测试4 实际问题与一元一次不等式(王
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
一元一次不等式求解练习题
一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。
2. 第二题:解方程 2x - 5 ≤ 7。
首先,我们需要将方程中的x系数与常数项分开。
将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。
3. 第三题:解不等式 3 - x < 9。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。
4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。
首先,我们分别求解两个方程。
第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。
第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。
由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。
以上就是题目中的四道一元一次不等式求解练习题的解答。
一元一次不等式组测试题
测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一、填空题1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______. 3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4(B)x >2 (C)-4<x <2 (D)无解 5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ). (A)x >1 (B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上6.⎩⎨⎧≥-≥-.04,012x x 7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x 9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7.12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a (B)x <b (C)b <x <a (D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1三、解答题15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一、填空题1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______; (3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______. 2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个 (C)3个 (D)4个 4.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2 (B)k ≥2(C)k <1 (D)1≤k <2 三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x 8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______. 10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:A 型板房 54 m 226 m 25 B 型板房78 m 241 m 28问:这400间板房最多能安置多少灾民?参考答案 测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x 3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4. 16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2.20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试61.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A .5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为 8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3.14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550.3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7.∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元;(2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41.5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200;125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元.所以租5辆42座,3辆60座最省钱.6.设生产A 型板房m 间,B 型板房(400-m )间.所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m 解得m ≥300.所以最多安置2300人.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( ) A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是( )A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是( ) A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是( )A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12; ②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________. 13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x -22-1=x +13-x +86.21.先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =1,y =-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A 8.D 9.C 10.B二、11.23;5 12.-8 13.-514.19°31′13″15.3 16.717.> 18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy. 当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α. 所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m.由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
实际问题与一元一次不等式专题训练
( )商 场第 二 次 以原 进 价 购 A, 2 B两 种 商 品 , 进 B种 商 品 的件 数 不 变 , 购 购 而 进 种 商 品 的件数 是第 一 次 的 2倍 ,
A种 商 品按 原 售价 出售 , B种 商 品 而
打折 销 售 ,若 两 种 商 品销 售 完毕 , 要
■■■■ ■■■■■■■■■●■■■ ■ ● ■■■■■■■■ _ ■■■● _ h自∞ ■ ■ _ ■
.
已知 2 一3 x=6 要 使 是 正数 , 求 的 , 试
取值 范围.
月租 费 1 2元 ,市 内通话 超过 3分 钟时 , 每 次话 费 O1 ,如果小 明家 的通话全 是市 . 8元 话 , 每次 通 话 时 间不 超 过 3分钟 , : 且 问 小
明家平均 每月通 话 至少多少 次?
维普资讯
1. 、 0 甲 乙两 家超 市 以相 同的价 格 出售 同样 的 商 品 , 了 吸引 顾 客 , 自提 出不 同 的优 为 各
惠方 案 :
使第 二 次经 营活 动获 利不 少 于 8 6 0 10
元, B种商 品最低 售价 为 每件多 少元 ?
位 数字之 和为 1 . 求每人 所得 的苹果 数. 1试
三 、 下列 应用题 解 6 刘 强在第 一 次数学 测 验时 得 了 7 分 , . 2 在第
二 次测验 时 得 了 8 6分 , 第 j次测 验 时至 在
。一 … — —
天 下绝 无 不 热 烈 勇 敢 地追 求 成 功 , 能 取 得 成功 的 人 . — 拿 破仑 一 世 而 —
明你 的理 由.
()中方买 I )所优 费 分出笔(用I (买惠购的 ’ 元 两支支 关 别 种数) I 与性 法间 写 之
一元一次不等式测试及答案
一元一次不等式一、选择题1、(2010江苏南通) 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <22.(2010浙江杭州) 已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是( )A.⎩⎨⎧>>11bx axB. ⎩⎨⎧<>11bx ax C. ⎩⎨⎧><11bx ax D.⎩⎨⎧<<11bx ax3.(2010 重庆)不等式组⎩⎨⎧>≤-62,31x x 的解集为( ):A .3x >B .4x ≤C .34x <<D .34x <≤4.(2010四川乐山)下列不等式变形正确的是( )(A)由a >b ,得a -2<b -2 (B)由a >b ,得-2a <-2b(C)由a >b ,得a >b (D)由a >b ,得a 2>b 25.(2010 四川自贡) 所表示的是下面哪一个不等式组的解集()。
A .⎩⎨⎧≤≥1x 2-xB .⎩⎨⎧≥1x 2<-x C .⎩⎨⎧1x <2-x > D .⎩⎨⎧≤1x 2-x >6.(2010贵州遵义)不等式2χ-4≤0的解集在数轴上表示为( )"7.(2010广东肇庆)不等式⎩⎨⎧>>-121x x 的解集是( )A .1<x <3B .x >3C .x >1D .x <18.(2010湖北黄石)不等式组⎩⎨⎧>-<-050x x 的正整数解的个数是( )个 个 个 个二、填空题9.(2010安徽) 不等式组⎩⎨⎧≤-<+-843,24x x 的解集是_______________.|10.(2010浙江绍兴)不等式-032>-x 的解是_______________.11.(2010 福建晋江)不等式组3,4x x ≥-⎧⎨⎩<的解集是___________.12.(2010年上海)不等式 3 x ─ 2 > 0 的解集是____________.13.(2010 江苏连云港)不等式组⎩⎨⎧>-<-21312x x 的解集是___________.14.(2010湖南郴州)不等式的312x +<-解集是_________.15.(2010 云南玉溪) 不等式组{223≤-≥+x x x 的解集是 . 16.(2010 甘肃)若不等式组,420x a x >⎧⎨->⎩的解集是12x -<<,则a = .17.(2010宁夏)若关于x 的不等式组⎩⎨⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . .18.(2010云南昭通)不等式21x -3≤0的解集为______________. 三、解答题 19.(2010 湖南湘潭)解不等式:1)1(2+<-x x ,并求它的非负整数解.¥20.(2010 四川自贡)解不等式组⎪⎩⎪⎨⎧≥②-x 6)1x +(3-1①1<x-3+32x -21.(2010江苏无锡)解不等式组:12,132,2x x x ->-≤+⎧⎪⎨⎪⎩………………①…………②>32O22.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.。
七年级数学9西城区学习探究诊断_第九章__不等式与不等式组
七年级数学 第九章 不等式与不等式组测试1 不等式及其解集学习要求知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.课堂学习检测一、填空题1.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 测试2 不等式的性质学习要求知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.课堂学习检测一、填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4)2a______2b ; (5)7a -______7b -; (6)5a +2______5b +2;(7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空:(1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 三、解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合、运用、诊断一、填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2; (3)a 3______b 3; (4)a 2______b 3; (5)|a |______|b |; (6)m 2a ______m 2b (m ≠0). 13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二、选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1b a b a b a b a <><>④③②① (A)①③ (B)②③ (C)①④ (D)②④ 16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③ (C)③ (D)以上答案均不对 17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1 三、解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求会解一元一次不等式.课堂学习检测一、填空题1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二、选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-y x (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1. 8.⋅-->+22531x x 9.⋅-≥--+612131y y y四、解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合、运用、诊断一、填空题12.若x 是非负数,则5231x-≤-的解集是______. 13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二、选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三、解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x四、解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232x m x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展、探究、思考一、填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二、解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有. 24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.课堂学习检测一、填空题 1.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______. 2.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题3.三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( ).(A)13cm (B)6cm (C)5cm (D)4cm4.商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ).(A)900元(B)920元(C)960元(D)980元三、解答题5.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?6.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?综合、运用、诊断一、填空题7.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.8.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,列出的不等式为______.二、选择题9.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人10.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km 按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).(A)11 (B)8 (C)7 (D)5三、解答题11.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?12.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?拓展、探究、思考13.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件. (1)若此车间每天所获利润为y (元),用x 的代数式表示y .(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?14.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?测试5 一元一次不等式组(一)学习要求会解一元一次不等式组,并会利用数轴正确表示出解集.课堂学习检测一、填空题1.解不等式组⎩⎨⎧>--<+②①223,423x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-②①21,3212x x 时,解①式,得______,解②式,得______;于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分:二、选择题 4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x (D)无解三、解下列不等式组,并把解集表示在数轴上 6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x9.-5<6-2x <3.四、解答题10.解不等式组⎪⎩⎪⎨⎧<-+≤+321),2(352x x x x 并写出不等式组的整数解.综合、运用、诊断一、填空题11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧≤-+<2512,912x x x x 的整数解为______.二、选择题13.如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a (B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1三、解答题 15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.拓展、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.测试6 一元一次不等式组(二)学习要求进一步掌握一元一次不等式组.课堂学习检测一、填空题1.直接写出解集: (1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.2.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是______.二、选择题 3.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个 (B)2个(C)3个(D)4个4.若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1 (D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来5.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x6.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx7.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x8..234512x x x -≤-≤-综合、运用、诊断一、填空题9.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.10.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x12.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题13.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?14.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.拓展、探究、思考15.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.课堂学习检测列不等式(组)解应用题1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?4.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?综合、运用、诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.拓展、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B问:这400间板房最多能安置多少灾民?参考答案第九章 不等式与不等式组测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x;(8)-m ≤0. 2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4. 7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×. 17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a . 18.x ≤3a,且x 为正整数1,2,3. ∴9≤a <12. 19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<. 2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变. 4.>. 5.C . 6.C . 7.D . 8.D . 9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<. 13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m nx20.当a >0时,a b x >;当a <0时,ab x <. 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5. 3.-4,-3,-2,-1. 4.D . 5.D . 6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D . 17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9. 18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1. 22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2. 24.⋅-<4k k x 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .测试41.x >1. 2.8. 3.B . 4.B .5.设原来每天能生产x 辆汽车.15(x +6)>20x .解得x <18,故原来每天最多能生产17辆 汽车. 6.设答对x 道题,则6x -2(15-x )>60,解得4111>x ,故至少答对12道题. 7.⋅--<mmx 51 8.(10-2)x ≥72-5×2. 9.C . 10.B . 11.设应降价x 元出售商品.225-x ≥(1+10%)×150,x ≤60. 12.设后面的时间每小时加工x 个零件,则250300)32250300(⨯-≥--x ,解得x ≥60. 13.(1)y =-400x +26000, 0≤x ≤20;(2)-400x +26000≥24000, x ≤5, 20-5=15. 至少派15人去制造乙种零件.14.(1)1308元;1320元. (2)大于4000份时去乙厂;大于2000份且少于4000份时去甲厂;其余情况两厂均可.测试51..2;21;2-<<-<x x x 2..361;3;61≤≤≤≥x x x3.(1)x >-1; (2)0<x <2; (3)无解. 4.B . 5.B . 6.421≤≤x ,解集表示为7.x ≥0,解集表示为8.无解. 9.1.5<x <5.5解集表示为10.-1≤x <3,整数解为-1、0、1、2. 11.-3<x <5. 12.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4.16.-1<x <4. 17.-721<k <25.(⎩⎨⎧<--=<-=015213,02513k y k x )18.①-②得:y -x =2k -1,∵0<y -x <1 ∴0<2k -1<1 ∴.121<<k 19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a =0,1或2. 20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试6 1.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解. 2.31<x <76. 3.B . 4.A . 5.(1)x >6,解集表示为6.-6<x <6,解集表示为7.x <-12,解集表示为8.x ≤-4,解集表示为9.7;0. 10.-1<k <3. 11.无解. 12.x >8. 13.由2<x =328-k <10,得1<k <4,故整数k =2或3. 14..532.5,23<<-⎩⎨⎧-=+=m m y m x 15.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a 测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80. 2.设该市由甲厂处理x 吨垃圾,则7150)700(4549555550≤-+x x ,解得x ≥550. 3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 解得5<x <7. ∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元; (2)设一班学生有x 人,则⎩⎨⎧><200051200048x x 解得3241511139<<x ∵x 为整数.∴x =40或41. 5.(1)61942385=÷ 单独租用42座客车需10辆.租金为320×10=3200; 125660385=÷ 单独租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.⎩⎨⎧<-+≥-+.3200)8(460320,385)8(6042x x x x 解得⋅≤<1855733x x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元. 所以租5辆42座,3辆60座最省钱. 6.设生产A 型板房m 间,B 型板房(400-m )间. 所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m解得m ≥300.所以最多安置2300人.西城区七年级数学第九章不等式与不等式组测试一、填空题1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3)13-y ______3y-2;(4)a <b <0,则a 2______b 2; (5)若23yx -<-,则2x ______3y . 2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若11|1|=--xx ,则x 的取值范围是______. 4.若点M (3a -9,1-a )是第三象限的整数点,则M 点的坐标为______.5.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为_______. 二、选择题6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a (B)-2a <2(-a ) (C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0 (D)-(x -5)2≤0 8.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1 (B)x >1 (C)x <-1 (D)x >-19.如下图,对a ,b ,c 三种物体的重量判断正确的是( ).(A)a <c (B)a <b (C)a >c (D)b <c10.某商贩去菜摊卖黄瓜,他上午卖了30斤,价格为每斤x 元;下午他又卖了20斤,价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是( ). (A)x <y (B)x >y (C)x ≤y (D)x ≥y三、解不等式(组),并把解集在数轴上表示出来11.11252476312-+≥---x x x .12.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题13.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解.求a 的取值范围.15.不等式m m x ->-2)(31的解集为x >2.求m 的值.16.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?17.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?18.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A ,B 两种型号的设备,其中每台的价格、日处理污水量如下表:经预算,该纸厂购买设备的资金不能高于410万元. (1)该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?19.某班级为准备元旦联欢会,欲购买价格分别为2元,4元和10元的三种奖品,每种奖品至少购买1件,共买16件,恰好用去50元.若2元的奖品购买a 件. (1)用含a 的代数式表示另外两种奖品的件数; (2)请你设计购买方案,并说明理由.参考答案第九章 不等式与不等式组测试1.(1)>;(2)<;(3)>;(4)>;(5)>. 2.9,10,11,12,13.3.x <1. 4.(-3,-1) 5.24或35. 6.C . 7.D . 8.C 9.C 10.B .11.x ≤2,解集表示为12.-1<x ≤1,解集表示为13.6310<≤-x ,整数解为-3,-2,-1,0,1,2,3,4,5. 14.a a 316372->-,解得187>a . 15.x >6-2m ,m =2. 16.设原来每天生产配件x 个.200<8(x +10)<4(x +10+27). 15<x <17. x =16.17.设饼干x 元,牛奶y 元.⎪⎩⎪⎨⎧-=+>+<.8.0109.0,10,10y x y x x 8<x <10,x 为整数,⎩⎨⎧==∴.1.1,9y x 18.(1)设购买A 型设备x 台,B 型设备(20-x )台.24x +20(20-x )≤410. x ≤2.5, ∴x =0,1,2.三种方案:方案一:A :0台;B :20台; 方案二:A :1台;B :19台;方案三:A :2台;B :18台.(2)依题意8060<480x +400(20-x )<8172.0.75<x <2.15,x =1,2.当x =1时,购买资金为404万元;x =2时,购买资金为408万元.为节约资金,应购买A 型1台,B 型19台.19.(1)4元的件数;3455a -;10元的件数:⋅-37a (2)有两种方案:方案一:2元10件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.。
初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?
参考答案
1.A
【解析】
,
解①得:x≥a+b,
解②得:x< ,
根据题意得:
解得: ,
所以 .
故选A.
【详解】
设胜的场次为x,则负的场次为32-x,则根据题意可得:
,解得不等式为 ,故这个队至少要胜20场才有希望进入季后赛.
【点睛】
本应用题关键学会利用方程的思想解不等式。
13.0,1,2
【解析】
【分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得: ,
故选:C
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
7.C
【解析】
【分析】
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
【详解】
A.方差越大,越不稳定,故选项错误;
B.在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有 人参加,请问校方应如何租车,且又省钱?
24.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
实际问题与一元一次不等式(2)教学课件
天马旅行社推出“杭州一日游”的旅游项目,并针对此旅游项目 推出两种售票方案: A:大人每位160元,小孩(1.2米以下)或学生(凭学生证)每位40元. B:团体旅游,五人以上(含五人)每位100元. 现有两个家庭前来参加旅游,如何选择购票方案更省钱? 大人(人数) 小孩(人数) A方案 440 560 B方案 500 500
实际问题
审题、设未知数 建立数学模型 根据不等关系列出不等式 (一元一次不等式) 解 去分母 一 元 去括号 一 次 移项 不 合并 等 系数化为1 式
实际问题的解
检验
数学问题的解
作业布置
课本P1358、9
甲家庭 乙家庭
2 3
3 2
天马旅行社推出“杭州一日游”的旅游项目,并针对此旅游项目 推出两种售票方案:
A:大人每位160元,小孩(1.2米以下)或学生(凭学生证)每位40元.
B:团体旅游,五人以上(含五人)每位100元.
现有两个老师带若干名学生外出旅游,如何选择购票方案更省钱?
你对本节课内容有哪些认识?
9、2、2 实际问题与一元
一次不等式(2) 出售 同样 的商品,并且又各自推出不同的 优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的 90%收费; 在乙店累计购买50元商品后,再购买的商品按原价的 95%收费。 顾客怎样选择商场购物能获得更大优惠? 甲商店优惠方案的起点为购物款达100元后 乙商店优惠方案的起点为购物款达50元后 累计购买金额 40元 80元 140元 200元 选择哪家商店合算 两家商场一样 乙商场 乙商场 甲商场
问题2: 甲、乙两家商店出售同样的茶壶和茶杯,茶壶每只定价都是20元, 茶杯每只定价都是5元。两家商店的优惠办法不同:甲商店是购买1 只茶壶赠送1只茶杯;乙商店是按售价的92%收款。某顾客需购买4 只茶壶、若干只(超过4只)茶杯,去哪家商店购买优惠更多?
一元一次不等式组测试题(含答案)
一元一次不等式(组)测试题(总分:150分 时间60分钟) 姓名 分数 一、选择题(每题4分,共40分)1.已知实数a b 、满足11a b +>+,则下列选项可能错误....的是( ) A .a b > B .22a b +>+ C .a b -<- D .23a b >2.下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 3.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A 、B 、C 、D 、 4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个5.若6556x x -=-,则x 的取值范围是( )A.56x > B.56x < C.56x ≤ D.56x ≥ 6.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-127. 方程|4x -8|+2(x-y-m )=0,当y >0时,m 的取值范围是( ) A .O <m <1 B .m≥2 C .m <2 D .m≤28.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④ 9.如果不等式组x a x b ≥⎧⎨≤⎩无解,那么不等式组⎩⎨⎧-<->b x a x 22的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解 10.关于x 的方程211x a x +=-的解是正数,则以的取值范围是( )A .a >-1B .a >-1且a≠0C .a <-1D .a <-1且a≠-2二、填空题(每题4分,共32分)11.不等式1732x ->的正整数解是 .12.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是 .13.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 14.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________15.已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值范围是___________。
一元一次不等式组实际问题及答案
一元一次不等式组实际问题及答案
问题描述:
某商店出售商品A和商品B,已知商品A的单价为10元,商品B的单价为15元。
商店制定了一种促销活动,如果购买商品A 的数量超过5件,则每件商品A的价格将减少2元。
另外,如果购买商品B的数量超过3件,则每件商品B的价格将减少3元。
现在有一个顾客购买了商品A和商品B,他总共支付了120元。
请计算出他分别购买了多少件商品A和商品B。
解答过程:
设购买的商品A的数量为x件,购买的商品B的数量为y件。
根据题目中给出的信息,我们可以列出如下的不等式组:10x - 2(x-5) + 15y - 3(y-3) = 120
解方程过程:
首先化简方程式:
10x - 2x + 10 + 15y - 3y + 9 = 120
化简后得到:
8x + 12y = 101
由上述方程式,我们可得到以下结论:
8x + 12y为101的倍数
根据方程的解有无限多解的特点,我们可以找到下面一组解:x = 5 + 3n
y = 3 - 2n
其中n为任意整数。
答案是:
购买的商品A的数量为5 + 3n件
购买的商品B的数量为3 - 2n件
根据实际情况,顾客购买的商品数量应该是正整数,因此我们只需要找到满足条件的整数n即可得到最终的解答。
一元一次不等式测试题
第2课时一元一次不等式的应用基础题知识点1 一元一次不等式的简单应用1.(台湾中考)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?(C)A.5 .7C.9 D.112.(西宁中考)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块3.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买(C)A.3支笔B.4支笔C.5支笔D.6支笔4.(黄冈校级期末)有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排4人种茄子.5.(株洲中考)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得1.5×20+22x≤200,解得x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2 利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.7.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1 220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 解:(1)设购进A 种树苗x 棵,则购进B 种树苗(17-x)棵,根据题意,得 80x +60(17-x)=1 220, 解得x =10. ∴17-x =7.答:购进A 种树苗10棵,B 种树苗7棵.(2)设购进A 种树苗y 棵,则购进B 种树苗(17-y)棵,根据题意,得 17-y <y ,解得y >812.购进A 、B 两种树苗所需费用为80y +60(17-y)=20y +1 020,则费用最省需y 取最小整数9,此时17-y =8,这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵.这时所需费用为1 200元. 中档题8.(绵阳中考)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足(B )A .n ≤mB .n ≤100m100+mC .n ≤m 100+n D .n ≤100m100-m9.(雅安中考)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C )A .60B .70C .80D .9010.(南京中考)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为78cm .11.(菏泽中考改编)2016年的5月20日是第16个学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质,则这份快餐含有4x 克的碳水化合物, 根据题意,得x +4x ≤400×70%, 解得x ≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x 个,则当两种方案费用一样时,4x =2.4x +16 000,解得x =10 000; 当方案一费用低时,4x <2.4x +16 000,解得x <10 000; 当方案二费用低时,4x >2.4x +16 000,解得x >10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.综合题13.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:品名厂家批发价(元/个) 商场零售价(元/个)篮球130 160排球100 120(1)该采购员最多可购进篮球多少个?(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58,59,60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =06.已知ax =ay ,下列各式中一定成立的是( ) A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=12∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。
《实际问题与一元一次不等式》训练题
9.2 实际问题与一元一次不等式11.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.瓶.(1)(1)如果购买这两种消毒液共用如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?元,求甲、乙两种消毒液各购买多少瓶?(2)(2)该校准备再次该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?2.一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.道题.(1)(1)根据所给条件,完成下表:根据所给条件,完成下表:根据所给条件,完成下表:答题情况答题情况 答对答对 答错或不答答错或不答题数题数 x 每题分值每题分值10 -5 得分得分10x (2)(2)若小明同学的竞赛成绩超过若小明同学的竞赛成绩超过100分,则他至少答对几道题?分,则他至少答对几道题?3. 3. 福林制衣厂现有福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则最多需要安排多少名工人制作裤子?则最多需要安排多少名工人制作裤子?4.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.(1)(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)(2)如果规定该城市每天用于处理垃圾的费用不得超过如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?需要多少小时?5.我市某商场A 型冰箱的售价是2190元,每日耗电量为1千瓦·时,最近商场又进回一千瓦·时,最近商场又进回一 批B 型冰箱,其售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,为了减少库存,商场决定对A 型冰箱降价销售,请解答下列问题:型冰箱降价销售,请解答下列问题: (1)(1)已知已知A 型冰箱的进价为1700元,为保证商场利润率不低于3%,试确定A 型冰箱的降价范围降价范围. .(2)(2)如果只考虑价格与电量,那么商场将如果只考虑价格与电量,那么商场将A 型冰箱的售价至少打几折时,消费者购买A型冰箱才合算型冰箱才合算((两种冰箱的使用期均为10年,每年365天,每千瓦·时电费0.4元计算).).6.小杰到学校食堂买饭,看到A 、B 两窗口前面排队的人一样多两窗口前面排队的人一样多((设为a 人,a >8)8),就站,就站到A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,人买了饭离开队伍,B B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.(1)(1)此时,若小杰继续在此时,若小杰继续在A 窗口排队,则他到达窗口所花的时间是多少窗口排队,则他到达窗口所花的时间是多少((用含a 的代数式表示表示))?(2)(2)此时,若小杰迅速从此时,若小杰迅速从A 窗口队伍转移到B 窗口队伍后面重新排队,且到达B 窗口所花的时间比继续在A 窗口排队到达A 窗口所花的时间少,求a 的取值范围的取值范围((不考虑其它因素它因素). ).7.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元万元. .(1)(1)符合公司要求的购买方案有几种?请说明理由;符合公司要求的购买方案有几种?请说明理由;符合公司要求的购买方案有几种?请说明理由;(2)(2)如果每辆轿车的日租金为如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?种购买方案?9.2 实际问题与一元一次不等式21. 1. 某商店在一次促销活动中规定:某商店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠元就可以享受打折优惠. . 一名同学为班级买奖品,准备买6本影集和若干枝铅笔,本影集和若干枝铅笔,已知影集每本已知影集每本15元,钢笔每枝8元,问他至少买多少枝钢笔才能打折?元,问他至少买多少枝钢笔才能打折?2. 2. 宏志高中高一年级近几年招生人数逐年增加,去年达到宏志高中高一年级近几年招生人数逐年增加,去年达到550人,其中面向全省招收的有“宏志班”学生,也有一般普通班学生“宏志班”学生,也有一般普通班学生. . . 由于场地、师资等限制,今年招生最多比去年由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可以多招20%,“宏志班”学生可以多招10%,问今年最少可招收“宏志班”学生多少名?少可招收“宏志班”学生多少名?3.(2011广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?4.某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg 以 上(含3000kg )的顾客采用两种销售方案:)的顾客采用两种销售方案:甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回。
146.实际问题与一元一次不等式1完成
9.2实际问题与一元一次不等式(设计人:苏中年)【目标导航】1.会从实际问题中抽象出数学模型.2.会用一元一次不等式解决实际问题,增强学数学用数学的意识.【预习引领】1.三个连续奇数的和小于15,写出一个符合条件的奇数组.答案:1、3、52.李乡长要到离家5千米的乡政府去开会,若他在6时出发,计划在8时前赶到,那么他每小时至少需要走千米.答案:2.53.一本科技书有300页,小华计划10天内读完,前5天因各种原因只读100页,则从第6天起,每天小华至少要读页.答案:404.小明准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2.2元,他买了2个笔记本,请你帮他算一算,他还可以买几支笔?【解】设她还可以买x支笔.则2×2.2+3x≤21,解得3x≤16.6,x≤5.53答:她最多还可以买5支笔.【要点梳理】列不等式解应用题的一般步骤:⑴弄清题意和题目中的数量关系,用字母表示未知数;⑵找出能够表示应用题全部含义的一个不等关系;⑶根据这个不等关系,列出需要的代数式,从而列出不等式;⑷解这个不等式,求出解集;⑸检验所求出的解集是否正确,是否符合实际情况,并写出答案.【探究】甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获得更大优惠?分析:甲商店优惠方案的起点为购物款达元,乙商店优惠方案的起点为购物款达元,由此我们根据甲、乙两商店优惠条件的起点,分三种情况考虑问题,⑴如果累计购物不超过50元,则在两店购物花费有区别吗?⑵如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?⑶如果累计购物超过100元,那么在甲店购物花费小吗?【解】甲商店优惠方案的起点为购物款达100元,乙商店优惠方案的起点为购物款达50元.⑴如果累计购物不超过50元,则在两家商场购物花费是一样的;(2)如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
实际问题与一元一次不等式习题精选(含答案)
实际问题与一元一次不等式习题精选一、选择题1.某商品的单价为a 元,买50件这样的商品的总费用不高于342元,则A. 50 a ≤342B. 50 a <342C.50 a >342D.50 a≥3422.哥哥今年5岁,弟弟今年3岁,以下说法正确的为()A.比弟弟大的人一定比哥哥大B.比哥哥小的人一定比弟弟小C.比哥哥大的人可能比弟弟小D.比弟弟小的人绝不会比哥哥大3.设“●”、“▲”、“■”表三个不同的物体,用天平比较它们的质量的大小,两次情况如图所示,那么●、▲、■这三个物体按质量从大到小的顺序排列应为( )A.■、●、▲ B.■、▲、● C.▲、●、■ D.▲、■、●4.毛笔每枝2元,钢笔每支5元,现有的购买费用不足20元,则购买毛笔和钢笔允许的情况是( )A.5枝毛笔,2枝钢笔B.4枝毛笔,3枝钢笔C.0枝毛笔,5枝钢笔D.7枝毛笔,1枝钢笔5.小明用1.00元钱去购买三角板和圆规共30件,已知三角板每副2元,每个圆规5元,那么小明最多能买圆规( )A.12个B.13个C.14个D.15个6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有( )A.7人B. 8人C. 10人D.11人7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折8.一种浓度是15%的溶液30千克,现要用浓度更高的同种溶液、50千克和它混合,使混合的浓度大于20%,则所用溶液的浓度x的范围是( )A.x>1.5%B.x>23%C.x<23%D.x<50%9.(十堰市中考题)采石块工人进行爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移,到400 m以外的安全区域;导火线燃烧逮度是1 cm/s,人离开的速度是5 m/s,导火线。
必考点解析京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评试题(含解析)
七年级数学下册第四章一元一次不等式和一元一次不等式组专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、在数轴上表示不等式1x>-的解集正确的是()A.B.C.D.3、若m<n,则下列各式正确的是()A .﹣2m <﹣2nB .33mn > C .1﹣m >1﹣n D .m 2<n 24、若x +2022>y +2022,则( )A .x +2<y +2B .x -2<y -2C .-2x <-2yD .2x <2y5、已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 6、关于x 的不等式(m -1)x >m -1可变成形为x <1,则( )A .m <-1B .m >-1C .m >1D .m <17、下列不等式一定成立的是( )A .65y y >B .611x x +<+C .7x x >-D .79m m ->-8、如果x >y ,则下列不等式正确的是( )A .x ﹣1<y ﹣1B .5x <5yC .33xy > D .﹣2x >﹣2y9、不等式组212x x <⎧⎪⎨≥⎪⎩的解集在数轴上应表示为( ) A . B .C .D .10、已知不等式组2<x ﹣1<4的解都是关于x 的一次不等式3x ≤2a ﹣1的解,则a 的取值范围是( )A .a ≤5B .a <5C .a ≥8D .a >8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用不等式表示:x 的4倍与y 的和不小于300_____________.2、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)3、不等式组62021x x x -≥⎧⎨<+⎩的解集为______. 4、若关于x 的不等式组3x x a>⎧⎨<⎩有解,则a 的取值范围是______. 5、如果0,0ac bc b ><,那么a ____0. 三、解答题(5小题,每小题10分,共计50分)1、某童装店按每套90元的价格购进40套童装,然后按标价打九折售出,如果要获得不低于900元的利润,每套童装的标价至少是_____元.2、在“垃圾分类,你我有责”主题活动策划中,我校准备更新一批垃圾桶.已知A 类桶单价为25元,B 类桶单价为45元,购买,A B 两类垃圾桶共n 个,设购入A 类桶x 个.(1)当40n =时,①请补全以下表格.②若总费用不超过1500元,问至少需要购买几个A 类垃圾桶?(2)若A 类桶不少于70个,总费用恰好为1980元,请直接写出n = .3、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).4、小李家有一个果园,种植了一些枇杷,每年到了枇杷收获的季节,小李家都开启了线上、线下两种销售模式.(1)已知小李家前年共出产4500千克枇杷,全部售出,其中线上销售量不超过线下销售量的4倍,求小李家前年线下销售枇杷至少多少千克?(2)据统计,小李家去年销售枇杷线下单价为15元/千克,销售量为1000千克;线上单价为10元/千克,销售量为2000千克.由于今年枇杷产量降低,小李家销售枇杷时线下单价上涨了a%,线上销售单价上涨了1%2a.结果线下销量比去年减少了200千克,线上销量比去年减少了400千克,销售总额比去年减少了1000元.求a的值.5、解不等式(组):(1)1212 63x x+--<;(2)3(1)2(9)3414 0.50.2x xx x->+⎧⎪-+⎨-≤-⎪⎩.---------参考答案-----------一、单选题1、A【解析】【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、A【解析】【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.3、C【解析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2,∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.4、C【解析】【分析】直接根据不等式的性质可直接进行排除选项解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.5、D【解析】【分析】先分别求得每个一元一次不等式的解集,再根据题意得出2a的取值范围即可解答.【详解】解:解不等式组得:22xx a≤⎧⎨>⎩,∵该不等式组恰有4个整数解,∴-2≤2a<-1,解得:﹣1≤a<﹣12,故选:D.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,得出2a的取值范围是解答的关键.6、D【解析】【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x的不等式(m-1)x>m-1的解集为x<1,∴m-1<0,则m<1,故选:D.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.7、B【解析】【分析】根据不等式的性质依次判断即可.【详解】解:A.当y≤0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.8、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y , ∴33xy ,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意;故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.9、B【解析】【分析】在数轴上把不等式组的解集表示出来,即可选项答案.【详解】解:不等式组212xx<⎧⎪⎨≥⎪⎩的解集在数轴上应表示为:故选:B.【点睛】本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.10、C【解析】【分析】先求出不等式组2<x﹣1<4的解集,再求出一次不等式3x≤2a﹣1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可.【详解】解:∵2<x﹣1<4,∴3<x<5,∵一次不等式3x≤2a﹣1,解得213ax-≤,∵满足3<x<5都在213ax-≤范围内,∴2153a-≥,解得8a≥.故选择C .【点睛】 本题考查不等式组的解集与一次不等式的解集关系,利用213a x -≤解集的分界点在5以及5的右边部分得出不等式2153a -≥是解题关键. 二、填空题1、4300x y +≥【解析】【分析】首先表示“x 的4倍与y 的和”为4x +y ,再表示“不小于300”可得结论.【详解】解:x 的4倍为4x ,则x 的4倍与y 的和为4x +y ,再表示“不小于300”可得:4300x y +≥, 故答案为:4300x y +≥.【点睛】此题主要考查了列一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.2、<【解析】【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.3、1x<【解析】【分析】根据解一元一次不等式组的方法求解即可.【详解】解:620 21xx x-≥⎧⎨<+⎩①②由不等式①得:3x≤由不等式②得:1x<不等式组62021xx x-≥⎧⎨<+⎩的解集为1x<故答案为1x<【点睛】本题考查了求解一元一次不等式组,掌握一元一次不等式组的解法是解题的关键.4、a>3【解析】【分析】由题意直接根据不等式组的解集的表示方法进行分析可得答案.解:由题意得:a >3,故答案为:a >3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、<【解析】【分析】由0bc <可得:,b c 异号,又bc 与c b 同号,所以0c b <而0acb >,即可求解.【详解】解:由0bc <可得:,b c 异号,又bc 与c b 同号,所以0,cb < 而0acb >,所以0a <,故答案为:<.【点睛】本题考查不等式的性质,得出bc 与cb 同号是解题关键.三、解答题1、125【解析】设每套童装的标价是x 元,根据(售价﹣进价)×销量=总利润列出不等式,解不等式可得出x 的取值范围,即可得答案.【详解】设每套童装的标价是x 元,∵按标价打九折售出,要获得不低于900元的利润,∴40×(x •90%﹣90)≥900,解得:x ≥125,∴每套童装的标价至少125元.故答案为:125【点睛】本题考查一元一次不等式的应用,理解题意,根据(售价﹣进价)×销量=总利润列出不等式是解题关键.2、(1)①40-x ,1800-45x ;②15;(2)76【解析】【分析】(1)①根据总数减去A 的数量得到B 的数量,再根据单价乘以数量求费用填空即可;②根据题意列不等式解答;(2)根据题意列方程2545()1980x n x +-=,解得9994x n =-,根据70x ≥,得到999704n -≥,由且n 为4的倍数,n 为正整数,0n x -≥求出答案.【详解】解:(1)①故答案为:40-x ,1800-45x ;②由题意得:25(180045)1500x x +-≤ ,解得15x ≥,∵x 为正整数,∴至少需要购买15个A 类垃圾桶;(2)由题意得:2545()1980x n x +-=,解得9994x n =-,∵70x ≥,∴999704n -≥,且n 为4的倍数,解得1759n ≥,∵n 为正整数,0n x -≥,∴n =76,故答案为:76.【点睛】此题考查列一元一次不等式解决实际问题,正确理解题意得到不等式关系是解题的关键.3、(1)60件;(2)6天;(3)A 型机器前2天租3台,第3天租2台;B 型机器每天租3台【解析】【分析】(1)设每箱装x 件产品,根据“每台A 型机器比每台B 型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次,∵共有12台次B 型机器可用, ∴321122a -≤, 解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A 型机器6台次,B 型机器12台次,其中3天中共租A 型机器8台次,B 型机器9台次(如A 型机器前两天租3台,第3天租2台,B 型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.4、(1)线下销量至少为900千克;(2)30【解析】【分析】(1)设线下销售了x 千克,则线上销售了(4500)x -千克,根据线上销量不超过线下销量的4倍即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论;(2)利用销售总额=销售单价⨯销售数量,即可得出关于a 的一元一次方程,进而解方程即可得出结论.【详解】解:(1)设线下销售了x 千克,则线上销售了(4500)x -千克,依题意得:45004x x -,解得:900x ,∴x 的最小值为900,答:线下销量至少为900千克.(2)根据题意可得:115(1%)(1000200)10(1%)(2000400)(151000102000)10002a a +⨯-++⨯-=⨯+⨯-,解得:30a =,答:a 的值为30.【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.5、(1)3x >-;(2)43x -<-【解析】【分析】(1)把不等式转化为一元一次不等式后再求解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集即可.【详解】解:(1)121263x x +--<, 12(21)12x x +--<,14212x x +-+<,39x -<,解得:3x >-;(2)()()312934140.50.2x x x x ⎧->+⎪⎨-+--⎪⎩①②, 由①得:3x <-,由②得:4x -,则不等式组的解集为43x -<-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握运算法则.。
不等式与不等式组 练习题 答案
第九章 不等式与不等式组之老阳三干创作测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上暗示解集.(一)课堂学习检测一、填空题:1.用“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1;(4)6+2______5+2;(5)6+(-2)______5+(-2);(6)6×(-2)______5×(-2).2.用不等式暗示:(1)m -3是正数______;(2)y +5是负数______;(3)x 不年夜于2______;(4)a 是非负数______;(5)a 的2倍比10年夜______;(6)y 的一半与6的和是负数______;(7)x 的3倍与5的和年夜于x 的31______;(8)m 的相反数是非正数______.3.画出数轴,在数轴上暗示出下列不等式的解集:(1)⋅>213x (2)x ≥-4. (3)⋅≤51x (4)⋅-<312x 二、选择题:4.下列不等式中,正确的是( ). (A)4385-<-(B)5172<(C)(-6.4)2<(-6.4)3(D)-|-27|<-(-3)35.“a 的2倍减去b 的差不年夜于-3”用不等式可暗示为( ).(A)2a -b <-3(B)2(a -b )<-3(C)2a -b ≤-3(D)2(a -b )≤-3三、解答题:6.利用数轴求出不等式-2<x ≤4的整数解.(二)综合运用诊断一、填空题:7.用“<”或“>”填空:⑴-2.5______-5.2;(2);125______114--(3)|-3|______-(-2.3);(4)a 2+1______0;(5)0______|x |+4;(6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式暗示为______.二、选择题:9.如果a 、b 暗示两个负数,且a <b ,则( ). (A)1>b a (B)1<b a (C)b a 11<(D)ab <110.如图在数轴上暗示的解集对应的是( ).(A)-2<x <4(B)-2<x ≤4(C)-2≤x <4(D)-2≤x ≤411.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b(C)若a ≠b ,则|a |≠|b |(D)若|a |≠|b |,则a ≠b12.|a |+a 的值一定是( ).(A)年夜于零(B)小于零(C)不年夜于零(D)不小于零三、判断题:13.不等式5-x >2的解集有无数多个.( ).14.不等式x >-1的整数解有无数多个.( ).15.不等式32421<<-x 的整数解有0、1、2、3、4.( ). 16.若a >b >0>c ,则.0>c ab ( ).四、解答题:17.若a 是有理数,比力2a 和3a 的年夜小.(三)拓广、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对整数a 、b 、c 、d ,界说bd ac c d b a -=,已知3411<<d b ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基赋性质,并会用它们解简单的一元一次不等式.(一)课堂学习检测一、填空题:1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3;(2)a -3______b -3;(3)3a ______3b ; (4);2______2b a (5);7______7b a --(6)5a +2______5b +2; (7)-2a -1______-2b -1;(8)4-3b ______6-3a .2.用“<”或“>”填空:(1)若a -2>b -2,则a ______b ;(2)若,33b a <则a ______b ;(3)若-4a >-4b ,则a ______b ;(4),22b a -<-则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y .二、选择题:5.若a >2,则下列各式中毛病的是( ).(A)a -2>0(B)a +5>7(C)-a >-2(D)a -2>-46.已知a >b ,则下列结论中毛病的是( ).(A)a -5>b -5(B)2a >2b (C)ac >bc (D)a -b >07.若a >b ,且c 为有理数,则( ).(A)ac >bc (B)ac <bc (C)ac 2>bc 2(D)ac 2≥bc 28.若由x <y 可获得ax >ay ,应满足的条件是( ).(A)a ≥0(B)a ≤0(C)a >0(D)a <0三、解答题:9.根据不等式的基赋性质解下列不等式,并将解集暗示在数轴上.(1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式暗示下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(二)综合运用诊断一、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从小到年夜排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;m n x <当m ______时,解集是⋅>m n x12.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0;(2)(2-a )(2-b )______0;(3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最年夜的整数x =______.14.如果ax >b 的解集为,a b x >则a ______0. 二、选择题:15.已知方程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ). (A)25=m (B)25>m (C)25<m (D)25≤m16.已知二元一次方程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4(B)x <4(C)x >-4(D)x <-417.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2(B)a <3(C)a <4(D)a <5三、解答题:18.当x取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.(三)拓广、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求:会解一元一次不等式.(一)课堂学习检测一、填空题:1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则a b ______0;(3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式子152-a 的值不年夜于-3.3.不等式2x -3≤4x +5的负整数解为______.二、选择题:4.下列各式中,是一元一次不等式的是( ).(A)x 2+3x >1(B)03<-y x (C)5511≤-x (D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0(B)-3(C)-2(D)-1三、解下列不等式,并把解集在数轴上暗示出来:6.2(2x -3)<5(x -1).7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y10.求不等式361633->---x x 的非负整数解. 11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(二)综合运用诊断一、填空题:12.已知a <b <0,用“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0).13.⑴已知x <a 的解集中的最年夜整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______.二、选择题:14.下列各对不等式中,解集不相同的一对是( ). (A)72423x x +<-与-7(x -3)<2(4+2x )(B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2十x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的方程5432b x a x +=+的解不是负值,那么a 与b的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b (D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x .(2).17)10(2383+-≤--y y y (3).151)13(21+<--y y y (4)⋅-+≤--+15)2(22537313x x x (5)).1(32)]1(21[21-<---x x x x (6)⋅->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值. 19.已知关于x 的方程3232x m x x -=--的解是非负数,m 是正整数,求m 的值.*20.那时310)3(2kk -<-,求关于x 的不等式k x x k ->-4)5(的解集. (三)拓广、探究、思考21.适被选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解;(2)x 一个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试比力A 与B 的年夜小.测试4 实际问题与一元一次不等式学习要求:会从实际问题中笼统出不等的数量关系,会用一元一次不等式解决实际问题.(一)课堂学习检测一、填空题:1.若x 是非负数,则5231x-≤-的解集是______.2.使不等式x -2≤3x +5成立的负整数有______.3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______4.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装年夜米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装年夜米,他们选购的3只环保购物袋至少应付给超市______元.二、选择题:5.三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( ).(A)13cm(B)6cm(C)5cm(D)4cm6.一商场进了一批商品,进价为每件800元,如果要坚持销售利润不低于15%,则售价应不低于( ).(A)900元(B)920元(C)960元(D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况欠好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价几多元出售商品?8.某次数学竞赛活动,共有16道选择题,评分法子是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对几多题,成果才华在60分以上?(二)综合运用诊断一、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______;(2)(2x -1)+x >2x 的解集是______; (3)5231052--≤-x x x 的解集是______. 10.若m >5,试用m 暗示出不等式(5-m )x >1-m 的解集______.二、选择题:11.初三⑴班的几个同学,结业前合影留念,每人交0.70元,一张黑色底片0.68元,扩印一张相片0.50元,每人分一张,将收来的钱尽量用失落的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人12.某出租车的收费标准是:起步价7元,超越3km 时,每增加1km 加收2.4元(缺乏1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车资19元,设这人从甲地到乙地经过的路程是x km,那么x 的最年夜值是( ).(A)11(B)8(C)7(D)5三、解答题:13.已知:关于x 、y的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.14.某工人加工300个零件,若每小时加工50个可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工几多个零件?(三)拓广、探究、思考15.某商场出售A型冰箱,每台售价2290元,每日耗电1度;而B型节能冰箱,每台售价比A高出10%,但每日耗电0.55度.现将A型冰箱打折出售(打九折后的售价为原价的十分之九),问商场最多打几折时,消费者购买A型冰箱才比购买B型冰箱更合算?(按使用期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安插x名工人制造甲零件,其余工人制造乙种零件.⑴若此车间每天所获利润为y(元),用x的代数式暗示y;(2)若要使每天所获利润不低于24000元,至少要派几多名工人去制造乙种零件?测试5 一元一次不等式组(一)学习要求:会解一元一次不等式组,并会利用数轴正确暗示出解集.(一)课堂学习检测一、填空题:1.解不等式组⎩⎨⎧>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是获得不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是获得不等式组的解集是______.3.用字母x 的范围暗示下列数轴上所暗示的公共部份:(1)________________________; (2)_______________________; (3)________________________. 二、选择题:4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ). (A)x <-4(B)x >2(C)-4<x <2(D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x (D)无解 三、解下列不等式组,利用数轴确定不等式组的解集.6.⎩⎨⎧≥-≥-.04,012x x 7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-≤-.3342,121x x x x 9.-5<6-2x <3.四、解答题:10.解不等式组⎪⎩⎪⎨⎧⋅<-+≤+321),2(352x x x x 并写出不等式组的整数解.(二)综合运用诊断一、填空题:11.当x 满足______时,235x-的值年夜于-5而小于7.12.不等式组⎪⎪⎩⎪⎪⎨⎧⋅≤-+<2512,912x x x x 的整数解为______. 二、选择题:13.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是( ).(A)x <a (B)x <b (C)b <x <a (D)无解14.不等式组⎩⎨⎧+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m <1(D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x 17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x 、y 满足且0<y -x <1,求k 的取值范围.(三)拓广、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 一元一次不等式组(二)学习要求:进一步掌握一元一次不等式组.(一)课堂学习检测一、填空题:1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><32x x 的解集是______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.一个两位数,它的十位数字比个位数字小2,如果这个数年夜于20且小于40,那么此数为______.二、选择题:3.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是( ). (A)76<x (B)31>x (C)7631<<x (D)无解4.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ). (A)1个(B)2个(C)3个(D)4个5.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ).(A)k <2(B)k ≥2(C)k <1(D)1≤k <2三、解下列不等式组,并把解集在数轴上暗示出来:6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x 7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x 9..234512x x x -≤-≤- (二)综合运用诊断一、填空题:10.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.11.k满足______时,方程组⎩⎨⎧=-=+.4,2y x k y x 中的x 年夜于1,y 小于1. 二、解下列不等式组:12.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x 13.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根年夜于2且小于10?15.已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.(三)拓广、探究、思考16.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a的取值范围. 测试7 利用不等关系分析实际问题学习要求:利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.(一)课堂学习检测列不等式(组)解应用题:1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘几多土方?2.某城市平均每天发生垃圾700吨,由甲、乙两个垃圾厂处置.如果甲厂每小时可处置垃圾55吨,需花费550元;乙厂每小时处置45吨,需花费495元,如果规定该城市每天用于处置垃圾的费用的和不能超越7150元,问甲厂每天至少要处置几多吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安插住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有几多人?宿舍有几间?4.今年5月12日,汶川发生了里氏8.0级年夜地动,给本地人民造成了巨年夜的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额年夜于48元,小于51元.请根据以上信息,帮手老师解决:①(2)班与(3)班的捐款金额各是多元;②(1)班的学生人数.(二)综合运用诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校独自租用这两种客车各需几多钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比独自租用一种车辆节省租金,请选择最节省的租车方案.(三)拓广、探究、思考6.在“5·12年夜地动”灾民安排工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安插140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2.问:应分别安插几多人生产甲种板材和乙种板材,才华确保他们用相同的时间完成各自的生产任务?(2)某灾民安排点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安排的人数如下表所示:问:这400间板房最多能安排几多灾民?全章测试(一)一、填空题:1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--y y(4)a <b <0,则a 2______b 2;(5)若23y x -<-,则2x ______3y .2.若使3233->-y y 成立,则y ______.3.不等式x >-4.8的负整数解是______.二、选择题:4.x 的一半与y 的平方的和年夜于2,用不等式暗示为( ). (A)2212>+y x (B)2212>++y x (C)222>+y x (D)221>+y x 5.因为-5<-2,所以( ).(A)-5x <-2x (B)-5x >-2x(C)-5x =-2x (D)三种情况都可能6.若a ≠0,则下列不等式成立的是( ).(A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a (D)a a 22<-7.下列不等式中,对任何有理数都成立的是( ).(A)x -3>0(B)|x +1|>0(C)(x +5)2>0(D)-(x -5)2≤08.若a <0,则关于x 的不等式|a |x <a 的解集是( ).(A)x <1(B)x >1(C)x <-1(D)x >-1三、解不等式(组),并把解集在数轴上暗示出来:9..11252476312-+≥---x x x 10.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x 四、解答题:11.x取何整数时,式子729+x 与2143-x 的差年夜于6但不年夜于8.12.当k 为何值时,方程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知方程组⎩⎨⎧-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超越200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超越了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件几多个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是几多?全章测试(二)一、填空题1.当m______时,方程5(x-m)=-2有小于-2的根.2.满足5(x-1)≤4x+8<5x的整数x为______.3.若11|1|=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从小到年夜的顺序排列a、-b、-|a|、-|-b|四个数为______.二、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(1)若a>b,则-a>-b;(2)若a>b,则3-2a>3-2b;(3)8|a|>5|a|.(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有一个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满足( ).(A)a<0(B)a>-1(C)a<-1(D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1(B)-x+1(C)x+1(D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a <c (B)a <b (C)a >c (D)b <c三、解不等式(组):10.3(x +2)-9≥-2(x -1).11..57321<+<-x12.⎪⎪⎩⎪⎪⎨⎧>--+<-.0415221131x x x x 13.求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解.14.如果关于x 的方程3(x +4)-4=2a +1的解年夜于方程3)43(414-=+x a x a 的解,求a 的取值范围.15.某单元要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了分歧的优惠条件,甲印刷厂提出:凡印刷数量超越2000份的,超越部份的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超越3000份的,超越部份印刷费可按8折收费.⑴若该单元要印刷2400份,则甲印刷厂的费用是______.乙印刷厂的费用是______.(2)根据印刷数量年夜小,请讨论该单元到哪家印刷厂印刷资料可获得更年夜优惠?16.为了呵护环境,某造纸厂决定购买20台污水处置设备,现有A 、B 两种型号的设备,其中每台的价格、日处置污水量及年消耗费用如下表:A型B型价格(万元/台) 24 20处置污水量(吨/日) 480 400经预算,该纸厂购买设备的资金不能高于410万元.(1)请你设计该企业有几种购买方案;(2)若纸厂每日排出的污水量年夜于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案.17.(1)比力下列各组数的年夜小.(2)猜想:设a>b>0,m>0.则,______mambab++请证明你的结论.参考谜底第九章不等式与不等式组测试11.(1)>;(2)<;(3)<;(4)>;(5)>;(6)<.2.(1)m-3>0;(2)y+5<0;(3)x≤2;(4)a≥0;(5)2a>10;(6)62<+y;(7)353xx>+; (8)-m≤0.3.(1)(2)(3)(4)4.D. 5.C.6.整数解为-1,0,1,2,3,4.7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x9.A . 10.B . 11.D . 12.D . 13.×14.√15.√16.×17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a .18.3ax ≤,且x 为正整数1、2、3. ∴9≤a <12.19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<.2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变.4.> 5.C . 6.C . 7.D . 8.D .9.(1)x <10,解集暗示为(2)x >6,解集暗示为(3)x ≥2.5,解集暗示为(4)x ≤3,解集暗示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0;解集为⋅<37a 11.(1)a 2<ax <x 2;(2)<0;>0. 12.(1)>;(2)>;(3)<.13.1. 14.>. 15.C . 16.A . 17.C .18.(1)x =2;(2)x >2;(3)⋅<311x 19.∵-m 2-1<0,⋅--<∴12m n x 20.当a >0时,a b x >;当a <0时,⋅<a b x 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5.3.-4,-3,-2,-1. 4.D . 5.D .6.x >-1,解集暗示为7.x ≥-3,解集暗示为8.x >6,解集暗示为9.y ≤3,解集暗示为10.,413<x 非负整数解为0,1,2,3.11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.13.(1)3<a ≤4.(2)-3≤a <-2. 14.B . 15.D16.(1)x ≥6.(2)⋅≤625y (3)y <5.(4)⋅-≥23x(5)x <-5.(6)x <9.17.解关于x 、y的方程组得⎪⎪⎩⎪⎪⎨⎧⋅-=+=351,371m y m x 代入x +y <0,解得m <-1.18.57≤x 19.m ≤2,m =1,220.4-<k k x 21.(1)2<a ≤3;(2)1.7<a ≤2.22.(m -2)x ≤m +1.当m >2时,21-+≤m m x ,当m <2时,⋅-+≥21m m x 23.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .测试41.0≤x ≤42.-3,-2,-13.x >14.85.B6.B7.设应降价x 元出售商品.225-x ≥(1+10%)×150,x ≤60.8.设答对x 道题,则6x -2(15-x )>60,解得4111>x ,故至少答对12道题.9.(1)27->x ;(2)x >1;(3)29-≥x . 10.⋅--<m m x 5111.C . 12.B .13.p >-6.(x =p +5,y =-p -7)14.设每小时加工x 个零件,则,250300)32250300(⨯-≥--x ,解得x ≥60.15.设商场打x 折,则2290·10x ×10×××10×365, 解得x <8.13,故最多打八折.16.(1)y =-400x +26000, 0≤x ≤20;(2)-400x +26000≥24000, x ≤5, 20-5=15.至少派15人去制造乙种零件.测试51.x <-2,21<x ,x <-2. 2..361,3,61≤≤≤≥x x x3.(1)x >-1;(2)0<x <2;(3)无解. 4.B . 5.B .6.421≤≤x ,解集暗示为7.x ≥0,解集暗示为8.无解 9.1.5<x 10.-1≤x <3,整数解为-1、0、1、2.11.-3<x <512.-2,-1,0. 13.B . 14.C . 15.-10<x ≤-4,整数解为-9,-8,-7,-6,-5,-4.16.-1<x <4. 17.).015213,02513(25217⎩⎨⎧<--=<-=<<-k y k x k .18.121,316,32<<-==k k y x19.解得⎪⎩⎪⎨⎧>+≥.2,34x a x 于是234≤+a ,故a ≤2;因为a 是自然数,所以a=0,1或2.20.不等式组的解集为a ≤x <2,-4<a ≤-3.测试61.(1)x >2;(2)x <-3;(3)-3<x <2;(4)无解.2.24或35. 3.C. 4.B. 5.D6.(1)x >6,解集暗示为7.-6<x <6,解集暗示为8.x <-12,解集暗示为9.x ≤-4,解集暗示为10.7;0. 11.-1<k <3. 12.无解. 13.x >8.14.由,103282<-=<k x 得1<k <4,故整数k =2或3.15.(1);532.5,23<<⎩⎨⎧-=+=m -m y m x (2)化简得4m -3. 16.不等式组的解集为2-3a <x <21,有四个整数解,所以x =17,18,19,20,所以16≤2-3a <17,解得⋅-≤<-3145a 测试71.设以后几天平均每天挖掘x m 3的土方,则(10-2-2)x ≥600-120,解得x ≥80.2.设该市由甲厂处置x吨垃圾,则7150)700(4549555550≤-+x x ,解得x≥550.3.解:设宿舍共有x 间.⎩⎨⎧+<-+>.204)1(8,2048x x x x 5<x <7. ∵x 为整数,∴x =6,4x +20=44(人).4.(1)二班3000元,三班2700元;(2)设一班学生有x 人,则:48x <2000且51x >2000且x 为正整数解得x =40.5.(1)385÷42=9.2 独自租用42座客车需10辆.租金为320×10=3200;385÷60=6.4 独自租用60座客车需7辆.租金为460×7=3220.(2)设租用42座客车x 辆,则60座客车需(8-x )辆.x 取整数,x =4,5.当x =4时,租金为3120元;x =5时,租金为2980元.所以租5辆42座,3辆60座最省钱.6.(1)设x 人生产甲种板材.则(140-x )人生产乙种板材,共用y 天.所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m 解得⎩⎨⎧==.80,10y x所以安插80人生产甲种板材,安插60人生产乙种板材.(2)设生产A 型板房m 间,B 型板房(400-m )间.所以⎩⎨⎧≤-+≤-+.12000)400(4126,24000)400(7854m m m m 解得m ≥300.所以最多安排2300人.全章测试(一)1.(1)>;(2)<;(3)>;(4)>;(5)>. 2.<0. 3.-4,-3,-2,-1.4.A . 5.D . 6.C . 7.D . 8.C .9.x ≤2,解集暗示为10.-1<x ≤1,解集暗示为11.6310<≤-x ,整数解为-3,-2,-1,0,1,2,3,4,5. 12.⋅--=133kx x (1);21>k (2);21<k (3)⋅=21k 13.⎪⎪⎩⎪⎪⎨⎧⋅-=+=471,41k y k x 31>k 14.x >6-2m,m =2. 15.设原来每天生产配件x 个.200<8(x +10)<4(x +10+27).15<x <17.x =16.16.设饼干x 元,牛奶y 元.⎪⎩⎪⎨⎧-=+>+<.8.0109.0,10,10y x y x x 8<x <10,x 为整数,⎩⎨⎧==∴.1.1,9y x全章测试(二)1.⋅-<582.9,10,11,12,13. 3.x <1. 4.-|-b |<-|a |<a <-b .5.B . 6.D . 7.C . 8.A9.C . 10.x ≥1. 11.-5<x <16.12.-6<x <13. 13.0,1,2. 14.,316372a a ->-解得⋅>187a 15.(1)1308元;1320元.(2)年夜于4000份时去乙厂;年夜于2000份且少于4000份时去甲厂;其余情况两厂均可.16.(1)设购买A型设备x台,B型设备(20-x)台.24x+20(20-x)≤410.x≤2.5, ∴x=0,1,2.三种方案:方案一:A:0台;B:20台;方案二:A:1台;B:19台;方案三:A:2台,B:18台.(2)依题意8060<480x+400(20-x)<8172.0.75<x<2.15, x=1,2.当x=1时,购买资金为404万元;x=2时,购买资金为408万元.为节约资金,应购买A型1台,B型19台.17.(1)<<<<<<.(2)⋅++<mambab∵a>b>0,∴b-a<0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试 实际问题与一元一次不等式学习要求:会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.(一)学习检测一、填空题:1.若x 是非负数,则5231x -≤-的解集是______.2.使不等式x -2≤3x +5成立的负整数有______. 3.代数式231x -与代数式x -2的差是负数,则x 的取值范围为______4.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题:5.三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.一商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元(B)920元(C)960元(D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?(二)综合运用诊断一、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______;(2)(2x -1)+x >2x 的解集是______; (3)5231052--≤-x x x 的解集是______.10.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、选择题:11.初三⑴班的几个同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11(B)8(C)7(D)5三、解答题:13.已知:关于x 、y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.14.某工人加工300个零件,若每小时加工50个可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?(三)拓广、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每日耗电1度;而B 型节能冰箱,每台售价比A 高出10%,但每日耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的十分之九),问商场最多打几折时,消费者购买A 型冰箱才比购买B 型冰箱更合算?(按使用期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲零件,其余工人制造乙种零件.⑴若此车间每天所获利润为y (元),用x 的代数式表示y ;(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?测试 一元一次不等式组(一)学习要求:会解一元一次不等式组,并会利用数轴正确表示出解集.(一)学习检测 一、填空题:1.解不等式组⎩⎨⎧>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分:(1)________________________; (2)_______________________; (3)________________________.二、选择题:4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2(C)-4<x <2(D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x (D)无解三、解下列不等式组,利用数轴确定不等式组的解集.6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组⎪⎩⎪⎨⎧⋅<-+≤+321),2(352x x x x 并写出不等式组的整数解.(二)综合运用诊断一、填空题:11.当x 满足______时,235x -的值大于-5而小于7.12.不等式组⎪⎪⎩⎪⎪⎨⎧⋅≤-+<2512,912x x x x 的整数解为______.二、选择题:13.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是( ).(A)x <a (B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m <1(D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x 、y 满足且0<y -x <1,求k 的取值范围.(三)拓广、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试 一元一次不等式组(二)学习要求:进一步掌握一元一次不等式组.(一)学习检测一、填空题:1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><32x x 的解集是______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为______. 二、选择题:3.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<<x (D)无解4.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个 (B)2个(C)3个 (D)4个5.若不等式组⎩⎨⎧>≤<kx x 21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1(D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来:6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(二)综合运用诊断一、填空题:10.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.11.k 满足______时,方程组⎩⎨⎧=-=+.4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组:12.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x13.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?15.已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.(三)拓广、探究、思考16.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.。