知3m=5,3n=2,则3m+n的值等于10.【解答】解:∵3m=5,3n=2,∴3m×3n=10,∴3m+n=10.故答案为:10.12.(3分)如图是一个可以自由转动的转盘,转动转盘,转盘停止后,指针落在红色区域的概率是38.【解答】解:自由转动转盘共有8种等可能结果,转盘停止后,指针落在红色区域的有3种,所以转盘停止后,指针落在红色区域的概率是38,故答案为:38.13.(3分)如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ,连接AD 、CD .若∠B =65°,则∠BCD 的大小是 65° °.【解答】解:由题意可知:AB =CD .BC =AD . 在△ABC 与△CDA 中. {AB =CD BC =AD AC =CA. ∴△ABC ≌△CDA (SSS ).∴∠D =∠B =65°,(全等三角形的对应角相等). 14.(3分)已知m ﹣n ﹣2=0,则4m ÷22n = 16 . 【解答】解:因为m ﹣n ﹣2=0, 所以m ﹣n =2,所以4m ÷22n =22m ÷22n =22m ﹣2n=22(m ﹣n )=22×2=16.故答案为:16.15.(3分)如图,已知△ABC 与△ADE 均是等腰直角三角形,∠BAC =∠DAE =90°,AB =AC =5,AD =AE =4,点D 在BC 上,连接CE .则△CDE 的面积是92.【解答】解:∵∠BAC =∠DAE =90°,AB =AC =5,AD =AE =4, ∴∠B =∠ACB =45°,BC =√2AB =5√2,DE =√2AD =4√2, ∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC , 即∠BAD =∠CAE , 在△BAD 与△CAE 中, {AB =AC∠BAD =∠CAE AD =AE, ∴△BAD ≌△CAE (SAS ), ∴∠B =∠ACE =45°, ∴∠DCE =90°,CE =BD , ∴CE 2+CD 2=DE 2,∴BD 2+(5√2−BD )2=(4√2)2, ∴BD =5√2−√142或5√2+√142, ∴CD =5√2+√142或5√2−√142, ∴△CDE 的面积=12×5√2+√142×5√2−√142=92, 故答案为:92.三、解答题(本题共7小题,共55分) 16.(8分)计算:(1)﹣12021﹣(2020﹣π)0+(−12)﹣3;(2)(﹣3xy2)2•(﹣6x2y)÷(9x4y5).【解答】(1)解:原式=﹣1﹣1+(﹣2)3=﹣1﹣1﹣8=﹣10.(2)解:原式=9x2y4•(﹣6x2y)÷(9x4y5)=﹣54x4y5÷(9x4y5)=﹣6.17.(10分)(1)计算:(xy+2)(xy﹣2)﹣x(xy2﹣4);(2)先化简,再求值:[(2x﹣y)2﹣4(x﹣y)(x+y)]÷(−12y),其中x=2,y=−3.【解答】解:(1)原式=(x2y2﹣4)﹣(x2y2﹣4x)=x2y2﹣4﹣x2y2+4x=4x﹣4;(2)原式=(4x2﹣4xy+y2﹣4x2+4y2)÷(−12y)=(﹣4xy+5y2)÷(−12y)=8x﹣10y,当x=2,y=﹣3时,原式=8×2﹣10×(﹣3)=46.18.(6分)填空:把下面的推理过程补充完整,并在括号内注明理由.如图,已知BC分别交AB、DE于点B、C,且∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE(同旁内角互补,两直线平行).所以∠ABC=∠BCD(两直线平行,内错角相等).因为∠P=∠Q(已知),所以PB∥CQ(内错角相等,两直线平行).所以∠PBC=(∠BCQ)(两直线平行,内错角相等).因为∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),所以∠1=∠2(等量代换).【解答】解:证明:因为∠ABC+∠ECB=180°(已知),所以AB∥DE(同旁内角互补,两直线平行).所以∠ABC=∠BCD(两直线平行,内错角相等).因为∠P=∠Q(已知),所以PB∥CQ(内错角相等,两直线平行).所以∠PBC=(∠BCQ)(两直线平行,内错角相等).因为∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),所以∠1=∠2(等量代换).19.(7分)如图1为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是1081;(2)如图2,小明游戏时先踩中一个小方格,显示数字2,它表示与这个方格相邻的8个小方格(图黑框所围区域,设为A区域)中埋藏着2个地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地雷的概率是14;②小明与小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,试问这个约定对谁有利,请通过计算说明.【解答】解:(1)∵在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.∴小明如果踩在图1中9×9个小方格的任意一个小方格,则踩中地雷的概率是1081;故答案为:1081;(2)①由题意,可得若小明第二步选择踩在A 区域内的小方格,则踩中地雷的概率是28=14;故答案为:14;②约定对于小亮有利.理由如下: 由题意,可得P (小明获胜)=68=34, P (小亮获胜)=72−881−9=6472=89, 因为34<89,P (小明获胜)<P (小亮获胜), 所以约定对于小亮有利.20.(7分)疫情期间,全民检测,人人有责.安安小区某时段进行核酸检测,居民有序排队入场,医务人员开始检测后,现场排队等待检测人数y (人)与时间x (分钟)之间的关系式为y =10x +a ,用表格表示为:时间x /分钟 0 1 2 3 4 5 6 … 等待检测人数y /人405060708090100…医务人员已检测的总人数(人)与时间(分钟)之间的关系如图所示:(1)图中表示的自变量是时间,因变量是总人数;(2)图中点A表示的含义是检测5分钟后,已检测的总人数为80人;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有80人;(4)关系式y=10x+a中,a的值为40;(5)医务人员开始检测6分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;(6)如果该小区共有居民1000人,那么医务人员全部检测完该小区居民共需51分钟.【解答】解:由图象,结合题意可知:(1)自变量是检测时间,因变量是已检测的总人数;故答案为:时间;总人数;(2)图中点A表示的含义是:检测5分钟后,已检测的总人数为80人;(3)在医务人员开始检测4分钟时,现场排队等待检测的人数有80;故答案为:80;(4)根据表格可知,60=10×2+a,解得a=40.故答案为:40;(5)医务人员开始检测6分钟后,现场排队等待检测人数与医务人员已检测的总人数相同;故答案为:6;(6)由题意,得20x﹣20=1000,解得x=51,即医务人员全部检测完该小区居民共需51分钟.故答案为:51.21.(8分)阅读下面的材料,然后解答后面的问题:在数学中,“算两次”是一种常用的方法.其思想是,对一个具体的量用方法甲来计算,得到的答案是A,而用方法乙计算则得到的答案是B,那么等式A=B成立.例如,我们运用“算两次”的方法计算图1中最大的正方形的面积,可以得到等式(a+b)2=a2+2ab+b2.理解:(1)运用“算两次”的方法计算图2中最大的正方形的面积,可以得到的等式是(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;应用:(2)七(1)班某数学学习小组用8个直角边长为a、b的全等直角三角形拼成如图3所示的中间内含正方形A1B1C1D1与A2B2C2D2的正方形ABCD,运用“算两次”的方法计算正方形A2B2C2D2的面积,可以得到的等式是(a﹣b)2=(a+b)2﹣4ab;拓展:如图4,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,点D是AB 上一动点.求CD的最小值.【解答】解:(1)从整体上看为边长为(a+b+c)的正方形,所以面积为(a+b+c)2,从各个部分的面积和为a2+b2+c2+2ab+2bc+2ac,所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)正方形A2B2C2D2的边长(a﹣b),因此面积为(a﹣b)2,也可以看做边长为(a+b)的正方形ABCD面积减去四个长为a,宽为b的长方形的面积,即(a+b)2﹣4ab,因此有:(a﹣b)2=(a+b)2﹣4ab;由“直线外一点到直线上所有点的连线中,垂线段最短”可得,当CD⊥AB时,CD最短,由三角形的面积可得,12AC •BC =12AB •CD ,即6×8=10CD , ∴CD =4.8,答:CD 的最小值为4.8. 22.(9分)已知△ABC .(1)如图1,按如下要求用尺规作图: ①作出△ABC 的中线CD ;②延长CD 至E ,使DE =CD ,连接AE ;(不要求写出作法,但要保留作图痕迹.) (2)在(1)中,直线AE 与直线BC 的位置关系是 AE ∥BC ;(3)如图2,若∠ACB =90°,CD 是中线.试探究CD 与AB 之间的数量关系,并说明理由;(4)如图3,若∠ACB =45°,AC =BC ,CD 是△ABC 的中线,过点B 作BE ⊥AC 于E ,交CD 于点F ,连接DE .若CF =3,则DE 的长是32.【解答】解:(1)①如图1所示,线段CD 即为所求. ②如图1中,线段DE ,AE 即为所求.(2)结论:AE ∥BC .理由:在△CDB 和△EDA 中,{DC =DE ∠CDB =∠EDA DB =DA,∴△CDB ≌△EDA (SAS ),∴∠B =∠DAE ,∴AE ∥BC .故答案为:AE ∥BC .(3)AB 与CD 的数量关系是:AB =2CD ,理由如下: 如图3﹣2,延长CD 至E ,使DE =DC ,连接BE ,∵CD 是中线,∴AD =BD ,在△ADC 和△BDE 中,{AD =BD ∠ADC =∠BDE DC =DE,∴△ADC ≌△BDE (SAS ),∴∠E =∠ACD ,AC =BE ,∴AC ∥BE ,∴∠ACB +∠EBC =180°,∵∠ACB =90°,∴∠EBC =90°,在△ACB 和△EBC 中,{AC =BE ∠ACB =∠EBC CB =BC,∴△ACB ≌△EBC (SAS ),∴AB =CE ,∵CE =2CD ,∴AB =2CD .(4)如图3中,∵BE ⊥AC ,∠ACB =45°,∴∠CEB =∠BEA =90°,∠ECB =∠EBC =45°, ∴EC =EB ,∵AC =AB ,CD 是中线,∴CD ⊥AB ,∵∠CEF =∠BDF =90°,∠CFE =∠BFD , ∴∠ECF =∠ABE ,在△CEF 和△BEA 中,{∠ECF =∠EBACE =BE ∠CEF =∠BEA,∴△CEF ≌△BEA (ASA ),∴CF =AB =3,∵AD =BD ,∠AEB =90°,∴DE =12AB =32.故答案为:32.。

2020-2021下海育才初级中学初一数学下期中试题(带答案)

2020-2021下海育才初级中学初一数学下期中试题(带答案)

2020-2021下海育才初级中学初一数学下期中试题(带答案)一、选择题1.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .2.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .93.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度4.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-15.设42-的整数部分为a ,小整数部分为b ,则1a b-的值为( ) A .2-B .2C .21+D .21-6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°7.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EF D .当BOC 140∠=︒时,BF//DE8.如图,AB∥CD,BC∥DE,∠A=30°,∠B CD =110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80°9.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b += 10.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠811.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为() A .()8,3--B .()4,2C .()0,1D .()1,812.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.14.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________15.如图,数轴上表示13A 、点B ,若点A 是BC 的中点,则点C 表示的数为______.16.如图,有一块长为32 m、宽为24 m的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m2.17.已知△ABC中,AB=AC,求证:∠B<90°.用反证法证明,第一步是假设_________.18.如图,直线AB,CD交于点O,OF⊥AB于点O,CE∥AB交CD于点C,∠DOF=60°,则∠ECO等于_________度.19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,那么O'点对应的数是______.你的理由是______.20.一个棱长为8cm的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm.三、解答题21.2020年的寒假是“不同寻常”的一个假期.在这个超长假期里,某中学随机对本校部分同学进行“抗疫有我,在家可以这么做”的问卷调查:A扎实学习、B经典阅读、C分担劳动、D乐享健康,(每位同学只能选一个),并根据调查结果绘制如下两幅不完整的统计图.根据统计图提供信息,解答问题:(1)本次一共调查了_______名同学;(2)请补全条形统计图;在扇形统计图中A所对应的圆心角为度;(3)若该校共有1600名同学,请你估计选择A有多少名同学?22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)23.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点. 24.求不等式()()922312m m ---≥-的所有正整数解. 25.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题解析:∵x+1≥2, ∴x ≥1. 故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.2.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.3.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度,4.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:1x ==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.5.D解析:D 【解析】 【分析】 【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=2-∴1221a b -=== 故选D . 【点睛】本题考查估算无理数的大小.6.B解析:B过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.8.C【解析】【分析】在图中过E作出BA平行线EF,根据平行线性质即可推出∠AEF及∠DEF度数,两者相加即可.【详解】过E作出BA平行线EF ,∠AEF=∠A=30°,∠DEF=∠ABCAB∥CD,BC∥DE ,∠ABC=180°-∠BCD=180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.9.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.10.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.11.C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.12.D解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.4【解析】【分析】设购买x个A品牌足球y个B品牌足球根据总价=单价×数量即可得出关于xy的二元一次方程结合xy均为正整数即可得出各进货方案此题得解【详解】解:设购买x个A品牌足球y个B品牌足球依题意解析:4【解析】【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解. 【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球, 依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数, ∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案. 故答案为:4. 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) - 【解析】 【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标. 【详解】∵()()7,0,1,0A B - ∴AB=8∵ABC ∆的面积为16∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4) 故答案为:(0,4)或(0,-4) 【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.15.2﹣【解析】【分析】设点C 表示的数是x 再根据中点坐标公式即可得出x 的值【详解】解:设点C 表示的数是x∵数轴上表示1的对应点分别为点A 点B点A是BC的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查解析:2﹣3【解析】【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上表示1、3的对应点分别为点A、点B,点A是BC的中点,∴3x=1,解得x=2﹣3.故答案为2﹣3.【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.16.【解析】【分析】【详解】解:如图两条直道分成的四块草坪分别为甲乙丙丁把丙和丁都向左平移2米然后再把乙和丁都向上平移2米组成一个长方形长为32-2=30米宽为24-2=22米所以四块草坪的总面积是30解析:【解析】【分析】【详解】解:如图,两条直道分成的四块草坪分别为甲、乙、丙、丁,把丙和丁都向左平移2米,然后再把乙和丁都向上平移2米,组成一个长方形,长为32-2=30米,宽为24-2=22米,所以四块草坪的总面积是30×22=660(㎡).故答案为:660.【点睛】本题考查了平移的应用,将草坪平移组成一个长方形是解决此题的关键.17.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(解析:∠B≥90°【解析】【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明:第一步是:假设∠B≥90°.故答案是:∠B≥90°.【点睛】考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18.30【解析】【分析】先求出∠BOD的大小再根据平行的性质得出同位角∠ECO的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答解析:30【解析】【分析】先求出∠BOD的大小,再根据平行的性质,得出同位角∠ECO的大小.【详解】∵OF⊥AB,∴∠BOF=90°∵∠DOF=60°,∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答案为:30【点睛】本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.19.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原20.4【解析】【分析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm 再根据水的体积不变来列出等式解出r 值即可【详解】解:设这个圆柱形玻璃杯的底面半径为rcm 依题意可得:∴∴r 取正值4;故答案为:4【点解析:4【解析】【分析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm ,再根据水的体积不变来列出等式,解出r 值即可.【详解】解:设这个圆柱形玻璃杯的底面半径为rcm , 依题意可得:23328r ππ⋅=,∴232512r =, 216r ∴=,∴r 取正值4;故答案为:4.【点睛】本题主要考查了算术平方根的性质和应用,以及圆柱、正方体体积的求法,要熟练掌握相关内容.三、解答题21.(1)200;(2)补全图形见解析,108 ;(3)选择A 有480名同学.【解析】【分析】(1)由B 组的信息可得总人数,(2)先求解C 组所占总体的百分比,再求A 组所占总体的百分比,进而求出A 所对的圆心角,,A D 两组的人数,补全条形图即可.(3)由A 组所占总体的百分比估计总体即可得到答案.【详解】解:(1)由题意得:本次一共调查了5628%200÷=(名),故答案为:200.(2)C Q 组占总体的44100%22%,200⨯= A ∴组占总体的128%20%22%30%,---= A ∴所对的圆心角为:30%360108,⨯︒=︒A ∴组人数为:20030%60⨯=(名),D 组人数为:20020%40⨯= (名),补全条形图如下:故答案为:108.(3)该校共有1600名同学,估计选择A有:⨯=(名)160030%480答:选择A的大概有480名同学.【点睛】本题考查的是统计调查的知识,考查了从条形图与扇形图中获取信息,以及利用样本来估计总体,掌握相关知识点是解题的关键.22.(1)见解析;(2)见解析;(3)4.【解析】【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23.(1)③;(2)①20,6;②补图见解析;③B类;④18万户.【解析】试题分析:(1)根据简单随机抽样的定义即可得出答案.(2)①依题可得出总户数为1000户,从而求出m和n的值.②根据数据可求出C的户数,从而补全条形统计图.③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④根据样本估计总体,即可求出送回收点的家庭户数.试题解析:(1)简单随机抽样即按随机性原则,从总体单位中抽取部分单位作为样本进行调查,以其结果推断总体有关指标的一种抽样方法.随机原则是在抽取被调查单位时,每个单位都有同等被抽到的机会,被抽取的单位完全是偶然性的.由此可以得出答案为③(2)①依题可得:510÷51%=1000(户).∴200÷1000×100%=20%.∴m=20.∴60÷1000×100%=6%.∴n=6.②C的户数为:1000×10%=100(户),补全的条形统计图如下:③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④∵样本中直接送回收点为10%,根据样本估计总体,送回收点的家庭约为:180×10%=18(万户).考点:1、用样本估计总体,2、扇形统计图,3、条形统计图24.72m≤,正整数解123m=、、【解析】【分析】去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+392≥-移项,得2m-3m ≥4-3- 92,合并同类项,得-m≥-72,系数化为1得72 m≤,则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.25.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键.。

2020-2021学年重庆市九龙坡区育才中学七年级(下)入学数学试卷(解析版)

2020-2021学年重庆市九龙坡区育才中学七年级(下)入学数学试卷(解析版)

2020-2021学年重庆市九龙坡区育才中学七年级(下)入学数学试卷一、选择题(共10小题).1.在﹣2,﹣,0,3这四个数中,最小的数是()A.﹣2B.﹣C.0D.32.9的平方根是()A.±3B.3C.﹣3D.3.如图,下列各角中,是对顶角的一组是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠3和∠44.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠1与∠3是同位角C.∠2与∠A是同位角D.∠2与∠3是内错角5.下列表述正确的是()A.由a﹣3=1,得a=3﹣1B.由|x|=|y|,得x=yC.由2x=4,得x=D.由a=b,得a2=b26.下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C.D.7.水费阶梯收费方式:每月每户用水量20立方米及其以内的部分按1.5元/立方米收费,超过20立方米的部分按2.5元/立方米收费.如果某户居民在某月所交水费40元,那么这个月共用多少立方米的水?设这个月共用x立方米的水,下列方程正确的是()A.1.5x=40B.1.5×20+2.5(x﹣20)=40C.2.5x=40D.2.5×20+1.5(x﹣20)=408.下列说法正确的是()A.若AB=BC,则点B为线段AC的中点B.射线AB和射线BA是同一条射线C.两点之间的线段长度就是两点之间的距离D.同角的补角不一定相等9.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…归纳各计算结果中的个位数字规律,猜测22021﹣1的个位数字是()A.1B.3C.7D.510.已知关于x的一元一次方程2x+1=+3的解为正整数,则所有满足条件的整数a有()个.A.3B.4C.6D.8二、填空题(共6小题).11.近年来,我国5G发展取得明显成效,截至2020年9月底,全国建设开通5G基站超510000个,将数据510000用科学记数法可表示为.12.=.13.已知(a﹣2)x|a|﹣1=﹣2是关于x的一元一次方程,则a的值为.14.已知有理数a、b在数轴上对应点的位置如图所示,则2|a+2b+1|﹣|a﹣3b|=.15.如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则a﹣(b﹣c)=.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A,B两地相距千米.三、解答题(本大题共6个小题,17~20各8分,21、22题10分,共52分)17.计算:(1)18+(﹣16)﹣(﹣14)﹣(+19);(2)﹣22÷×[4﹣(﹣2)3].18.先化简,再求值:(3x2﹣2xy)﹣[x2﹣2(x2﹣xy)],其中,x=﹣,y=2.19.解方程:(1)3x+8=4﹣x;(2).20.如图,点C、D是线段AB上两点,AC:BC=3:2,点D为AB的中点.(1)如图1所示,若AB=30,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=5,求线段AB的长.21.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?22.如图1,射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON分别平分∠AOD,∠BOC.(1)若∠AOC=60°,试通过计算比较∠NOD和∠MOC的大小;(2)如图2,若将图1中∠COD在∠AOB内部绕点O顺时针旋转.①旋转过程中∠MON的大小始终不变,求∠MON的值;②如图3,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.参考答案一、选择题(共10小题).1.在﹣2,﹣,0,3这四个数中,最小的数是()A.﹣2B.﹣C.0D.3【分析】根据有理数的大小比较解答即可.解:∵,∴这四个数中,最小的数是﹣2.故选:A.2.9的平方根是()A.±3B.3C.﹣3D.【分析】根据一个正数有两个平方根,它们互为相反数进行解答即可.解:±=±3,故选:A.3.如图,下列各角中,是对顶角的一组是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠3和∠4【分析】根据对顶角的定义作出判断即可.解:根据对顶角的定义可知:只有∠2和∠4的是对顶角,其它都不是.故选:C.4.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠1与∠3是同位角C.∠2与∠A是同位角D.∠2与∠3是内错角解:由图可知:∠1与∠3是同旁内角,故B说法错误,故选:B.5.下列表述正确的是()A.由a﹣3=1,得a=3﹣1B.由|x|=|y|,得x=y C.由2x=4,得x=D.由a=b,得a2=b2解:A.由a﹣3=1,得a=3+1,故选项错误;B.由|x|=|y|,得x=±y,故选项错误;C.由2x=4,得x=,故选项错误;D.由a=b等式两边平方得a2=b2,故选项正确.故选:D.6.下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C.D.【分析】根据平行线的性质对各选项分析判断后利用排除法求解.解:A、由AB∥CD可得∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项正确;C、由AC∥BD得到∠1=∠2,由AB∥CD不能得到,故本选项错误;D、梯形ABCD是等腰梯形才可以有∠1=∠2,故本选项错误.故选:B.7.水费阶梯收费方式:每月每户用水量20立方米及其以内的部分按1.5元/立方米收费,超过20立方米的部分按2.5元/立方米收费.如果某户居民在某月所交水费40元,那么这个月共用多少立方米的水?设这个月共用x立方米的水,下列方程正确的是()A.1.5x=40B.1.5×20+2.5(x﹣20)=40C.2.5x=40D.2.5×20+1.5(x﹣20)=40【分析】根据所交水费的金额=1.5×20+2.5×超过20立方米得数量,即可得出关于x的一元一次方程,此题得解.解:依题意得:1.5×20+2.5(x﹣20)=40.故选:B.8.下列说法正确的是()A.若AB=BC,则点B为线段AC的中点B.射线AB和射线BA是同一条射线C.两点之间的线段长度就是两点之间的距离D.同角的补角不一定相等【分析】根据线段中点的概念、射线的表示方法、两点间的距离的定义、补角的概念判断即可.解:当点B在线段AC上,AB=BC,则点B为线段AC的中点,A错误;射线AB和射线BA不是同一条射线,B错误;两点之间的线度长度就是两点之间的距离,C正确;同角的补角一定相等,D错误;故选:C.9.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…归纳各计算结果中的个位数字规律,猜测22021﹣1的个位数字是()A.1B.3C.7D.5解:∵21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…,∴结果结果中的个位数字依次以1,3,7,5循环出现,∵2021÷4=505,∴22021﹣1的个位数字是1,故选:A.10.已知关于x的一元一次方程2x+1=+3的解为正整数,则所有满足条件的整数a有()个.A.3B.4C.6D.8解:2x+1=+3,(2﹣)x=2,x=,而x>0,∴>0,∴>0,∴a<6,∵x为正整数∴2要为2﹣的倍数∴a=﹣3或0或3.所以所有满足条件的整数a有3个.故选:A.二、填空题(本大题6个小题,每小题3分,共18分)11.近年来,我国5G发展取得明显成效,截至2020年9月底,全国建设开通5G基站超510000个,将数据510000用科学记数法可表示为 5.1×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:510000=5.1×105,故答案为:5.1×105.12.=0.【分析】直接利用算术平方根的性质以及立方根的性质分别化简得出答案.解:原式=2﹣2=0.故答案为:0.13.已知(a﹣2)x|a|﹣1=﹣2是关于x的一元一次方程,则a的值为﹣2.【分析】根据一元一次方程的定义和已知条件得出a﹣2≠0且|a|﹣1=1,再求出a的值即可.解:∵(a﹣2)x|a|﹣1=﹣2是关于x的一元一次方程,∴a﹣2≠0且|a|﹣1=1,解得:a=﹣2,故答案为:﹣2.14.已知有理数a、b在数轴上对应点的位置如图所示,则2|a+2b+1|﹣|a﹣3b|=3a+b+2.【分析】根据a、b在数轴上的位置,判断a+2b+1,a﹣3b的符号,再化简绝对值即可.解:∵﹣1<a<0,b>1,∴a+2b+1>0,a﹣3b<0,∴2|a+2b+1|﹣|a﹣3b|=2(a+2b+1)﹣(3b﹣a)=2a+4b+2﹣3b+a=3a+b+2.故答案为:3a+b+2.15.如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则a﹣(b﹣c)=﹣2.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“c”是相对面,“b”与“﹣2”是相对面,“1”与“﹣1”是相对面,∵正方体相对面上的数互为相反数,∴b=2,a+c=0,∴a﹣(b﹣c)=a﹣b+c=a+c﹣b=0﹣2=﹣2.故答案为:﹣2.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A,B两地相距760千米.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.三、解答题(本大题共6个小题,17~20各8分,21、22题10分,共52分)17.计算:(1)18+(﹣16)﹣(﹣14)﹣(+19);(2)﹣22÷×[4﹣(﹣2)3].【分析】(1)根据有理数加减法则进行计算,即可得出答案;(2)根据有理数混合运算法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进行计算即可得出答案.解:(1)18+(﹣16)﹣(﹣14)﹣(+19)=18﹣16+14﹣19=﹣3;(2)原式=﹣4××[4﹣(﹣8)]=﹣6×12=﹣72.18.先化简,再求值:(3x2﹣2xy)﹣[x2﹣2(x2﹣xy)],其中,x=﹣,y=2.解:原式=(3x2﹣2xy)﹣(x2﹣2x2+2xy)=3x2﹣2xy﹣x2+2x2﹣2xy=4x2﹣4xy;当x=﹣,y=2时,原式=4×(﹣)2﹣4×(﹣)×2=1+4=5.19.解方程:(1)3x+8=4﹣x;(2).【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.解:(1)移项,可得:3x+x=4﹣8,合并同类项,可得:4x=﹣4,系数化为1,可得:x=﹣1.(2)去分母,可得:2(2x+1)﹣6=x﹣1,去括号,可得:4x+2﹣6=x﹣1,移项,可得:4x﹣x=﹣1﹣2+6,合并同类项,可得:3x=3,系数化为1,可得:x=1.20.如图,点C、D是线段AB上两点,AC:BC=3:2,点D为AB的中点.(1)如图1所示,若AB=30,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=5,求线段AB的长.解:(1)∵D是线段AB的中点,∴BD=AB=×30=15,∵AC:BC=3:2∴BC=AB==12,∴CD=BD﹣BC=15﹣12=3;(2)∵AC:BC=3:2,AC+BC=AB,∴,∵E为AC的中点,∴AE=CE==,∵点D为AB的中点,∴AD=AB,∵ED=5,∴ED=AD﹣AE==,∴AB=25.21.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?【分析】(1)设A种商品每件的进价是x元,根据购进A种商品2件与购进B种商品3件的进价相同列出方程,解出可得结论;(2)设购买A种商品a件,根据所用资金5800元可得购进A、B两种商品的件数,在根据两种商品的售价和进价可得总利润;(3)设B商品按标价售出m件,根据等量关系A商品的利润+B商品的利润=(2)中的利润﹣120列出方程,可得结论.解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣40)元,由题意得2x=3(x﹣40),解得:x=120,120﹣40=80(件).答:A种商品每件的进价是120元,B种商品每件的进价是80元;(2)设购买A种商品a件,则购买B商品(60﹣a)件,由题意得120a+80(60﹣a)=5800,解得a=25,60﹣a=35.120×30%×25+20×35=1600(元).答:全部售完共可获利1600元;(3)设销售B商品按标价售出m件,由题意得:120×30%×25+20m+(20﹣6)(35﹣m)=1600﹣120,解得m=15.答:销售B商品按标价售出15件.22.如图1,射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON分别平分∠AOD,∠BOC.(1)若∠AOC=60°,试通过计算比较∠NOD和∠MOC的大小;(2)如图2,若将图1中∠COD在∠AOB内部绕点O顺时针旋转.①旋转过程中∠MON的大小始终不变,求∠MON的值;②如图3,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.解:(1)∵∠AOC=60°,∠DOC=30°,∴∠DOA=90°,∴∠DOM=45°,∴∠MOC=45°﹣30°=15°.∵∠AOC=60°,∠AOB=150°,∴∠BOC=90°,∴∠NOC=45°,∴∠NOD=45°﹣30°=15°.∴∠MOC=∠NOD,(2)①:∵OM平分∠AOD,ON平分∠BOC,∴∠AOD=2∠AOM,∠BOC=2∠BON.∴∠AOB=∠AOD+∠BOC﹣∠COD=2∠AOM+2∠BON﹣30°=150°∴∠AOM+∠BON=90°,∴∠MON=150°﹣90°=60°②设∠MOC=∠AOC=x,∵OC为∠MOA的角平分线,∴∠AOM=2x,∵∠COD=30°∴∠DOM=30°﹣x,∵OM平分∠AOD,∴∠AOM=∠DOM=30°﹣x,∴30°﹣x=2 x,可得x=10°,则∠MOC=∠AOC=10°,∠DOM=30°﹣10°=20°,∵∠AOB=150°∴∠BOC=150°﹣10°=140°∵射线ON平分∠BOC,∴∠CON=70°∴∠NOD=∠CON﹣∠COD=70°﹣30°=40°,∴∠NOD=4∠MOC.。

2020-2021学年新疆七年级(下)期末数学试卷-附答案详解

2020-2021学年新疆七年级(下)期末数学试卷-附答案详解

2020-2021学年新疆七年级(下)期末数学试卷1.下列调查中,调查方式选择合理的()A. 为了解火箭发射前各零件的质量情况,选择全面调查B. 为了解某森林公园全年的游客流量,选择全面调查C. 为了解某品牌木质地板的甲醛含量,选择全面调查D. 为了解某班学生的身高情况,选择抽样调查2.9的算术平方根是()D. ±3A. −3B. 3C. 133.不等式3x−5<1的解集在数轴上表示正确的是()A. B.C. D.4.如图,把一块直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为()A. 35°B. 45°C. 55°D. 25°5.下列判断不正确的是()A. 若a>b,则a+3>b+3B. 若a>b,则−3a<−3bC. 若2a>2b,则a>bD. 若a>b,则ac2>bc26.如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A. 甲户比乙户大B. 乙户比甲户大C. 甲、乙两户一样大D. 无法确定哪一户大7.如图,直线AB,CD相交于点O,∠AOC=75°,OE把∠BOD分成两部分,且∠BOE:∠EOD=1:2,则∠AOE=()A. 165°B. 155°C. 150°D. 130°8.某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()A. 5折B. 5.5折C. 6折D. 6.5折9.由3x+2y=1,得到用含x的式子表示y的结果为y=______.10.在平面直角坐标系中,点P(a,b)在第二象限,则ab______ 0.11.如图,要把池中的水引到D处,可过D点作CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______.12.如图,直线AB、CD与直线EF相交于E、F,∠1=105°,当∠2=______ 时,能使AB//CD.13.“输入一个实数x,然后经过如图的运算,到判断是否大于190为止”叫做一次操作,若恰好经过一次操作就停止,则x的取值范围是______.14.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为______.15. 计算:(1)2√2−3√2;(2)|3−√2|+√4−√−273.16. 解方程组:{3x +y =4①5x −2y =3②.17. 解不等式组:{x −3(x −2)≥4①2x−12>x+15②.18.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(−1,0),B(4,−1),C(3,2).(1)把△ABC向左平移3个单位再向上平移2个单位得到△A′B′C′,画出△A′B′C′并写出点C′的坐标;(2)求△A′B′C′的面积.19.为了解某市市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数是______人,图2中,n=______.(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2021年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?20.如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知),∴∠DEC=∠ABC=90°(______),∴DE//AB(______),∴∠2=∠3(______),∠1=______(______).又∵∠1=∠2(已知),∴∠A=∠3(______).21.为迎接“七⋅一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(4,0),点C坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A的线路移动,当运动到点A时,运动即停止.(1)当点P移动3.5秒时,点P的坐标为______;(2)在移动过程中,当△OBP的面积为10时,求点P移动的时间.答案和解析1.【答案】A【解析】解:A.为了解火箭发射前各零件的质量情况,适合全面调查,故选项A符合题意;B.为了解某森林公园全年的游客流量,适合抽样调查,故选项B不符合题意;C.为了解某品牌木质地板的甲醛含量,适合抽样调查,故选项C不符合题意;D.为了解某班学生的身高情况,适合全面调查,故选项D不符合题意;故选:A.根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】B【解析】解:∵32=9,∴9的算术平方根是3.故选:B.根据算术平方根的定义解答.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.【答案】A【解析】解:移项,得:3x<1+5,合并同类项,得:3x<6,系数化为1,得:x<2,故选:A.根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.【答案】A【解析】解:如图,∵AB//CD,∴∠1=∠3=55°,∴∠2=180°−90°−55°=35°,故选:A.利用平行线的性质可得∠3的度数,再利用平角定义可得答案.此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.5.【答案】D【解析】解:A.若a>b,不等式两边同时加上3得:a+3>b+3,即A项不合题意;B.若a>b,不等式两边同时乘以−3得:−3a<−3b,即B项不合题意;C.若2a>2b,不等式两边同时除以2得:a>b,即C项不合题意;D.若a>b,不妨设c=0,则ac2=bc2,即D项符合题意;故选:D.根据不等式的性质,依次分析各个选项,选出不等式的变形不正确的选项即可本题考查了不等式的性质,正确掌握不等式的性质是解题的关键.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.6.【答案】B【解析】解:由条形统计图可知,甲户居民全年总支出为1200+2000+1200+1600=×100%=20%,6000(元),教育支出占总支出的百分比为12006000乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选:B.根据条形统计图及扇形统计图分别求出甲乙两人教育支出所占的百分比,比较大小即可做出判断.此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.7.【答案】B【解析】【分析】本题考查了对顶角相等的性质,邻补角的定义,熟记性质并准确识图是解题的关键.根据对顶角相等求出∠BOD的度数,再根据∠BOE:∠EOD=1:2求出∠BOE的度数,然后利用互为邻补角的两个角的和等于180°即可求出∠AOE的度数.【解答】解:∵∠AOC=75°,∴∠BOD=∠AOC=75°,∵∠BOE:∠EOD=1:2,×75°=25°,∴∠BOE=13∴∠AOE=180°−25°=155°.故选B.8.【答案】B【解析】【分析】此题考查了一元一次不等式组的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.利润率不低于10%,即利润要大于或等于:600×5%元,设打x折,则售价是1200x元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:设至多可以打x折,1200x−600≥600×10%,解得x≥55%,即最多可打5.5折.故选:B.9.【答案】−32x+12【解析】解:∵3x+2y=1,∴2y=−3x+1,则y=−32x+12.故答案为:−32x+12.先将3x移到方程右边,再两边都除以2即可.本题主要考查解二元一次方程,解题的关键是掌握等式的基本性质.10.【答案】<【解析】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴ab<0,故答案为:<.直接利用第二象限内点的坐标特点得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).11.【答案】垂线段最短【解析】解:过D点引CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,根据垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.本题考查了垂线的性质在实际生活中的运用,属于基础题.12.【答案】75°【解析】解:∵直线AB 、CD 与直线EF 相交于E 、F ,∴∠1=∠AEF =105°;∵∠AEF 与∠2互补时可以使AB//CD ,∴∠2=180°−105°=75°.∴当∠2=75°时,能使AB//CD .因为直线AB 、CD 与直线EF 相交于E 、F ,所以∠1=∠AEF =105°,则∠AEF 与∠2互补时可以使AB//CD .解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索因”的思维方式与能力.13.【答案】x >64【解析】解:依题意得:3x −2>190,解得:x >64.故答案为:x >64.根据运算程序恰好经过一次操作就停止,即可得出关于x 的一元一次不等式,解之即可得出结论.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.14.【答案】5【解析】解:设小长方形的长为x ,宽为y ,依题意得:{3x =5y 2y −x =1, 解得:{x =5y =3. 故答案为:5.设小长方形的长为x ,宽为y ,利用长方形的对边相等及图2中的阴影部分(正方形)的面积为1(边长为1),即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】解:(1)2√2−3√2=−√2;(2)|3−√2|+√4−√−273=3−√2+2−(−3)=8−√2.【解析】(1)直接合并同类二次根式即可;(2)直接先利用绝对值的性质、二次根式的性质、立方根的性质进行化简,再合并得出答案.此题主要考查了二次根式的加减,利用绝对值的性质、二次根式的性质、立方根的性质正确化简是解题关键.16.【答案】解:①×2,得:6x +2y =8③,②+③,得:11x =11,解得:x =1,把x =1代入①,得:3×1+y =4,解得:y =1,∴方程组的解为{x =1y =1.【解析】利用加减消元法解二元一次方程组.本题考查解二元一次方程组,掌握消元法解二元一次方程组的步骤是解题关键.17.【答案】解:解①得x ≤1,解②得x >78,∴不等式组的解集是78<x ≤1.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.【答案】解:(1)如图所示:△A′B′C′即为所求,点C′的坐标为:(0,4);(2)△A′B′C′的面积为:5×3−12×1×3−1 2×2×4−12×1×5=7.【解析】(1)利用A,B,C点坐标画出△ABC,再利用平移的性质得出对应点位置进而得出答案;(2)利用△A′B′C′所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了作图−平移变换以及三角形面积求法,正确得出对应点位置是解题关键.19.【答案】100035【解析】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=2801000×100%=28%,n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),答:“D.不太了解”的市民约有153万人.(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A 组”所占的百分比,进而可求“B 组”所占的百分比,确定n 的值;(2)计算出“B 组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”. 本题考查条形统计图、扇形统计图的制作方法,理清两个统计图中的数量关系是正确解答的关键,样本估计总体是统计中常用的方法.20.【答案】垂直定义 同位角相等,两直线平行 两直线平行,内错角相等 ∠A 两直线平行,同位角相等 等量代换【解析】证明:∵DE ⊥BC ,AB ⊥BC(已知),∴∠DEC =∠ABC =90°(垂直定义),∴DE//AB(同位角相等,两直线平行),∴∠2=∠3(两直线平行,内错角相等),∠1=∠A(两直线平行,同位角相等).又∵∠1=∠2(已知),∴∠A =∠3(等量代换).故答案为:垂直定义;同位角相等,两直线平行;两直线平行,内错角相等;∠A ,两直线平行,同位角相等;等量代换.根据平行线的判定与性质即可完成证明.本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.21.【答案】解:(1)设每辆小客车的座位数是x 个,每辆大客车的座位数是y 个,根据题意可得:{y −x =154y +6x =310, 解得:{x =25y =40. 答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则25a +40(10−a)≥310+40,解得:a ≤313,符合条件的a 最大整数为3.答:最多租用小客车3辆.【解析】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.22.【答案】(1,6)【解析】解:(1)∵四边形OABC是长方形,点A坐标为(4,0),点C的坐标为(0,6),∴点B的坐标是(4,6),∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×6=12,∵OA=4,OC=6,∴当点P移动3.5秒时,在线段CB上,离点B的距离是:7−6=1,即当点P移动3.5秒时,此时点P在线段CB上,离点B的距离是1个单位长度,点P的坐标是(1,6);故答案为(1,6);(2)设移动时间为t秒,①当P在OC上时,如图1所示:×2t×4=10,△OBP的面积=12解得:t=5;2②当P在CB上时,如图2所示;△OBP的面积=12×(10−2t)×6=10,解得:t=103;③当P在BA上时,如图3所示:△OBP的面积=12×(2t−10)×4=10,解得:t=152;综上所述,当△OBP的面积等于10时,点P移动的时间为52s或103s或152s.(1)根据长方形的性质,可以求得点B的坐标;根据题意点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,可以得到当点P移动3.5秒时,点P的位置和点P的坐标;(2)分点P在OC、BC、AB上分别求解即可.本题考查了矩形的性质,三角形的面积,坐标与图形的性质等知识;解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
12.若x<y,则下列不等式中不成立的是( )
A. B. C. D.
二、填空题
13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.
A.2B.3C.4D.5
7.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
A. B. C. D.
8.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3
9.若 ,则下列不等式不成立的是()
A. B. C. D.
2.C
解析:C
【解析】
【分析】
首先可以求出线段BC的长度,然后利用中点的性质即可解答.
【详解】
∵表示2, 的对应点分别为C,B,
∴CB= -2,
∵点C是AB的中点,则设点A的坐标是x,
则x=4- ,
∴点A表示的数是4- .
故选C.
【点睛】
本题主要考查了数轴上两点之间x1,x2的中点的计算方法.
3.D
14.如果 的平方根是 ,则 _________
15.27的立方根为.
16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.
17.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;
18.如果方程组 的解是方程 的一个解,则 的值为____________.
19.已知(m-2)x|m-1|+y=0是关于x,y的二元一次方程,则m=______.
20.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于_______.
三、解答题
21.小红同学在做作业时,遇到这样一道几何题:
已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,过点E作EH⊥EF,垂足为E,交CD于H点.
23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多 万元;购买 台甲型机器人和 台乙型机器人共需 万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型、乙型机器人每台每小时分拣快递分别是 件、 件,该公司计划最多用 万元购买 台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?
A. B. C. D.
3.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°
4.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )
A.10°B.15°C.18°D.30°
5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()
A.15°B.22.5°C.30°D.45°
6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
10.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110°B.120°C.125°D.135°
11.如图,动点 在平面直角坐标系中按图中箭头所示方向运动,第 次从原点运动到点 ,第 次接着运动到点 ,第 次接着运动到点 ,···,按这样的运动规律,经过第 次运动后,动点 的坐标是()
2020-2021下海育才初级中学初一数学下期末试题(带答案)
一、选择题
1.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为( )
A.20cmB.22cm
C.24cmD.26cm
2.如图,数轴上表示2、 的对应点分别为点C,B,点C是AB的中点,则点A表示的数是()
(1)依据题意,补全图形;
(2)求∠CEH的度数.
小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示:
请问小丽的提示中理由①是;
提示中②是:度;
提示中③是:度;
提示中④是:,理由⑤是.
提示中⑥是度;
22.某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.
四边形ABFD的周长为:
AB+BF+FD+DA
=AB+BE+EF+DF+AD
=AB+BC+CA+2AD
=20+2×3
=26.
故选D.
点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.
解析:D
【解析】
【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
(1)设生产x件A种产品,写出x应满足的不等式组.
(2)问一共有几种符合要求的生产方案?并列举出来.
(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)
24.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.
25.如图,已知 , ,请用三种不同的方法说明 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:
相关文档
最新文档